2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
19 static const int cfq_quantum
= 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
21 static const int cfq_back_max
= 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty
= 2; /* penalty of a backwards seek */
24 static const int cfq_slice_sync
= HZ
/ 10;
25 static int cfq_slice_async
= HZ
/ 25;
26 static const int cfq_slice_async_rq
= 2;
27 static int cfq_slice_idle
= HZ
/ 125;
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
32 #define CFQ_KEY_ASYNC (0)
35 * for the hash of cfqq inside the cfqd
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
46 static struct kmem_cache
*cfq_pool
;
47 static struct kmem_cache
*cfq_ioc_pool
;
49 static DEFINE_PER_CPU(unsigned long, ioc_count
);
50 static struct completion
*ioc_gone
;
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
67 #define sample_valid(samples) ((samples) > 80)
70 * Per block device queue structure
73 request_queue_t
*queue
;
76 * rr list of queues with requests and the count of them
78 struct list_head rr_list
[CFQ_PRIO_LISTS
];
79 struct list_head busy_rr
;
80 struct list_head cur_rr
;
81 struct list_head idle_rr
;
82 unsigned int busy_queues
;
87 struct hlist_head
*cfq_hash
;
93 * idle window management
95 struct timer_list idle_slice_timer
;
96 struct work_struct unplug_work
;
98 struct cfq_queue
*active_queue
;
99 struct cfq_io_context
*active_cic
;
100 int cur_prio
, cur_end_prio
;
101 unsigned int dispatch_slice
;
103 struct timer_list idle_class_timer
;
105 sector_t last_sector
;
106 unsigned long last_end_request
;
109 * tunables, see top of file
111 unsigned int cfq_quantum
;
112 unsigned int cfq_fifo_expire
[2];
113 unsigned int cfq_back_penalty
;
114 unsigned int cfq_back_max
;
115 unsigned int cfq_slice
[2];
116 unsigned int cfq_slice_async_rq
;
117 unsigned int cfq_slice_idle
;
119 struct list_head cic_list
;
123 * Per process-grouping structure
126 /* reference count */
128 /* parent cfq_data */
129 struct cfq_data
*cfqd
;
130 /* cfqq lookup hash */
131 struct hlist_node cfq_hash
;
134 /* member of the rr/busy/cur/idle cfqd list */
135 struct list_head cfq_list
;
136 /* sorted list of pending requests */
137 struct rb_root sort_list
;
138 /* if fifo isn't expired, next request to serve */
139 struct request
*next_rq
;
140 /* requests queued in sort_list */
142 /* currently allocated requests */
144 /* pending metadata requests */
146 /* fifo list of requests in sort_list */
147 struct list_head fifo
;
149 unsigned long slice_end
;
150 unsigned long slice_left
;
151 unsigned long service_last
;
153 /* number of requests that are on the dispatch list */
156 /* io prio of this group */
157 unsigned short ioprio
, org_ioprio
;
158 unsigned short ioprio_class
, org_ioprio_class
;
160 /* various state flags, see below */
164 enum cfqq_state_flags
{
165 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
166 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
167 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
168 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
169 CFQ_CFQQ_FLAG_must_dispatch
, /* must dispatch, even if expired */
170 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
171 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
172 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
173 CFQ_CFQQ_FLAG_queue_new
, /* queue never been serviced */
176 #define CFQ_CFQQ_FNS(name) \
177 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
179 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
181 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
183 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
185 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
187 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
191 CFQ_CFQQ_FNS(wait_request
);
192 CFQ_CFQQ_FNS(must_alloc
);
193 CFQ_CFQQ_FNS(must_alloc_slice
);
194 CFQ_CFQQ_FNS(must_dispatch
);
195 CFQ_CFQQ_FNS(fifo_expire
);
196 CFQ_CFQQ_FNS(idle_window
);
197 CFQ_CFQQ_FNS(prio_changed
);
198 CFQ_CFQQ_FNS(queue_new
);
201 static struct cfq_queue
*cfq_find_cfq_hash(struct cfq_data
*, unsigned int, unsigned short);
202 static void cfq_dispatch_insert(request_queue_t
*, struct request
*);
203 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, unsigned int key
, struct task_struct
*tsk
, gfp_t gfp_mask
);
206 * scheduler run of queue, if there are requests pending and no one in the
207 * driver that will restart queueing
209 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
211 if (cfqd
->busy_queues
)
212 kblockd_schedule_work(&cfqd
->unplug_work
);
215 static int cfq_queue_empty(request_queue_t
*q
)
217 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
219 return !cfqd
->busy_queues
;
222 static inline pid_t
cfq_queue_pid(struct task_struct
*task
, int rw
, int is_sync
)
225 * Use the per-process queue, for read requests and syncronous writes
227 if (!(rw
& REQ_RW
) || is_sync
)
230 return CFQ_KEY_ASYNC
;
234 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
235 * We choose the request that is closest to the head right now. Distance
236 * behind the head is penalized and only allowed to a certain extent.
238 static struct request
*
239 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
241 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
242 unsigned long back_max
;
243 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
244 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
245 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
247 if (rq1
== NULL
|| rq1
== rq2
)
252 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
254 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
256 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
258 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
264 last
= cfqd
->last_sector
;
267 * by definition, 1KiB is 2 sectors
269 back_max
= cfqd
->cfq_back_max
* 2;
272 * Strict one way elevator _except_ in the case where we allow
273 * short backward seeks which are biased as twice the cost of a
274 * similar forward seek.
278 else if (s1
+ back_max
>= last
)
279 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
281 wrap
|= CFQ_RQ1_WRAP
;
285 else if (s2
+ back_max
>= last
)
286 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
288 wrap
|= CFQ_RQ2_WRAP
;
290 /* Found required data */
293 * By doing switch() on the bit mask "wrap" we avoid having to
294 * check two variables for all permutations: --> faster!
297 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
313 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
316 * Since both rqs are wrapped,
317 * start with the one that's further behind head
318 * (--> only *one* back seek required),
319 * since back seek takes more time than forward.
329 * would be nice to take fifo expire time into account as well
331 static struct request
*
332 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
333 struct request
*last
)
335 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
336 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
337 struct request
*next
= NULL
, *prev
= NULL
;
339 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
342 prev
= rb_entry_rq(rbprev
);
345 next
= rb_entry_rq(rbnext
);
347 rbnext
= rb_first(&cfqq
->sort_list
);
348 if (rbnext
&& rbnext
!= &last
->rb_node
)
349 next
= rb_entry_rq(rbnext
);
352 return cfq_choose_req(cfqd
, next
, prev
);
355 static void cfq_resort_rr_list(struct cfq_queue
*cfqq
, int preempted
)
357 struct cfq_data
*cfqd
= cfqq
->cfqd
;
358 struct list_head
*list
, *n
;
359 struct cfq_queue
*__cfqq
;
362 * Resorting requires the cfqq to be on the RR list already.
364 if (!cfq_cfqq_on_rr(cfqq
))
367 list_del(&cfqq
->cfq_list
);
369 if (cfq_class_rt(cfqq
))
370 list
= &cfqd
->cur_rr
;
371 else if (cfq_class_idle(cfqq
))
372 list
= &cfqd
->idle_rr
;
375 * if cfqq has requests in flight, don't allow it to be
376 * found in cfq_set_active_queue before it has finished them.
377 * this is done to increase fairness between a process that
378 * has lots of io pending vs one that only generates one
379 * sporadically or synchronously
381 if (cfq_cfqq_dispatched(cfqq
))
382 list
= &cfqd
->busy_rr
;
384 list
= &cfqd
->rr_list
[cfqq
->ioprio
];
387 if (preempted
|| cfq_cfqq_queue_new(cfqq
)) {
389 * If this queue was preempted or is new (never been serviced),
390 * let it be added first for fairness but beind other new
394 while (n
->next
!= list
) {
395 __cfqq
= list_entry_cfqq(n
->next
);
396 if (!cfq_cfqq_queue_new(__cfqq
))
401 list_add_tail(&cfqq
->cfq_list
, n
);
402 } else if (!cfq_cfqq_class_sync(cfqq
)) {
404 * async queue always goes to the end. this wont be overly
405 * unfair to writes, as the sort of the sync queue wont be
406 * allowed to pass the async queue again.
408 list_add_tail(&cfqq
->cfq_list
, list
);
411 * sort by last service, but don't cross a new or async
412 * queue. we don't cross a new queue because it hasn't been
413 * service before, and we don't cross an async queue because
414 * it gets added to the end on expire.
417 while ((n
= n
->prev
) != list
) {
418 struct cfq_queue
*__cfqq
= list_entry_cfqq(n
);
420 if (!cfq_cfqq_class_sync(cfqq
) || !__cfqq
->service_last
)
422 if (time_before(__cfqq
->service_last
, cfqq
->service_last
))
425 list_add(&cfqq
->cfq_list
, n
);
430 * add to busy list of queues for service, trying to be fair in ordering
431 * the pending list according to last request service
434 cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
436 BUG_ON(cfq_cfqq_on_rr(cfqq
));
437 cfq_mark_cfqq_on_rr(cfqq
);
440 cfq_resort_rr_list(cfqq
, 0);
444 cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
446 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
447 cfq_clear_cfqq_on_rr(cfqq
);
448 list_del_init(&cfqq
->cfq_list
);
450 BUG_ON(!cfqd
->busy_queues
);
455 * rb tree support functions
457 static inline void cfq_del_rq_rb(struct request
*rq
)
459 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
460 struct cfq_data
*cfqd
= cfqq
->cfqd
;
461 const int sync
= rq_is_sync(rq
);
463 BUG_ON(!cfqq
->queued
[sync
]);
464 cfqq
->queued
[sync
]--;
466 elv_rb_del(&cfqq
->sort_list
, rq
);
468 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
469 cfq_del_cfqq_rr(cfqd
, cfqq
);
472 static void cfq_add_rq_rb(struct request
*rq
)
474 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
475 struct cfq_data
*cfqd
= cfqq
->cfqd
;
476 struct request
*__alias
;
478 cfqq
->queued
[rq_is_sync(rq
)]++;
481 * looks a little odd, but the first insert might return an alias.
482 * if that happens, put the alias on the dispatch list
484 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
485 cfq_dispatch_insert(cfqd
->queue
, __alias
);
487 if (!cfq_cfqq_on_rr(cfqq
))
488 cfq_add_cfqq_rr(cfqd
, cfqq
);
492 cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
494 elv_rb_del(&cfqq
->sort_list
, rq
);
495 cfqq
->queued
[rq_is_sync(rq
)]--;
499 static struct request
*
500 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
502 struct task_struct
*tsk
= current
;
503 pid_t key
= cfq_queue_pid(tsk
, bio_data_dir(bio
), bio_sync(bio
));
504 struct cfq_queue
*cfqq
;
506 cfqq
= cfq_find_cfq_hash(cfqd
, key
, tsk
->ioprio
);
508 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
510 return elv_rb_find(&cfqq
->sort_list
, sector
);
516 static void cfq_activate_request(request_queue_t
*q
, struct request
*rq
)
518 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
520 cfqd
->rq_in_driver
++;
523 * If the depth is larger 1, it really could be queueing. But lets
524 * make the mark a little higher - idling could still be good for
525 * low queueing, and a low queueing number could also just indicate
526 * a SCSI mid layer like behaviour where limit+1 is often seen.
528 if (!cfqd
->hw_tag
&& cfqd
->rq_in_driver
> 4)
532 static void cfq_deactivate_request(request_queue_t
*q
, struct request
*rq
)
534 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
536 WARN_ON(!cfqd
->rq_in_driver
);
537 cfqd
->rq_in_driver
--;
540 static void cfq_remove_request(struct request
*rq
)
542 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
544 if (cfqq
->next_rq
== rq
)
545 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
547 list_del_init(&rq
->queuelist
);
550 if (rq_is_meta(rq
)) {
551 WARN_ON(!cfqq
->meta_pending
);
552 cfqq
->meta_pending
--;
557 cfq_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
559 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
560 struct request
*__rq
;
562 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
563 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
565 return ELEVATOR_FRONT_MERGE
;
568 return ELEVATOR_NO_MERGE
;
571 static void cfq_merged_request(request_queue_t
*q
, struct request
*req
,
574 if (type
== ELEVATOR_FRONT_MERGE
) {
575 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
577 cfq_reposition_rq_rb(cfqq
, req
);
582 cfq_merged_requests(request_queue_t
*q
, struct request
*rq
,
583 struct request
*next
)
586 * reposition in fifo if next is older than rq
588 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
589 time_before(next
->start_time
, rq
->start_time
))
590 list_move(&rq
->queuelist
, &next
->queuelist
);
592 cfq_remove_request(next
);
595 static int cfq_allow_merge(request_queue_t
*q
, struct request
*rq
,
598 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
599 const int rw
= bio_data_dir(bio
);
600 struct cfq_queue
*cfqq
;
604 * Disallow merge of a sync bio into an async request.
606 if ((bio_data_dir(bio
) == READ
|| bio_sync(bio
)) && !rq_is_sync(rq
))
610 * Lookup the cfqq that this bio will be queued with. Allow
611 * merge only if rq is queued there.
613 key
= cfq_queue_pid(current
, rw
, bio_sync(bio
));
614 cfqq
= cfq_find_cfq_hash(cfqd
, key
, current
->ioprio
);
616 if (cfqq
== RQ_CFQQ(rq
))
623 __cfq_set_active_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
627 * stop potential idle class queues waiting service
629 del_timer(&cfqd
->idle_class_timer
);
632 cfqq
->slice_left
= 0;
633 cfq_clear_cfqq_must_alloc_slice(cfqq
);
634 cfq_clear_cfqq_fifo_expire(cfqq
);
637 cfqd
->active_queue
= cfqq
;
641 * current cfqq expired its slice (or was too idle), select new one
644 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
647 unsigned long now
= jiffies
;
649 if (cfq_cfqq_wait_request(cfqq
))
650 del_timer(&cfqd
->idle_slice_timer
);
652 if (!preempted
&& !cfq_cfqq_dispatched(cfqq
))
653 cfq_schedule_dispatch(cfqd
);
655 cfq_clear_cfqq_must_dispatch(cfqq
);
656 cfq_clear_cfqq_wait_request(cfqq
);
657 cfq_clear_cfqq_queue_new(cfqq
);
660 * store what was left of this slice, if the queue idled out
663 if (time_after(cfqq
->slice_end
, now
))
664 cfqq
->slice_left
= cfqq
->slice_end
- now
;
666 cfqq
->slice_left
= 0;
668 cfq_resort_rr_list(cfqq
, preempted
);
670 if (cfqq
== cfqd
->active_queue
)
671 cfqd
->active_queue
= NULL
;
673 if (cfqd
->active_cic
) {
674 put_io_context(cfqd
->active_cic
->ioc
);
675 cfqd
->active_cic
= NULL
;
678 cfqd
->dispatch_slice
= 0;
681 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int preempted
)
683 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
686 __cfq_slice_expired(cfqd
, cfqq
, preempted
);
699 static int cfq_get_next_prio_level(struct cfq_data
*cfqd
)
708 for (p
= cfqd
->cur_prio
; p
<= cfqd
->cur_end_prio
; p
++) {
709 if (!list_empty(&cfqd
->rr_list
[p
])) {
718 if (++cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
719 cfqd
->cur_end_prio
= 0;
726 if (unlikely(prio
== -1))
729 BUG_ON(prio
>= CFQ_PRIO_LISTS
);
731 list_splice_init(&cfqd
->rr_list
[prio
], &cfqd
->cur_rr
);
733 cfqd
->cur_prio
= prio
+ 1;
734 if (cfqd
->cur_prio
> cfqd
->cur_end_prio
) {
735 cfqd
->cur_end_prio
= cfqd
->cur_prio
;
738 if (cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
740 cfqd
->cur_end_prio
= 0;
746 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
748 struct cfq_queue
*cfqq
= NULL
;
750 if (!list_empty(&cfqd
->cur_rr
) || cfq_get_next_prio_level(cfqd
) != -1) {
752 * if current list is non-empty, grab first entry. if it is
753 * empty, get next prio level and grab first entry then if any
756 cfqq
= list_entry_cfqq(cfqd
->cur_rr
.next
);
757 } else if (!list_empty(&cfqd
->busy_rr
)) {
759 * If no new queues are available, check if the busy list has
760 * some before falling back to idle io.
762 cfqq
= list_entry_cfqq(cfqd
->busy_rr
.next
);
763 } else if (!list_empty(&cfqd
->idle_rr
)) {
765 * if we have idle queues and no rt or be queues had pending
766 * requests, either allow immediate service if the grace period
767 * has passed or arm the idle grace timer
769 unsigned long end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
771 if (time_after_eq(jiffies
, end
))
772 cfqq
= list_entry_cfqq(cfqd
->idle_rr
.next
);
774 mod_timer(&cfqd
->idle_class_timer
, end
);
777 __cfq_set_active_queue(cfqd
, cfqq
);
781 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
783 static int cfq_arm_slice_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
786 struct cfq_io_context
*cic
;
789 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
790 WARN_ON(cfqq
!= cfqd
->active_queue
);
793 * idle is disabled, either manually or by past process history
795 if (!cfqd
->cfq_slice_idle
)
797 if (!cfq_cfqq_idle_window(cfqq
))
800 * task has exited, don't wait
802 cic
= cfqd
->active_cic
;
803 if (!cic
|| !cic
->ioc
->task
)
806 cfq_mark_cfqq_must_dispatch(cfqq
);
807 cfq_mark_cfqq_wait_request(cfqq
);
809 sl
= min(cfqq
->slice_end
- 1, (unsigned long) cfqd
->cfq_slice_idle
);
812 * we don't want to idle for seeks, but we do want to allow
813 * fair distribution of slice time for a process doing back-to-back
814 * seeks. so allow a little bit of time for him to submit a new rq
816 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
817 sl
= min(sl
, msecs_to_jiffies(2));
819 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
823 static void cfq_dispatch_insert(request_queue_t
*q
, struct request
*rq
)
825 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
826 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
828 cfq_remove_request(rq
);
829 cfqq
->on_dispatch
[rq_is_sync(rq
)]++;
830 elv_dispatch_sort(q
, rq
);
832 rq
= list_entry(q
->queue_head
.prev
, struct request
, queuelist
);
833 cfqd
->last_sector
= rq
->sector
+ rq
->nr_sectors
;
837 * return expired entry, or NULL to just start from scratch in rbtree
839 static inline struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
841 struct cfq_data
*cfqd
= cfqq
->cfqd
;
845 if (cfq_cfqq_fifo_expire(cfqq
))
847 if (list_empty(&cfqq
->fifo
))
850 fifo
= cfq_cfqq_class_sync(cfqq
);
851 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
853 if (time_after(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
])) {
854 cfq_mark_cfqq_fifo_expire(cfqq
);
862 * Scale schedule slice based on io priority. Use the sync time slice only
863 * if a queue is marked sync and has sync io queued. A sync queue with async
864 * io only, should not get full sync slice length.
867 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
869 const int base_slice
= cfqd
->cfq_slice
[cfq_cfqq_sync(cfqq
)];
871 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
873 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - cfqq
->ioprio
));
877 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
879 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
883 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
885 const int base_rq
= cfqd
->cfq_slice_async_rq
;
887 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
889 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
893 * get next queue for service
895 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
897 unsigned long now
= jiffies
;
898 struct cfq_queue
*cfqq
;
900 cfqq
= cfqd
->active_queue
;
907 if (!cfq_cfqq_must_dispatch(cfqq
) && time_after(now
, cfqq
->slice_end
))
911 * if queue has requests, dispatch one. if not, check if
912 * enough slice is left to wait for one
914 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
916 else if (cfq_cfqq_dispatched(cfqq
)) {
919 } else if (cfq_cfqq_class_sync(cfqq
)) {
920 if (cfq_arm_slice_timer(cfqd
, cfqq
))
925 cfq_slice_expired(cfqd
, 0);
927 cfqq
= cfq_set_active_queue(cfqd
);
933 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
938 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
944 * follow expired path, else get first next available
946 if ((rq
= cfq_check_fifo(cfqq
)) == NULL
)
950 * finally, insert request into driver dispatch list
952 cfq_dispatch_insert(cfqd
->queue
, rq
);
954 cfqd
->dispatch_slice
++;
957 if (!cfqd
->active_cic
) {
958 atomic_inc(&RQ_CIC(rq
)->ioc
->refcount
);
959 cfqd
->active_cic
= RQ_CIC(rq
);
962 if (RB_EMPTY_ROOT(&cfqq
->sort_list
))
965 } while (dispatched
< max_dispatch
);
968 * if slice end isn't set yet, set it.
970 if (!cfqq
->slice_end
)
971 cfq_set_prio_slice(cfqd
, cfqq
);
974 * expire an async queue immediately if it has used up its slice. idle
975 * queue always expire after 1 dispatch round.
977 if ((!cfq_cfqq_sync(cfqq
) &&
978 cfqd
->dispatch_slice
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
979 cfq_class_idle(cfqq
) ||
980 !cfq_cfqq_idle_window(cfqq
))
981 cfq_slice_expired(cfqd
, 0);
987 cfq_forced_dispatch_cfqqs(struct list_head
*list
)
989 struct cfq_queue
*cfqq
, *next
;
993 list_for_each_entry_safe(cfqq
, next
, list
, cfq_list
) {
994 while (cfqq
->next_rq
) {
995 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
998 BUG_ON(!list_empty(&cfqq
->fifo
));
1005 cfq_forced_dispatch(struct cfq_data
*cfqd
)
1007 int i
, dispatched
= 0;
1009 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
1010 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->rr_list
[i
]);
1012 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->busy_rr
);
1013 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->cur_rr
);
1014 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->idle_rr
);
1016 cfq_slice_expired(cfqd
, 0);
1018 BUG_ON(cfqd
->busy_queues
);
1024 cfq_dispatch_requests(request_queue_t
*q
, int force
)
1026 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1027 struct cfq_queue
*cfqq
, *prev_cfqq
;
1030 if (!cfqd
->busy_queues
)
1033 if (unlikely(force
))
1034 return cfq_forced_dispatch(cfqd
);
1038 while ((cfqq
= cfq_select_queue(cfqd
)) != NULL
) {
1042 * Don't repeat dispatch from the previous queue.
1044 if (prev_cfqq
== cfqq
)
1047 cfq_clear_cfqq_must_dispatch(cfqq
);
1048 cfq_clear_cfqq_wait_request(cfqq
);
1049 del_timer(&cfqd
->idle_slice_timer
);
1051 max_dispatch
= cfqd
->cfq_quantum
;
1052 if (cfq_class_idle(cfqq
))
1055 dispatched
+= __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1058 * If the dispatch cfqq has idling enabled and is still
1059 * the active queue, break out.
1061 if (cfq_cfqq_idle_window(cfqq
) && cfqd
->active_queue
)
1071 * task holds one reference to the queue, dropped when task exits. each rq
1072 * in-flight on this queue also holds a reference, dropped when rq is freed.
1074 * queue lock must be held here.
1076 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1078 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1080 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1082 if (!atomic_dec_and_test(&cfqq
->ref
))
1085 BUG_ON(rb_first(&cfqq
->sort_list
));
1086 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1087 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1089 if (unlikely(cfqd
->active_queue
== cfqq
))
1090 __cfq_slice_expired(cfqd
, cfqq
, 0);
1093 * it's on the empty list and still hashed
1095 list_del(&cfqq
->cfq_list
);
1096 hlist_del(&cfqq
->cfq_hash
);
1097 kmem_cache_free(cfq_pool
, cfqq
);
1100 static struct cfq_queue
*
1101 __cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned int prio
,
1104 struct hlist_head
*hash_list
= &cfqd
->cfq_hash
[hashval
];
1105 struct hlist_node
*entry
;
1106 struct cfq_queue
*__cfqq
;
1108 hlist_for_each_entry(__cfqq
, entry
, hash_list
, cfq_hash
) {
1109 const unsigned short __p
= IOPRIO_PRIO_VALUE(__cfqq
->org_ioprio_class
, __cfqq
->org_ioprio
);
1111 if (__cfqq
->key
== key
&& (__p
== prio
|| !prio
))
1118 static struct cfq_queue
*
1119 cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned short prio
)
1121 return __cfq_find_cfq_hash(cfqd
, key
, prio
, hash_long(key
, CFQ_QHASH_SHIFT
));
1124 static void cfq_free_io_context(struct io_context
*ioc
)
1126 struct cfq_io_context
*__cic
;
1130 while ((n
= rb_first(&ioc
->cic_root
)) != NULL
) {
1131 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1132 rb_erase(&__cic
->rb_node
, &ioc
->cic_root
);
1133 kmem_cache_free(cfq_ioc_pool
, __cic
);
1137 elv_ioc_count_mod(ioc_count
, -freed
);
1139 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
))
1143 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1145 if (unlikely(cfqq
== cfqd
->active_queue
))
1146 __cfq_slice_expired(cfqd
, cfqq
, 0);
1148 cfq_put_queue(cfqq
);
1151 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1152 struct cfq_io_context
*cic
)
1154 list_del_init(&cic
->queue_list
);
1158 if (cic
->cfqq
[ASYNC
]) {
1159 cfq_exit_cfqq(cfqd
, cic
->cfqq
[ASYNC
]);
1160 cic
->cfqq
[ASYNC
] = NULL
;
1163 if (cic
->cfqq
[SYNC
]) {
1164 cfq_exit_cfqq(cfqd
, cic
->cfqq
[SYNC
]);
1165 cic
->cfqq
[SYNC
] = NULL
;
1171 * Called with interrupts disabled
1173 static void cfq_exit_single_io_context(struct cfq_io_context
*cic
)
1175 struct cfq_data
*cfqd
= cic
->key
;
1178 request_queue_t
*q
= cfqd
->queue
;
1180 spin_lock_irq(q
->queue_lock
);
1181 __cfq_exit_single_io_context(cfqd
, cic
);
1182 spin_unlock_irq(q
->queue_lock
);
1186 static void cfq_exit_io_context(struct io_context
*ioc
)
1188 struct cfq_io_context
*__cic
;
1192 * put the reference this task is holding to the various queues
1195 n
= rb_first(&ioc
->cic_root
);
1197 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1199 cfq_exit_single_io_context(__cic
);
1204 static struct cfq_io_context
*
1205 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1207 struct cfq_io_context
*cic
;
1209 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
, cfqd
->queue
->node
);
1211 memset(cic
, 0, sizeof(*cic
));
1212 cic
->last_end_request
= jiffies
;
1213 INIT_LIST_HEAD(&cic
->queue_list
);
1214 cic
->dtor
= cfq_free_io_context
;
1215 cic
->exit
= cfq_exit_io_context
;
1216 elv_ioc_count_inc(ioc_count
);
1222 static void cfq_init_prio_data(struct cfq_queue
*cfqq
)
1224 struct task_struct
*tsk
= current
;
1227 if (!cfq_cfqq_prio_changed(cfqq
))
1230 ioprio_class
= IOPRIO_PRIO_CLASS(tsk
->ioprio
);
1231 switch (ioprio_class
) {
1233 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1234 case IOPRIO_CLASS_NONE
:
1236 * no prio set, place us in the middle of the BE classes
1238 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1239 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1241 case IOPRIO_CLASS_RT
:
1242 cfqq
->ioprio
= task_ioprio(tsk
);
1243 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1245 case IOPRIO_CLASS_BE
:
1246 cfqq
->ioprio
= task_ioprio(tsk
);
1247 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1249 case IOPRIO_CLASS_IDLE
:
1250 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1252 cfq_clear_cfqq_idle_window(cfqq
);
1257 * keep track of original prio settings in case we have to temporarily
1258 * elevate the priority of this queue
1260 cfqq
->org_ioprio
= cfqq
->ioprio
;
1261 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1263 cfq_resort_rr_list(cfqq
, 0);
1264 cfq_clear_cfqq_prio_changed(cfqq
);
1267 static inline void changed_ioprio(struct cfq_io_context
*cic
)
1269 struct cfq_data
*cfqd
= cic
->key
;
1270 struct cfq_queue
*cfqq
;
1271 unsigned long flags
;
1273 if (unlikely(!cfqd
))
1276 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1278 cfqq
= cic
->cfqq
[ASYNC
];
1280 struct cfq_queue
*new_cfqq
;
1281 new_cfqq
= cfq_get_queue(cfqd
, CFQ_KEY_ASYNC
, cic
->ioc
->task
,
1284 cic
->cfqq
[ASYNC
] = new_cfqq
;
1285 cfq_put_queue(cfqq
);
1289 cfqq
= cic
->cfqq
[SYNC
];
1291 cfq_mark_cfqq_prio_changed(cfqq
);
1293 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1296 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1298 struct cfq_io_context
*cic
;
1301 ioc
->ioprio_changed
= 0;
1303 n
= rb_first(&ioc
->cic_root
);
1305 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1307 changed_ioprio(cic
);
1312 static struct cfq_queue
*
1313 cfq_get_queue(struct cfq_data
*cfqd
, unsigned int key
, struct task_struct
*tsk
,
1316 const int hashval
= hash_long(key
, CFQ_QHASH_SHIFT
);
1317 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1318 unsigned short ioprio
;
1321 ioprio
= tsk
->ioprio
;
1322 cfqq
= __cfq_find_cfq_hash(cfqd
, key
, ioprio
, hashval
);
1328 } else if (gfp_mask
& __GFP_WAIT
) {
1330 * Inform the allocator of the fact that we will
1331 * just repeat this allocation if it fails, to allow
1332 * the allocator to do whatever it needs to attempt to
1335 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1336 new_cfqq
= kmem_cache_alloc_node(cfq_pool
, gfp_mask
|__GFP_NOFAIL
, cfqd
->queue
->node
);
1337 spin_lock_irq(cfqd
->queue
->queue_lock
);
1340 cfqq
= kmem_cache_alloc_node(cfq_pool
, gfp_mask
, cfqd
->queue
->node
);
1345 memset(cfqq
, 0, sizeof(*cfqq
));
1347 INIT_HLIST_NODE(&cfqq
->cfq_hash
);
1348 INIT_LIST_HEAD(&cfqq
->cfq_list
);
1349 INIT_LIST_HEAD(&cfqq
->fifo
);
1352 hlist_add_head(&cfqq
->cfq_hash
, &cfqd
->cfq_hash
[hashval
]);
1353 atomic_set(&cfqq
->ref
, 0);
1356 * set ->slice_left to allow preemption for a new process
1358 cfqq
->slice_left
= 2 * cfqd
->cfq_slice_idle
;
1359 cfq_mark_cfqq_idle_window(cfqq
);
1360 cfq_mark_cfqq_prio_changed(cfqq
);
1361 cfq_mark_cfqq_queue_new(cfqq
);
1362 cfq_init_prio_data(cfqq
);
1366 kmem_cache_free(cfq_pool
, new_cfqq
);
1368 atomic_inc(&cfqq
->ref
);
1370 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1375 cfq_drop_dead_cic(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1377 WARN_ON(!list_empty(&cic
->queue_list
));
1378 rb_erase(&cic
->rb_node
, &ioc
->cic_root
);
1379 kmem_cache_free(cfq_ioc_pool
, cic
);
1380 elv_ioc_count_dec(ioc_count
);
1383 static struct cfq_io_context
*
1384 cfq_cic_rb_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1387 struct cfq_io_context
*cic
;
1388 void *k
, *key
= cfqd
;
1391 n
= ioc
->cic_root
.rb_node
;
1393 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1394 /* ->key must be copied to avoid race with cfq_exit_queue() */
1397 cfq_drop_dead_cic(ioc
, cic
);
1413 cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1414 struct cfq_io_context
*cic
)
1417 struct rb_node
*parent
;
1418 struct cfq_io_context
*__cic
;
1419 unsigned long flags
;
1427 p
= &ioc
->cic_root
.rb_node
;
1430 __cic
= rb_entry(parent
, struct cfq_io_context
, rb_node
);
1431 /* ->key must be copied to avoid race with cfq_exit_queue() */
1434 cfq_drop_dead_cic(ioc
, __cic
);
1440 else if (cic
->key
> k
)
1441 p
= &(*p
)->rb_right
;
1446 rb_link_node(&cic
->rb_node
, parent
, p
);
1447 rb_insert_color(&cic
->rb_node
, &ioc
->cic_root
);
1449 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1450 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1451 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1455 * Setup general io context and cfq io context. There can be several cfq
1456 * io contexts per general io context, if this process is doing io to more
1457 * than one device managed by cfq.
1459 static struct cfq_io_context
*
1460 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1462 struct io_context
*ioc
= NULL
;
1463 struct cfq_io_context
*cic
;
1465 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1467 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1471 cic
= cfq_cic_rb_lookup(cfqd
, ioc
);
1475 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1479 cfq_cic_link(cfqd
, ioc
, cic
);
1481 smp_read_barrier_depends();
1482 if (unlikely(ioc
->ioprio_changed
))
1483 cfq_ioc_set_ioprio(ioc
);
1487 put_io_context(ioc
);
1492 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1494 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1495 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1497 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1498 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1499 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1503 cfq_update_io_seektime(struct cfq_io_context
*cic
, struct request
*rq
)
1508 if (cic
->last_request_pos
< rq
->sector
)
1509 sdist
= rq
->sector
- cic
->last_request_pos
;
1511 sdist
= cic
->last_request_pos
- rq
->sector
;
1514 * Don't allow the seek distance to get too large from the
1515 * odd fragment, pagein, etc
1517 if (cic
->seek_samples
<= 60) /* second&third seek */
1518 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1520 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1522 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1523 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1524 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1525 do_div(total
, cic
->seek_samples
);
1526 cic
->seek_mean
= (sector_t
)total
;
1530 * Disable idle window if the process thinks too long or seeks so much that
1534 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1535 struct cfq_io_context
*cic
)
1537 int enable_idle
= cfq_cfqq_idle_window(cfqq
);
1539 if (!cic
->ioc
->task
|| !cfqd
->cfq_slice_idle
||
1540 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1542 else if (sample_valid(cic
->ttime_samples
)) {
1543 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1550 cfq_mark_cfqq_idle_window(cfqq
);
1552 cfq_clear_cfqq_idle_window(cfqq
);
1557 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1558 * no or if we aren't sure, a 1 will cause a preempt.
1561 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1564 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1566 if (cfq_class_idle(new_cfqq
))
1572 if (cfq_class_idle(cfqq
))
1574 if (!cfq_cfqq_wait_request(new_cfqq
))
1577 * if it doesn't have slice left, forget it
1579 if (new_cfqq
->slice_left
< cfqd
->cfq_slice_idle
)
1582 * if the new request is sync, but the currently running queue is
1583 * not, let the sync request have priority.
1585 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
1588 * So both queues are sync. Let the new request get disk time if
1589 * it's a metadata request and the current queue is doing regular IO.
1591 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
1598 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1599 * let it have half of its nominal slice.
1601 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1603 cfq_slice_expired(cfqd
, 1);
1605 if (!cfqq
->slice_left
)
1606 cfqq
->slice_left
= cfq_prio_to_slice(cfqd
, cfqq
) / 2;
1609 * Put the new queue at the front of the of the current list,
1610 * so we know that it will be selected next.
1612 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1613 list_move(&cfqq
->cfq_list
, &cfqd
->cur_rr
);
1615 cfqq
->slice_end
= cfqq
->slice_left
+ jiffies
;
1619 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1620 * something we should do about it
1623 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1626 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1629 cfqq
->meta_pending
++;
1632 * check if this request is a better next-serve candidate)) {
1634 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
1635 BUG_ON(!cfqq
->next_rq
);
1638 * we never wait for an async request and we don't allow preemption
1639 * of an async request. so just return early
1641 if (!rq_is_sync(rq
)) {
1643 * sync process issued an async request, if it's waiting
1644 * then expire it and kick rq handling.
1646 if (cic
== cfqd
->active_cic
&&
1647 del_timer(&cfqd
->idle_slice_timer
)) {
1648 cfq_slice_expired(cfqd
, 0);
1649 blk_start_queueing(cfqd
->queue
);
1654 cfq_update_io_thinktime(cfqd
, cic
);
1655 cfq_update_io_seektime(cic
, rq
);
1656 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1658 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
1660 if (cfqq
== cfqd
->active_queue
) {
1662 * if we are waiting for a request for this queue, let it rip
1663 * immediately and flag that we must not expire this queue
1666 if (cfq_cfqq_wait_request(cfqq
)) {
1667 cfq_mark_cfqq_must_dispatch(cfqq
);
1668 del_timer(&cfqd
->idle_slice_timer
);
1669 blk_start_queueing(cfqd
->queue
);
1671 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
1673 * not the active queue - expire current slice if it is
1674 * idle and has expired it's mean thinktime or this new queue
1675 * has some old slice time left and is of higher priority
1677 cfq_preempt_queue(cfqd
, cfqq
);
1678 cfq_mark_cfqq_must_dispatch(cfqq
);
1679 blk_start_queueing(cfqd
->queue
);
1683 static void cfq_insert_request(request_queue_t
*q
, struct request
*rq
)
1685 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1686 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1688 cfq_init_prio_data(cfqq
);
1692 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1694 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
1697 static void cfq_completed_request(request_queue_t
*q
, struct request
*rq
)
1699 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1700 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1701 const int sync
= rq_is_sync(rq
);
1706 WARN_ON(!cfqd
->rq_in_driver
);
1707 WARN_ON(!cfqq
->on_dispatch
[sync
]);
1708 cfqd
->rq_in_driver
--;
1709 cfqq
->on_dispatch
[sync
]--;
1710 cfqq
->service_last
= now
;
1712 if (!cfq_class_idle(cfqq
))
1713 cfqd
->last_end_request
= now
;
1715 cfq_resort_rr_list(cfqq
, 0);
1718 RQ_CIC(rq
)->last_end_request
= now
;
1721 * If this is the active queue, check if it needs to be expired,
1722 * or if we want to idle in case it has no pending requests.
1724 if (cfqd
->active_queue
== cfqq
) {
1725 if (time_after(now
, cfqq
->slice_end
))
1726 cfq_slice_expired(cfqd
, 0);
1727 else if (sync
&& RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1728 if (!cfq_arm_slice_timer(cfqd
, cfqq
))
1729 cfq_schedule_dispatch(cfqd
);
1735 * we temporarily boost lower priority queues if they are holding fs exclusive
1736 * resources. they are boosted to normal prio (CLASS_BE/4)
1738 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
1740 const int ioprio_class
= cfqq
->ioprio_class
;
1741 const int ioprio
= cfqq
->ioprio
;
1743 if (has_fs_excl()) {
1745 * boost idle prio on transactions that would lock out other
1746 * users of the filesystem
1748 if (cfq_class_idle(cfqq
))
1749 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1750 if (cfqq
->ioprio
> IOPRIO_NORM
)
1751 cfqq
->ioprio
= IOPRIO_NORM
;
1754 * check if we need to unboost the queue
1756 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
1757 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
1758 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
1759 cfqq
->ioprio
= cfqq
->org_ioprio
;
1763 * refile between round-robin lists if we moved the priority class
1765 if ((ioprio_class
!= cfqq
->ioprio_class
|| ioprio
!= cfqq
->ioprio
))
1766 cfq_resort_rr_list(cfqq
, 0);
1769 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
1771 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
1772 !cfq_cfqq_must_alloc_slice(cfqq
)) {
1773 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1774 return ELV_MQUEUE_MUST
;
1777 return ELV_MQUEUE_MAY
;
1780 static int cfq_may_queue(request_queue_t
*q
, int rw
)
1782 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1783 struct task_struct
*tsk
= current
;
1784 struct cfq_queue
*cfqq
;
1787 key
= cfq_queue_pid(tsk
, rw
, rw
& REQ_RW_SYNC
);
1790 * don't force setup of a queue from here, as a call to may_queue
1791 * does not necessarily imply that a request actually will be queued.
1792 * so just lookup a possibly existing queue, or return 'may queue'
1795 cfqq
= cfq_find_cfq_hash(cfqd
, key
, tsk
->ioprio
);
1797 cfq_init_prio_data(cfqq
);
1798 cfq_prio_boost(cfqq
);
1800 return __cfq_may_queue(cfqq
);
1803 return ELV_MQUEUE_MAY
;
1807 * queue lock held here
1809 static void cfq_put_request(struct request
*rq
)
1811 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1814 const int rw
= rq_data_dir(rq
);
1816 BUG_ON(!cfqq
->allocated
[rw
]);
1817 cfqq
->allocated
[rw
]--;
1819 put_io_context(RQ_CIC(rq
)->ioc
);
1821 rq
->elevator_private
= NULL
;
1822 rq
->elevator_private2
= NULL
;
1824 cfq_put_queue(cfqq
);
1829 * Allocate cfq data structures associated with this request.
1832 cfq_set_request(request_queue_t
*q
, struct request
*rq
, gfp_t gfp_mask
)
1834 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1835 struct task_struct
*tsk
= current
;
1836 struct cfq_io_context
*cic
;
1837 const int rw
= rq_data_dir(rq
);
1838 const int is_sync
= rq_is_sync(rq
);
1839 pid_t key
= cfq_queue_pid(tsk
, rw
, is_sync
);
1840 struct cfq_queue
*cfqq
;
1841 unsigned long flags
;
1843 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1845 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
1847 spin_lock_irqsave(q
->queue_lock
, flags
);
1852 if (!cic
->cfqq
[is_sync
]) {
1853 cfqq
= cfq_get_queue(cfqd
, key
, tsk
, gfp_mask
);
1857 cic
->cfqq
[is_sync
] = cfqq
;
1859 cfqq
= cic
->cfqq
[is_sync
];
1861 cfqq
->allocated
[rw
]++;
1862 cfq_clear_cfqq_must_alloc(cfqq
);
1863 atomic_inc(&cfqq
->ref
);
1865 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1867 rq
->elevator_private
= cic
;
1868 rq
->elevator_private2
= cfqq
;
1873 put_io_context(cic
->ioc
);
1875 cfq_schedule_dispatch(cfqd
);
1876 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1880 static void cfq_kick_queue(struct work_struct
*work
)
1882 struct cfq_data
*cfqd
=
1883 container_of(work
, struct cfq_data
, unplug_work
);
1884 request_queue_t
*q
= cfqd
->queue
;
1885 unsigned long flags
;
1887 spin_lock_irqsave(q
->queue_lock
, flags
);
1888 blk_start_queueing(q
);
1889 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1893 * Timer running if the active_queue is currently idling inside its time slice
1895 static void cfq_idle_slice_timer(unsigned long data
)
1897 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
1898 struct cfq_queue
*cfqq
;
1899 unsigned long flags
;
1901 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1903 if ((cfqq
= cfqd
->active_queue
) != NULL
) {
1904 unsigned long now
= jiffies
;
1909 if (time_after(now
, cfqq
->slice_end
))
1913 * only expire and reinvoke request handler, if there are
1914 * other queues with pending requests
1916 if (!cfqd
->busy_queues
)
1920 * not expired and it has a request pending, let it dispatch
1922 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1923 cfq_mark_cfqq_must_dispatch(cfqq
);
1928 cfq_slice_expired(cfqd
, 0);
1930 cfq_schedule_dispatch(cfqd
);
1932 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1936 * Timer running if an idle class queue is waiting for service
1938 static void cfq_idle_class_timer(unsigned long data
)
1940 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
1941 unsigned long flags
, end
;
1943 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1946 * race with a non-idle queue, reset timer
1948 end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
1949 if (!time_after_eq(jiffies
, end
))
1950 mod_timer(&cfqd
->idle_class_timer
, end
);
1952 cfq_schedule_dispatch(cfqd
);
1954 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1957 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
1959 del_timer_sync(&cfqd
->idle_slice_timer
);
1960 del_timer_sync(&cfqd
->idle_class_timer
);
1961 blk_sync_queue(cfqd
->queue
);
1964 static void cfq_exit_queue(elevator_t
*e
)
1966 struct cfq_data
*cfqd
= e
->elevator_data
;
1967 request_queue_t
*q
= cfqd
->queue
;
1969 cfq_shutdown_timer_wq(cfqd
);
1971 spin_lock_irq(q
->queue_lock
);
1973 if (cfqd
->active_queue
)
1974 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
1976 while (!list_empty(&cfqd
->cic_list
)) {
1977 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
1978 struct cfq_io_context
,
1981 __cfq_exit_single_io_context(cfqd
, cic
);
1984 spin_unlock_irq(q
->queue_lock
);
1986 cfq_shutdown_timer_wq(cfqd
);
1988 kfree(cfqd
->cfq_hash
);
1992 static void *cfq_init_queue(request_queue_t
*q
)
1994 struct cfq_data
*cfqd
;
1997 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
2001 memset(cfqd
, 0, sizeof(*cfqd
));
2003 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2004 INIT_LIST_HEAD(&cfqd
->rr_list
[i
]);
2006 INIT_LIST_HEAD(&cfqd
->busy_rr
);
2007 INIT_LIST_HEAD(&cfqd
->cur_rr
);
2008 INIT_LIST_HEAD(&cfqd
->idle_rr
);
2009 INIT_LIST_HEAD(&cfqd
->cic_list
);
2011 cfqd
->cfq_hash
= kmalloc_node(sizeof(struct hlist_head
) * CFQ_QHASH_ENTRIES
, GFP_KERNEL
, q
->node
);
2012 if (!cfqd
->cfq_hash
)
2015 for (i
= 0; i
< CFQ_QHASH_ENTRIES
; i
++)
2016 INIT_HLIST_HEAD(&cfqd
->cfq_hash
[i
]);
2020 init_timer(&cfqd
->idle_slice_timer
);
2021 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2022 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2024 init_timer(&cfqd
->idle_class_timer
);
2025 cfqd
->idle_class_timer
.function
= cfq_idle_class_timer
;
2026 cfqd
->idle_class_timer
.data
= (unsigned long) cfqd
;
2028 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2030 cfqd
->cfq_quantum
= cfq_quantum
;
2031 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2032 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2033 cfqd
->cfq_back_max
= cfq_back_max
;
2034 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2035 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2036 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2037 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2038 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2046 static void cfq_slab_kill(void)
2049 kmem_cache_destroy(cfq_pool
);
2051 kmem_cache_destroy(cfq_ioc_pool
);
2054 static int __init
cfq_slab_setup(void)
2056 cfq_pool
= kmem_cache_create("cfq_pool", sizeof(struct cfq_queue
), 0, 0,
2061 cfq_ioc_pool
= kmem_cache_create("cfq_ioc_pool",
2062 sizeof(struct cfq_io_context
), 0, 0, NULL
, NULL
);
2073 * sysfs parts below -->
2077 cfq_var_show(unsigned int var
, char *page
)
2079 return sprintf(page
, "%d\n", var
);
2083 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2085 char *p
= (char *) page
;
2087 *var
= simple_strtoul(p
, &p
, 10);
2091 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2092 static ssize_t __FUNC(elevator_t *e, char *page) \
2094 struct cfq_data *cfqd = e->elevator_data; \
2095 unsigned int __data = __VAR; \
2097 __data = jiffies_to_msecs(__data); \
2098 return cfq_var_show(__data, (page)); \
2100 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2101 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2102 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2103 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2104 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2105 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2106 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2107 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2108 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2109 #undef SHOW_FUNCTION
2111 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2112 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2114 struct cfq_data *cfqd = e->elevator_data; \
2115 unsigned int __data; \
2116 int ret = cfq_var_store(&__data, (page), count); \
2117 if (__data < (MIN)) \
2119 else if (__data > (MAX)) \
2122 *(__PTR) = msecs_to_jiffies(__data); \
2124 *(__PTR) = __data; \
2127 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2128 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1, UINT_MAX
, 1);
2129 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1, UINT_MAX
, 1);
2130 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2131 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1, UINT_MAX
, 0);
2132 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2133 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2134 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2135 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1, UINT_MAX
, 0);
2136 #undef STORE_FUNCTION
2138 #define CFQ_ATTR(name) \
2139 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2141 static struct elv_fs_entry cfq_attrs
[] = {
2143 CFQ_ATTR(fifo_expire_sync
),
2144 CFQ_ATTR(fifo_expire_async
),
2145 CFQ_ATTR(back_seek_max
),
2146 CFQ_ATTR(back_seek_penalty
),
2147 CFQ_ATTR(slice_sync
),
2148 CFQ_ATTR(slice_async
),
2149 CFQ_ATTR(slice_async_rq
),
2150 CFQ_ATTR(slice_idle
),
2154 static struct elevator_type iosched_cfq
= {
2156 .elevator_merge_fn
= cfq_merge
,
2157 .elevator_merged_fn
= cfq_merged_request
,
2158 .elevator_merge_req_fn
= cfq_merged_requests
,
2159 .elevator_allow_merge_fn
= cfq_allow_merge
,
2160 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2161 .elevator_add_req_fn
= cfq_insert_request
,
2162 .elevator_activate_req_fn
= cfq_activate_request
,
2163 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2164 .elevator_queue_empty_fn
= cfq_queue_empty
,
2165 .elevator_completed_req_fn
= cfq_completed_request
,
2166 .elevator_former_req_fn
= elv_rb_former_request
,
2167 .elevator_latter_req_fn
= elv_rb_latter_request
,
2168 .elevator_set_req_fn
= cfq_set_request
,
2169 .elevator_put_req_fn
= cfq_put_request
,
2170 .elevator_may_queue_fn
= cfq_may_queue
,
2171 .elevator_init_fn
= cfq_init_queue
,
2172 .elevator_exit_fn
= cfq_exit_queue
,
2173 .trim
= cfq_free_io_context
,
2175 .elevator_attrs
= cfq_attrs
,
2176 .elevator_name
= "cfq",
2177 .elevator_owner
= THIS_MODULE
,
2180 static int __init
cfq_init(void)
2185 * could be 0 on HZ < 1000 setups
2187 if (!cfq_slice_async
)
2188 cfq_slice_async
= 1;
2189 if (!cfq_slice_idle
)
2192 if (cfq_slab_setup())
2195 ret
= elv_register(&iosched_cfq
);
2202 static void __exit
cfq_exit(void)
2204 DECLARE_COMPLETION_ONSTACK(all_gone
);
2205 elv_unregister(&iosched_cfq
);
2206 ioc_gone
= &all_gone
;
2207 /* ioc_gone's update must be visible before reading ioc_count */
2209 if (elv_ioc_count_read(ioc_count
))
2210 wait_for_completion(ioc_gone
);
2215 module_init(cfq_init
);
2216 module_exit(cfq_exit
);
2218 MODULE_AUTHOR("Jens Axboe");
2219 MODULE_LICENSE("GPL");
2220 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");