2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
47 #include <asm/uaccess.h>
50 * ktime_get - get the monotonic time in ktime_t format
52 * returns the time in ktime_t format
54 ktime_t
ktime_get(void)
60 return timespec_to_ktime(now
);
62 EXPORT_SYMBOL_GPL(ktime_get
);
65 * ktime_get_real - get the real (wall-) time in ktime_t format
67 * returns the time in ktime_t format
69 ktime_t
ktime_get_real(void)
75 return timespec_to_ktime(now
);
78 EXPORT_SYMBOL_GPL(ktime_get_real
);
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
89 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
95 .index
= CLOCK_REALTIME
,
96 .get_time
= &ktime_get_real
,
97 .resolution
= KTIME_LOW_RES
,
100 .index
= CLOCK_MONOTONIC
,
101 .get_time
= &ktime_get
,
102 .resolution
= KTIME_LOW_RES
,
108 * ktime_get_ts - get the monotonic clock in timespec format
109 * @ts: pointer to timespec variable
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
113 * in normalized timespec format in the variable pointed to by @ts.
115 void ktime_get_ts(struct timespec
*ts
)
117 struct timespec tomono
;
121 seq
= read_seqbegin(&xtime_lock
);
123 tomono
= wall_to_monotonic
;
125 } while (read_seqretry(&xtime_lock
, seq
));
127 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
128 ts
->tv_nsec
+ tomono
.tv_nsec
);
130 EXPORT_SYMBOL_GPL(ktime_get_ts
);
133 * Get the coarse grained time at the softirq based on xtime and
136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
138 ktime_t xtim
, tomono
;
139 struct timespec xts
, tom
;
143 seq
= read_seqbegin(&xtime_lock
);
144 xts
= current_kernel_time();
145 tom
= wall_to_monotonic
;
146 } while (read_seqretry(&xtime_lock
, seq
));
148 xtim
= timespec_to_ktime(xts
);
149 tomono
= timespec_to_ktime(tom
);
150 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
151 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
152 ktime_add(xtim
, tomono
);
156 * Helper function to check, whether the timer is running the callback
159 static inline int hrtimer_callback_running(struct hrtimer
*timer
)
161 return timer
->state
& HRTIMER_STATE_CALLBACK
;
165 * Functions and macros which are different for UP/SMP systems are kept in a
171 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
172 * means that all timers which are tied to this base via timer->base are
173 * locked, and the base itself is locked too.
175 * So __run_timers/migrate_timers can safely modify all timers which could
176 * be found on the lists/queues.
178 * When the timer's base is locked, and the timer removed from list, it is
179 * possible to set timer->base = NULL and drop the lock: the timer remains
183 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
184 unsigned long *flags
)
186 struct hrtimer_clock_base
*base
;
190 if (likely(base
!= NULL
)) {
191 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
192 if (likely(base
== timer
->base
))
194 /* The timer has migrated to another CPU: */
195 spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
202 * Switch the timer base to the current CPU when possible.
204 static inline struct hrtimer_clock_base
*
205 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
207 struct hrtimer_clock_base
*new_base
;
208 struct hrtimer_cpu_base
*new_cpu_base
;
210 new_cpu_base
= &__get_cpu_var(hrtimer_bases
);
211 new_base
= &new_cpu_base
->clock_base
[base
->index
];
213 if (base
!= new_base
) {
215 * We are trying to schedule the timer on the local CPU.
216 * However we can't change timer's base while it is running,
217 * so we keep it on the same CPU. No hassle vs. reprogramming
218 * the event source in the high resolution case. The softirq
219 * code will take care of this when the timer function has
220 * completed. There is no conflict as we hold the lock until
221 * the timer is enqueued.
223 if (unlikely(hrtimer_callback_running(timer
)))
226 /* See the comment in lock_timer_base() */
228 spin_unlock(&base
->cpu_base
->lock
);
229 spin_lock(&new_base
->cpu_base
->lock
);
230 timer
->base
= new_base
;
235 #else /* CONFIG_SMP */
237 static inline struct hrtimer_clock_base
*
238 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
240 struct hrtimer_clock_base
*base
= timer
->base
;
242 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
247 # define switch_hrtimer_base(t, b) (b)
249 #endif /* !CONFIG_SMP */
252 * Functions for the union type storage format of ktime_t which are
253 * too large for inlining:
255 #if BITS_PER_LONG < 64
256 # ifndef CONFIG_KTIME_SCALAR
258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
260 * @nsec: the scalar nsec value to add
262 * Returns the sum of kt and nsec in ktime_t format
264 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
268 if (likely(nsec
< NSEC_PER_SEC
)) {
271 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
273 tmp
= ktime_set((long)nsec
, rem
);
276 return ktime_add(kt
, tmp
);
279 EXPORT_SYMBOL_GPL(ktime_add_ns
);
282 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
284 * @nsec: the scalar nsec value to subtract
286 * Returns the subtraction of @nsec from @kt in ktime_t format
288 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
292 if (likely(nsec
< NSEC_PER_SEC
)) {
295 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
297 tmp
= ktime_set((long)nsec
, rem
);
300 return ktime_sub(kt
, tmp
);
303 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
304 # endif /* !CONFIG_KTIME_SCALAR */
307 * Divide a ktime value by a nanosecond value
309 u64
ktime_divns(const ktime_t kt
, s64 div
)
314 dclc
= dns
= ktime_to_ns(kt
);
316 /* Make sure the divisor is less than 2^32: */
322 do_div(dclc
, (unsigned long) div
);
326 #endif /* BITS_PER_LONG >= 64 */
329 * Check, whether the timer is on the callback pending list
331 static inline int hrtimer_cb_pending(const struct hrtimer
*timer
)
333 return timer
->state
& HRTIMER_STATE_PENDING
;
337 * Remove a timer from the callback pending list
339 static inline void hrtimer_remove_cb_pending(struct hrtimer
*timer
)
341 list_del_init(&timer
->cb_entry
);
344 /* High resolution timer related functions */
345 #ifdef CONFIG_HIGH_RES_TIMERS
348 * High resolution timer enabled ?
350 static int hrtimer_hres_enabled __read_mostly
= 1;
353 * Enable / Disable high resolution mode
355 static int __init
setup_hrtimer_hres(char *str
)
357 if (!strcmp(str
, "off"))
358 hrtimer_hres_enabled
= 0;
359 else if (!strcmp(str
, "on"))
360 hrtimer_hres_enabled
= 1;
366 __setup("highres=", setup_hrtimer_hres
);
369 * hrtimer_high_res_enabled - query, if the highres mode is enabled
371 static inline int hrtimer_is_hres_enabled(void)
373 return hrtimer_hres_enabled
;
377 * Is the high resolution mode active ?
379 static inline int hrtimer_hres_active(void)
381 return __get_cpu_var(hrtimer_bases
).hres_active
;
385 * Reprogram the event source with checking both queues for the
387 * Called with interrupts disabled and base->lock held
389 static void hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
)
392 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
395 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
397 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
398 struct hrtimer
*timer
;
402 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
403 expires
= ktime_sub(timer
->expires
, base
->offset
);
404 if (expires
.tv64
< cpu_base
->expires_next
.tv64
)
405 cpu_base
->expires_next
= expires
;
408 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
409 tick_program_event(cpu_base
->expires_next
, 1);
413 * Shared reprogramming for clock_realtime and clock_monotonic
415 * When a timer is enqueued and expires earlier than the already enqueued
416 * timers, we have to check, whether it expires earlier than the timer for
417 * which the clock event device was armed.
419 * Called with interrupts disabled and base->cpu_base.lock held
421 static int hrtimer_reprogram(struct hrtimer
*timer
,
422 struct hrtimer_clock_base
*base
)
424 ktime_t
*expires_next
= &__get_cpu_var(hrtimer_bases
).expires_next
;
425 ktime_t expires
= ktime_sub(timer
->expires
, base
->offset
);
429 * When the callback is running, we do not reprogram the clock event
430 * device. The timer callback is either running on a different CPU or
431 * the callback is executed in the hrtimer_interrupt context. The
432 * reprogramming is handled either by the softirq, which called the
433 * callback or at the end of the hrtimer_interrupt.
435 if (hrtimer_callback_running(timer
))
438 if (expires
.tv64
>= expires_next
->tv64
)
442 * Clockevents returns -ETIME, when the event was in the past.
444 res
= tick_program_event(expires
, 0);
445 if (!IS_ERR_VALUE(res
))
446 *expires_next
= expires
;
452 * Retrigger next event is called after clock was set
454 * Called with interrupts disabled via on_each_cpu()
456 static void retrigger_next_event(void *arg
)
458 struct hrtimer_cpu_base
*base
;
459 struct timespec realtime_offset
;
462 if (!hrtimer_hres_active())
466 seq
= read_seqbegin(&xtime_lock
);
467 set_normalized_timespec(&realtime_offset
,
468 -wall_to_monotonic
.tv_sec
,
469 -wall_to_monotonic
.tv_nsec
);
470 } while (read_seqretry(&xtime_lock
, seq
));
472 base
= &__get_cpu_var(hrtimer_bases
);
474 /* Adjust CLOCK_REALTIME offset */
475 spin_lock(&base
->lock
);
476 base
->clock_base
[CLOCK_REALTIME
].offset
=
477 timespec_to_ktime(realtime_offset
);
479 hrtimer_force_reprogram(base
);
480 spin_unlock(&base
->lock
);
484 * Clock realtime was set
486 * Change the offset of the realtime clock vs. the monotonic
489 * We might have to reprogram the high resolution timer interrupt. On
490 * SMP we call the architecture specific code to retrigger _all_ high
491 * resolution timer interrupts. On UP we just disable interrupts and
492 * call the high resolution interrupt code.
494 void clock_was_set(void)
496 /* Retrigger the CPU local events everywhere */
497 on_each_cpu(retrigger_next_event
, NULL
, 0, 1);
501 * During resume we might have to reprogram the high resolution timer
502 * interrupt (on the local CPU):
504 void hres_timers_resume(void)
506 WARN_ON_ONCE(num_online_cpus() > 1);
508 /* Retrigger the CPU local events: */
509 retrigger_next_event(NULL
);
513 * Initialize the high resolution related parts of cpu_base
515 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
517 base
->expires_next
.tv64
= KTIME_MAX
;
518 base
->hres_active
= 0;
522 * Initialize the high resolution related parts of a hrtimer
524 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
529 * When High resolution timers are active, try to reprogram. Note, that in case
530 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
531 * check happens. The timer gets enqueued into the rbtree. The reprogramming
532 * and expiry check is done in the hrtimer_interrupt or in the softirq.
534 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
535 struct hrtimer_clock_base
*base
)
537 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
539 /* Timer is expired, act upon the callback mode */
540 switch(timer
->cb_mode
) {
541 case HRTIMER_CB_IRQSAFE_NO_RESTART
:
543 * We can call the callback from here. No restart
544 * happens, so no danger of recursion
546 BUG_ON(timer
->function(timer
) != HRTIMER_NORESTART
);
548 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
:
550 * This is solely for the sched tick emulation with
551 * dynamic tick support to ensure that we do not
552 * restart the tick right on the edge and end up with
553 * the tick timer in the softirq ! The calling site
554 * takes care of this.
557 case HRTIMER_CB_IRQSAFE
:
558 case HRTIMER_CB_SOFTIRQ
:
560 * Move everything else into the softirq pending list !
562 list_add_tail(&timer
->cb_entry
,
563 &base
->cpu_base
->cb_pending
);
564 timer
->state
= HRTIMER_STATE_PENDING
;
565 raise_softirq(HRTIMER_SOFTIRQ
);
575 * Switch to high resolution mode
577 static int hrtimer_switch_to_hres(void)
579 int cpu
= smp_processor_id();
580 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
583 if (base
->hres_active
)
586 local_irq_save(flags
);
588 if (tick_init_highres()) {
589 local_irq_restore(flags
);
590 printk(KERN_WARNING
"Could not switch to high resolution "
591 "mode on CPU %d\n", cpu
);
594 base
->hres_active
= 1;
595 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
596 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
598 tick_setup_sched_timer();
600 /* "Retrigger" the interrupt to get things going */
601 retrigger_next_event(NULL
);
602 local_irq_restore(flags
);
603 printk(KERN_DEBUG
"Switched to high resolution mode on CPU %d\n",
610 static inline int hrtimer_hres_active(void) { return 0; }
611 static inline int hrtimer_is_hres_enabled(void) { return 0; }
612 static inline int hrtimer_switch_to_hres(void) { return 0; }
613 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
) { }
614 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
615 struct hrtimer_clock_base
*base
)
619 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
620 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
621 static inline int hrtimer_reprogram(struct hrtimer
*timer
,
622 struct hrtimer_clock_base
*base
)
627 #endif /* CONFIG_HIGH_RES_TIMERS */
629 #ifdef CONFIG_TIMER_STATS
630 void __timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
, void *addr
)
632 if (timer
->start_site
)
635 timer
->start_site
= addr
;
636 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
637 timer
->start_pid
= current
->pid
;
642 * Counterpart to lock_hrtimer_base above:
645 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
647 spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
651 * hrtimer_forward - forward the timer expiry
652 * @timer: hrtimer to forward
653 * @now: forward past this time
654 * @interval: the interval to forward
656 * Forward the timer expiry so it will expire in the future.
657 * Returns the number of overruns.
659 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
664 delta
= ktime_sub(now
, timer
->expires
);
669 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
670 interval
.tv64
= timer
->base
->resolution
.tv64
;
672 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
673 s64 incr
= ktime_to_ns(interval
);
675 orun
= ktime_divns(delta
, incr
);
676 timer
->expires
= ktime_add_ns(timer
->expires
, incr
* orun
);
677 if (timer
->expires
.tv64
> now
.tv64
)
680 * This (and the ktime_add() below) is the
681 * correction for exact:
685 timer
->expires
= ktime_add(timer
->expires
, interval
);
687 * Make sure, that the result did not wrap with a very large
690 if (timer
->expires
.tv64
< 0)
691 timer
->expires
= ktime_set(KTIME_SEC_MAX
, 0);
695 EXPORT_SYMBOL_GPL(hrtimer_forward
);
698 * enqueue_hrtimer - internal function to (re)start a timer
700 * The timer is inserted in expiry order. Insertion into the
701 * red black tree is O(log(n)). Must hold the base lock.
703 static void enqueue_hrtimer(struct hrtimer
*timer
,
704 struct hrtimer_clock_base
*base
, int reprogram
)
706 struct rb_node
**link
= &base
->active
.rb_node
;
707 struct rb_node
*parent
= NULL
;
708 struct hrtimer
*entry
;
712 * Find the right place in the rbtree:
716 entry
= rb_entry(parent
, struct hrtimer
, node
);
718 * We dont care about collisions. Nodes with
719 * the same expiry time stay together.
721 if (timer
->expires
.tv64
< entry
->expires
.tv64
) {
722 link
= &(*link
)->rb_left
;
724 link
= &(*link
)->rb_right
;
730 * Insert the timer to the rbtree and check whether it
731 * replaces the first pending timer
735 * Reprogram the clock event device. When the timer is already
736 * expired hrtimer_enqueue_reprogram has either called the
737 * callback or added it to the pending list and raised the
740 * This is a NOP for !HIGHRES
742 if (reprogram
&& hrtimer_enqueue_reprogram(timer
, base
))
745 base
->first
= &timer
->node
;
748 rb_link_node(&timer
->node
, parent
, link
);
749 rb_insert_color(&timer
->node
, &base
->active
);
751 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
752 * state of a possibly running callback.
754 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
758 * __remove_hrtimer - internal function to remove a timer
760 * Caller must hold the base lock.
762 * High resolution timer mode reprograms the clock event device when the
763 * timer is the one which expires next. The caller can disable this by setting
764 * reprogram to zero. This is useful, when the context does a reprogramming
765 * anyway (e.g. timer interrupt)
767 static void __remove_hrtimer(struct hrtimer
*timer
,
768 struct hrtimer_clock_base
*base
,
769 unsigned long newstate
, int reprogram
)
771 /* High res. callback list. NOP for !HIGHRES */
772 if (hrtimer_cb_pending(timer
))
773 hrtimer_remove_cb_pending(timer
);
776 * Remove the timer from the rbtree and replace the
777 * first entry pointer if necessary.
779 if (base
->first
== &timer
->node
) {
780 base
->first
= rb_next(&timer
->node
);
781 /* Reprogram the clock event device. if enabled */
782 if (reprogram
&& hrtimer_hres_active())
783 hrtimer_force_reprogram(base
->cpu_base
);
785 rb_erase(&timer
->node
, &base
->active
);
787 timer
->state
= newstate
;
791 * remove hrtimer, called with base lock held
794 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
796 if (hrtimer_is_queued(timer
)) {
800 * Remove the timer and force reprogramming when high
801 * resolution mode is active and the timer is on the current
802 * CPU. If we remove a timer on another CPU, reprogramming is
803 * skipped. The interrupt event on this CPU is fired and
804 * reprogramming happens in the interrupt handler. This is a
805 * rare case and less expensive than a smp call.
807 timer_stats_hrtimer_clear_start_info(timer
);
808 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
809 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
,
817 * hrtimer_start - (re)start an relative timer on the current CPU
818 * @timer: the timer to be added
820 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
824 * 1 when the timer was active
827 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
829 struct hrtimer_clock_base
*base
, *new_base
;
833 base
= lock_hrtimer_base(timer
, &flags
);
835 /* Remove an active timer from the queue: */
836 ret
= remove_hrtimer(timer
, base
);
838 /* Switch the timer base, if necessary: */
839 new_base
= switch_hrtimer_base(timer
, base
);
841 if (mode
== HRTIMER_MODE_REL
) {
842 tim
= ktime_add(tim
, new_base
->get_time());
844 * CONFIG_TIME_LOW_RES is a temporary way for architectures
845 * to signal that they simply return xtime in
846 * do_gettimeoffset(). In this case we want to round up by
847 * resolution when starting a relative timer, to avoid short
848 * timeouts. This will go away with the GTOD framework.
850 #ifdef CONFIG_TIME_LOW_RES
851 tim
= ktime_add(tim
, base
->resolution
);
854 * Careful here: User space might have asked for a
855 * very long sleep, so the add above might result in a
856 * negative number, which enqueues the timer in front
860 tim
.tv64
= KTIME_MAX
;
862 timer
->expires
= tim
;
864 timer_stats_hrtimer_set_start_info(timer
);
867 * Only allow reprogramming if the new base is on this CPU.
868 * (it might still be on another CPU if the timer was pending)
870 enqueue_hrtimer(timer
, new_base
,
871 new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
));
873 unlock_hrtimer_base(timer
, &flags
);
877 EXPORT_SYMBOL_GPL(hrtimer_start
);
880 * hrtimer_try_to_cancel - try to deactivate a timer
881 * @timer: hrtimer to stop
884 * 0 when the timer was not active
885 * 1 when the timer was active
886 * -1 when the timer is currently excuting the callback function and
889 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
891 struct hrtimer_clock_base
*base
;
895 base
= lock_hrtimer_base(timer
, &flags
);
897 if (!hrtimer_callback_running(timer
))
898 ret
= remove_hrtimer(timer
, base
);
900 unlock_hrtimer_base(timer
, &flags
);
905 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
908 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
909 * @timer: the timer to be cancelled
912 * 0 when the timer was not active
913 * 1 when the timer was active
915 int hrtimer_cancel(struct hrtimer
*timer
)
918 int ret
= hrtimer_try_to_cancel(timer
);
925 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
928 * hrtimer_get_remaining - get remaining time for the timer
929 * @timer: the timer to read
931 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
933 struct hrtimer_clock_base
*base
;
937 base
= lock_hrtimer_base(timer
, &flags
);
938 rem
= ktime_sub(timer
->expires
, base
->get_time());
939 unlock_hrtimer_base(timer
, &flags
);
943 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
945 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
947 * hrtimer_get_next_event - get the time until next expiry event
949 * Returns the delta to the next expiry event or KTIME_MAX if no timer
952 ktime_t
hrtimer_get_next_event(void)
954 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
955 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
956 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
960 spin_lock_irqsave(&cpu_base
->lock
, flags
);
962 if (!hrtimer_hres_active()) {
963 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
964 struct hrtimer
*timer
;
969 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
970 delta
.tv64
= timer
->expires
.tv64
;
971 delta
= ktime_sub(delta
, base
->get_time());
972 if (delta
.tv64
< mindelta
.tv64
)
973 mindelta
.tv64
= delta
.tv64
;
977 spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
979 if (mindelta
.tv64
< 0)
986 * hrtimer_init - initialize a timer to the given clock
987 * @timer: the timer to be initialized
988 * @clock_id: the clock to be used
989 * @mode: timer mode abs/rel
991 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
992 enum hrtimer_mode mode
)
994 struct hrtimer_cpu_base
*cpu_base
;
996 memset(timer
, 0, sizeof(struct hrtimer
));
998 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1000 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1001 clock_id
= CLOCK_MONOTONIC
;
1003 timer
->base
= &cpu_base
->clock_base
[clock_id
];
1004 INIT_LIST_HEAD(&timer
->cb_entry
);
1005 hrtimer_init_timer_hres(timer
);
1007 #ifdef CONFIG_TIMER_STATS
1008 timer
->start_site
= NULL
;
1009 timer
->start_pid
= -1;
1010 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1013 EXPORT_SYMBOL_GPL(hrtimer_init
);
1016 * hrtimer_get_res - get the timer resolution for a clock
1017 * @which_clock: which clock to query
1018 * @tp: pointer to timespec variable to store the resolution
1020 * Store the resolution of the clock selected by @which_clock in the
1021 * variable pointed to by @tp.
1023 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1025 struct hrtimer_cpu_base
*cpu_base
;
1027 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1028 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
1032 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1034 static void run_hrtimer_pending(struct hrtimer_cpu_base
*cpu_base
)
1036 spin_lock_irq(&cpu_base
->lock
);
1038 while (!list_empty(&cpu_base
->cb_pending
)) {
1039 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1040 struct hrtimer
*timer
;
1043 timer
= list_entry(cpu_base
->cb_pending
.next
,
1044 struct hrtimer
, cb_entry
);
1046 timer_stats_account_hrtimer(timer
);
1048 fn
= timer
->function
;
1049 __remove_hrtimer(timer
, timer
->base
, HRTIMER_STATE_CALLBACK
, 0);
1050 spin_unlock_irq(&cpu_base
->lock
);
1052 restart
= fn(timer
);
1054 spin_lock_irq(&cpu_base
->lock
);
1056 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1057 if (restart
== HRTIMER_RESTART
) {
1058 BUG_ON(hrtimer_active(timer
));
1060 * Enqueue the timer, allow reprogramming of the event
1063 enqueue_hrtimer(timer
, timer
->base
, 1);
1064 } else if (hrtimer_active(timer
)) {
1066 * If the timer was rearmed on another CPU, reprogram
1069 if (timer
->base
->first
== &timer
->node
)
1070 hrtimer_reprogram(timer
, timer
->base
);
1073 spin_unlock_irq(&cpu_base
->lock
);
1076 static void __run_hrtimer(struct hrtimer
*timer
)
1078 struct hrtimer_clock_base
*base
= timer
->base
;
1079 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1080 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1083 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1084 timer_stats_account_hrtimer(timer
);
1086 fn
= timer
->function
;
1087 if (timer
->cb_mode
== HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
) {
1089 * Used for scheduler timers, avoid lock inversion with
1090 * rq->lock and tasklist_lock.
1092 * These timers are required to deal with enqueue expiry
1093 * themselves and are not allowed to migrate.
1095 spin_unlock(&cpu_base
->lock
);
1096 restart
= fn(timer
);
1097 spin_lock(&cpu_base
->lock
);
1099 restart
= fn(timer
);
1102 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1103 * reprogramming of the event hardware. This happens at the end of this
1106 if (restart
!= HRTIMER_NORESTART
) {
1107 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1108 enqueue_hrtimer(timer
, base
, 0);
1110 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1113 #ifdef CONFIG_HIGH_RES_TIMERS
1116 * High resolution timer interrupt
1117 * Called with interrupts disabled
1119 void hrtimer_interrupt(struct clock_event_device
*dev
)
1121 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1122 struct hrtimer_clock_base
*base
;
1123 ktime_t expires_next
, now
;
1126 BUG_ON(!cpu_base
->hres_active
);
1127 cpu_base
->nr_events
++;
1128 dev
->next_event
.tv64
= KTIME_MAX
;
1133 expires_next
.tv64
= KTIME_MAX
;
1135 base
= cpu_base
->clock_base
;
1137 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1139 struct rb_node
*node
;
1141 spin_lock(&cpu_base
->lock
);
1143 basenow
= ktime_add(now
, base
->offset
);
1145 while ((node
= base
->first
)) {
1146 struct hrtimer
*timer
;
1148 timer
= rb_entry(node
, struct hrtimer
, node
);
1150 if (basenow
.tv64
< timer
->expires
.tv64
) {
1153 expires
= ktime_sub(timer
->expires
,
1155 if (expires
.tv64
< expires_next
.tv64
)
1156 expires_next
= expires
;
1160 /* Move softirq callbacks to the pending list */
1161 if (timer
->cb_mode
== HRTIMER_CB_SOFTIRQ
) {
1162 __remove_hrtimer(timer
, base
,
1163 HRTIMER_STATE_PENDING
, 0);
1164 list_add_tail(&timer
->cb_entry
,
1165 &base
->cpu_base
->cb_pending
);
1170 __run_hrtimer(timer
);
1172 spin_unlock(&cpu_base
->lock
);
1176 cpu_base
->expires_next
= expires_next
;
1178 /* Reprogramming necessary ? */
1179 if (expires_next
.tv64
!= KTIME_MAX
) {
1180 if (tick_program_event(expires_next
, 0))
1184 /* Raise softirq ? */
1186 raise_softirq(HRTIMER_SOFTIRQ
);
1189 static void run_hrtimer_softirq(struct softirq_action
*h
)
1191 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases
));
1194 #endif /* CONFIG_HIGH_RES_TIMERS */
1197 * Called from timer softirq every jiffy, expire hrtimers:
1199 * For HRT its the fall back code to run the softirq in the timer
1200 * softirq context in case the hrtimer initialization failed or has
1201 * not been done yet.
1203 void hrtimer_run_pending(void)
1205 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1207 if (hrtimer_hres_active())
1211 * This _is_ ugly: We have to check in the softirq context,
1212 * whether we can switch to highres and / or nohz mode. The
1213 * clocksource switch happens in the timer interrupt with
1214 * xtime_lock held. Notification from there only sets the
1215 * check bit in the tick_oneshot code, otherwise we might
1216 * deadlock vs. xtime_lock.
1218 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1219 hrtimer_switch_to_hres();
1221 run_hrtimer_pending(cpu_base
);
1225 * Called from hardirq context every jiffy
1227 static inline void run_hrtimer_queue(struct hrtimer_cpu_base
*cpu_base
,
1230 struct rb_node
*node
;
1231 struct hrtimer_clock_base
*base
= &cpu_base
->clock_base
[index
];
1236 if (base
->get_softirq_time
)
1237 base
->softirq_time
= base
->get_softirq_time();
1239 spin_lock(&cpu_base
->lock
);
1241 while ((node
= base
->first
)) {
1242 struct hrtimer
*timer
;
1244 timer
= rb_entry(node
, struct hrtimer
, node
);
1245 if (base
->softirq_time
.tv64
<= timer
->expires
.tv64
)
1248 if (timer
->cb_mode
== HRTIMER_CB_SOFTIRQ
) {
1249 __remove_hrtimer(timer
, base
, HRTIMER_STATE_PENDING
, 0);
1250 list_add_tail(&timer
->cb_entry
,
1251 &base
->cpu_base
->cb_pending
);
1255 __run_hrtimer(timer
);
1257 spin_unlock(&cpu_base
->lock
);
1260 void hrtimer_run_queues(void)
1262 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1265 if (hrtimer_hres_active())
1268 hrtimer_get_softirq_time(cpu_base
);
1270 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1271 run_hrtimer_queue(cpu_base
, i
);
1275 * Sleep related functions:
1277 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1279 struct hrtimer_sleeper
*t
=
1280 container_of(timer
, struct hrtimer_sleeper
, timer
);
1281 struct task_struct
*task
= t
->task
;
1285 wake_up_process(task
);
1287 return HRTIMER_NORESTART
;
1290 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1292 sl
->timer
.function
= hrtimer_wakeup
;
1294 #ifdef CONFIG_HIGH_RES_TIMERS
1295 sl
->timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1299 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1301 hrtimer_init_sleeper(t
, current
);
1304 set_current_state(TASK_INTERRUPTIBLE
);
1305 hrtimer_start(&t
->timer
, t
->timer
.expires
, mode
);
1306 if (!hrtimer_active(&t
->timer
))
1309 if (likely(t
->task
))
1312 hrtimer_cancel(&t
->timer
);
1313 mode
= HRTIMER_MODE_ABS
;
1315 } while (t
->task
&& !signal_pending(current
));
1317 __set_current_state(TASK_RUNNING
);
1319 return t
->task
== NULL
;
1322 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1324 struct hrtimer_sleeper t
;
1325 struct timespec
*rmtp
;
1328 restart
->fn
= do_no_restart_syscall
;
1330 hrtimer_init(&t
.timer
, restart
->arg0
, HRTIMER_MODE_ABS
);
1331 t
.timer
.expires
.tv64
= ((u64
)restart
->arg3
<< 32) | (u64
) restart
->arg2
;
1333 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1336 rmtp
= (struct timespec
*)restart
->arg1
;
1338 time
= ktime_sub(t
.timer
.expires
, t
.timer
.base
->get_time());
1341 *rmtp
= ktime_to_timespec(time
);
1344 restart
->fn
= hrtimer_nanosleep_restart
;
1346 /* The other values in restart are already filled in */
1347 return -ERESTART_RESTARTBLOCK
;
1350 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec
*rmtp
,
1351 const enum hrtimer_mode mode
, const clockid_t clockid
)
1353 struct restart_block
*restart
;
1354 struct hrtimer_sleeper t
;
1357 hrtimer_init(&t
.timer
, clockid
, mode
);
1358 t
.timer
.expires
= timespec_to_ktime(*rqtp
);
1359 if (do_nanosleep(&t
, mode
))
1362 /* Absolute timers do not update the rmtp value and restart: */
1363 if (mode
== HRTIMER_MODE_ABS
)
1364 return -ERESTARTNOHAND
;
1367 rem
= ktime_sub(t
.timer
.expires
, t
.timer
.base
->get_time());
1370 *rmtp
= ktime_to_timespec(rem
);
1373 restart
= ¤t_thread_info()->restart_block
;
1374 restart
->fn
= hrtimer_nanosleep_restart
;
1375 restart
->arg0
= (unsigned long) t
.timer
.base
->index
;
1376 restart
->arg1
= (unsigned long) rmtp
;
1377 restart
->arg2
= t
.timer
.expires
.tv64
& 0xFFFFFFFF;
1378 restart
->arg3
= t
.timer
.expires
.tv64
>> 32;
1380 return -ERESTART_RESTARTBLOCK
;
1384 sys_nanosleep(struct timespec __user
*rqtp
, struct timespec __user
*rmtp
)
1386 struct timespec tu
, rmt
;
1389 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1392 if (!timespec_valid(&tu
))
1395 ret
= hrtimer_nanosleep(&tu
, rmtp
? &rmt
: NULL
, HRTIMER_MODE_REL
,
1399 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1407 * Functions related to boot-time initialization:
1409 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1411 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1414 spin_lock_init(&cpu_base
->lock
);
1415 lockdep_set_class(&cpu_base
->lock
, &cpu_base
->lock_key
);
1417 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1418 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1420 INIT_LIST_HEAD(&cpu_base
->cb_pending
);
1421 hrtimer_init_hres(cpu_base
);
1424 #ifdef CONFIG_HOTPLUG_CPU
1426 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1427 struct hrtimer_clock_base
*new_base
)
1429 struct hrtimer
*timer
;
1430 struct rb_node
*node
;
1432 while ((node
= rb_first(&old_base
->active
))) {
1433 timer
= rb_entry(node
, struct hrtimer
, node
);
1434 BUG_ON(hrtimer_callback_running(timer
));
1435 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_INACTIVE
, 0);
1436 timer
->base
= new_base
;
1438 * Enqueue the timer. Allow reprogramming of the event device
1440 enqueue_hrtimer(timer
, new_base
, 1);
1444 static void migrate_hrtimers(int cpu
)
1446 struct hrtimer_cpu_base
*old_base
, *new_base
;
1449 BUG_ON(cpu_online(cpu
));
1450 old_base
= &per_cpu(hrtimer_bases
, cpu
);
1451 new_base
= &get_cpu_var(hrtimer_bases
);
1453 tick_cancel_sched_timer(cpu
);
1455 local_irq_disable();
1456 double_spin_lock(&new_base
->lock
, &old_base
->lock
,
1457 smp_processor_id() < cpu
);
1459 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1460 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1461 &new_base
->clock_base
[i
]);
1464 double_spin_unlock(&new_base
->lock
, &old_base
->lock
,
1465 smp_processor_id() < cpu
);
1467 put_cpu_var(hrtimer_bases
);
1469 #endif /* CONFIG_HOTPLUG_CPU */
1471 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1472 unsigned long action
, void *hcpu
)
1474 unsigned int cpu
= (long)hcpu
;
1478 case CPU_UP_PREPARE
:
1479 case CPU_UP_PREPARE_FROZEN
:
1480 init_hrtimers_cpu(cpu
);
1483 #ifdef CONFIG_HOTPLUG_CPU
1485 case CPU_DEAD_FROZEN
:
1486 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &cpu
);
1487 migrate_hrtimers(cpu
);
1498 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1499 .notifier_call
= hrtimer_cpu_notify
,
1502 void __init
hrtimers_init(void)
1504 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1505 (void *)(long)smp_processor_id());
1506 register_cpu_notifier(&hrtimers_nb
);
1507 #ifdef CONFIG_HIGH_RES_TIMERS
1508 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
, NULL
);