mm: simplify filemap_nopage
[linux-2.6/pdupreez.git] / mm / slob.c
blob03cce3d3d986346106e725c3848ec7505fe7d847
1 /*
2 * SLOB Allocator: Simple List Of Blocks
4 * Matt Mackall <mpm@selenic.com> 12/30/03
6 * How SLOB works:
8 * The core of SLOB is a traditional K&R style heap allocator, with
9 * support for returning aligned objects. The granularity of this
10 * allocator is 8 bytes on x86, though it's perhaps possible to reduce
11 * this to 4 if it's deemed worth the effort. The slob heap is a
12 * singly-linked list of pages from __get_free_page, grown on demand
13 * and allocation from the heap is currently first-fit.
15 * Above this is an implementation of kmalloc/kfree. Blocks returned
16 * from kmalloc are 8-byte aligned and prepended with a 8-byte header.
17 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
18 * __get_free_pages directly so that it can return page-aligned blocks
19 * and keeps a linked list of such pages and their orders. These
20 * objects are detected in kfree() by their page alignment.
22 * SLAB is emulated on top of SLOB by simply calling constructors and
23 * destructors for every SLAB allocation. Objects are returned with
24 * the 8-byte alignment unless the SLAB_MUST_HWCACHE_ALIGN flag is
25 * set, in which case the low-level allocator will fragment blocks to
26 * create the proper alignment. Again, objects of page-size or greater
27 * are allocated by calling __get_free_pages. As SLAB objects know
28 * their size, no separate size bookkeeping is necessary and there is
29 * essentially no allocation space overhead.
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/cache.h>
35 #include <linux/init.h>
36 #include <linux/module.h>
37 #include <linux/timer.h>
39 struct slob_block {
40 int units;
41 struct slob_block *next;
43 typedef struct slob_block slob_t;
45 #define SLOB_UNIT sizeof(slob_t)
46 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
47 #define SLOB_ALIGN L1_CACHE_BYTES
49 struct bigblock {
50 int order;
51 void *pages;
52 struct bigblock *next;
54 typedef struct bigblock bigblock_t;
56 static slob_t arena = { .next = &arena, .units = 1 };
57 static slob_t *slobfree = &arena;
58 static bigblock_t *bigblocks;
59 static DEFINE_SPINLOCK(slob_lock);
60 static DEFINE_SPINLOCK(block_lock);
62 static void slob_free(void *b, int size);
63 static void slob_timer_cbk(void);
66 static void *slob_alloc(size_t size, gfp_t gfp, int align)
68 slob_t *prev, *cur, *aligned = 0;
69 int delta = 0, units = SLOB_UNITS(size);
70 unsigned long flags;
72 spin_lock_irqsave(&slob_lock, flags);
73 prev = slobfree;
74 for (cur = prev->next; ; prev = cur, cur = cur->next) {
75 if (align) {
76 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
77 delta = aligned - cur;
79 if (cur->units >= units + delta) { /* room enough? */
80 if (delta) { /* need to fragment head to align? */
81 aligned->units = cur->units - delta;
82 aligned->next = cur->next;
83 cur->next = aligned;
84 cur->units = delta;
85 prev = cur;
86 cur = aligned;
89 if (cur->units == units) /* exact fit? */
90 prev->next = cur->next; /* unlink */
91 else { /* fragment */
92 prev->next = cur + units;
93 prev->next->units = cur->units - units;
94 prev->next->next = cur->next;
95 cur->units = units;
98 slobfree = prev;
99 spin_unlock_irqrestore(&slob_lock, flags);
100 return cur;
102 if (cur == slobfree) {
103 spin_unlock_irqrestore(&slob_lock, flags);
105 if (size == PAGE_SIZE) /* trying to shrink arena? */
106 return 0;
108 cur = (slob_t *)__get_free_page(gfp);
109 if (!cur)
110 return 0;
112 slob_free(cur, PAGE_SIZE);
113 spin_lock_irqsave(&slob_lock, flags);
114 cur = slobfree;
119 static void slob_free(void *block, int size)
121 slob_t *cur, *b = (slob_t *)block;
122 unsigned long flags;
124 if (!block)
125 return;
127 if (size)
128 b->units = SLOB_UNITS(size);
130 /* Find reinsertion point */
131 spin_lock_irqsave(&slob_lock, flags);
132 for (cur = slobfree; !(b > cur && b < cur->next); cur = cur->next)
133 if (cur >= cur->next && (b > cur || b < cur->next))
134 break;
136 if (b + b->units == cur->next) {
137 b->units += cur->next->units;
138 b->next = cur->next->next;
139 } else
140 b->next = cur->next;
142 if (cur + cur->units == b) {
143 cur->units += b->units;
144 cur->next = b->next;
145 } else
146 cur->next = b;
148 slobfree = cur;
150 spin_unlock_irqrestore(&slob_lock, flags);
153 static int FASTCALL(find_order(int size));
154 static int fastcall find_order(int size)
156 int order = 0;
157 for ( ; size > 4096 ; size >>=1)
158 order++;
159 return order;
162 void *__kmalloc(size_t size, gfp_t gfp)
164 slob_t *m;
165 bigblock_t *bb;
166 unsigned long flags;
168 if (size < PAGE_SIZE - SLOB_UNIT) {
169 m = slob_alloc(size + SLOB_UNIT, gfp, 0);
170 return m ? (void *)(m + 1) : 0;
173 bb = slob_alloc(sizeof(bigblock_t), gfp, 0);
174 if (!bb)
175 return 0;
177 bb->order = find_order(size);
178 bb->pages = (void *)__get_free_pages(gfp, bb->order);
180 if (bb->pages) {
181 spin_lock_irqsave(&block_lock, flags);
182 bb->next = bigblocks;
183 bigblocks = bb;
184 spin_unlock_irqrestore(&block_lock, flags);
185 return bb->pages;
188 slob_free(bb, sizeof(bigblock_t));
189 return 0;
191 EXPORT_SYMBOL(__kmalloc);
194 * krealloc - reallocate memory. The contents will remain unchanged.
196 * @p: object to reallocate memory for.
197 * @new_size: how many bytes of memory are required.
198 * @flags: the type of memory to allocate.
200 * The contents of the object pointed to are preserved up to the
201 * lesser of the new and old sizes. If @p is %NULL, krealloc()
202 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
203 * %NULL pointer, the object pointed to is freed.
205 void *krealloc(const void *p, size_t new_size, gfp_t flags)
207 void *ret;
209 if (unlikely(!p))
210 return kmalloc_track_caller(new_size, flags);
212 if (unlikely(!new_size)) {
213 kfree(p);
214 return NULL;
217 ret = kmalloc_track_caller(new_size, flags);
218 if (ret) {
219 memcpy(ret, p, min(new_size, ksize(p)));
220 kfree(p);
222 return ret;
224 EXPORT_SYMBOL(krealloc);
226 void kfree(const void *block)
228 bigblock_t *bb, **last = &bigblocks;
229 unsigned long flags;
231 if (!block)
232 return;
234 if (!((unsigned long)block & (PAGE_SIZE-1))) {
235 /* might be on the big block list */
236 spin_lock_irqsave(&block_lock, flags);
237 for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) {
238 if (bb->pages == block) {
239 *last = bb->next;
240 spin_unlock_irqrestore(&block_lock, flags);
241 free_pages((unsigned long)block, bb->order);
242 slob_free(bb, sizeof(bigblock_t));
243 return;
246 spin_unlock_irqrestore(&block_lock, flags);
249 slob_free((slob_t *)block - 1, 0);
250 return;
253 EXPORT_SYMBOL(kfree);
255 size_t ksize(const void *block)
257 bigblock_t *bb;
258 unsigned long flags;
260 if (!block)
261 return 0;
263 if (!((unsigned long)block & (PAGE_SIZE-1))) {
264 spin_lock_irqsave(&block_lock, flags);
265 for (bb = bigblocks; bb; bb = bb->next)
266 if (bb->pages == block) {
267 spin_unlock_irqrestore(&slob_lock, flags);
268 return PAGE_SIZE << bb->order;
270 spin_unlock_irqrestore(&block_lock, flags);
273 return ((slob_t *)block - 1)->units * SLOB_UNIT;
276 struct kmem_cache {
277 unsigned int size, align;
278 const char *name;
279 void (*ctor)(void *, struct kmem_cache *, unsigned long);
280 void (*dtor)(void *, struct kmem_cache *, unsigned long);
283 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
284 size_t align, unsigned long flags,
285 void (*ctor)(void*, struct kmem_cache *, unsigned long),
286 void (*dtor)(void*, struct kmem_cache *, unsigned long))
288 struct kmem_cache *c;
290 c = slob_alloc(sizeof(struct kmem_cache), flags, 0);
292 if (c) {
293 c->name = name;
294 c->size = size;
295 c->ctor = ctor;
296 c->dtor = dtor;
297 /* ignore alignment unless it's forced */
298 c->align = (flags & SLAB_MUST_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
299 if (c->align < align)
300 c->align = align;
303 return c;
305 EXPORT_SYMBOL(kmem_cache_create);
307 void kmem_cache_destroy(struct kmem_cache *c)
309 slob_free(c, sizeof(struct kmem_cache));
311 EXPORT_SYMBOL(kmem_cache_destroy);
313 void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags)
315 void *b;
317 if (c->size < PAGE_SIZE)
318 b = slob_alloc(c->size, flags, c->align);
319 else
320 b = (void *)__get_free_pages(flags, find_order(c->size));
322 if (c->ctor)
323 c->ctor(b, c, SLAB_CTOR_CONSTRUCTOR);
325 return b;
327 EXPORT_SYMBOL(kmem_cache_alloc);
329 void *kmem_cache_zalloc(struct kmem_cache *c, gfp_t flags)
331 void *ret = kmem_cache_alloc(c, flags);
332 if (ret)
333 memset(ret, 0, c->size);
335 return ret;
337 EXPORT_SYMBOL(kmem_cache_zalloc);
339 void kmem_cache_free(struct kmem_cache *c, void *b)
341 if (c->dtor)
342 c->dtor(b, c, 0);
344 if (c->size < PAGE_SIZE)
345 slob_free(b, c->size);
346 else
347 free_pages((unsigned long)b, find_order(c->size));
349 EXPORT_SYMBOL(kmem_cache_free);
351 unsigned int kmem_cache_size(struct kmem_cache *c)
353 return c->size;
355 EXPORT_SYMBOL(kmem_cache_size);
357 const char *kmem_cache_name(struct kmem_cache *c)
359 return c->name;
361 EXPORT_SYMBOL(kmem_cache_name);
363 static struct timer_list slob_timer = TIMER_INITIALIZER(
364 (void (*)(unsigned long))slob_timer_cbk, 0, 0);
366 int kmem_cache_shrink(struct kmem_cache *d)
368 return 0;
370 EXPORT_SYMBOL(kmem_cache_shrink);
372 int kmem_ptr_validate(struct kmem_cache *a, const void *b)
374 return 0;
377 void __init kmem_cache_init(void)
379 slob_timer_cbk();
382 static void slob_timer_cbk(void)
384 void *p = slob_alloc(PAGE_SIZE, 0, PAGE_SIZE-1);
386 if (p)
387 free_page((unsigned long)p);
389 mod_timer(&slob_timer, jiffies + HZ);