pid namespaces: miscellaneous preparations for pid namespaces
[linux-2.6/pdupreez.git] / kernel / pid.c
blob4b17acdb862f5b1e917b492bc9118d895a27c0a7
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/bootmem.h>
28 #include <linux/hash.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/init_task.h>
32 #define pid_hashfn(nr, ns) \
33 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
34 static struct hlist_head *pid_hash;
35 static int pidhash_shift;
36 struct pid init_struct_pid = INIT_STRUCT_PID;
38 int pid_max = PID_MAX_DEFAULT;
40 #define RESERVED_PIDS 300
42 int pid_max_min = RESERVED_PIDS + 1;
43 int pid_max_max = PID_MAX_LIMIT;
45 #define BITS_PER_PAGE (PAGE_SIZE*8)
46 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
48 static inline int mk_pid(struct pid_namespace *pid_ns,
49 struct pidmap *map, int off)
51 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
54 #define find_next_offset(map, off) \
55 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
58 * PID-map pages start out as NULL, they get allocated upon
59 * first use and are never deallocated. This way a low pid_max
60 * value does not cause lots of bitmaps to be allocated, but
61 * the scheme scales to up to 4 million PIDs, runtime.
63 struct pid_namespace init_pid_ns = {
64 .kref = {
65 .refcount = ATOMIC_INIT(2),
67 .pidmap = {
68 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
70 .last_pid = 0,
71 .level = 0,
72 .child_reaper = &init_task,
74 EXPORT_SYMBOL_GPL(init_pid_ns);
76 int is_container_init(struct task_struct *tsk)
78 int ret = 0;
79 struct pid *pid;
81 rcu_read_lock();
82 pid = task_pid(tsk);
83 if (pid != NULL && pid->numbers[pid->level].nr == 1)
84 ret = 1;
85 rcu_read_unlock();
87 return ret;
89 EXPORT_SYMBOL(is_container_init);
92 * Note: disable interrupts while the pidmap_lock is held as an
93 * interrupt might come in and do read_lock(&tasklist_lock).
95 * If we don't disable interrupts there is a nasty deadlock between
96 * detach_pid()->free_pid() and another cpu that does
97 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
98 * read_lock(&tasklist_lock);
100 * After we clean up the tasklist_lock and know there are no
101 * irq handlers that take it we can leave the interrupts enabled.
102 * For now it is easier to be safe than to prove it can't happen.
105 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
107 static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
109 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
110 int offset = pid & BITS_PER_PAGE_MASK;
112 clear_bit(offset, map->page);
113 atomic_inc(&map->nr_free);
116 static int alloc_pidmap(struct pid_namespace *pid_ns)
118 int i, offset, max_scan, pid, last = pid_ns->last_pid;
119 struct pidmap *map;
121 pid = last + 1;
122 if (pid >= pid_max)
123 pid = RESERVED_PIDS;
124 offset = pid & BITS_PER_PAGE_MASK;
125 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
126 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
127 for (i = 0; i <= max_scan; ++i) {
128 if (unlikely(!map->page)) {
129 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
131 * Free the page if someone raced with us
132 * installing it:
134 spin_lock_irq(&pidmap_lock);
135 if (map->page)
136 kfree(page);
137 else
138 map->page = page;
139 spin_unlock_irq(&pidmap_lock);
140 if (unlikely(!map->page))
141 break;
143 if (likely(atomic_read(&map->nr_free))) {
144 do {
145 if (!test_and_set_bit(offset, map->page)) {
146 atomic_dec(&map->nr_free);
147 pid_ns->last_pid = pid;
148 return pid;
150 offset = find_next_offset(map, offset);
151 pid = mk_pid(pid_ns, map, offset);
153 * find_next_offset() found a bit, the pid from it
154 * is in-bounds, and if we fell back to the last
155 * bitmap block and the final block was the same
156 * as the starting point, pid is before last_pid.
158 } while (offset < BITS_PER_PAGE && pid < pid_max &&
159 (i != max_scan || pid < last ||
160 !((last+1) & BITS_PER_PAGE_MASK)));
162 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
163 ++map;
164 offset = 0;
165 } else {
166 map = &pid_ns->pidmap[0];
167 offset = RESERVED_PIDS;
168 if (unlikely(last == offset))
169 break;
171 pid = mk_pid(pid_ns, map, offset);
173 return -1;
176 static int next_pidmap(struct pid_namespace *pid_ns, int last)
178 int offset;
179 struct pidmap *map, *end;
181 offset = (last + 1) & BITS_PER_PAGE_MASK;
182 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
183 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
184 for (; map < end; map++, offset = 0) {
185 if (unlikely(!map->page))
186 continue;
187 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
188 if (offset < BITS_PER_PAGE)
189 return mk_pid(pid_ns, map, offset);
191 return -1;
194 fastcall void put_pid(struct pid *pid)
196 struct pid_namespace *ns;
198 if (!pid)
199 return;
201 ns = pid->numbers[pid->level].ns;
202 if ((atomic_read(&pid->count) == 1) ||
203 atomic_dec_and_test(&pid->count)) {
204 kmem_cache_free(ns->pid_cachep, pid);
205 put_pid_ns(ns);
208 EXPORT_SYMBOL_GPL(put_pid);
210 static void delayed_put_pid(struct rcu_head *rhp)
212 struct pid *pid = container_of(rhp, struct pid, rcu);
213 put_pid(pid);
216 fastcall void free_pid(struct pid *pid)
218 /* We can be called with write_lock_irq(&tasklist_lock) held */
219 int i;
220 unsigned long flags;
222 spin_lock_irqsave(&pidmap_lock, flags);
223 for (i = 0; i <= pid->level; i++)
224 hlist_del_rcu(&pid->numbers[i].pid_chain);
225 spin_unlock_irqrestore(&pidmap_lock, flags);
227 for (i = 0; i <= pid->level; i++)
228 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
230 call_rcu(&pid->rcu, delayed_put_pid);
233 struct pid *alloc_pid(struct pid_namespace *ns)
235 struct pid *pid;
236 enum pid_type type;
237 int i, nr;
238 struct pid_namespace *tmp;
239 struct upid *upid;
241 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
242 if (!pid)
243 goto out;
245 tmp = ns;
246 for (i = ns->level; i >= 0; i--) {
247 nr = alloc_pidmap(tmp);
248 if (nr < 0)
249 goto out_free;
251 pid->numbers[i].nr = nr;
252 pid->numbers[i].ns = tmp;
253 tmp = tmp->parent;
256 get_pid_ns(ns);
257 pid->level = ns->level;
258 pid->nr = pid->numbers[0].nr;
259 atomic_set(&pid->count, 1);
260 for (type = 0; type < PIDTYPE_MAX; ++type)
261 INIT_HLIST_HEAD(&pid->tasks[type]);
263 spin_lock_irq(&pidmap_lock);
264 for (i = ns->level; i >= 0; i--) {
265 upid = &pid->numbers[i];
266 hlist_add_head_rcu(&upid->pid_chain,
267 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
269 spin_unlock_irq(&pidmap_lock);
271 out:
272 return pid;
274 out_free:
275 for (i++; i <= ns->level; i++)
276 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
278 kmem_cache_free(ns->pid_cachep, pid);
279 pid = NULL;
280 goto out;
283 struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)
285 struct hlist_node *elem;
286 struct upid *pnr;
288 hlist_for_each_entry_rcu(pnr, elem,
289 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
290 if (pnr->nr == nr && pnr->ns == ns)
291 return container_of(pnr, struct pid,
292 numbers[ns->level]);
294 return NULL;
296 EXPORT_SYMBOL_GPL(find_pid_ns);
299 * attach_pid() must be called with the tasklist_lock write-held.
301 int fastcall attach_pid(struct task_struct *task, enum pid_type type,
302 struct pid *pid)
304 struct pid_link *link;
306 link = &task->pids[type];
307 link->pid = pid;
308 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
310 return 0;
313 void fastcall detach_pid(struct task_struct *task, enum pid_type type)
315 struct pid_link *link;
316 struct pid *pid;
317 int tmp;
319 link = &task->pids[type];
320 pid = link->pid;
322 hlist_del_rcu(&link->node);
323 link->pid = NULL;
325 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
326 if (!hlist_empty(&pid->tasks[tmp]))
327 return;
329 free_pid(pid);
332 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
333 void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
334 enum pid_type type)
336 new->pids[type].pid = old->pids[type].pid;
337 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
338 old->pids[type].pid = NULL;
341 struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
343 struct task_struct *result = NULL;
344 if (pid) {
345 struct hlist_node *first;
346 first = rcu_dereference(pid->tasks[type].first);
347 if (first)
348 result = hlist_entry(first, struct task_struct, pids[(type)].node);
350 return result;
354 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
356 struct task_struct *find_task_by_pid_type_ns(int type, int nr,
357 struct pid_namespace *ns)
359 return pid_task(find_pid_ns(nr, ns), type);
362 EXPORT_SYMBOL(find_task_by_pid_type_ns);
364 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
366 struct pid *pid;
367 rcu_read_lock();
368 pid = get_pid(task->pids[type].pid);
369 rcu_read_unlock();
370 return pid;
373 struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
375 struct task_struct *result;
376 rcu_read_lock();
377 result = pid_task(pid, type);
378 if (result)
379 get_task_struct(result);
380 rcu_read_unlock();
381 return result;
384 struct pid *find_get_pid(pid_t nr)
386 struct pid *pid;
388 rcu_read_lock();
389 pid = get_pid(find_vpid(nr));
390 rcu_read_unlock();
392 return pid;
395 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
397 struct upid *upid;
398 pid_t nr = 0;
400 if (pid && ns->level <= pid->level) {
401 upid = &pid->numbers[ns->level];
402 if (upid->ns == ns)
403 nr = upid->nr;
405 return nr;
409 * Used by proc to find the first pid that is greater then or equal to nr.
411 * If there is a pid at nr this function is exactly the same as find_pid.
413 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
415 struct pid *pid;
417 do {
418 pid = find_pid_ns(nr, ns);
419 if (pid)
420 break;
421 nr = next_pidmap(ns, nr);
422 } while (nr > 0);
424 return pid;
426 EXPORT_SYMBOL_GPL(find_get_pid);
428 struct pid_cache {
429 int nr_ids;
430 char name[16];
431 struct kmem_cache *cachep;
432 struct list_head list;
435 static LIST_HEAD(pid_caches_lh);
436 static DEFINE_MUTEX(pid_caches_mutex);
439 * creates the kmem cache to allocate pids from.
440 * @nr_ids: the number of numerical ids this pid will have to carry
443 static struct kmem_cache *create_pid_cachep(int nr_ids)
445 struct pid_cache *pcache;
446 struct kmem_cache *cachep;
448 mutex_lock(&pid_caches_mutex);
449 list_for_each_entry (pcache, &pid_caches_lh, list)
450 if (pcache->nr_ids == nr_ids)
451 goto out;
453 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
454 if (pcache == NULL)
455 goto err_alloc;
457 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
458 cachep = kmem_cache_create(pcache->name,
459 /* FIXME add numerical ids here */
460 sizeof(struct pid), 0, SLAB_HWCACHE_ALIGN, NULL);
461 if (cachep == NULL)
462 goto err_cachep;
464 pcache->nr_ids = nr_ids;
465 pcache->cachep = cachep;
466 list_add(&pcache->list, &pid_caches_lh);
467 out:
468 mutex_unlock(&pid_caches_mutex);
469 return pcache->cachep;
471 err_cachep:
472 kfree(pcache);
473 err_alloc:
474 mutex_unlock(&pid_caches_mutex);
475 return NULL;
478 struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
480 BUG_ON(!old_ns);
481 get_pid_ns(old_ns);
482 return old_ns;
485 void free_pid_ns(struct kref *kref)
487 struct pid_namespace *ns;
489 ns = container_of(kref, struct pid_namespace, kref);
490 kfree(ns);
494 * The pid hash table is scaled according to the amount of memory in the
495 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
496 * more.
498 void __init pidhash_init(void)
500 int i, pidhash_size;
501 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
503 pidhash_shift = max(4, fls(megabytes * 4));
504 pidhash_shift = min(12, pidhash_shift);
505 pidhash_size = 1 << pidhash_shift;
507 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
508 pidhash_size, pidhash_shift,
509 pidhash_size * sizeof(struct hlist_head));
511 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
512 if (!pid_hash)
513 panic("Could not alloc pidhash!\n");
514 for (i = 0; i < pidhash_size; i++)
515 INIT_HLIST_HEAD(&pid_hash[i]);
518 void __init pidmap_init(void)
520 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
521 /* Reserve PID 0. We never call free_pidmap(0) */
522 set_bit(0, init_pid_ns.pidmap[0].page);
523 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
525 init_pid_ns.pid_cachep = create_pid_cachep(1);
526 if (init_pid_ns.pid_cachep == NULL)
527 panic("Can't create pid_1 cachep\n");