AT91: Added a generic way to setup AT91 serial ports in Kconfig
[linux-2.6/pdupreez.git] / net / ipv4 / tcp.c
blob1ab341e5d3e0f70383fdfa460b0ee9071b282df7
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
268 #include <net/icmp.h>
269 #include <net/tcp.h>
270 #include <net/xfrm.h>
271 #include <net/ip.h>
272 #include <net/netdma.h>
273 #include <net/sock.h>
275 #include <asm/uaccess.h>
276 #include <asm/ioctls.h>
278 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
280 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
282 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284 int sysctl_tcp_mem[3] __read_mostly;
285 int sysctl_tcp_wmem[3] __read_mostly;
286 int sysctl_tcp_rmem[3] __read_mostly;
288 EXPORT_SYMBOL(sysctl_tcp_mem);
289 EXPORT_SYMBOL(sysctl_tcp_rmem);
290 EXPORT_SYMBOL(sysctl_tcp_wmem);
292 atomic_t tcp_memory_allocated; /* Current allocated memory. */
293 atomic_t tcp_sockets_allocated; /* Current number of TCP sockets. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296 EXPORT_SYMBOL(tcp_sockets_allocated);
299 * TCP splice context
301 struct tcp_splice_state {
302 struct pipe_inode_info *pipe;
303 size_t len;
304 unsigned int flags;
308 * Pressure flag: try to collapse.
309 * Technical note: it is used by multiple contexts non atomically.
310 * All the __sk_mem_schedule() is of this nature: accounting
311 * is strict, actions are advisory and have some latency.
313 int tcp_memory_pressure __read_mostly;
315 EXPORT_SYMBOL(tcp_memory_pressure);
317 void tcp_enter_memory_pressure(struct sock *sk)
319 if (!tcp_memory_pressure) {
320 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
321 tcp_memory_pressure = 1;
325 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 * Wait for a TCP event.
330 * Note that we don't need to lock the socket, as the upper poll layers
331 * take care of normal races (between the test and the event) and we don't
332 * go look at any of the socket buffers directly.
334 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
336 unsigned int mask;
337 struct sock *sk = sock->sk;
338 struct tcp_sock *tp = tcp_sk(sk);
340 poll_wait(file, sk->sk_sleep, wait);
341 if (sk->sk_state == TCP_LISTEN)
342 return inet_csk_listen_poll(sk);
344 /* Socket is not locked. We are protected from async events
345 * by poll logic and correct handling of state changes
346 * made by other threads is impossible in any case.
349 mask = 0;
350 if (sk->sk_err)
351 mask = POLLERR;
354 * POLLHUP is certainly not done right. But poll() doesn't
355 * have a notion of HUP in just one direction, and for a
356 * socket the read side is more interesting.
358 * Some poll() documentation says that POLLHUP is incompatible
359 * with the POLLOUT/POLLWR flags, so somebody should check this
360 * all. But careful, it tends to be safer to return too many
361 * bits than too few, and you can easily break real applications
362 * if you don't tell them that something has hung up!
364 * Check-me.
366 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
367 * our fs/select.c). It means that after we received EOF,
368 * poll always returns immediately, making impossible poll() on write()
369 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
370 * if and only if shutdown has been made in both directions.
371 * Actually, it is interesting to look how Solaris and DUX
372 * solve this dilemma. I would prefer, if POLLHUP were maskable,
373 * then we could set it on SND_SHUTDOWN. BTW examples given
374 * in Stevens' books assume exactly this behaviour, it explains
375 * why POLLHUP is incompatible with POLLOUT. --ANK
377 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
378 * blocking on fresh not-connected or disconnected socket. --ANK
380 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
381 mask |= POLLHUP;
382 if (sk->sk_shutdown & RCV_SHUTDOWN)
383 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
385 /* Connected? */
386 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
387 /* Potential race condition. If read of tp below will
388 * escape above sk->sk_state, we can be illegally awaken
389 * in SYN_* states. */
390 if ((tp->rcv_nxt != tp->copied_seq) &&
391 (tp->urg_seq != tp->copied_seq ||
392 tp->rcv_nxt != tp->copied_seq + 1 ||
393 sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
394 mask |= POLLIN | POLLRDNORM;
396 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
397 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
398 mask |= POLLOUT | POLLWRNORM;
399 } else { /* send SIGIO later */
400 set_bit(SOCK_ASYNC_NOSPACE,
401 &sk->sk_socket->flags);
402 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
404 /* Race breaker. If space is freed after
405 * wspace test but before the flags are set,
406 * IO signal will be lost.
408 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
409 mask |= POLLOUT | POLLWRNORM;
413 if (tp->urg_data & TCP_URG_VALID)
414 mask |= POLLPRI;
416 return mask;
419 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
421 struct tcp_sock *tp = tcp_sk(sk);
422 int answ;
424 switch (cmd) {
425 case SIOCINQ:
426 if (sk->sk_state == TCP_LISTEN)
427 return -EINVAL;
429 lock_sock(sk);
430 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
431 answ = 0;
432 else if (sock_flag(sk, SOCK_URGINLINE) ||
433 !tp->urg_data ||
434 before(tp->urg_seq, tp->copied_seq) ||
435 !before(tp->urg_seq, tp->rcv_nxt)) {
436 answ = tp->rcv_nxt - tp->copied_seq;
438 /* Subtract 1, if FIN is in queue. */
439 if (answ && !skb_queue_empty(&sk->sk_receive_queue))
440 answ -=
441 tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
442 } else
443 answ = tp->urg_seq - tp->copied_seq;
444 release_sock(sk);
445 break;
446 case SIOCATMARK:
447 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
448 break;
449 case SIOCOUTQ:
450 if (sk->sk_state == TCP_LISTEN)
451 return -EINVAL;
453 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
454 answ = 0;
455 else
456 answ = tp->write_seq - tp->snd_una;
457 break;
458 default:
459 return -ENOIOCTLCMD;
462 return put_user(answ, (int __user *)arg);
465 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
467 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
468 tp->pushed_seq = tp->write_seq;
471 static inline int forced_push(struct tcp_sock *tp)
473 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
476 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
478 struct tcp_sock *tp = tcp_sk(sk);
479 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
481 skb->csum = 0;
482 tcb->seq = tcb->end_seq = tp->write_seq;
483 tcb->flags = TCPCB_FLAG_ACK;
484 tcb->sacked = 0;
485 skb_header_release(skb);
486 tcp_add_write_queue_tail(sk, skb);
487 sk->sk_wmem_queued += skb->truesize;
488 sk_mem_charge(sk, skb->truesize);
489 if (tp->nonagle & TCP_NAGLE_PUSH)
490 tp->nonagle &= ~TCP_NAGLE_PUSH;
493 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
494 struct sk_buff *skb)
496 if (flags & MSG_OOB) {
497 tp->urg_mode = 1;
498 tp->snd_up = tp->write_seq;
502 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
503 int nonagle)
505 struct tcp_sock *tp = tcp_sk(sk);
507 if (tcp_send_head(sk)) {
508 struct sk_buff *skb = tcp_write_queue_tail(sk);
509 if (!(flags & MSG_MORE) || forced_push(tp))
510 tcp_mark_push(tp, skb);
511 tcp_mark_urg(tp, flags, skb);
512 __tcp_push_pending_frames(sk, mss_now,
513 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
517 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
518 unsigned int offset, size_t len)
520 struct tcp_splice_state *tss = rd_desc->arg.data;
522 return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
525 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
527 /* Store TCP splice context information in read_descriptor_t. */
528 read_descriptor_t rd_desc = {
529 .arg.data = tss,
532 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
536 * tcp_splice_read - splice data from TCP socket to a pipe
537 * @sock: socket to splice from
538 * @ppos: position (not valid)
539 * @pipe: pipe to splice to
540 * @len: number of bytes to splice
541 * @flags: splice modifier flags
543 * Description:
544 * Will read pages from given socket and fill them into a pipe.
547 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
548 struct pipe_inode_info *pipe, size_t len,
549 unsigned int flags)
551 struct sock *sk = sock->sk;
552 struct tcp_splice_state tss = {
553 .pipe = pipe,
554 .len = len,
555 .flags = flags,
557 long timeo;
558 ssize_t spliced;
559 int ret;
562 * We can't seek on a socket input
564 if (unlikely(*ppos))
565 return -ESPIPE;
567 ret = spliced = 0;
569 lock_sock(sk);
571 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
572 while (tss.len) {
573 ret = __tcp_splice_read(sk, &tss);
574 if (ret < 0)
575 break;
576 else if (!ret) {
577 if (spliced)
578 break;
579 if (flags & SPLICE_F_NONBLOCK) {
580 ret = -EAGAIN;
581 break;
583 if (sock_flag(sk, SOCK_DONE))
584 break;
585 if (sk->sk_err) {
586 ret = sock_error(sk);
587 break;
589 if (sk->sk_shutdown & RCV_SHUTDOWN)
590 break;
591 if (sk->sk_state == TCP_CLOSE) {
593 * This occurs when user tries to read
594 * from never connected socket.
596 if (!sock_flag(sk, SOCK_DONE))
597 ret = -ENOTCONN;
598 break;
600 if (!timeo) {
601 ret = -EAGAIN;
602 break;
604 sk_wait_data(sk, &timeo);
605 if (signal_pending(current)) {
606 ret = sock_intr_errno(timeo);
607 break;
609 continue;
611 tss.len -= ret;
612 spliced += ret;
614 release_sock(sk);
615 lock_sock(sk);
617 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
618 (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
619 signal_pending(current))
620 break;
623 release_sock(sk);
625 if (spliced)
626 return spliced;
628 return ret;
631 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
633 struct sk_buff *skb;
635 /* The TCP header must be at least 32-bit aligned. */
636 size = ALIGN(size, 4);
638 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
639 if (skb) {
640 if (sk_wmem_schedule(sk, skb->truesize)) {
642 * Make sure that we have exactly size bytes
643 * available to the caller, no more, no less.
645 skb_reserve(skb, skb_tailroom(skb) - size);
646 return skb;
648 __kfree_skb(skb);
649 } else {
650 sk->sk_prot->enter_memory_pressure(sk);
651 sk_stream_moderate_sndbuf(sk);
653 return NULL;
656 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
657 size_t psize, int flags)
659 struct tcp_sock *tp = tcp_sk(sk);
660 int mss_now, size_goal;
661 int err;
662 ssize_t copied;
663 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
665 /* Wait for a connection to finish. */
666 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
667 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
668 goto out_err;
670 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
672 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
673 size_goal = tp->xmit_size_goal;
674 copied = 0;
676 err = -EPIPE;
677 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
678 goto do_error;
680 while (psize > 0) {
681 struct sk_buff *skb = tcp_write_queue_tail(sk);
682 struct page *page = pages[poffset / PAGE_SIZE];
683 int copy, i, can_coalesce;
684 int offset = poffset % PAGE_SIZE;
685 int size = min_t(size_t, psize, PAGE_SIZE - offset);
687 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
688 new_segment:
689 if (!sk_stream_memory_free(sk))
690 goto wait_for_sndbuf;
692 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
693 if (!skb)
694 goto wait_for_memory;
696 skb_entail(sk, skb);
697 copy = size_goal;
700 if (copy > size)
701 copy = size;
703 i = skb_shinfo(skb)->nr_frags;
704 can_coalesce = skb_can_coalesce(skb, i, page, offset);
705 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
706 tcp_mark_push(tp, skb);
707 goto new_segment;
709 if (!sk_wmem_schedule(sk, copy))
710 goto wait_for_memory;
712 if (can_coalesce) {
713 skb_shinfo(skb)->frags[i - 1].size += copy;
714 } else {
715 get_page(page);
716 skb_fill_page_desc(skb, i, page, offset, copy);
719 skb->len += copy;
720 skb->data_len += copy;
721 skb->truesize += copy;
722 sk->sk_wmem_queued += copy;
723 sk_mem_charge(sk, copy);
724 skb->ip_summed = CHECKSUM_PARTIAL;
725 tp->write_seq += copy;
726 TCP_SKB_CB(skb)->end_seq += copy;
727 skb_shinfo(skb)->gso_segs = 0;
729 if (!copied)
730 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
732 copied += copy;
733 poffset += copy;
734 if (!(psize -= copy))
735 goto out;
737 if (skb->len < size_goal || (flags & MSG_OOB))
738 continue;
740 if (forced_push(tp)) {
741 tcp_mark_push(tp, skb);
742 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
743 } else if (skb == tcp_send_head(sk))
744 tcp_push_one(sk, mss_now);
745 continue;
747 wait_for_sndbuf:
748 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
749 wait_for_memory:
750 if (copied)
751 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
753 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
754 goto do_error;
756 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
757 size_goal = tp->xmit_size_goal;
760 out:
761 if (copied)
762 tcp_push(sk, flags, mss_now, tp->nonagle);
763 return copied;
765 do_error:
766 if (copied)
767 goto out;
768 out_err:
769 return sk_stream_error(sk, flags, err);
772 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
773 size_t size, int flags)
775 ssize_t res;
776 struct sock *sk = sock->sk;
778 if (!(sk->sk_route_caps & NETIF_F_SG) ||
779 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
780 return sock_no_sendpage(sock, page, offset, size, flags);
782 lock_sock(sk);
783 TCP_CHECK_TIMER(sk);
784 res = do_tcp_sendpages(sk, &page, offset, size, flags);
785 TCP_CHECK_TIMER(sk);
786 release_sock(sk);
787 return res;
790 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
791 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
793 static inline int select_size(struct sock *sk)
795 struct tcp_sock *tp = tcp_sk(sk);
796 int tmp = tp->mss_cache;
798 if (sk->sk_route_caps & NETIF_F_SG) {
799 if (sk_can_gso(sk))
800 tmp = 0;
801 else {
802 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
804 if (tmp >= pgbreak &&
805 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
806 tmp = pgbreak;
810 return tmp;
813 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
814 size_t size)
816 struct sock *sk = sock->sk;
817 struct iovec *iov;
818 struct tcp_sock *tp = tcp_sk(sk);
819 struct sk_buff *skb;
820 int iovlen, flags;
821 int mss_now, size_goal;
822 int err, copied;
823 long timeo;
825 lock_sock(sk);
826 TCP_CHECK_TIMER(sk);
828 flags = msg->msg_flags;
829 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
831 /* Wait for a connection to finish. */
832 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
833 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
834 goto out_err;
836 /* This should be in poll */
837 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
839 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
840 size_goal = tp->xmit_size_goal;
842 /* Ok commence sending. */
843 iovlen = msg->msg_iovlen;
844 iov = msg->msg_iov;
845 copied = 0;
847 err = -EPIPE;
848 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
849 goto do_error;
851 while (--iovlen >= 0) {
852 int seglen = iov->iov_len;
853 unsigned char __user *from = iov->iov_base;
855 iov++;
857 while (seglen > 0) {
858 int copy;
860 skb = tcp_write_queue_tail(sk);
862 if (!tcp_send_head(sk) ||
863 (copy = size_goal - skb->len) <= 0) {
865 new_segment:
866 /* Allocate new segment. If the interface is SG,
867 * allocate skb fitting to single page.
869 if (!sk_stream_memory_free(sk))
870 goto wait_for_sndbuf;
872 skb = sk_stream_alloc_skb(sk, select_size(sk),
873 sk->sk_allocation);
874 if (!skb)
875 goto wait_for_memory;
878 * Check whether we can use HW checksum.
880 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
881 skb->ip_summed = CHECKSUM_PARTIAL;
883 skb_entail(sk, skb);
884 copy = size_goal;
887 /* Try to append data to the end of skb. */
888 if (copy > seglen)
889 copy = seglen;
891 /* Where to copy to? */
892 if (skb_tailroom(skb) > 0) {
893 /* We have some space in skb head. Superb! */
894 if (copy > skb_tailroom(skb))
895 copy = skb_tailroom(skb);
896 if ((err = skb_add_data(skb, from, copy)) != 0)
897 goto do_fault;
898 } else {
899 int merge = 0;
900 int i = skb_shinfo(skb)->nr_frags;
901 struct page *page = TCP_PAGE(sk);
902 int off = TCP_OFF(sk);
904 if (skb_can_coalesce(skb, i, page, off) &&
905 off != PAGE_SIZE) {
906 /* We can extend the last page
907 * fragment. */
908 merge = 1;
909 } else if (i == MAX_SKB_FRAGS ||
910 (!i &&
911 !(sk->sk_route_caps & NETIF_F_SG))) {
912 /* Need to add new fragment and cannot
913 * do this because interface is non-SG,
914 * or because all the page slots are
915 * busy. */
916 tcp_mark_push(tp, skb);
917 goto new_segment;
918 } else if (page) {
919 if (off == PAGE_SIZE) {
920 put_page(page);
921 TCP_PAGE(sk) = page = NULL;
922 off = 0;
924 } else
925 off = 0;
927 if (copy > PAGE_SIZE - off)
928 copy = PAGE_SIZE - off;
930 if (!sk_wmem_schedule(sk, copy))
931 goto wait_for_memory;
933 if (!page) {
934 /* Allocate new cache page. */
935 if (!(page = sk_stream_alloc_page(sk)))
936 goto wait_for_memory;
939 /* Time to copy data. We are close to
940 * the end! */
941 err = skb_copy_to_page(sk, from, skb, page,
942 off, copy);
943 if (err) {
944 /* If this page was new, give it to the
945 * socket so it does not get leaked.
947 if (!TCP_PAGE(sk)) {
948 TCP_PAGE(sk) = page;
949 TCP_OFF(sk) = 0;
951 goto do_error;
954 /* Update the skb. */
955 if (merge) {
956 skb_shinfo(skb)->frags[i - 1].size +=
957 copy;
958 } else {
959 skb_fill_page_desc(skb, i, page, off, copy);
960 if (TCP_PAGE(sk)) {
961 get_page(page);
962 } else if (off + copy < PAGE_SIZE) {
963 get_page(page);
964 TCP_PAGE(sk) = page;
968 TCP_OFF(sk) = off + copy;
971 if (!copied)
972 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
974 tp->write_seq += copy;
975 TCP_SKB_CB(skb)->end_seq += copy;
976 skb_shinfo(skb)->gso_segs = 0;
978 from += copy;
979 copied += copy;
980 if ((seglen -= copy) == 0 && iovlen == 0)
981 goto out;
983 if (skb->len < size_goal || (flags & MSG_OOB))
984 continue;
986 if (forced_push(tp)) {
987 tcp_mark_push(tp, skb);
988 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
989 } else if (skb == tcp_send_head(sk))
990 tcp_push_one(sk, mss_now);
991 continue;
993 wait_for_sndbuf:
994 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
995 wait_for_memory:
996 if (copied)
997 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
999 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1000 goto do_error;
1002 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1003 size_goal = tp->xmit_size_goal;
1007 out:
1008 if (copied)
1009 tcp_push(sk, flags, mss_now, tp->nonagle);
1010 TCP_CHECK_TIMER(sk);
1011 release_sock(sk);
1012 return copied;
1014 do_fault:
1015 if (!skb->len) {
1016 tcp_unlink_write_queue(skb, sk);
1017 /* It is the one place in all of TCP, except connection
1018 * reset, where we can be unlinking the send_head.
1020 tcp_check_send_head(sk, skb);
1021 sk_wmem_free_skb(sk, skb);
1024 do_error:
1025 if (copied)
1026 goto out;
1027 out_err:
1028 err = sk_stream_error(sk, flags, err);
1029 TCP_CHECK_TIMER(sk);
1030 release_sock(sk);
1031 return err;
1035 * Handle reading urgent data. BSD has very simple semantics for
1036 * this, no blocking and very strange errors 8)
1039 static int tcp_recv_urg(struct sock *sk, long timeo,
1040 struct msghdr *msg, int len, int flags,
1041 int *addr_len)
1043 struct tcp_sock *tp = tcp_sk(sk);
1045 /* No URG data to read. */
1046 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1047 tp->urg_data == TCP_URG_READ)
1048 return -EINVAL; /* Yes this is right ! */
1050 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1051 return -ENOTCONN;
1053 if (tp->urg_data & TCP_URG_VALID) {
1054 int err = 0;
1055 char c = tp->urg_data;
1057 if (!(flags & MSG_PEEK))
1058 tp->urg_data = TCP_URG_READ;
1060 /* Read urgent data. */
1061 msg->msg_flags |= MSG_OOB;
1063 if (len > 0) {
1064 if (!(flags & MSG_TRUNC))
1065 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1066 len = 1;
1067 } else
1068 msg->msg_flags |= MSG_TRUNC;
1070 return err ? -EFAULT : len;
1073 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1074 return 0;
1076 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1077 * the available implementations agree in this case:
1078 * this call should never block, independent of the
1079 * blocking state of the socket.
1080 * Mike <pall@rz.uni-karlsruhe.de>
1082 return -EAGAIN;
1085 /* Clean up the receive buffer for full frames taken by the user,
1086 * then send an ACK if necessary. COPIED is the number of bytes
1087 * tcp_recvmsg has given to the user so far, it speeds up the
1088 * calculation of whether or not we must ACK for the sake of
1089 * a window update.
1091 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1093 struct tcp_sock *tp = tcp_sk(sk);
1094 int time_to_ack = 0;
1096 #if TCP_DEBUG
1097 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1099 WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1100 #endif
1102 if (inet_csk_ack_scheduled(sk)) {
1103 const struct inet_connection_sock *icsk = inet_csk(sk);
1104 /* Delayed ACKs frequently hit locked sockets during bulk
1105 * receive. */
1106 if (icsk->icsk_ack.blocked ||
1107 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1108 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1110 * If this read emptied read buffer, we send ACK, if
1111 * connection is not bidirectional, user drained
1112 * receive buffer and there was a small segment
1113 * in queue.
1115 (copied > 0 &&
1116 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1117 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1118 !icsk->icsk_ack.pingpong)) &&
1119 !atomic_read(&sk->sk_rmem_alloc)))
1120 time_to_ack = 1;
1123 /* We send an ACK if we can now advertise a non-zero window
1124 * which has been raised "significantly".
1126 * Even if window raised up to infinity, do not send window open ACK
1127 * in states, where we will not receive more. It is useless.
1129 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1130 __u32 rcv_window_now = tcp_receive_window(tp);
1132 /* Optimize, __tcp_select_window() is not cheap. */
1133 if (2*rcv_window_now <= tp->window_clamp) {
1134 __u32 new_window = __tcp_select_window(sk);
1136 /* Send ACK now, if this read freed lots of space
1137 * in our buffer. Certainly, new_window is new window.
1138 * We can advertise it now, if it is not less than current one.
1139 * "Lots" means "at least twice" here.
1141 if (new_window && new_window >= 2 * rcv_window_now)
1142 time_to_ack = 1;
1145 if (time_to_ack)
1146 tcp_send_ack(sk);
1149 static void tcp_prequeue_process(struct sock *sk)
1151 struct sk_buff *skb;
1152 struct tcp_sock *tp = tcp_sk(sk);
1154 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1156 /* RX process wants to run with disabled BHs, though it is not
1157 * necessary */
1158 local_bh_disable();
1159 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1160 sk->sk_backlog_rcv(sk, skb);
1161 local_bh_enable();
1163 /* Clear memory counter. */
1164 tp->ucopy.memory = 0;
1167 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1169 struct sk_buff *skb;
1170 u32 offset;
1172 skb_queue_walk(&sk->sk_receive_queue, skb) {
1173 offset = seq - TCP_SKB_CB(skb)->seq;
1174 if (tcp_hdr(skb)->syn)
1175 offset--;
1176 if (offset < skb->len || tcp_hdr(skb)->fin) {
1177 *off = offset;
1178 return skb;
1181 return NULL;
1185 * This routine provides an alternative to tcp_recvmsg() for routines
1186 * that would like to handle copying from skbuffs directly in 'sendfile'
1187 * fashion.
1188 * Note:
1189 * - It is assumed that the socket was locked by the caller.
1190 * - The routine does not block.
1191 * - At present, there is no support for reading OOB data
1192 * or for 'peeking' the socket using this routine
1193 * (although both would be easy to implement).
1195 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1196 sk_read_actor_t recv_actor)
1198 struct sk_buff *skb;
1199 struct tcp_sock *tp = tcp_sk(sk);
1200 u32 seq = tp->copied_seq;
1201 u32 offset;
1202 int copied = 0;
1204 if (sk->sk_state == TCP_LISTEN)
1205 return -ENOTCONN;
1206 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1207 if (offset < skb->len) {
1208 int used;
1209 size_t len;
1211 len = skb->len - offset;
1212 /* Stop reading if we hit a patch of urgent data */
1213 if (tp->urg_data) {
1214 u32 urg_offset = tp->urg_seq - seq;
1215 if (urg_offset < len)
1216 len = urg_offset;
1217 if (!len)
1218 break;
1220 used = recv_actor(desc, skb, offset, len);
1221 if (used < 0) {
1222 if (!copied)
1223 copied = used;
1224 break;
1225 } else if (used <= len) {
1226 seq += used;
1227 copied += used;
1228 offset += used;
1231 * If recv_actor drops the lock (e.g. TCP splice
1232 * receive) the skb pointer might be invalid when
1233 * getting here: tcp_collapse might have deleted it
1234 * while aggregating skbs from the socket queue.
1236 skb = tcp_recv_skb(sk, seq-1, &offset);
1237 if (!skb || (offset+1 != skb->len))
1238 break;
1240 if (tcp_hdr(skb)->fin) {
1241 sk_eat_skb(sk, skb, 0);
1242 ++seq;
1243 break;
1245 sk_eat_skb(sk, skb, 0);
1246 if (!desc->count)
1247 break;
1249 tp->copied_seq = seq;
1251 tcp_rcv_space_adjust(sk);
1253 /* Clean up data we have read: This will do ACK frames. */
1254 if (copied > 0)
1255 tcp_cleanup_rbuf(sk, copied);
1256 return copied;
1260 * This routine copies from a sock struct into the user buffer.
1262 * Technical note: in 2.3 we work on _locked_ socket, so that
1263 * tricks with *seq access order and skb->users are not required.
1264 * Probably, code can be easily improved even more.
1267 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1268 size_t len, int nonblock, int flags, int *addr_len)
1270 struct tcp_sock *tp = tcp_sk(sk);
1271 int copied = 0;
1272 u32 peek_seq;
1273 u32 *seq;
1274 unsigned long used;
1275 int err;
1276 int target; /* Read at least this many bytes */
1277 long timeo;
1278 struct task_struct *user_recv = NULL;
1279 int copied_early = 0;
1280 struct sk_buff *skb;
1282 lock_sock(sk);
1284 TCP_CHECK_TIMER(sk);
1286 err = -ENOTCONN;
1287 if (sk->sk_state == TCP_LISTEN)
1288 goto out;
1290 timeo = sock_rcvtimeo(sk, nonblock);
1292 /* Urgent data needs to be handled specially. */
1293 if (flags & MSG_OOB)
1294 goto recv_urg;
1296 seq = &tp->copied_seq;
1297 if (flags & MSG_PEEK) {
1298 peek_seq = tp->copied_seq;
1299 seq = &peek_seq;
1302 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1304 #ifdef CONFIG_NET_DMA
1305 tp->ucopy.dma_chan = NULL;
1306 preempt_disable();
1307 skb = skb_peek_tail(&sk->sk_receive_queue);
1309 int available = 0;
1311 if (skb)
1312 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1313 if ((available < target) &&
1314 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1315 !sysctl_tcp_low_latency &&
1316 __get_cpu_var(softnet_data).net_dma) {
1317 preempt_enable_no_resched();
1318 tp->ucopy.pinned_list =
1319 dma_pin_iovec_pages(msg->msg_iov, len);
1320 } else {
1321 preempt_enable_no_resched();
1324 #endif
1326 do {
1327 u32 offset;
1329 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1330 if (tp->urg_data && tp->urg_seq == *seq) {
1331 if (copied)
1332 break;
1333 if (signal_pending(current)) {
1334 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1335 break;
1339 /* Next get a buffer. */
1341 skb = skb_peek(&sk->sk_receive_queue);
1342 do {
1343 if (!skb)
1344 break;
1346 /* Now that we have two receive queues this
1347 * shouldn't happen.
1349 if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1350 printk(KERN_INFO "recvmsg bug: copied %X "
1351 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1352 break;
1354 offset = *seq - TCP_SKB_CB(skb)->seq;
1355 if (tcp_hdr(skb)->syn)
1356 offset--;
1357 if (offset < skb->len)
1358 goto found_ok_skb;
1359 if (tcp_hdr(skb)->fin)
1360 goto found_fin_ok;
1361 WARN_ON(!(flags & MSG_PEEK));
1362 skb = skb->next;
1363 } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1365 /* Well, if we have backlog, try to process it now yet. */
1367 if (copied >= target && !sk->sk_backlog.tail)
1368 break;
1370 if (copied) {
1371 if (sk->sk_err ||
1372 sk->sk_state == TCP_CLOSE ||
1373 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1374 !timeo ||
1375 signal_pending(current) ||
1376 (flags & MSG_PEEK))
1377 break;
1378 } else {
1379 if (sock_flag(sk, SOCK_DONE))
1380 break;
1382 if (sk->sk_err) {
1383 copied = sock_error(sk);
1384 break;
1387 if (sk->sk_shutdown & RCV_SHUTDOWN)
1388 break;
1390 if (sk->sk_state == TCP_CLOSE) {
1391 if (!sock_flag(sk, SOCK_DONE)) {
1392 /* This occurs when user tries to read
1393 * from never connected socket.
1395 copied = -ENOTCONN;
1396 break;
1398 break;
1401 if (!timeo) {
1402 copied = -EAGAIN;
1403 break;
1406 if (signal_pending(current)) {
1407 copied = sock_intr_errno(timeo);
1408 break;
1412 tcp_cleanup_rbuf(sk, copied);
1414 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1415 /* Install new reader */
1416 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1417 user_recv = current;
1418 tp->ucopy.task = user_recv;
1419 tp->ucopy.iov = msg->msg_iov;
1422 tp->ucopy.len = len;
1424 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1425 !(flags & (MSG_PEEK | MSG_TRUNC)));
1427 /* Ugly... If prequeue is not empty, we have to
1428 * process it before releasing socket, otherwise
1429 * order will be broken at second iteration.
1430 * More elegant solution is required!!!
1432 * Look: we have the following (pseudo)queues:
1434 * 1. packets in flight
1435 * 2. backlog
1436 * 3. prequeue
1437 * 4. receive_queue
1439 * Each queue can be processed only if the next ones
1440 * are empty. At this point we have empty receive_queue.
1441 * But prequeue _can_ be not empty after 2nd iteration,
1442 * when we jumped to start of loop because backlog
1443 * processing added something to receive_queue.
1444 * We cannot release_sock(), because backlog contains
1445 * packets arrived _after_ prequeued ones.
1447 * Shortly, algorithm is clear --- to process all
1448 * the queues in order. We could make it more directly,
1449 * requeueing packets from backlog to prequeue, if
1450 * is not empty. It is more elegant, but eats cycles,
1451 * unfortunately.
1453 if (!skb_queue_empty(&tp->ucopy.prequeue))
1454 goto do_prequeue;
1456 /* __ Set realtime policy in scheduler __ */
1459 if (copied >= target) {
1460 /* Do not sleep, just process backlog. */
1461 release_sock(sk);
1462 lock_sock(sk);
1463 } else
1464 sk_wait_data(sk, &timeo);
1466 #ifdef CONFIG_NET_DMA
1467 tp->ucopy.wakeup = 0;
1468 #endif
1470 if (user_recv) {
1471 int chunk;
1473 /* __ Restore normal policy in scheduler __ */
1475 if ((chunk = len - tp->ucopy.len) != 0) {
1476 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1477 len -= chunk;
1478 copied += chunk;
1481 if (tp->rcv_nxt == tp->copied_seq &&
1482 !skb_queue_empty(&tp->ucopy.prequeue)) {
1483 do_prequeue:
1484 tcp_prequeue_process(sk);
1486 if ((chunk = len - tp->ucopy.len) != 0) {
1487 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1488 len -= chunk;
1489 copied += chunk;
1493 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1494 if (net_ratelimit())
1495 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1496 current->comm, task_pid_nr(current));
1497 peek_seq = tp->copied_seq;
1499 continue;
1501 found_ok_skb:
1502 /* Ok so how much can we use? */
1503 used = skb->len - offset;
1504 if (len < used)
1505 used = len;
1507 /* Do we have urgent data here? */
1508 if (tp->urg_data) {
1509 u32 urg_offset = tp->urg_seq - *seq;
1510 if (urg_offset < used) {
1511 if (!urg_offset) {
1512 if (!sock_flag(sk, SOCK_URGINLINE)) {
1513 ++*seq;
1514 offset++;
1515 used--;
1516 if (!used)
1517 goto skip_copy;
1519 } else
1520 used = urg_offset;
1524 if (!(flags & MSG_TRUNC)) {
1525 #ifdef CONFIG_NET_DMA
1526 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1527 tp->ucopy.dma_chan = get_softnet_dma();
1529 if (tp->ucopy.dma_chan) {
1530 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1531 tp->ucopy.dma_chan, skb, offset,
1532 msg->msg_iov, used,
1533 tp->ucopy.pinned_list);
1535 if (tp->ucopy.dma_cookie < 0) {
1537 printk(KERN_ALERT "dma_cookie < 0\n");
1539 /* Exception. Bailout! */
1540 if (!copied)
1541 copied = -EFAULT;
1542 break;
1544 if ((offset + used) == skb->len)
1545 copied_early = 1;
1547 } else
1548 #endif
1550 err = skb_copy_datagram_iovec(skb, offset,
1551 msg->msg_iov, used);
1552 if (err) {
1553 /* Exception. Bailout! */
1554 if (!copied)
1555 copied = -EFAULT;
1556 break;
1561 *seq += used;
1562 copied += used;
1563 len -= used;
1565 tcp_rcv_space_adjust(sk);
1567 skip_copy:
1568 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1569 tp->urg_data = 0;
1570 tcp_fast_path_check(sk);
1572 if (used + offset < skb->len)
1573 continue;
1575 if (tcp_hdr(skb)->fin)
1576 goto found_fin_ok;
1577 if (!(flags & MSG_PEEK)) {
1578 sk_eat_skb(sk, skb, copied_early);
1579 copied_early = 0;
1581 continue;
1583 found_fin_ok:
1584 /* Process the FIN. */
1585 ++*seq;
1586 if (!(flags & MSG_PEEK)) {
1587 sk_eat_skb(sk, skb, copied_early);
1588 copied_early = 0;
1590 break;
1591 } while (len > 0);
1593 if (user_recv) {
1594 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1595 int chunk;
1597 tp->ucopy.len = copied > 0 ? len : 0;
1599 tcp_prequeue_process(sk);
1601 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1602 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1603 len -= chunk;
1604 copied += chunk;
1608 tp->ucopy.task = NULL;
1609 tp->ucopy.len = 0;
1612 #ifdef CONFIG_NET_DMA
1613 if (tp->ucopy.dma_chan) {
1614 dma_cookie_t done, used;
1616 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1618 while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1619 tp->ucopy.dma_cookie, &done,
1620 &used) == DMA_IN_PROGRESS) {
1621 /* do partial cleanup of sk_async_wait_queue */
1622 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1623 (dma_async_is_complete(skb->dma_cookie, done,
1624 used) == DMA_SUCCESS)) {
1625 __skb_dequeue(&sk->sk_async_wait_queue);
1626 kfree_skb(skb);
1630 /* Safe to free early-copied skbs now */
1631 __skb_queue_purge(&sk->sk_async_wait_queue);
1632 dma_chan_put(tp->ucopy.dma_chan);
1633 tp->ucopy.dma_chan = NULL;
1635 if (tp->ucopy.pinned_list) {
1636 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1637 tp->ucopy.pinned_list = NULL;
1639 #endif
1641 /* According to UNIX98, msg_name/msg_namelen are ignored
1642 * on connected socket. I was just happy when found this 8) --ANK
1645 /* Clean up data we have read: This will do ACK frames. */
1646 tcp_cleanup_rbuf(sk, copied);
1648 TCP_CHECK_TIMER(sk);
1649 release_sock(sk);
1650 return copied;
1652 out:
1653 TCP_CHECK_TIMER(sk);
1654 release_sock(sk);
1655 return err;
1657 recv_urg:
1658 err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1659 goto out;
1662 void tcp_set_state(struct sock *sk, int state)
1664 int oldstate = sk->sk_state;
1666 switch (state) {
1667 case TCP_ESTABLISHED:
1668 if (oldstate != TCP_ESTABLISHED)
1669 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1670 break;
1672 case TCP_CLOSE:
1673 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1674 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1676 sk->sk_prot->unhash(sk);
1677 if (inet_csk(sk)->icsk_bind_hash &&
1678 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1679 inet_put_port(sk);
1680 /* fall through */
1681 default:
1682 if (oldstate==TCP_ESTABLISHED)
1683 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1686 /* Change state AFTER socket is unhashed to avoid closed
1687 * socket sitting in hash tables.
1689 sk->sk_state = state;
1691 #ifdef STATE_TRACE
1692 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
1693 #endif
1695 EXPORT_SYMBOL_GPL(tcp_set_state);
1698 * State processing on a close. This implements the state shift for
1699 * sending our FIN frame. Note that we only send a FIN for some
1700 * states. A shutdown() may have already sent the FIN, or we may be
1701 * closed.
1704 static const unsigned char new_state[16] = {
1705 /* current state: new state: action: */
1706 /* (Invalid) */ TCP_CLOSE,
1707 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1708 /* TCP_SYN_SENT */ TCP_CLOSE,
1709 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1710 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1711 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1712 /* TCP_TIME_WAIT */ TCP_CLOSE,
1713 /* TCP_CLOSE */ TCP_CLOSE,
1714 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1715 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1716 /* TCP_LISTEN */ TCP_CLOSE,
1717 /* TCP_CLOSING */ TCP_CLOSING,
1720 static int tcp_close_state(struct sock *sk)
1722 int next = (int)new_state[sk->sk_state];
1723 int ns = next & TCP_STATE_MASK;
1725 tcp_set_state(sk, ns);
1727 return next & TCP_ACTION_FIN;
1731 * Shutdown the sending side of a connection. Much like close except
1732 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1735 void tcp_shutdown(struct sock *sk, int how)
1737 /* We need to grab some memory, and put together a FIN,
1738 * and then put it into the queue to be sent.
1739 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1741 if (!(how & SEND_SHUTDOWN))
1742 return;
1744 /* If we've already sent a FIN, or it's a closed state, skip this. */
1745 if ((1 << sk->sk_state) &
1746 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1747 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1748 /* Clear out any half completed packets. FIN if needed. */
1749 if (tcp_close_state(sk))
1750 tcp_send_fin(sk);
1754 void tcp_close(struct sock *sk, long timeout)
1756 struct sk_buff *skb;
1757 int data_was_unread = 0;
1758 int state;
1760 lock_sock(sk);
1761 sk->sk_shutdown = SHUTDOWN_MASK;
1763 if (sk->sk_state == TCP_LISTEN) {
1764 tcp_set_state(sk, TCP_CLOSE);
1766 /* Special case. */
1767 inet_csk_listen_stop(sk);
1769 goto adjudge_to_death;
1772 /* We need to flush the recv. buffs. We do this only on the
1773 * descriptor close, not protocol-sourced closes, because the
1774 * reader process may not have drained the data yet!
1776 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1777 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1778 tcp_hdr(skb)->fin;
1779 data_was_unread += len;
1780 __kfree_skb(skb);
1783 sk_mem_reclaim(sk);
1785 /* As outlined in RFC 2525, section 2.17, we send a RST here because
1786 * data was lost. To witness the awful effects of the old behavior of
1787 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1788 * GET in an FTP client, suspend the process, wait for the client to
1789 * advertise a zero window, then kill -9 the FTP client, wheee...
1790 * Note: timeout is always zero in such a case.
1792 if (data_was_unread) {
1793 /* Unread data was tossed, zap the connection. */
1794 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1795 tcp_set_state(sk, TCP_CLOSE);
1796 tcp_send_active_reset(sk, GFP_KERNEL);
1797 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1798 /* Check zero linger _after_ checking for unread data. */
1799 sk->sk_prot->disconnect(sk, 0);
1800 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1801 } else if (tcp_close_state(sk)) {
1802 /* We FIN if the application ate all the data before
1803 * zapping the connection.
1806 /* RED-PEN. Formally speaking, we have broken TCP state
1807 * machine. State transitions:
1809 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1810 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1811 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1813 * are legal only when FIN has been sent (i.e. in window),
1814 * rather than queued out of window. Purists blame.
1816 * F.e. "RFC state" is ESTABLISHED,
1817 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1819 * The visible declinations are that sometimes
1820 * we enter time-wait state, when it is not required really
1821 * (harmless), do not send active resets, when they are
1822 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1823 * they look as CLOSING or LAST_ACK for Linux)
1824 * Probably, I missed some more holelets.
1825 * --ANK
1827 tcp_send_fin(sk);
1830 sk_stream_wait_close(sk, timeout);
1832 adjudge_to_death:
1833 state = sk->sk_state;
1834 sock_hold(sk);
1835 sock_orphan(sk);
1836 atomic_inc(sk->sk_prot->orphan_count);
1838 /* It is the last release_sock in its life. It will remove backlog. */
1839 release_sock(sk);
1842 /* Now socket is owned by kernel and we acquire BH lock
1843 to finish close. No need to check for user refs.
1845 local_bh_disable();
1846 bh_lock_sock(sk);
1847 WARN_ON(sock_owned_by_user(sk));
1849 /* Have we already been destroyed by a softirq or backlog? */
1850 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1851 goto out;
1853 /* This is a (useful) BSD violating of the RFC. There is a
1854 * problem with TCP as specified in that the other end could
1855 * keep a socket open forever with no application left this end.
1856 * We use a 3 minute timeout (about the same as BSD) then kill
1857 * our end. If they send after that then tough - BUT: long enough
1858 * that we won't make the old 4*rto = almost no time - whoops
1859 * reset mistake.
1861 * Nope, it was not mistake. It is really desired behaviour
1862 * f.e. on http servers, when such sockets are useless, but
1863 * consume significant resources. Let's do it with special
1864 * linger2 option. --ANK
1867 if (sk->sk_state == TCP_FIN_WAIT2) {
1868 struct tcp_sock *tp = tcp_sk(sk);
1869 if (tp->linger2 < 0) {
1870 tcp_set_state(sk, TCP_CLOSE);
1871 tcp_send_active_reset(sk, GFP_ATOMIC);
1872 NET_INC_STATS_BH(sock_net(sk),
1873 LINUX_MIB_TCPABORTONLINGER);
1874 } else {
1875 const int tmo = tcp_fin_time(sk);
1877 if (tmo > TCP_TIMEWAIT_LEN) {
1878 inet_csk_reset_keepalive_timer(sk,
1879 tmo - TCP_TIMEWAIT_LEN);
1880 } else {
1881 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1882 goto out;
1886 if (sk->sk_state != TCP_CLOSE) {
1887 sk_mem_reclaim(sk);
1888 if (tcp_too_many_orphans(sk,
1889 atomic_read(sk->sk_prot->orphan_count))) {
1890 if (net_ratelimit())
1891 printk(KERN_INFO "TCP: too many of orphaned "
1892 "sockets\n");
1893 tcp_set_state(sk, TCP_CLOSE);
1894 tcp_send_active_reset(sk, GFP_ATOMIC);
1895 NET_INC_STATS_BH(sock_net(sk),
1896 LINUX_MIB_TCPABORTONMEMORY);
1900 if (sk->sk_state == TCP_CLOSE)
1901 inet_csk_destroy_sock(sk);
1902 /* Otherwise, socket is reprieved until protocol close. */
1904 out:
1905 bh_unlock_sock(sk);
1906 local_bh_enable();
1907 sock_put(sk);
1910 /* These states need RST on ABORT according to RFC793 */
1912 static inline int tcp_need_reset(int state)
1914 return (1 << state) &
1915 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1916 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1919 int tcp_disconnect(struct sock *sk, int flags)
1921 struct inet_sock *inet = inet_sk(sk);
1922 struct inet_connection_sock *icsk = inet_csk(sk);
1923 struct tcp_sock *tp = tcp_sk(sk);
1924 int err = 0;
1925 int old_state = sk->sk_state;
1927 if (old_state != TCP_CLOSE)
1928 tcp_set_state(sk, TCP_CLOSE);
1930 /* ABORT function of RFC793 */
1931 if (old_state == TCP_LISTEN) {
1932 inet_csk_listen_stop(sk);
1933 } else if (tcp_need_reset(old_state) ||
1934 (tp->snd_nxt != tp->write_seq &&
1935 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1936 /* The last check adjusts for discrepancy of Linux wrt. RFC
1937 * states
1939 tcp_send_active_reset(sk, gfp_any());
1940 sk->sk_err = ECONNRESET;
1941 } else if (old_state == TCP_SYN_SENT)
1942 sk->sk_err = ECONNRESET;
1944 tcp_clear_xmit_timers(sk);
1945 __skb_queue_purge(&sk->sk_receive_queue);
1946 tcp_write_queue_purge(sk);
1947 __skb_queue_purge(&tp->out_of_order_queue);
1948 #ifdef CONFIG_NET_DMA
1949 __skb_queue_purge(&sk->sk_async_wait_queue);
1950 #endif
1952 inet->dport = 0;
1954 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1955 inet_reset_saddr(sk);
1957 sk->sk_shutdown = 0;
1958 sock_reset_flag(sk, SOCK_DONE);
1959 tp->srtt = 0;
1960 if ((tp->write_seq += tp->max_window + 2) == 0)
1961 tp->write_seq = 1;
1962 icsk->icsk_backoff = 0;
1963 tp->snd_cwnd = 2;
1964 icsk->icsk_probes_out = 0;
1965 tp->packets_out = 0;
1966 tp->snd_ssthresh = 0x7fffffff;
1967 tp->snd_cwnd_cnt = 0;
1968 tp->bytes_acked = 0;
1969 tcp_set_ca_state(sk, TCP_CA_Open);
1970 tcp_clear_retrans(tp);
1971 inet_csk_delack_init(sk);
1972 tcp_init_send_head(sk);
1973 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1974 __sk_dst_reset(sk);
1976 WARN_ON(inet->num && !icsk->icsk_bind_hash);
1978 sk->sk_error_report(sk);
1979 return err;
1983 * Socket option code for TCP.
1985 static int do_tcp_setsockopt(struct sock *sk, int level,
1986 int optname, char __user *optval, int optlen)
1988 struct tcp_sock *tp = tcp_sk(sk);
1989 struct inet_connection_sock *icsk = inet_csk(sk);
1990 int val;
1991 int err = 0;
1993 /* This is a string value all the others are int's */
1994 if (optname == TCP_CONGESTION) {
1995 char name[TCP_CA_NAME_MAX];
1997 if (optlen < 1)
1998 return -EINVAL;
2000 val = strncpy_from_user(name, optval,
2001 min(TCP_CA_NAME_MAX-1, optlen));
2002 if (val < 0)
2003 return -EFAULT;
2004 name[val] = 0;
2006 lock_sock(sk);
2007 err = tcp_set_congestion_control(sk, name);
2008 release_sock(sk);
2009 return err;
2012 if (optlen < sizeof(int))
2013 return -EINVAL;
2015 if (get_user(val, (int __user *)optval))
2016 return -EFAULT;
2018 lock_sock(sk);
2020 switch (optname) {
2021 case TCP_MAXSEG:
2022 /* Values greater than interface MTU won't take effect. However
2023 * at the point when this call is done we typically don't yet
2024 * know which interface is going to be used */
2025 if (val < 8 || val > MAX_TCP_WINDOW) {
2026 err = -EINVAL;
2027 break;
2029 tp->rx_opt.user_mss = val;
2030 break;
2032 case TCP_NODELAY:
2033 if (val) {
2034 /* TCP_NODELAY is weaker than TCP_CORK, so that
2035 * this option on corked socket is remembered, but
2036 * it is not activated until cork is cleared.
2038 * However, when TCP_NODELAY is set we make
2039 * an explicit push, which overrides even TCP_CORK
2040 * for currently queued segments.
2042 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2043 tcp_push_pending_frames(sk);
2044 } else {
2045 tp->nonagle &= ~TCP_NAGLE_OFF;
2047 break;
2049 case TCP_CORK:
2050 /* When set indicates to always queue non-full frames.
2051 * Later the user clears this option and we transmit
2052 * any pending partial frames in the queue. This is
2053 * meant to be used alongside sendfile() to get properly
2054 * filled frames when the user (for example) must write
2055 * out headers with a write() call first and then use
2056 * sendfile to send out the data parts.
2058 * TCP_CORK can be set together with TCP_NODELAY and it is
2059 * stronger than TCP_NODELAY.
2061 if (val) {
2062 tp->nonagle |= TCP_NAGLE_CORK;
2063 } else {
2064 tp->nonagle &= ~TCP_NAGLE_CORK;
2065 if (tp->nonagle&TCP_NAGLE_OFF)
2066 tp->nonagle |= TCP_NAGLE_PUSH;
2067 tcp_push_pending_frames(sk);
2069 break;
2071 case TCP_KEEPIDLE:
2072 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2073 err = -EINVAL;
2074 else {
2075 tp->keepalive_time = val * HZ;
2076 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2077 !((1 << sk->sk_state) &
2078 (TCPF_CLOSE | TCPF_LISTEN))) {
2079 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2080 if (tp->keepalive_time > elapsed)
2081 elapsed = tp->keepalive_time - elapsed;
2082 else
2083 elapsed = 0;
2084 inet_csk_reset_keepalive_timer(sk, elapsed);
2087 break;
2088 case TCP_KEEPINTVL:
2089 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2090 err = -EINVAL;
2091 else
2092 tp->keepalive_intvl = val * HZ;
2093 break;
2094 case TCP_KEEPCNT:
2095 if (val < 1 || val > MAX_TCP_KEEPCNT)
2096 err = -EINVAL;
2097 else
2098 tp->keepalive_probes = val;
2099 break;
2100 case TCP_SYNCNT:
2101 if (val < 1 || val > MAX_TCP_SYNCNT)
2102 err = -EINVAL;
2103 else
2104 icsk->icsk_syn_retries = val;
2105 break;
2107 case TCP_LINGER2:
2108 if (val < 0)
2109 tp->linger2 = -1;
2110 else if (val > sysctl_tcp_fin_timeout / HZ)
2111 tp->linger2 = 0;
2112 else
2113 tp->linger2 = val * HZ;
2114 break;
2116 case TCP_DEFER_ACCEPT:
2117 icsk->icsk_accept_queue.rskq_defer_accept = 0;
2118 if (val > 0) {
2119 /* Translate value in seconds to number of
2120 * retransmits */
2121 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2122 val > ((TCP_TIMEOUT_INIT / HZ) <<
2123 icsk->icsk_accept_queue.rskq_defer_accept))
2124 icsk->icsk_accept_queue.rskq_defer_accept++;
2125 icsk->icsk_accept_queue.rskq_defer_accept++;
2127 break;
2129 case TCP_WINDOW_CLAMP:
2130 if (!val) {
2131 if (sk->sk_state != TCP_CLOSE) {
2132 err = -EINVAL;
2133 break;
2135 tp->window_clamp = 0;
2136 } else
2137 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2138 SOCK_MIN_RCVBUF / 2 : val;
2139 break;
2141 case TCP_QUICKACK:
2142 if (!val) {
2143 icsk->icsk_ack.pingpong = 1;
2144 } else {
2145 icsk->icsk_ack.pingpong = 0;
2146 if ((1 << sk->sk_state) &
2147 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2148 inet_csk_ack_scheduled(sk)) {
2149 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2150 tcp_cleanup_rbuf(sk, 1);
2151 if (!(val & 1))
2152 icsk->icsk_ack.pingpong = 1;
2155 break;
2157 #ifdef CONFIG_TCP_MD5SIG
2158 case TCP_MD5SIG:
2159 /* Read the IP->Key mappings from userspace */
2160 err = tp->af_specific->md5_parse(sk, optval, optlen);
2161 break;
2162 #endif
2164 default:
2165 err = -ENOPROTOOPT;
2166 break;
2169 release_sock(sk);
2170 return err;
2173 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2174 int optlen)
2176 struct inet_connection_sock *icsk = inet_csk(sk);
2178 if (level != SOL_TCP)
2179 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2180 optval, optlen);
2181 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2184 #ifdef CONFIG_COMPAT
2185 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2186 char __user *optval, int optlen)
2188 if (level != SOL_TCP)
2189 return inet_csk_compat_setsockopt(sk, level, optname,
2190 optval, optlen);
2191 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2194 EXPORT_SYMBOL(compat_tcp_setsockopt);
2195 #endif
2197 /* Return information about state of tcp endpoint in API format. */
2198 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2200 struct tcp_sock *tp = tcp_sk(sk);
2201 const struct inet_connection_sock *icsk = inet_csk(sk);
2202 u32 now = tcp_time_stamp;
2204 memset(info, 0, sizeof(*info));
2206 info->tcpi_state = sk->sk_state;
2207 info->tcpi_ca_state = icsk->icsk_ca_state;
2208 info->tcpi_retransmits = icsk->icsk_retransmits;
2209 info->tcpi_probes = icsk->icsk_probes_out;
2210 info->tcpi_backoff = icsk->icsk_backoff;
2212 if (tp->rx_opt.tstamp_ok)
2213 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2214 if (tcp_is_sack(tp))
2215 info->tcpi_options |= TCPI_OPT_SACK;
2216 if (tp->rx_opt.wscale_ok) {
2217 info->tcpi_options |= TCPI_OPT_WSCALE;
2218 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2219 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2222 if (tp->ecn_flags&TCP_ECN_OK)
2223 info->tcpi_options |= TCPI_OPT_ECN;
2225 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2226 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2227 info->tcpi_snd_mss = tp->mss_cache;
2228 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2230 if (sk->sk_state == TCP_LISTEN) {
2231 info->tcpi_unacked = sk->sk_ack_backlog;
2232 info->tcpi_sacked = sk->sk_max_ack_backlog;
2233 } else {
2234 info->tcpi_unacked = tp->packets_out;
2235 info->tcpi_sacked = tp->sacked_out;
2237 info->tcpi_lost = tp->lost_out;
2238 info->tcpi_retrans = tp->retrans_out;
2239 info->tcpi_fackets = tp->fackets_out;
2241 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2242 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2243 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2245 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2246 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2247 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2248 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2249 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2250 info->tcpi_snd_cwnd = tp->snd_cwnd;
2251 info->tcpi_advmss = tp->advmss;
2252 info->tcpi_reordering = tp->reordering;
2254 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2255 info->tcpi_rcv_space = tp->rcvq_space.space;
2257 info->tcpi_total_retrans = tp->total_retrans;
2260 EXPORT_SYMBOL_GPL(tcp_get_info);
2262 static int do_tcp_getsockopt(struct sock *sk, int level,
2263 int optname, char __user *optval, int __user *optlen)
2265 struct inet_connection_sock *icsk = inet_csk(sk);
2266 struct tcp_sock *tp = tcp_sk(sk);
2267 int val, len;
2269 if (get_user(len, optlen))
2270 return -EFAULT;
2272 len = min_t(unsigned int, len, sizeof(int));
2274 if (len < 0)
2275 return -EINVAL;
2277 switch (optname) {
2278 case TCP_MAXSEG:
2279 val = tp->mss_cache;
2280 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2281 val = tp->rx_opt.user_mss;
2282 break;
2283 case TCP_NODELAY:
2284 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2285 break;
2286 case TCP_CORK:
2287 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2288 break;
2289 case TCP_KEEPIDLE:
2290 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2291 break;
2292 case TCP_KEEPINTVL:
2293 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2294 break;
2295 case TCP_KEEPCNT:
2296 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2297 break;
2298 case TCP_SYNCNT:
2299 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2300 break;
2301 case TCP_LINGER2:
2302 val = tp->linger2;
2303 if (val >= 0)
2304 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2305 break;
2306 case TCP_DEFER_ACCEPT:
2307 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2308 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2309 break;
2310 case TCP_WINDOW_CLAMP:
2311 val = tp->window_clamp;
2312 break;
2313 case TCP_INFO: {
2314 struct tcp_info info;
2316 if (get_user(len, optlen))
2317 return -EFAULT;
2319 tcp_get_info(sk, &info);
2321 len = min_t(unsigned int, len, sizeof(info));
2322 if (put_user(len, optlen))
2323 return -EFAULT;
2324 if (copy_to_user(optval, &info, len))
2325 return -EFAULT;
2326 return 0;
2328 case TCP_QUICKACK:
2329 val = !icsk->icsk_ack.pingpong;
2330 break;
2332 case TCP_CONGESTION:
2333 if (get_user(len, optlen))
2334 return -EFAULT;
2335 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2336 if (put_user(len, optlen))
2337 return -EFAULT;
2338 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2339 return -EFAULT;
2340 return 0;
2341 default:
2342 return -ENOPROTOOPT;
2345 if (put_user(len, optlen))
2346 return -EFAULT;
2347 if (copy_to_user(optval, &val, len))
2348 return -EFAULT;
2349 return 0;
2352 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2353 int __user *optlen)
2355 struct inet_connection_sock *icsk = inet_csk(sk);
2357 if (level != SOL_TCP)
2358 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2359 optval, optlen);
2360 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2363 #ifdef CONFIG_COMPAT
2364 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2365 char __user *optval, int __user *optlen)
2367 if (level != SOL_TCP)
2368 return inet_csk_compat_getsockopt(sk, level, optname,
2369 optval, optlen);
2370 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2373 EXPORT_SYMBOL(compat_tcp_getsockopt);
2374 #endif
2376 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2378 struct sk_buff *segs = ERR_PTR(-EINVAL);
2379 struct tcphdr *th;
2380 unsigned thlen;
2381 unsigned int seq;
2382 __be32 delta;
2383 unsigned int oldlen;
2384 unsigned int len;
2386 if (!pskb_may_pull(skb, sizeof(*th)))
2387 goto out;
2389 th = tcp_hdr(skb);
2390 thlen = th->doff * 4;
2391 if (thlen < sizeof(*th))
2392 goto out;
2394 if (!pskb_may_pull(skb, thlen))
2395 goto out;
2397 oldlen = (u16)~skb->len;
2398 __skb_pull(skb, thlen);
2400 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2401 /* Packet is from an untrusted source, reset gso_segs. */
2402 int type = skb_shinfo(skb)->gso_type;
2403 int mss;
2405 if (unlikely(type &
2406 ~(SKB_GSO_TCPV4 |
2407 SKB_GSO_DODGY |
2408 SKB_GSO_TCP_ECN |
2409 SKB_GSO_TCPV6 |
2410 0) ||
2411 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2412 goto out;
2414 mss = skb_shinfo(skb)->gso_size;
2415 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2417 segs = NULL;
2418 goto out;
2421 segs = skb_segment(skb, features);
2422 if (IS_ERR(segs))
2423 goto out;
2425 len = skb_shinfo(skb)->gso_size;
2426 delta = htonl(oldlen + (thlen + len));
2428 skb = segs;
2429 th = tcp_hdr(skb);
2430 seq = ntohl(th->seq);
2432 do {
2433 th->fin = th->psh = 0;
2435 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2436 (__force u32)delta));
2437 if (skb->ip_summed != CHECKSUM_PARTIAL)
2438 th->check =
2439 csum_fold(csum_partial(skb_transport_header(skb),
2440 thlen, skb->csum));
2442 seq += len;
2443 skb = skb->next;
2444 th = tcp_hdr(skb);
2446 th->seq = htonl(seq);
2447 th->cwr = 0;
2448 } while (skb->next);
2450 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2451 skb->data_len);
2452 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2453 (__force u32)delta));
2454 if (skb->ip_summed != CHECKSUM_PARTIAL)
2455 th->check = csum_fold(csum_partial(skb_transport_header(skb),
2456 thlen, skb->csum));
2458 out:
2459 return segs;
2461 EXPORT_SYMBOL(tcp_tso_segment);
2463 #ifdef CONFIG_TCP_MD5SIG
2464 static unsigned long tcp_md5sig_users;
2465 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2466 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2468 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2470 int cpu;
2471 for_each_possible_cpu(cpu) {
2472 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2473 if (p) {
2474 if (p->md5_desc.tfm)
2475 crypto_free_hash(p->md5_desc.tfm);
2476 kfree(p);
2477 p = NULL;
2480 free_percpu(pool);
2483 void tcp_free_md5sig_pool(void)
2485 struct tcp_md5sig_pool **pool = NULL;
2487 spin_lock_bh(&tcp_md5sig_pool_lock);
2488 if (--tcp_md5sig_users == 0) {
2489 pool = tcp_md5sig_pool;
2490 tcp_md5sig_pool = NULL;
2492 spin_unlock_bh(&tcp_md5sig_pool_lock);
2493 if (pool)
2494 __tcp_free_md5sig_pool(pool);
2497 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2499 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2501 int cpu;
2502 struct tcp_md5sig_pool **pool;
2504 pool = alloc_percpu(struct tcp_md5sig_pool *);
2505 if (!pool)
2506 return NULL;
2508 for_each_possible_cpu(cpu) {
2509 struct tcp_md5sig_pool *p;
2510 struct crypto_hash *hash;
2512 p = kzalloc(sizeof(*p), GFP_KERNEL);
2513 if (!p)
2514 goto out_free;
2515 *per_cpu_ptr(pool, cpu) = p;
2517 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2518 if (!hash || IS_ERR(hash))
2519 goto out_free;
2521 p->md5_desc.tfm = hash;
2523 return pool;
2524 out_free:
2525 __tcp_free_md5sig_pool(pool);
2526 return NULL;
2529 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2531 struct tcp_md5sig_pool **pool;
2532 int alloc = 0;
2534 retry:
2535 spin_lock_bh(&tcp_md5sig_pool_lock);
2536 pool = tcp_md5sig_pool;
2537 if (tcp_md5sig_users++ == 0) {
2538 alloc = 1;
2539 spin_unlock_bh(&tcp_md5sig_pool_lock);
2540 } else if (!pool) {
2541 tcp_md5sig_users--;
2542 spin_unlock_bh(&tcp_md5sig_pool_lock);
2543 cpu_relax();
2544 goto retry;
2545 } else
2546 spin_unlock_bh(&tcp_md5sig_pool_lock);
2548 if (alloc) {
2549 /* we cannot hold spinlock here because this may sleep. */
2550 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2551 spin_lock_bh(&tcp_md5sig_pool_lock);
2552 if (!p) {
2553 tcp_md5sig_users--;
2554 spin_unlock_bh(&tcp_md5sig_pool_lock);
2555 return NULL;
2557 pool = tcp_md5sig_pool;
2558 if (pool) {
2559 /* oops, it has already been assigned. */
2560 spin_unlock_bh(&tcp_md5sig_pool_lock);
2561 __tcp_free_md5sig_pool(p);
2562 } else {
2563 tcp_md5sig_pool = pool = p;
2564 spin_unlock_bh(&tcp_md5sig_pool_lock);
2567 return pool;
2570 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2572 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2574 struct tcp_md5sig_pool **p;
2575 spin_lock_bh(&tcp_md5sig_pool_lock);
2576 p = tcp_md5sig_pool;
2577 if (p)
2578 tcp_md5sig_users++;
2579 spin_unlock_bh(&tcp_md5sig_pool_lock);
2580 return (p ? *per_cpu_ptr(p, cpu) : NULL);
2583 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2585 void __tcp_put_md5sig_pool(void)
2587 tcp_free_md5sig_pool();
2590 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2592 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2593 struct tcphdr *th)
2595 struct scatterlist sg;
2596 int err;
2598 __sum16 old_checksum = th->check;
2599 th->check = 0;
2600 /* options aren't included in the hash */
2601 sg_init_one(&sg, th, sizeof(struct tcphdr));
2602 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2603 th->check = old_checksum;
2604 return err;
2607 EXPORT_SYMBOL(tcp_md5_hash_header);
2609 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2610 struct sk_buff *skb, unsigned header_len)
2612 struct scatterlist sg;
2613 const struct tcphdr *tp = tcp_hdr(skb);
2614 struct hash_desc *desc = &hp->md5_desc;
2615 unsigned i;
2616 const unsigned head_data_len = skb_headlen(skb) > header_len ?
2617 skb_headlen(skb) - header_len : 0;
2618 const struct skb_shared_info *shi = skb_shinfo(skb);
2620 sg_init_table(&sg, 1);
2622 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2623 if (crypto_hash_update(desc, &sg, head_data_len))
2624 return 1;
2626 for (i = 0; i < shi->nr_frags; ++i) {
2627 const struct skb_frag_struct *f = &shi->frags[i];
2628 sg_set_page(&sg, f->page, f->size, f->page_offset);
2629 if (crypto_hash_update(desc, &sg, f->size))
2630 return 1;
2633 return 0;
2636 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2638 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
2640 struct scatterlist sg;
2642 sg_init_one(&sg, key->key, key->keylen);
2643 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2646 EXPORT_SYMBOL(tcp_md5_hash_key);
2648 #endif
2650 void tcp_done(struct sock *sk)
2652 if(sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2653 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2655 tcp_set_state(sk, TCP_CLOSE);
2656 tcp_clear_xmit_timers(sk);
2658 sk->sk_shutdown = SHUTDOWN_MASK;
2660 if (!sock_flag(sk, SOCK_DEAD))
2661 sk->sk_state_change(sk);
2662 else
2663 inet_csk_destroy_sock(sk);
2665 EXPORT_SYMBOL_GPL(tcp_done);
2667 extern struct tcp_congestion_ops tcp_reno;
2669 static __initdata unsigned long thash_entries;
2670 static int __init set_thash_entries(char *str)
2672 if (!str)
2673 return 0;
2674 thash_entries = simple_strtoul(str, &str, 0);
2675 return 1;
2677 __setup("thash_entries=", set_thash_entries);
2679 void __init tcp_init(void)
2681 struct sk_buff *skb = NULL;
2682 unsigned long nr_pages, limit;
2683 int order, i, max_share;
2685 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2687 tcp_hashinfo.bind_bucket_cachep =
2688 kmem_cache_create("tcp_bind_bucket",
2689 sizeof(struct inet_bind_bucket), 0,
2690 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2692 /* Size and allocate the main established and bind bucket
2693 * hash tables.
2695 * The methodology is similar to that of the buffer cache.
2697 tcp_hashinfo.ehash =
2698 alloc_large_system_hash("TCP established",
2699 sizeof(struct inet_ehash_bucket),
2700 thash_entries,
2701 (num_physpages >= 128 * 1024) ?
2702 13 : 15,
2704 &tcp_hashinfo.ehash_size,
2705 NULL,
2706 thash_entries ? 0 : 512 * 1024);
2707 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2708 for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2709 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2710 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].twchain);
2712 if (inet_ehash_locks_alloc(&tcp_hashinfo))
2713 panic("TCP: failed to alloc ehash_locks");
2714 tcp_hashinfo.bhash =
2715 alloc_large_system_hash("TCP bind",
2716 sizeof(struct inet_bind_hashbucket),
2717 tcp_hashinfo.ehash_size,
2718 (num_physpages >= 128 * 1024) ?
2719 13 : 15,
2721 &tcp_hashinfo.bhash_size,
2722 NULL,
2723 64 * 1024);
2724 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2725 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2726 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2727 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2730 /* Try to be a bit smarter and adjust defaults depending
2731 * on available memory.
2733 for (order = 0; ((1 << order) << PAGE_SHIFT) <
2734 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2735 order++)
2737 if (order >= 4) {
2738 tcp_death_row.sysctl_max_tw_buckets = 180000;
2739 sysctl_tcp_max_orphans = 4096 << (order - 4);
2740 sysctl_max_syn_backlog = 1024;
2741 } else if (order < 3) {
2742 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2743 sysctl_tcp_max_orphans >>= (3 - order);
2744 sysctl_max_syn_backlog = 128;
2747 /* Set the pressure threshold to be a fraction of global memory that
2748 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2749 * memory, with a floor of 128 pages.
2751 nr_pages = totalram_pages - totalhigh_pages;
2752 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2753 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2754 limit = max(limit, 128UL);
2755 sysctl_tcp_mem[0] = limit / 4 * 3;
2756 sysctl_tcp_mem[1] = limit;
2757 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2759 /* Set per-socket limits to no more than 1/128 the pressure threshold */
2760 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2761 max_share = min(4UL*1024*1024, limit);
2763 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2764 sysctl_tcp_wmem[1] = 16*1024;
2765 sysctl_tcp_wmem[2] = max(64*1024, max_share);
2767 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2768 sysctl_tcp_rmem[1] = 87380;
2769 sysctl_tcp_rmem[2] = max(87380, max_share);
2771 printk(KERN_INFO "TCP: Hash tables configured "
2772 "(established %d bind %d)\n",
2773 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2775 tcp_register_congestion_control(&tcp_reno);
2778 EXPORT_SYMBOL(tcp_close);
2779 EXPORT_SYMBOL(tcp_disconnect);
2780 EXPORT_SYMBOL(tcp_getsockopt);
2781 EXPORT_SYMBOL(tcp_ioctl);
2782 EXPORT_SYMBOL(tcp_poll);
2783 EXPORT_SYMBOL(tcp_read_sock);
2784 EXPORT_SYMBOL(tcp_recvmsg);
2785 EXPORT_SYMBOL(tcp_sendmsg);
2786 EXPORT_SYMBOL(tcp_splice_read);
2787 EXPORT_SYMBOL(tcp_sendpage);
2788 EXPORT_SYMBOL(tcp_setsockopt);
2789 EXPORT_SYMBOL(tcp_shutdown);