mm: simplify filemap_nopage
[linux-2.6/pdupreez.git] / mm / mmap.c
blob88da687bde89fdc51b367c1728d330b3321568ab
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@redhat.com>
7 */
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/file.h>
19 #include <linux/fs.h>
20 #include <linux/personality.h>
21 #include <linux/security.h>
22 #include <linux/hugetlb.h>
23 #include <linux/profile.h>
24 #include <linux/module.h>
25 #include <linux/mount.h>
26 #include <linux/mempolicy.h>
27 #include <linux/rmap.h>
29 #include <asm/uaccess.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlb.h>
32 #include <asm/mmu_context.h>
34 #ifndef arch_mmap_check
35 #define arch_mmap_check(addr, len, flags) (0)
36 #endif
38 static void unmap_region(struct mm_struct *mm,
39 struct vm_area_struct *vma, struct vm_area_struct *prev,
40 unsigned long start, unsigned long end);
43 * WARNING: the debugging will use recursive algorithms so never enable this
44 * unless you know what you are doing.
46 #undef DEBUG_MM_RB
48 /* description of effects of mapping type and prot in current implementation.
49 * this is due to the limited x86 page protection hardware. The expected
50 * behavior is in parens:
52 * map_type prot
53 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
54 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
55 * w: (no) no w: (no) no w: (yes) yes w: (no) no
56 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
58 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
59 * w: (no) no w: (no) no w: (copy) copy w: (no) no
60 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
63 pgprot_t protection_map[16] = {
64 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
65 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
68 pgprot_t vm_get_page_prot(unsigned long vm_flags)
70 return protection_map[vm_flags &
71 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
73 EXPORT_SYMBOL(vm_get_page_prot);
75 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
76 int sysctl_overcommit_ratio = 50; /* default is 50% */
77 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
78 atomic_t vm_committed_space = ATOMIC_INIT(0);
81 * Check that a process has enough memory to allocate a new virtual
82 * mapping. 0 means there is enough memory for the allocation to
83 * succeed and -ENOMEM implies there is not.
85 * We currently support three overcommit policies, which are set via the
86 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
88 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
89 * Additional code 2002 Jul 20 by Robert Love.
91 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
93 * Note this is a helper function intended to be used by LSMs which
94 * wish to use this logic.
96 int __vm_enough_memory(long pages, int cap_sys_admin)
98 unsigned long free, allowed;
100 vm_acct_memory(pages);
103 * Sometimes we want to use more memory than we have
105 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
106 return 0;
108 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
109 unsigned long n;
111 free = global_page_state(NR_FILE_PAGES);
112 free += nr_swap_pages;
115 * Any slabs which are created with the
116 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
117 * which are reclaimable, under pressure. The dentry
118 * cache and most inode caches should fall into this
120 free += global_page_state(NR_SLAB_RECLAIMABLE);
123 * Leave the last 3% for root
125 if (!cap_sys_admin)
126 free -= free / 32;
128 if (free > pages)
129 return 0;
132 * nr_free_pages() is very expensive on large systems,
133 * only call if we're about to fail.
135 n = nr_free_pages();
138 * Leave reserved pages. The pages are not for anonymous pages.
140 if (n <= totalreserve_pages)
141 goto error;
142 else
143 n -= totalreserve_pages;
146 * Leave the last 3% for root
148 if (!cap_sys_admin)
149 n -= n / 32;
150 free += n;
152 if (free > pages)
153 return 0;
155 goto error;
158 allowed = (totalram_pages - hugetlb_total_pages())
159 * sysctl_overcommit_ratio / 100;
161 * Leave the last 3% for root
163 if (!cap_sys_admin)
164 allowed -= allowed / 32;
165 allowed += total_swap_pages;
167 /* Don't let a single process grow too big:
168 leave 3% of the size of this process for other processes */
169 allowed -= current->mm->total_vm / 32;
172 * cast `allowed' as a signed long because vm_committed_space
173 * sometimes has a negative value
175 if (atomic_read(&vm_committed_space) < (long)allowed)
176 return 0;
177 error:
178 vm_unacct_memory(pages);
180 return -ENOMEM;
183 EXPORT_SYMBOL(__vm_enough_memory);
186 * Requires inode->i_mapping->i_mmap_lock
188 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
189 struct file *file, struct address_space *mapping)
191 if (vma->vm_flags & VM_DENYWRITE)
192 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
193 if (vma->vm_flags & VM_SHARED)
194 mapping->i_mmap_writable--;
196 flush_dcache_mmap_lock(mapping);
197 if (unlikely(vma->vm_flags & VM_NONLINEAR))
198 list_del_init(&vma->shared.vm_set.list);
199 else
200 vma_prio_tree_remove(vma, &mapping->i_mmap);
201 flush_dcache_mmap_unlock(mapping);
205 * Unlink a file-based vm structure from its prio_tree, to hide
206 * vma from rmap and vmtruncate before freeing its page tables.
208 void unlink_file_vma(struct vm_area_struct *vma)
210 struct file *file = vma->vm_file;
212 if (file) {
213 struct address_space *mapping = file->f_mapping;
214 spin_lock(&mapping->i_mmap_lock);
215 __remove_shared_vm_struct(vma, file, mapping);
216 spin_unlock(&mapping->i_mmap_lock);
221 * Close a vm structure and free it, returning the next.
223 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
225 struct vm_area_struct *next = vma->vm_next;
227 might_sleep();
228 if (vma->vm_ops && vma->vm_ops->close)
229 vma->vm_ops->close(vma);
230 if (vma->vm_file)
231 fput(vma->vm_file);
232 mpol_free(vma_policy(vma));
233 kmem_cache_free(vm_area_cachep, vma);
234 return next;
237 asmlinkage unsigned long sys_brk(unsigned long brk)
239 unsigned long rlim, retval;
240 unsigned long newbrk, oldbrk;
241 struct mm_struct *mm = current->mm;
243 down_write(&mm->mmap_sem);
245 if (brk < mm->end_code)
246 goto out;
249 * Check against rlimit here. If this check is done later after the test
250 * of oldbrk with newbrk then it can escape the test and let the data
251 * segment grow beyond its set limit the in case where the limit is
252 * not page aligned -Ram Gupta
254 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
255 if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
256 goto out;
258 newbrk = PAGE_ALIGN(brk);
259 oldbrk = PAGE_ALIGN(mm->brk);
260 if (oldbrk == newbrk)
261 goto set_brk;
263 /* Always allow shrinking brk. */
264 if (brk <= mm->brk) {
265 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
266 goto set_brk;
267 goto out;
270 /* Check against existing mmap mappings. */
271 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
272 goto out;
274 /* Ok, looks good - let it rip. */
275 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
276 goto out;
277 set_brk:
278 mm->brk = brk;
279 out:
280 retval = mm->brk;
281 up_write(&mm->mmap_sem);
282 return retval;
285 #ifdef DEBUG_MM_RB
286 static int browse_rb(struct rb_root *root)
288 int i = 0, j;
289 struct rb_node *nd, *pn = NULL;
290 unsigned long prev = 0, pend = 0;
292 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
293 struct vm_area_struct *vma;
294 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
295 if (vma->vm_start < prev)
296 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
297 if (vma->vm_start < pend)
298 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
299 if (vma->vm_start > vma->vm_end)
300 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
301 i++;
302 pn = nd;
303 prev = vma->vm_start;
304 pend = vma->vm_end;
306 j = 0;
307 for (nd = pn; nd; nd = rb_prev(nd)) {
308 j++;
310 if (i != j)
311 printk("backwards %d, forwards %d\n", j, i), i = 0;
312 return i;
315 void validate_mm(struct mm_struct *mm)
317 int bug = 0;
318 int i = 0;
319 struct vm_area_struct *tmp = mm->mmap;
320 while (tmp) {
321 tmp = tmp->vm_next;
322 i++;
324 if (i != mm->map_count)
325 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
326 i = browse_rb(&mm->mm_rb);
327 if (i != mm->map_count)
328 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
329 BUG_ON(bug);
331 #else
332 #define validate_mm(mm) do { } while (0)
333 #endif
335 static struct vm_area_struct *
336 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
337 struct vm_area_struct **pprev, struct rb_node ***rb_link,
338 struct rb_node ** rb_parent)
340 struct vm_area_struct * vma;
341 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
343 __rb_link = &mm->mm_rb.rb_node;
344 rb_prev = __rb_parent = NULL;
345 vma = NULL;
347 while (*__rb_link) {
348 struct vm_area_struct *vma_tmp;
350 __rb_parent = *__rb_link;
351 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
353 if (vma_tmp->vm_end > addr) {
354 vma = vma_tmp;
355 if (vma_tmp->vm_start <= addr)
356 return vma;
357 __rb_link = &__rb_parent->rb_left;
358 } else {
359 rb_prev = __rb_parent;
360 __rb_link = &__rb_parent->rb_right;
364 *pprev = NULL;
365 if (rb_prev)
366 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
367 *rb_link = __rb_link;
368 *rb_parent = __rb_parent;
369 return vma;
372 static inline void
373 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
374 struct vm_area_struct *prev, struct rb_node *rb_parent)
376 if (prev) {
377 vma->vm_next = prev->vm_next;
378 prev->vm_next = vma;
379 } else {
380 mm->mmap = vma;
381 if (rb_parent)
382 vma->vm_next = rb_entry(rb_parent,
383 struct vm_area_struct, vm_rb);
384 else
385 vma->vm_next = NULL;
389 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
390 struct rb_node **rb_link, struct rb_node *rb_parent)
392 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
393 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
396 static inline void __vma_link_file(struct vm_area_struct *vma)
398 struct file * file;
400 file = vma->vm_file;
401 if (file) {
402 struct address_space *mapping = file->f_mapping;
404 if (vma->vm_flags & VM_DENYWRITE)
405 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
406 if (vma->vm_flags & VM_SHARED)
407 mapping->i_mmap_writable++;
409 flush_dcache_mmap_lock(mapping);
410 if (unlikely(vma->vm_flags & VM_NONLINEAR))
411 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
412 else
413 vma_prio_tree_insert(vma, &mapping->i_mmap);
414 flush_dcache_mmap_unlock(mapping);
418 static void
419 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
420 struct vm_area_struct *prev, struct rb_node **rb_link,
421 struct rb_node *rb_parent)
423 __vma_link_list(mm, vma, prev, rb_parent);
424 __vma_link_rb(mm, vma, rb_link, rb_parent);
425 __anon_vma_link(vma);
428 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
429 struct vm_area_struct *prev, struct rb_node **rb_link,
430 struct rb_node *rb_parent)
432 struct address_space *mapping = NULL;
434 if (vma->vm_file)
435 mapping = vma->vm_file->f_mapping;
437 if (mapping) {
438 spin_lock(&mapping->i_mmap_lock);
439 vma->vm_truncate_count = mapping->truncate_count;
441 anon_vma_lock(vma);
443 __vma_link(mm, vma, prev, rb_link, rb_parent);
444 __vma_link_file(vma);
446 anon_vma_unlock(vma);
447 if (mapping)
448 spin_unlock(&mapping->i_mmap_lock);
450 mm->map_count++;
451 validate_mm(mm);
455 * Helper for vma_adjust in the split_vma insert case:
456 * insert vm structure into list and rbtree and anon_vma,
457 * but it has already been inserted into prio_tree earlier.
459 static void
460 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
462 struct vm_area_struct * __vma, * prev;
463 struct rb_node ** rb_link, * rb_parent;
465 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
466 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
467 __vma_link(mm, vma, prev, rb_link, rb_parent);
468 mm->map_count++;
471 static inline void
472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
473 struct vm_area_struct *prev)
475 prev->vm_next = vma->vm_next;
476 rb_erase(&vma->vm_rb, &mm->mm_rb);
477 if (mm->mmap_cache == vma)
478 mm->mmap_cache = prev;
482 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
483 * is already present in an i_mmap tree without adjusting the tree.
484 * The following helper function should be used when such adjustments
485 * are necessary. The "insert" vma (if any) is to be inserted
486 * before we drop the necessary locks.
488 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
489 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
491 struct mm_struct *mm = vma->vm_mm;
492 struct vm_area_struct *next = vma->vm_next;
493 struct vm_area_struct *importer = NULL;
494 struct address_space *mapping = NULL;
495 struct prio_tree_root *root = NULL;
496 struct file *file = vma->vm_file;
497 struct anon_vma *anon_vma = NULL;
498 long adjust_next = 0;
499 int remove_next = 0;
501 if (next && !insert) {
502 if (end >= next->vm_end) {
504 * vma expands, overlapping all the next, and
505 * perhaps the one after too (mprotect case 6).
507 again: remove_next = 1 + (end > next->vm_end);
508 end = next->vm_end;
509 anon_vma = next->anon_vma;
510 importer = vma;
511 } else if (end > next->vm_start) {
513 * vma expands, overlapping part of the next:
514 * mprotect case 5 shifting the boundary up.
516 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
517 anon_vma = next->anon_vma;
518 importer = vma;
519 } else if (end < vma->vm_end) {
521 * vma shrinks, and !insert tells it's not
522 * split_vma inserting another: so it must be
523 * mprotect case 4 shifting the boundary down.
525 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
526 anon_vma = next->anon_vma;
527 importer = next;
531 if (file) {
532 mapping = file->f_mapping;
533 if (!(vma->vm_flags & VM_NONLINEAR))
534 root = &mapping->i_mmap;
535 spin_lock(&mapping->i_mmap_lock);
536 if (importer &&
537 vma->vm_truncate_count != next->vm_truncate_count) {
539 * unmap_mapping_range might be in progress:
540 * ensure that the expanding vma is rescanned.
542 importer->vm_truncate_count = 0;
544 if (insert) {
545 insert->vm_truncate_count = vma->vm_truncate_count;
547 * Put into prio_tree now, so instantiated pages
548 * are visible to arm/parisc __flush_dcache_page
549 * throughout; but we cannot insert into address
550 * space until vma start or end is updated.
552 __vma_link_file(insert);
557 * When changing only vma->vm_end, we don't really need
558 * anon_vma lock: but is that case worth optimizing out?
560 if (vma->anon_vma)
561 anon_vma = vma->anon_vma;
562 if (anon_vma) {
563 spin_lock(&anon_vma->lock);
565 * Easily overlooked: when mprotect shifts the boundary,
566 * make sure the expanding vma has anon_vma set if the
567 * shrinking vma had, to cover any anon pages imported.
569 if (importer && !importer->anon_vma) {
570 importer->anon_vma = anon_vma;
571 __anon_vma_link(importer);
575 if (root) {
576 flush_dcache_mmap_lock(mapping);
577 vma_prio_tree_remove(vma, root);
578 if (adjust_next)
579 vma_prio_tree_remove(next, root);
582 vma->vm_start = start;
583 vma->vm_end = end;
584 vma->vm_pgoff = pgoff;
585 if (adjust_next) {
586 next->vm_start += adjust_next << PAGE_SHIFT;
587 next->vm_pgoff += adjust_next;
590 if (root) {
591 if (adjust_next)
592 vma_prio_tree_insert(next, root);
593 vma_prio_tree_insert(vma, root);
594 flush_dcache_mmap_unlock(mapping);
597 if (remove_next) {
599 * vma_merge has merged next into vma, and needs
600 * us to remove next before dropping the locks.
602 __vma_unlink(mm, next, vma);
603 if (file)
604 __remove_shared_vm_struct(next, file, mapping);
605 if (next->anon_vma)
606 __anon_vma_merge(vma, next);
607 } else if (insert) {
609 * split_vma has split insert from vma, and needs
610 * us to insert it before dropping the locks
611 * (it may either follow vma or precede it).
613 __insert_vm_struct(mm, insert);
616 if (anon_vma)
617 spin_unlock(&anon_vma->lock);
618 if (mapping)
619 spin_unlock(&mapping->i_mmap_lock);
621 if (remove_next) {
622 if (file)
623 fput(file);
624 mm->map_count--;
625 mpol_free(vma_policy(next));
626 kmem_cache_free(vm_area_cachep, next);
628 * In mprotect's case 6 (see comments on vma_merge),
629 * we must remove another next too. It would clutter
630 * up the code too much to do both in one go.
632 if (remove_next == 2) {
633 next = vma->vm_next;
634 goto again;
638 validate_mm(mm);
642 * If the vma has a ->close operation then the driver probably needs to release
643 * per-vma resources, so we don't attempt to merge those.
645 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
647 static inline int is_mergeable_vma(struct vm_area_struct *vma,
648 struct file *file, unsigned long vm_flags)
650 if (vma->vm_flags != vm_flags)
651 return 0;
652 if (vma->vm_file != file)
653 return 0;
654 if (vma->vm_ops && vma->vm_ops->close)
655 return 0;
656 return 1;
659 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
660 struct anon_vma *anon_vma2)
662 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
666 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
667 * in front of (at a lower virtual address and file offset than) the vma.
669 * We cannot merge two vmas if they have differently assigned (non-NULL)
670 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
672 * We don't check here for the merged mmap wrapping around the end of pagecache
673 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
674 * wrap, nor mmaps which cover the final page at index -1UL.
676 static int
677 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
678 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
680 if (is_mergeable_vma(vma, file, vm_flags) &&
681 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
682 if (vma->vm_pgoff == vm_pgoff)
683 return 1;
685 return 0;
689 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
690 * beyond (at a higher virtual address and file offset than) the vma.
692 * We cannot merge two vmas if they have differently assigned (non-NULL)
693 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
695 static int
696 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
697 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
699 if (is_mergeable_vma(vma, file, vm_flags) &&
700 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
701 pgoff_t vm_pglen;
702 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
703 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
704 return 1;
706 return 0;
710 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
711 * whether that can be merged with its predecessor or its successor.
712 * Or both (it neatly fills a hole).
714 * In most cases - when called for mmap, brk or mremap - [addr,end) is
715 * certain not to be mapped by the time vma_merge is called; but when
716 * called for mprotect, it is certain to be already mapped (either at
717 * an offset within prev, or at the start of next), and the flags of
718 * this area are about to be changed to vm_flags - and the no-change
719 * case has already been eliminated.
721 * The following mprotect cases have to be considered, where AAAA is
722 * the area passed down from mprotect_fixup, never extending beyond one
723 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
725 * AAAA AAAA AAAA AAAA
726 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
727 * cannot merge might become might become might become
728 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
729 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
730 * mremap move: PPPPNNNNNNNN 8
731 * AAAA
732 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
733 * might become case 1 below case 2 below case 3 below
735 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
736 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
738 struct vm_area_struct *vma_merge(struct mm_struct *mm,
739 struct vm_area_struct *prev, unsigned long addr,
740 unsigned long end, unsigned long vm_flags,
741 struct anon_vma *anon_vma, struct file *file,
742 pgoff_t pgoff, struct mempolicy *policy)
744 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
745 struct vm_area_struct *area, *next;
748 * We later require that vma->vm_flags == vm_flags,
749 * so this tests vma->vm_flags & VM_SPECIAL, too.
751 if (vm_flags & VM_SPECIAL)
752 return NULL;
754 if (prev)
755 next = prev->vm_next;
756 else
757 next = mm->mmap;
758 area = next;
759 if (next && next->vm_end == end) /* cases 6, 7, 8 */
760 next = next->vm_next;
763 * Can it merge with the predecessor?
765 if (prev && prev->vm_end == addr &&
766 mpol_equal(vma_policy(prev), policy) &&
767 can_vma_merge_after(prev, vm_flags,
768 anon_vma, file, pgoff)) {
770 * OK, it can. Can we now merge in the successor as well?
772 if (next && end == next->vm_start &&
773 mpol_equal(policy, vma_policy(next)) &&
774 can_vma_merge_before(next, vm_flags,
775 anon_vma, file, pgoff+pglen) &&
776 is_mergeable_anon_vma(prev->anon_vma,
777 next->anon_vma)) {
778 /* cases 1, 6 */
779 vma_adjust(prev, prev->vm_start,
780 next->vm_end, prev->vm_pgoff, NULL);
781 } else /* cases 2, 5, 7 */
782 vma_adjust(prev, prev->vm_start,
783 end, prev->vm_pgoff, NULL);
784 return prev;
788 * Can this new request be merged in front of next?
790 if (next && end == next->vm_start &&
791 mpol_equal(policy, vma_policy(next)) &&
792 can_vma_merge_before(next, vm_flags,
793 anon_vma, file, pgoff+pglen)) {
794 if (prev && addr < prev->vm_end) /* case 4 */
795 vma_adjust(prev, prev->vm_start,
796 addr, prev->vm_pgoff, NULL);
797 else /* cases 3, 8 */
798 vma_adjust(area, addr, next->vm_end,
799 next->vm_pgoff - pglen, NULL);
800 return area;
803 return NULL;
807 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
808 * neighbouring vmas for a suitable anon_vma, before it goes off
809 * to allocate a new anon_vma. It checks because a repetitive
810 * sequence of mprotects and faults may otherwise lead to distinct
811 * anon_vmas being allocated, preventing vma merge in subsequent
812 * mprotect.
814 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
816 struct vm_area_struct *near;
817 unsigned long vm_flags;
819 near = vma->vm_next;
820 if (!near)
821 goto try_prev;
824 * Since only mprotect tries to remerge vmas, match flags
825 * which might be mprotected into each other later on.
826 * Neither mlock nor madvise tries to remerge at present,
827 * so leave their flags as obstructing a merge.
829 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
830 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
832 if (near->anon_vma && vma->vm_end == near->vm_start &&
833 mpol_equal(vma_policy(vma), vma_policy(near)) &&
834 can_vma_merge_before(near, vm_flags,
835 NULL, vma->vm_file, vma->vm_pgoff +
836 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
837 return near->anon_vma;
838 try_prev:
840 * It is potentially slow to have to call find_vma_prev here.
841 * But it's only on the first write fault on the vma, not
842 * every time, and we could devise a way to avoid it later
843 * (e.g. stash info in next's anon_vma_node when assigning
844 * an anon_vma, or when trying vma_merge). Another time.
846 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
847 if (!near)
848 goto none;
850 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
851 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
853 if (near->anon_vma && near->vm_end == vma->vm_start &&
854 mpol_equal(vma_policy(near), vma_policy(vma)) &&
855 can_vma_merge_after(near, vm_flags,
856 NULL, vma->vm_file, vma->vm_pgoff))
857 return near->anon_vma;
858 none:
860 * There's no absolute need to look only at touching neighbours:
861 * we could search further afield for "compatible" anon_vmas.
862 * But it would probably just be a waste of time searching,
863 * or lead to too many vmas hanging off the same anon_vma.
864 * We're trying to allow mprotect remerging later on,
865 * not trying to minimize memory used for anon_vmas.
867 return NULL;
870 #ifdef CONFIG_PROC_FS
871 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
872 struct file *file, long pages)
874 const unsigned long stack_flags
875 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
877 if (file) {
878 mm->shared_vm += pages;
879 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
880 mm->exec_vm += pages;
881 } else if (flags & stack_flags)
882 mm->stack_vm += pages;
883 if (flags & (VM_RESERVED|VM_IO))
884 mm->reserved_vm += pages;
886 #endif /* CONFIG_PROC_FS */
889 * The caller must hold down_write(current->mm->mmap_sem).
892 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
893 unsigned long len, unsigned long prot,
894 unsigned long flags, unsigned long pgoff)
896 struct mm_struct * mm = current->mm;
897 struct vm_area_struct * vma, * prev;
898 struct inode *inode;
899 unsigned int vm_flags;
900 int correct_wcount = 0;
901 int error;
902 struct rb_node ** rb_link, * rb_parent;
903 int accountable = 1;
904 unsigned long charged = 0, reqprot = prot;
907 * Does the application expect PROT_READ to imply PROT_EXEC?
909 * (the exception is when the underlying filesystem is noexec
910 * mounted, in which case we dont add PROT_EXEC.)
912 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
913 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
914 prot |= PROT_EXEC;
916 if (!len)
917 return -EINVAL;
919 error = arch_mmap_check(addr, len, flags);
920 if (error)
921 return error;
923 /* Careful about overflows.. */
924 len = PAGE_ALIGN(len);
925 if (!len || len > TASK_SIZE)
926 return -ENOMEM;
928 /* offset overflow? */
929 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
930 return -EOVERFLOW;
932 /* Too many mappings? */
933 if (mm->map_count > sysctl_max_map_count)
934 return -ENOMEM;
936 /* Obtain the address to map to. we verify (or select) it and ensure
937 * that it represents a valid section of the address space.
939 addr = get_unmapped_area(file, addr, len, pgoff, flags);
940 if (addr & ~PAGE_MASK)
941 return addr;
943 /* Do simple checking here so the lower-level routines won't have
944 * to. we assume access permissions have been handled by the open
945 * of the memory object, so we don't do any here.
947 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
948 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
950 if (flags & MAP_LOCKED) {
951 if (!can_do_mlock())
952 return -EPERM;
953 vm_flags |= VM_LOCKED;
955 /* mlock MCL_FUTURE? */
956 if (vm_flags & VM_LOCKED) {
957 unsigned long locked, lock_limit;
958 locked = len >> PAGE_SHIFT;
959 locked += mm->locked_vm;
960 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
961 lock_limit >>= PAGE_SHIFT;
962 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
963 return -EAGAIN;
966 inode = file ? file->f_path.dentry->d_inode : NULL;
968 if (file) {
969 switch (flags & MAP_TYPE) {
970 case MAP_SHARED:
971 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
972 return -EACCES;
975 * Make sure we don't allow writing to an append-only
976 * file..
978 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
979 return -EACCES;
982 * Make sure there are no mandatory locks on the file.
984 if (locks_verify_locked(inode))
985 return -EAGAIN;
987 vm_flags |= VM_SHARED | VM_MAYSHARE;
988 if (!(file->f_mode & FMODE_WRITE))
989 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
991 /* fall through */
992 case MAP_PRIVATE:
993 if (!(file->f_mode & FMODE_READ))
994 return -EACCES;
995 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
996 if (vm_flags & VM_EXEC)
997 return -EPERM;
998 vm_flags &= ~VM_MAYEXEC;
1000 if (is_file_hugepages(file))
1001 accountable = 0;
1003 if (!file->f_op || !file->f_op->mmap)
1004 return -ENODEV;
1005 break;
1007 default:
1008 return -EINVAL;
1010 } else {
1011 switch (flags & MAP_TYPE) {
1012 case MAP_SHARED:
1013 vm_flags |= VM_SHARED | VM_MAYSHARE;
1014 break;
1015 case MAP_PRIVATE:
1017 * Set pgoff according to addr for anon_vma.
1019 pgoff = addr >> PAGE_SHIFT;
1020 break;
1021 default:
1022 return -EINVAL;
1026 error = security_file_mmap(file, reqprot, prot, flags);
1027 if (error)
1028 return error;
1030 /* Clear old maps */
1031 error = -ENOMEM;
1032 munmap_back:
1033 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1034 if (vma && vma->vm_start < addr + len) {
1035 if (do_munmap(mm, addr, len))
1036 return -ENOMEM;
1037 goto munmap_back;
1040 /* Check against address space limit. */
1041 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1042 return -ENOMEM;
1044 if (accountable && (!(flags & MAP_NORESERVE) ||
1045 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1046 if (vm_flags & VM_SHARED) {
1047 /* Check memory availability in shmem_file_setup? */
1048 vm_flags |= VM_ACCOUNT;
1049 } else if (vm_flags & VM_WRITE) {
1051 * Private writable mapping: check memory availability
1053 charged = len >> PAGE_SHIFT;
1054 if (security_vm_enough_memory(charged))
1055 return -ENOMEM;
1056 vm_flags |= VM_ACCOUNT;
1061 * Can we just expand an old private anonymous mapping?
1062 * The VM_SHARED test is necessary because shmem_zero_setup
1063 * will create the file object for a shared anonymous map below.
1065 if (!file && !(vm_flags & VM_SHARED) &&
1066 vma_merge(mm, prev, addr, addr + len, vm_flags,
1067 NULL, NULL, pgoff, NULL))
1068 goto out;
1071 * Determine the object being mapped and call the appropriate
1072 * specific mapper. the address has already been validated, but
1073 * not unmapped, but the maps are removed from the list.
1075 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1076 if (!vma) {
1077 error = -ENOMEM;
1078 goto unacct_error;
1081 vma->vm_mm = mm;
1082 vma->vm_start = addr;
1083 vma->vm_end = addr + len;
1084 vma->vm_flags = vm_flags;
1085 vma->vm_page_prot = protection_map[vm_flags &
1086 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1087 vma->vm_pgoff = pgoff;
1089 if (file) {
1090 error = -EINVAL;
1091 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1092 goto free_vma;
1093 if (vm_flags & VM_DENYWRITE) {
1094 error = deny_write_access(file);
1095 if (error)
1096 goto free_vma;
1097 correct_wcount = 1;
1099 vma->vm_file = file;
1100 get_file(file);
1101 error = file->f_op->mmap(file, vma);
1102 if (error)
1103 goto unmap_and_free_vma;
1104 } else if (vm_flags & VM_SHARED) {
1105 error = shmem_zero_setup(vma);
1106 if (error)
1107 goto free_vma;
1110 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1111 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1112 * that memory reservation must be checked; but that reservation
1113 * belongs to shared memory object, not to vma: so now clear it.
1115 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1116 vma->vm_flags &= ~VM_ACCOUNT;
1118 /* Can addr have changed??
1120 * Answer: Yes, several device drivers can do it in their
1121 * f_op->mmap method. -DaveM
1123 addr = vma->vm_start;
1124 pgoff = vma->vm_pgoff;
1125 vm_flags = vma->vm_flags;
1127 if (vma_wants_writenotify(vma))
1128 vma->vm_page_prot =
1129 protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)];
1131 if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1132 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1133 file = vma->vm_file;
1134 vma_link(mm, vma, prev, rb_link, rb_parent);
1135 if (correct_wcount)
1136 atomic_inc(&inode->i_writecount);
1137 } else {
1138 if (file) {
1139 if (correct_wcount)
1140 atomic_inc(&inode->i_writecount);
1141 fput(file);
1143 mpol_free(vma_policy(vma));
1144 kmem_cache_free(vm_area_cachep, vma);
1146 out:
1147 mm->total_vm += len >> PAGE_SHIFT;
1148 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1149 if (vm_flags & VM_LOCKED) {
1150 mm->locked_vm += len >> PAGE_SHIFT;
1151 make_pages_present(addr, addr + len);
1153 if (flags & MAP_POPULATE) {
1154 up_write(&mm->mmap_sem);
1155 sys_remap_file_pages(addr, len, 0,
1156 pgoff, flags & MAP_NONBLOCK);
1157 down_write(&mm->mmap_sem);
1159 return addr;
1161 unmap_and_free_vma:
1162 if (correct_wcount)
1163 atomic_inc(&inode->i_writecount);
1164 vma->vm_file = NULL;
1165 fput(file);
1167 /* Undo any partial mapping done by a device driver. */
1168 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1169 charged = 0;
1170 free_vma:
1171 kmem_cache_free(vm_area_cachep, vma);
1172 unacct_error:
1173 if (charged)
1174 vm_unacct_memory(charged);
1175 return error;
1178 EXPORT_SYMBOL(do_mmap_pgoff);
1180 /* Get an address range which is currently unmapped.
1181 * For shmat() with addr=0.
1183 * Ugly calling convention alert:
1184 * Return value with the low bits set means error value,
1185 * ie
1186 * if (ret & ~PAGE_MASK)
1187 * error = ret;
1189 * This function "knows" that -ENOMEM has the bits set.
1191 #ifndef HAVE_ARCH_UNMAPPED_AREA
1192 unsigned long
1193 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1194 unsigned long len, unsigned long pgoff, unsigned long flags)
1196 struct mm_struct *mm = current->mm;
1197 struct vm_area_struct *vma;
1198 unsigned long start_addr;
1200 if (len > TASK_SIZE)
1201 return -ENOMEM;
1203 if (addr) {
1204 addr = PAGE_ALIGN(addr);
1205 vma = find_vma(mm, addr);
1206 if (TASK_SIZE - len >= addr &&
1207 (!vma || addr + len <= vma->vm_start))
1208 return addr;
1210 if (len > mm->cached_hole_size) {
1211 start_addr = addr = mm->free_area_cache;
1212 } else {
1213 start_addr = addr = TASK_UNMAPPED_BASE;
1214 mm->cached_hole_size = 0;
1217 full_search:
1218 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1219 /* At this point: (!vma || addr < vma->vm_end). */
1220 if (TASK_SIZE - len < addr) {
1222 * Start a new search - just in case we missed
1223 * some holes.
1225 if (start_addr != TASK_UNMAPPED_BASE) {
1226 addr = TASK_UNMAPPED_BASE;
1227 start_addr = addr;
1228 mm->cached_hole_size = 0;
1229 goto full_search;
1231 return -ENOMEM;
1233 if (!vma || addr + len <= vma->vm_start) {
1235 * Remember the place where we stopped the search:
1237 mm->free_area_cache = addr + len;
1238 return addr;
1240 if (addr + mm->cached_hole_size < vma->vm_start)
1241 mm->cached_hole_size = vma->vm_start - addr;
1242 addr = vma->vm_end;
1245 #endif
1247 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1250 * Is this a new hole at the lowest possible address?
1252 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1253 mm->free_area_cache = addr;
1254 mm->cached_hole_size = ~0UL;
1259 * This mmap-allocator allocates new areas top-down from below the
1260 * stack's low limit (the base):
1262 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1263 unsigned long
1264 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1265 const unsigned long len, const unsigned long pgoff,
1266 const unsigned long flags)
1268 struct vm_area_struct *vma;
1269 struct mm_struct *mm = current->mm;
1270 unsigned long addr = addr0;
1272 /* requested length too big for entire address space */
1273 if (len > TASK_SIZE)
1274 return -ENOMEM;
1276 /* requesting a specific address */
1277 if (addr) {
1278 addr = PAGE_ALIGN(addr);
1279 vma = find_vma(mm, addr);
1280 if (TASK_SIZE - len >= addr &&
1281 (!vma || addr + len <= vma->vm_start))
1282 return addr;
1285 /* check if free_area_cache is useful for us */
1286 if (len <= mm->cached_hole_size) {
1287 mm->cached_hole_size = 0;
1288 mm->free_area_cache = mm->mmap_base;
1291 /* either no address requested or can't fit in requested address hole */
1292 addr = mm->free_area_cache;
1294 /* make sure it can fit in the remaining address space */
1295 if (addr > len) {
1296 vma = find_vma(mm, addr-len);
1297 if (!vma || addr <= vma->vm_start)
1298 /* remember the address as a hint for next time */
1299 return (mm->free_area_cache = addr-len);
1302 if (mm->mmap_base < len)
1303 goto bottomup;
1305 addr = mm->mmap_base-len;
1307 do {
1309 * Lookup failure means no vma is above this address,
1310 * else if new region fits below vma->vm_start,
1311 * return with success:
1313 vma = find_vma(mm, addr);
1314 if (!vma || addr+len <= vma->vm_start)
1315 /* remember the address as a hint for next time */
1316 return (mm->free_area_cache = addr);
1318 /* remember the largest hole we saw so far */
1319 if (addr + mm->cached_hole_size < vma->vm_start)
1320 mm->cached_hole_size = vma->vm_start - addr;
1322 /* try just below the current vma->vm_start */
1323 addr = vma->vm_start-len;
1324 } while (len < vma->vm_start);
1326 bottomup:
1328 * A failed mmap() very likely causes application failure,
1329 * so fall back to the bottom-up function here. This scenario
1330 * can happen with large stack limits and large mmap()
1331 * allocations.
1333 mm->cached_hole_size = ~0UL;
1334 mm->free_area_cache = TASK_UNMAPPED_BASE;
1335 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1337 * Restore the topdown base:
1339 mm->free_area_cache = mm->mmap_base;
1340 mm->cached_hole_size = ~0UL;
1342 return addr;
1344 #endif
1346 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1349 * Is this a new hole at the highest possible address?
1351 if (addr > mm->free_area_cache)
1352 mm->free_area_cache = addr;
1354 /* dont allow allocations above current base */
1355 if (mm->free_area_cache > mm->mmap_base)
1356 mm->free_area_cache = mm->mmap_base;
1359 unsigned long
1360 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1361 unsigned long pgoff, unsigned long flags)
1363 unsigned long ret;
1365 if (!(flags & MAP_FIXED)) {
1366 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1368 get_area = current->mm->get_unmapped_area;
1369 if (file && file->f_op && file->f_op->get_unmapped_area)
1370 get_area = file->f_op->get_unmapped_area;
1371 addr = get_area(file, addr, len, pgoff, flags);
1372 if (IS_ERR_VALUE(addr))
1373 return addr;
1376 if (addr > TASK_SIZE - len)
1377 return -ENOMEM;
1378 if (addr & ~PAGE_MASK)
1379 return -EINVAL;
1380 if (file && is_file_hugepages(file)) {
1382 * Check if the given range is hugepage aligned, and
1383 * can be made suitable for hugepages.
1385 ret = prepare_hugepage_range(addr, len, pgoff);
1386 } else {
1388 * Ensure that a normal request is not falling in a
1389 * reserved hugepage range. For some archs like IA-64,
1390 * there is a separate region for hugepages.
1392 ret = is_hugepage_only_range(current->mm, addr, len);
1394 if (ret)
1395 return -EINVAL;
1396 return addr;
1399 EXPORT_SYMBOL(get_unmapped_area);
1401 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1402 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1404 struct vm_area_struct *vma = NULL;
1406 if (mm) {
1407 /* Check the cache first. */
1408 /* (Cache hit rate is typically around 35%.) */
1409 vma = mm->mmap_cache;
1410 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1411 struct rb_node * rb_node;
1413 rb_node = mm->mm_rb.rb_node;
1414 vma = NULL;
1416 while (rb_node) {
1417 struct vm_area_struct * vma_tmp;
1419 vma_tmp = rb_entry(rb_node,
1420 struct vm_area_struct, vm_rb);
1422 if (vma_tmp->vm_end > addr) {
1423 vma = vma_tmp;
1424 if (vma_tmp->vm_start <= addr)
1425 break;
1426 rb_node = rb_node->rb_left;
1427 } else
1428 rb_node = rb_node->rb_right;
1430 if (vma)
1431 mm->mmap_cache = vma;
1434 return vma;
1437 EXPORT_SYMBOL(find_vma);
1439 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1440 struct vm_area_struct *
1441 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1442 struct vm_area_struct **pprev)
1444 struct vm_area_struct *vma = NULL, *prev = NULL;
1445 struct rb_node * rb_node;
1446 if (!mm)
1447 goto out;
1449 /* Guard against addr being lower than the first VMA */
1450 vma = mm->mmap;
1452 /* Go through the RB tree quickly. */
1453 rb_node = mm->mm_rb.rb_node;
1455 while (rb_node) {
1456 struct vm_area_struct *vma_tmp;
1457 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1459 if (addr < vma_tmp->vm_end) {
1460 rb_node = rb_node->rb_left;
1461 } else {
1462 prev = vma_tmp;
1463 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1464 break;
1465 rb_node = rb_node->rb_right;
1469 out:
1470 *pprev = prev;
1471 return prev ? prev->vm_next : vma;
1475 * Verify that the stack growth is acceptable and
1476 * update accounting. This is shared with both the
1477 * grow-up and grow-down cases.
1479 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1481 struct mm_struct *mm = vma->vm_mm;
1482 struct rlimit *rlim = current->signal->rlim;
1483 unsigned long new_start;
1485 /* address space limit tests */
1486 if (!may_expand_vm(mm, grow))
1487 return -ENOMEM;
1489 /* Stack limit test */
1490 if (size > rlim[RLIMIT_STACK].rlim_cur)
1491 return -ENOMEM;
1493 /* mlock limit tests */
1494 if (vma->vm_flags & VM_LOCKED) {
1495 unsigned long locked;
1496 unsigned long limit;
1497 locked = mm->locked_vm + grow;
1498 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1499 if (locked > limit && !capable(CAP_IPC_LOCK))
1500 return -ENOMEM;
1503 /* Check to ensure the stack will not grow into a hugetlb-only region */
1504 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1505 vma->vm_end - size;
1506 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1507 return -EFAULT;
1510 * Overcommit.. This must be the final test, as it will
1511 * update security statistics.
1513 if (security_vm_enough_memory(grow))
1514 return -ENOMEM;
1516 /* Ok, everything looks good - let it rip */
1517 mm->total_vm += grow;
1518 if (vma->vm_flags & VM_LOCKED)
1519 mm->locked_vm += grow;
1520 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1521 return 0;
1524 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1526 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1527 * vma is the last one with address > vma->vm_end. Have to extend vma.
1529 #ifndef CONFIG_IA64
1530 static inline
1531 #endif
1532 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1534 int error;
1536 if (!(vma->vm_flags & VM_GROWSUP))
1537 return -EFAULT;
1540 * We must make sure the anon_vma is allocated
1541 * so that the anon_vma locking is not a noop.
1543 if (unlikely(anon_vma_prepare(vma)))
1544 return -ENOMEM;
1545 anon_vma_lock(vma);
1548 * vma->vm_start/vm_end cannot change under us because the caller
1549 * is required to hold the mmap_sem in read mode. We need the
1550 * anon_vma lock to serialize against concurrent expand_stacks.
1552 address += 4 + PAGE_SIZE - 1;
1553 address &= PAGE_MASK;
1554 error = 0;
1556 /* Somebody else might have raced and expanded it already */
1557 if (address > vma->vm_end) {
1558 unsigned long size, grow;
1560 size = address - vma->vm_start;
1561 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1563 error = acct_stack_growth(vma, size, grow);
1564 if (!error)
1565 vma->vm_end = address;
1567 anon_vma_unlock(vma);
1568 return error;
1570 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1572 #ifdef CONFIG_STACK_GROWSUP
1573 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1575 return expand_upwards(vma, address);
1578 struct vm_area_struct *
1579 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1581 struct vm_area_struct *vma, *prev;
1583 addr &= PAGE_MASK;
1584 vma = find_vma_prev(mm, addr, &prev);
1585 if (vma && (vma->vm_start <= addr))
1586 return vma;
1587 if (!prev || expand_stack(prev, addr))
1588 return NULL;
1589 if (prev->vm_flags & VM_LOCKED) {
1590 make_pages_present(addr, prev->vm_end);
1592 return prev;
1594 #else
1596 * vma is the first one with address < vma->vm_start. Have to extend vma.
1598 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1600 int error;
1603 * We must make sure the anon_vma is allocated
1604 * so that the anon_vma locking is not a noop.
1606 if (unlikely(anon_vma_prepare(vma)))
1607 return -ENOMEM;
1608 anon_vma_lock(vma);
1611 * vma->vm_start/vm_end cannot change under us because the caller
1612 * is required to hold the mmap_sem in read mode. We need the
1613 * anon_vma lock to serialize against concurrent expand_stacks.
1615 address &= PAGE_MASK;
1616 error = 0;
1618 /* Somebody else might have raced and expanded it already */
1619 if (address < vma->vm_start) {
1620 unsigned long size, grow;
1622 size = vma->vm_end - address;
1623 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1625 error = acct_stack_growth(vma, size, grow);
1626 if (!error) {
1627 vma->vm_start = address;
1628 vma->vm_pgoff -= grow;
1631 anon_vma_unlock(vma);
1632 return error;
1635 struct vm_area_struct *
1636 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1638 struct vm_area_struct * vma;
1639 unsigned long start;
1641 addr &= PAGE_MASK;
1642 vma = find_vma(mm,addr);
1643 if (!vma)
1644 return NULL;
1645 if (vma->vm_start <= addr)
1646 return vma;
1647 if (!(vma->vm_flags & VM_GROWSDOWN))
1648 return NULL;
1649 start = vma->vm_start;
1650 if (expand_stack(vma, addr))
1651 return NULL;
1652 if (vma->vm_flags & VM_LOCKED) {
1653 make_pages_present(addr, start);
1655 return vma;
1657 #endif
1660 * Ok - we have the memory areas we should free on the vma list,
1661 * so release them, and do the vma updates.
1663 * Called with the mm semaphore held.
1665 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1667 /* Update high watermark before we lower total_vm */
1668 update_hiwater_vm(mm);
1669 do {
1670 long nrpages = vma_pages(vma);
1672 mm->total_vm -= nrpages;
1673 if (vma->vm_flags & VM_LOCKED)
1674 mm->locked_vm -= nrpages;
1675 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1676 vma = remove_vma(vma);
1677 } while (vma);
1678 validate_mm(mm);
1682 * Get rid of page table information in the indicated region.
1684 * Called with the mm semaphore held.
1686 static void unmap_region(struct mm_struct *mm,
1687 struct vm_area_struct *vma, struct vm_area_struct *prev,
1688 unsigned long start, unsigned long end)
1690 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1691 struct mmu_gather *tlb;
1692 unsigned long nr_accounted = 0;
1694 lru_add_drain();
1695 tlb = tlb_gather_mmu(mm, 0);
1696 update_hiwater_rss(mm);
1697 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1698 vm_unacct_memory(nr_accounted);
1699 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1700 next? next->vm_start: 0);
1701 tlb_finish_mmu(tlb, start, end);
1705 * Create a list of vma's touched by the unmap, removing them from the mm's
1706 * vma list as we go..
1708 static void
1709 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1710 struct vm_area_struct *prev, unsigned long end)
1712 struct vm_area_struct **insertion_point;
1713 struct vm_area_struct *tail_vma = NULL;
1714 unsigned long addr;
1716 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1717 do {
1718 rb_erase(&vma->vm_rb, &mm->mm_rb);
1719 mm->map_count--;
1720 tail_vma = vma;
1721 vma = vma->vm_next;
1722 } while (vma && vma->vm_start < end);
1723 *insertion_point = vma;
1724 tail_vma->vm_next = NULL;
1725 if (mm->unmap_area == arch_unmap_area)
1726 addr = prev ? prev->vm_end : mm->mmap_base;
1727 else
1728 addr = vma ? vma->vm_start : mm->mmap_base;
1729 mm->unmap_area(mm, addr);
1730 mm->mmap_cache = NULL; /* Kill the cache. */
1734 * Split a vma into two pieces at address 'addr', a new vma is allocated
1735 * either for the first part or the the tail.
1737 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1738 unsigned long addr, int new_below)
1740 struct mempolicy *pol;
1741 struct vm_area_struct *new;
1743 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1744 return -EINVAL;
1746 if (mm->map_count >= sysctl_max_map_count)
1747 return -ENOMEM;
1749 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1750 if (!new)
1751 return -ENOMEM;
1753 /* most fields are the same, copy all, and then fixup */
1754 *new = *vma;
1756 if (new_below)
1757 new->vm_end = addr;
1758 else {
1759 new->vm_start = addr;
1760 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1763 pol = mpol_copy(vma_policy(vma));
1764 if (IS_ERR(pol)) {
1765 kmem_cache_free(vm_area_cachep, new);
1766 return PTR_ERR(pol);
1768 vma_set_policy(new, pol);
1770 if (new->vm_file)
1771 get_file(new->vm_file);
1773 if (new->vm_ops && new->vm_ops->open)
1774 new->vm_ops->open(new);
1776 if (new_below)
1777 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1778 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1779 else
1780 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1782 return 0;
1785 /* Munmap is split into 2 main parts -- this part which finds
1786 * what needs doing, and the areas themselves, which do the
1787 * work. This now handles partial unmappings.
1788 * Jeremy Fitzhardinge <jeremy@goop.org>
1790 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1792 unsigned long end;
1793 struct vm_area_struct *vma, *prev, *last;
1795 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1796 return -EINVAL;
1798 if ((len = PAGE_ALIGN(len)) == 0)
1799 return -EINVAL;
1801 /* Find the first overlapping VMA */
1802 vma = find_vma_prev(mm, start, &prev);
1803 if (!vma)
1804 return 0;
1805 /* we have start < vma->vm_end */
1807 /* if it doesn't overlap, we have nothing.. */
1808 end = start + len;
1809 if (vma->vm_start >= end)
1810 return 0;
1813 * If we need to split any vma, do it now to save pain later.
1815 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1816 * unmapped vm_area_struct will remain in use: so lower split_vma
1817 * places tmp vma above, and higher split_vma places tmp vma below.
1819 if (start > vma->vm_start) {
1820 int error = split_vma(mm, vma, start, 0);
1821 if (error)
1822 return error;
1823 prev = vma;
1826 /* Does it split the last one? */
1827 last = find_vma(mm, end);
1828 if (last && end > last->vm_start) {
1829 int error = split_vma(mm, last, end, 1);
1830 if (error)
1831 return error;
1833 vma = prev? prev->vm_next: mm->mmap;
1836 * Remove the vma's, and unmap the actual pages
1838 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1839 unmap_region(mm, vma, prev, start, end);
1841 /* Fix up all other VM information */
1842 remove_vma_list(mm, vma);
1844 return 0;
1847 EXPORT_SYMBOL(do_munmap);
1849 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1851 int ret;
1852 struct mm_struct *mm = current->mm;
1854 profile_munmap(addr);
1856 down_write(&mm->mmap_sem);
1857 ret = do_munmap(mm, addr, len);
1858 up_write(&mm->mmap_sem);
1859 return ret;
1862 static inline void verify_mm_writelocked(struct mm_struct *mm)
1864 #ifdef CONFIG_DEBUG_VM
1865 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1866 WARN_ON(1);
1867 up_read(&mm->mmap_sem);
1869 #endif
1873 * this is really a simplified "do_mmap". it only handles
1874 * anonymous maps. eventually we may be able to do some
1875 * brk-specific accounting here.
1877 unsigned long do_brk(unsigned long addr, unsigned long len)
1879 struct mm_struct * mm = current->mm;
1880 struct vm_area_struct * vma, * prev;
1881 unsigned long flags;
1882 struct rb_node ** rb_link, * rb_parent;
1883 pgoff_t pgoff = addr >> PAGE_SHIFT;
1884 int error;
1886 len = PAGE_ALIGN(len);
1887 if (!len)
1888 return addr;
1890 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1891 return -EINVAL;
1893 if (is_hugepage_only_range(mm, addr, len))
1894 return -EINVAL;
1896 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1898 error = arch_mmap_check(addr, len, flags);
1899 if (error)
1900 return error;
1903 * mlock MCL_FUTURE?
1905 if (mm->def_flags & VM_LOCKED) {
1906 unsigned long locked, lock_limit;
1907 locked = len >> PAGE_SHIFT;
1908 locked += mm->locked_vm;
1909 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1910 lock_limit >>= PAGE_SHIFT;
1911 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1912 return -EAGAIN;
1916 * mm->mmap_sem is required to protect against another thread
1917 * changing the mappings in case we sleep.
1919 verify_mm_writelocked(mm);
1922 * Clear old maps. this also does some error checking for us
1924 munmap_back:
1925 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1926 if (vma && vma->vm_start < addr + len) {
1927 if (do_munmap(mm, addr, len))
1928 return -ENOMEM;
1929 goto munmap_back;
1932 /* Check against address space limits *after* clearing old maps... */
1933 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1934 return -ENOMEM;
1936 if (mm->map_count > sysctl_max_map_count)
1937 return -ENOMEM;
1939 if (security_vm_enough_memory(len >> PAGE_SHIFT))
1940 return -ENOMEM;
1942 /* Can we just expand an old private anonymous mapping? */
1943 if (vma_merge(mm, prev, addr, addr + len, flags,
1944 NULL, NULL, pgoff, NULL))
1945 goto out;
1948 * create a vma struct for an anonymous mapping
1950 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1951 if (!vma) {
1952 vm_unacct_memory(len >> PAGE_SHIFT);
1953 return -ENOMEM;
1956 vma->vm_mm = mm;
1957 vma->vm_start = addr;
1958 vma->vm_end = addr + len;
1959 vma->vm_pgoff = pgoff;
1960 vma->vm_flags = flags;
1961 vma->vm_page_prot = protection_map[flags &
1962 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1963 vma_link(mm, vma, prev, rb_link, rb_parent);
1964 out:
1965 mm->total_vm += len >> PAGE_SHIFT;
1966 if (flags & VM_LOCKED) {
1967 mm->locked_vm += len >> PAGE_SHIFT;
1968 make_pages_present(addr, addr + len);
1970 return addr;
1973 EXPORT_SYMBOL(do_brk);
1975 /* Release all mmaps. */
1976 void exit_mmap(struct mm_struct *mm)
1978 struct mmu_gather *tlb;
1979 struct vm_area_struct *vma = mm->mmap;
1980 unsigned long nr_accounted = 0;
1981 unsigned long end;
1983 /* mm's last user has gone, and its about to be pulled down */
1984 arch_exit_mmap(mm);
1986 lru_add_drain();
1987 flush_cache_mm(mm);
1988 tlb = tlb_gather_mmu(mm, 1);
1989 /* Don't update_hiwater_rss(mm) here, do_exit already did */
1990 /* Use -1 here to ensure all VMAs in the mm are unmapped */
1991 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
1992 vm_unacct_memory(nr_accounted);
1993 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1994 tlb_finish_mmu(tlb, 0, end);
1997 * Walk the list again, actually closing and freeing it,
1998 * with preemption enabled, without holding any MM locks.
2000 while (vma)
2001 vma = remove_vma(vma);
2003 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2006 /* Insert vm structure into process list sorted by address
2007 * and into the inode's i_mmap tree. If vm_file is non-NULL
2008 * then i_mmap_lock is taken here.
2010 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2012 struct vm_area_struct * __vma, * prev;
2013 struct rb_node ** rb_link, * rb_parent;
2016 * The vm_pgoff of a purely anonymous vma should be irrelevant
2017 * until its first write fault, when page's anon_vma and index
2018 * are set. But now set the vm_pgoff it will almost certainly
2019 * end up with (unless mremap moves it elsewhere before that
2020 * first wfault), so /proc/pid/maps tells a consistent story.
2022 * By setting it to reflect the virtual start address of the
2023 * vma, merges and splits can happen in a seamless way, just
2024 * using the existing file pgoff checks and manipulations.
2025 * Similarly in do_mmap_pgoff and in do_brk.
2027 if (!vma->vm_file) {
2028 BUG_ON(vma->anon_vma);
2029 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2031 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2032 if (__vma && __vma->vm_start < vma->vm_end)
2033 return -ENOMEM;
2034 if ((vma->vm_flags & VM_ACCOUNT) &&
2035 security_vm_enough_memory(vma_pages(vma)))
2036 return -ENOMEM;
2037 vma_link(mm, vma, prev, rb_link, rb_parent);
2038 return 0;
2042 * Copy the vma structure to a new location in the same mm,
2043 * prior to moving page table entries, to effect an mremap move.
2045 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2046 unsigned long addr, unsigned long len, pgoff_t pgoff)
2048 struct vm_area_struct *vma = *vmap;
2049 unsigned long vma_start = vma->vm_start;
2050 struct mm_struct *mm = vma->vm_mm;
2051 struct vm_area_struct *new_vma, *prev;
2052 struct rb_node **rb_link, *rb_parent;
2053 struct mempolicy *pol;
2056 * If anonymous vma has not yet been faulted, update new pgoff
2057 * to match new location, to increase its chance of merging.
2059 if (!vma->vm_file && !vma->anon_vma)
2060 pgoff = addr >> PAGE_SHIFT;
2062 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2063 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2064 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2065 if (new_vma) {
2067 * Source vma may have been merged into new_vma
2069 if (vma_start >= new_vma->vm_start &&
2070 vma_start < new_vma->vm_end)
2071 *vmap = new_vma;
2072 } else {
2073 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2074 if (new_vma) {
2075 *new_vma = *vma;
2076 pol = mpol_copy(vma_policy(vma));
2077 if (IS_ERR(pol)) {
2078 kmem_cache_free(vm_area_cachep, new_vma);
2079 return NULL;
2081 vma_set_policy(new_vma, pol);
2082 new_vma->vm_start = addr;
2083 new_vma->vm_end = addr + len;
2084 new_vma->vm_pgoff = pgoff;
2085 if (new_vma->vm_file)
2086 get_file(new_vma->vm_file);
2087 if (new_vma->vm_ops && new_vma->vm_ops->open)
2088 new_vma->vm_ops->open(new_vma);
2089 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2092 return new_vma;
2096 * Return true if the calling process may expand its vm space by the passed
2097 * number of pages
2099 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2101 unsigned long cur = mm->total_vm; /* pages */
2102 unsigned long lim;
2104 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2106 if (cur + npages > lim)
2107 return 0;
2108 return 1;
2112 static struct page *special_mapping_nopage(struct vm_area_struct *vma,
2113 unsigned long address, int *type)
2115 struct page **pages;
2117 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2119 address -= vma->vm_start;
2120 for (pages = vma->vm_private_data; address > 0 && *pages; ++pages)
2121 address -= PAGE_SIZE;
2123 if (*pages) {
2124 struct page *page = *pages;
2125 get_page(page);
2126 return page;
2129 return NOPAGE_SIGBUS;
2133 * Having a close hook prevents vma merging regardless of flags.
2135 static void special_mapping_close(struct vm_area_struct *vma)
2139 static struct vm_operations_struct special_mapping_vmops = {
2140 .close = special_mapping_close,
2141 .nopage = special_mapping_nopage,
2145 * Called with mm->mmap_sem held for writing.
2146 * Insert a new vma covering the given region, with the given flags.
2147 * Its pages are supplied by the given array of struct page *.
2148 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2149 * The region past the last page supplied will always produce SIGBUS.
2150 * The array pointer and the pages it points to are assumed to stay alive
2151 * for as long as this mapping might exist.
2153 int install_special_mapping(struct mm_struct *mm,
2154 unsigned long addr, unsigned long len,
2155 unsigned long vm_flags, struct page **pages)
2157 struct vm_area_struct *vma;
2159 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2160 if (unlikely(vma == NULL))
2161 return -ENOMEM;
2163 vma->vm_mm = mm;
2164 vma->vm_start = addr;
2165 vma->vm_end = addr + len;
2167 vma->vm_flags = vm_flags | mm->def_flags;
2168 vma->vm_page_prot = protection_map[vma->vm_flags & 7];
2170 vma->vm_ops = &special_mapping_vmops;
2171 vma->vm_private_data = pages;
2173 if (unlikely(insert_vm_struct(mm, vma))) {
2174 kmem_cache_free(vm_area_cachep, vma);
2175 return -ENOMEM;
2178 mm->total_vm += len >> PAGE_SHIFT;
2180 return 0;