[PATCH] ppc64: kill bitfields in ppc64 hash code
[linux-2.6/pdupreez.git] / arch / ppc64 / mm / hugetlbpage.c
blobf9524602818dad2aaaaad90fba4a2baf42be161b
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/smp_lock.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/sysctl.h>
19 #include <asm/mman.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/machdep.h>
25 #include <asm/cputable.h>
26 #include <asm/tlb.h>
28 #include <linux/sysctl.h>
30 #define HUGEPGDIR_SHIFT (HPAGE_SHIFT + PAGE_SHIFT - 3)
31 #define HUGEPGDIR_SIZE (1UL << HUGEPGDIR_SHIFT)
32 #define HUGEPGDIR_MASK (~(HUGEPGDIR_SIZE-1))
34 #define HUGEPTE_INDEX_SIZE 9
35 #define HUGEPGD_INDEX_SIZE 10
37 #define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE)
38 #define PTRS_PER_HUGEPGD (1 << HUGEPGD_INDEX_SIZE)
40 static inline int hugepgd_index(unsigned long addr)
42 return (addr & ~REGION_MASK) >> HUGEPGDIR_SHIFT;
45 static pud_t *hugepgd_offset(struct mm_struct *mm, unsigned long addr)
47 int index;
49 if (! mm->context.huge_pgdir)
50 return NULL;
53 index = hugepgd_index(addr);
54 BUG_ON(index >= PTRS_PER_HUGEPGD);
55 return (pud_t *)(mm->context.huge_pgdir + index);
58 static inline pte_t *hugepte_offset(pud_t *dir, unsigned long addr)
60 int index;
62 if (pud_none(*dir))
63 return NULL;
65 index = (addr >> HPAGE_SHIFT) % PTRS_PER_HUGEPTE;
66 return (pte_t *)pud_page(*dir) + index;
69 static pud_t *hugepgd_alloc(struct mm_struct *mm, unsigned long addr)
71 BUG_ON(! in_hugepage_area(mm->context, addr));
73 if (! mm->context.huge_pgdir) {
74 pgd_t *new;
75 spin_unlock(&mm->page_table_lock);
76 /* Don't use pgd_alloc(), because we want __GFP_REPEAT */
77 new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
78 BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
79 spin_lock(&mm->page_table_lock);
82 * Because we dropped the lock, we should re-check the
83 * entry, as somebody else could have populated it..
85 if (mm->context.huge_pgdir)
86 pgd_free(new);
87 else
88 mm->context.huge_pgdir = new;
90 return hugepgd_offset(mm, addr);
93 static pte_t *hugepte_alloc(struct mm_struct *mm, pud_t *dir, unsigned long addr)
95 if (! pud_present(*dir)) {
96 pte_t *new;
98 spin_unlock(&mm->page_table_lock);
99 new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
100 BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
101 spin_lock(&mm->page_table_lock);
103 * Because we dropped the lock, we should re-check the
104 * entry, as somebody else could have populated it..
106 if (pud_present(*dir)) {
107 if (new)
108 kmem_cache_free(zero_cache, new);
109 } else {
110 struct page *ptepage;
112 if (! new)
113 return NULL;
114 ptepage = virt_to_page(new);
115 ptepage->mapping = (void *) mm;
116 ptepage->index = addr & HUGEPGDIR_MASK;
117 pud_populate(mm, dir, new);
121 return hugepte_offset(dir, addr);
124 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
126 pud_t *pud;
128 BUG_ON(! in_hugepage_area(mm->context, addr));
130 pud = hugepgd_offset(mm, addr);
131 if (! pud)
132 return NULL;
134 return hugepte_offset(pud, addr);
137 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
139 pud_t *pud;
141 BUG_ON(! in_hugepage_area(mm->context, addr));
143 pud = hugepgd_alloc(mm, addr);
144 if (! pud)
145 return NULL;
147 return hugepte_alloc(mm, pud, addr);
151 * This function checks for proper alignment of input addr and len parameters.
153 int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
155 if (len & ~HPAGE_MASK)
156 return -EINVAL;
157 if (addr & ~HPAGE_MASK)
158 return -EINVAL;
159 if (! (within_hugepage_low_range(addr, len)
160 || within_hugepage_high_range(addr, len)) )
161 return -EINVAL;
162 return 0;
165 static void flush_segments(void *parm)
167 u16 segs = (unsigned long) parm;
168 unsigned long i;
170 asm volatile("isync" : : : "memory");
172 for (i = 0; i < 16; i++) {
173 if (! (segs & (1U << i)))
174 continue;
175 asm volatile("slbie %0" : : "r" (i << SID_SHIFT));
178 asm volatile("isync" : : : "memory");
181 static int prepare_low_seg_for_htlb(struct mm_struct *mm, unsigned long seg)
183 unsigned long start = seg << SID_SHIFT;
184 unsigned long end = (seg+1) << SID_SHIFT;
185 struct vm_area_struct *vma;
187 BUG_ON(seg >= 16);
189 /* Check no VMAs are in the region */
190 vma = find_vma(mm, start);
191 if (vma && (vma->vm_start < end))
192 return -EBUSY;
194 return 0;
197 static int open_low_hpage_segs(struct mm_struct *mm, u16 newsegs)
199 unsigned long i;
201 newsegs &= ~(mm->context.htlb_segs);
202 if (! newsegs)
203 return 0; /* The segments we want are already open */
205 for (i = 0; i < 16; i++)
206 if ((1 << i) & newsegs)
207 if (prepare_low_seg_for_htlb(mm, i) != 0)
208 return -EBUSY;
210 mm->context.htlb_segs |= newsegs;
212 /* update the paca copy of the context struct */
213 get_paca()->context = mm->context;
215 /* the context change must make it to memory before the flush,
216 * so that further SLB misses do the right thing. */
217 mb();
218 on_each_cpu(flush_segments, (void *)(unsigned long)newsegs, 0, 1);
220 return 0;
223 int prepare_hugepage_range(unsigned long addr, unsigned long len)
225 if (within_hugepage_high_range(addr, len))
226 return 0;
227 else if ((addr < 0x100000000UL) && ((addr+len) < 0x100000000UL)) {
228 int err;
229 /* Yes, we need both tests, in case addr+len overflows
230 * 64-bit arithmetic */
231 err = open_low_hpage_segs(current->mm,
232 LOW_ESID_MASK(addr, len));
233 if (err)
234 printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
235 " failed (segs: 0x%04hx)\n", addr, len,
236 LOW_ESID_MASK(addr, len));
237 return err;
240 return -EINVAL;
243 struct page *
244 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
246 pte_t *ptep;
247 struct page *page;
249 if (! in_hugepage_area(mm->context, address))
250 return ERR_PTR(-EINVAL);
252 ptep = huge_pte_offset(mm, address);
253 page = pte_page(*ptep);
254 if (page)
255 page += (address % HPAGE_SIZE) / PAGE_SIZE;
257 return page;
260 int pmd_huge(pmd_t pmd)
262 return 0;
265 struct page *
266 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
267 pmd_t *pmd, int write)
269 BUG();
270 return NULL;
273 /* Because we have an exclusive hugepage region which lies within the
274 * normal user address space, we have to take special measures to make
275 * non-huge mmap()s evade the hugepage reserved regions. */
276 unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
277 unsigned long len, unsigned long pgoff,
278 unsigned long flags)
280 struct mm_struct *mm = current->mm;
281 struct vm_area_struct *vma;
282 unsigned long start_addr;
284 if (len > TASK_SIZE)
285 return -ENOMEM;
287 if (addr) {
288 addr = PAGE_ALIGN(addr);
289 vma = find_vma(mm, addr);
290 if (((TASK_SIZE - len) >= addr)
291 && (!vma || (addr+len) <= vma->vm_start)
292 && !is_hugepage_only_range(mm, addr,len))
293 return addr;
295 if (len > mm->cached_hole_size) {
296 start_addr = addr = mm->free_area_cache;
297 } else {
298 start_addr = addr = TASK_UNMAPPED_BASE;
299 mm->cached_hole_size = 0;
302 full_search:
303 vma = find_vma(mm, addr);
304 while (TASK_SIZE - len >= addr) {
305 BUG_ON(vma && (addr >= vma->vm_end));
307 if (touches_hugepage_low_range(mm, addr, len)) {
308 addr = ALIGN(addr+1, 1<<SID_SHIFT);
309 vma = find_vma(mm, addr);
310 continue;
312 if (touches_hugepage_high_range(addr, len)) {
313 addr = TASK_HPAGE_END;
314 vma = find_vma(mm, addr);
315 continue;
317 if (!vma || addr + len <= vma->vm_start) {
319 * Remember the place where we stopped the search:
321 mm->free_area_cache = addr + len;
322 return addr;
324 if (addr + mm->cached_hole_size < vma->vm_start)
325 mm->cached_hole_size = vma->vm_start - addr;
326 addr = vma->vm_end;
327 vma = vma->vm_next;
330 /* Make sure we didn't miss any holes */
331 if (start_addr != TASK_UNMAPPED_BASE) {
332 start_addr = addr = TASK_UNMAPPED_BASE;
333 mm->cached_hole_size = 0;
334 goto full_search;
336 return -ENOMEM;
340 * This mmap-allocator allocates new areas top-down from below the
341 * stack's low limit (the base):
343 * Because we have an exclusive hugepage region which lies within the
344 * normal user address space, we have to take special measures to make
345 * non-huge mmap()s evade the hugepage reserved regions.
347 unsigned long
348 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
349 const unsigned long len, const unsigned long pgoff,
350 const unsigned long flags)
352 struct vm_area_struct *vma, *prev_vma;
353 struct mm_struct *mm = current->mm;
354 unsigned long base = mm->mmap_base, addr = addr0;
355 unsigned long largest_hole = mm->cached_hole_size;
356 int first_time = 1;
358 /* requested length too big for entire address space */
359 if (len > TASK_SIZE)
360 return -ENOMEM;
362 /* dont allow allocations above current base */
363 if (mm->free_area_cache > base)
364 mm->free_area_cache = base;
366 /* requesting a specific address */
367 if (addr) {
368 addr = PAGE_ALIGN(addr);
369 vma = find_vma(mm, addr);
370 if (TASK_SIZE - len >= addr &&
371 (!vma || addr + len <= vma->vm_start)
372 && !is_hugepage_only_range(mm, addr,len))
373 return addr;
376 if (len <= largest_hole) {
377 largest_hole = 0;
378 mm->free_area_cache = base;
380 try_again:
381 /* make sure it can fit in the remaining address space */
382 if (mm->free_area_cache < len)
383 goto fail;
385 /* either no address requested or cant fit in requested address hole */
386 addr = (mm->free_area_cache - len) & PAGE_MASK;
387 do {
388 hugepage_recheck:
389 if (touches_hugepage_low_range(mm, addr, len)) {
390 addr = (addr & ((~0) << SID_SHIFT)) - len;
391 goto hugepage_recheck;
392 } else if (touches_hugepage_high_range(addr, len)) {
393 addr = TASK_HPAGE_BASE - len;
397 * Lookup failure means no vma is above this address,
398 * i.e. return with success:
400 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
401 return addr;
404 * new region fits between prev_vma->vm_end and
405 * vma->vm_start, use it:
407 if (addr+len <= vma->vm_start &&
408 (!prev_vma || (addr >= prev_vma->vm_end))) {
409 /* remember the address as a hint for next time */
410 mm->cached_hole_size = largest_hole;
411 return (mm->free_area_cache = addr);
412 } else {
413 /* pull free_area_cache down to the first hole */
414 if (mm->free_area_cache == vma->vm_end) {
415 mm->free_area_cache = vma->vm_start;
416 mm->cached_hole_size = largest_hole;
420 /* remember the largest hole we saw so far */
421 if (addr + largest_hole < vma->vm_start)
422 largest_hole = vma->vm_start - addr;
424 /* try just below the current vma->vm_start */
425 addr = vma->vm_start-len;
426 } while (len <= vma->vm_start);
428 fail:
430 * if hint left us with no space for the requested
431 * mapping then try again:
433 if (first_time) {
434 mm->free_area_cache = base;
435 largest_hole = 0;
436 first_time = 0;
437 goto try_again;
440 * A failed mmap() very likely causes application failure,
441 * so fall back to the bottom-up function here. This scenario
442 * can happen with large stack limits and large mmap()
443 * allocations.
445 mm->free_area_cache = TASK_UNMAPPED_BASE;
446 mm->cached_hole_size = ~0UL;
447 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
449 * Restore the topdown base:
451 mm->free_area_cache = base;
452 mm->cached_hole_size = ~0UL;
454 return addr;
457 static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
459 unsigned long addr = 0;
460 struct vm_area_struct *vma;
462 vma = find_vma(current->mm, addr);
463 while (addr + len <= 0x100000000UL) {
464 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
466 if (! __within_hugepage_low_range(addr, len, segmask)) {
467 addr = ALIGN(addr+1, 1<<SID_SHIFT);
468 vma = find_vma(current->mm, addr);
469 continue;
472 if (!vma || (addr + len) <= vma->vm_start)
473 return addr;
474 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
475 /* Depending on segmask this might not be a confirmed
476 * hugepage region, so the ALIGN could have skipped
477 * some VMAs */
478 vma = find_vma(current->mm, addr);
481 return -ENOMEM;
484 static unsigned long htlb_get_high_area(unsigned long len)
486 unsigned long addr = TASK_HPAGE_BASE;
487 struct vm_area_struct *vma;
489 vma = find_vma(current->mm, addr);
490 for (vma = find_vma(current->mm, addr);
491 addr + len <= TASK_HPAGE_END;
492 vma = vma->vm_next) {
493 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
494 BUG_ON(! within_hugepage_high_range(addr, len));
496 if (!vma || (addr + len) <= vma->vm_start)
497 return addr;
498 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
499 /* Because we're in a hugepage region, this alignment
500 * should not skip us over any VMAs */
503 return -ENOMEM;
506 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
507 unsigned long len, unsigned long pgoff,
508 unsigned long flags)
510 if (len & ~HPAGE_MASK)
511 return -EINVAL;
513 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
514 return -EINVAL;
516 if (test_thread_flag(TIF_32BIT)) {
517 int lastshift = 0;
518 u16 segmask, cursegs = current->mm->context.htlb_segs;
520 /* First see if we can do the mapping in the existing
521 * low hpage segments */
522 addr = htlb_get_low_area(len, cursegs);
523 if (addr != -ENOMEM)
524 return addr;
526 for (segmask = LOW_ESID_MASK(0x100000000UL-len, len);
527 ! lastshift; segmask >>=1) {
528 if (segmask & 1)
529 lastshift = 1;
531 addr = htlb_get_low_area(len, cursegs | segmask);
532 if ((addr != -ENOMEM)
533 && open_low_hpage_segs(current->mm, segmask) == 0)
534 return addr;
536 printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
537 " enough segments\n");
538 return -ENOMEM;
539 } else {
540 return htlb_get_high_area(len);
544 void hugetlb_mm_free_pgd(struct mm_struct *mm)
546 int i;
547 pgd_t *pgdir;
549 spin_lock(&mm->page_table_lock);
551 pgdir = mm->context.huge_pgdir;
552 if (! pgdir)
553 goto out;
555 mm->context.huge_pgdir = NULL;
557 /* cleanup any hugepte pages leftover */
558 for (i = 0; i < PTRS_PER_HUGEPGD; i++) {
559 pud_t *pud = (pud_t *)(pgdir + i);
561 if (! pud_none(*pud)) {
562 pte_t *pte = (pte_t *)pud_page(*pud);
563 struct page *ptepage = virt_to_page(pte);
565 ptepage->mapping = NULL;
567 BUG_ON(memcmp(pte, empty_zero_page, PAGE_SIZE));
568 kmem_cache_free(zero_cache, pte);
570 pud_clear(pud);
573 BUG_ON(memcmp(pgdir, empty_zero_page, PAGE_SIZE));
574 kmem_cache_free(zero_cache, pgdir);
576 out:
577 spin_unlock(&mm->page_table_lock);
580 int hash_huge_page(struct mm_struct *mm, unsigned long access,
581 unsigned long ea, unsigned long vsid, int local)
583 pte_t *ptep;
584 unsigned long va, vpn;
585 pte_t old_pte, new_pte;
586 unsigned long rflags, prpn;
587 long slot;
588 int err = 1;
590 spin_lock(&mm->page_table_lock);
592 ptep = huge_pte_offset(mm, ea);
594 /* Search the Linux page table for a match with va */
595 va = (vsid << 28) | (ea & 0x0fffffff);
596 vpn = va >> HPAGE_SHIFT;
599 * If no pte found or not present, send the problem up to
600 * do_page_fault
602 if (unlikely(!ptep || pte_none(*ptep)))
603 goto out;
605 /* BUG_ON(pte_bad(*ptep)); */
608 * Check the user's access rights to the page. If access should be
609 * prevented then send the problem up to do_page_fault.
611 if (unlikely(access & ~pte_val(*ptep)))
612 goto out;
614 * At this point, we have a pte (old_pte) which can be used to build
615 * or update an HPTE. There are 2 cases:
617 * 1. There is a valid (present) pte with no associated HPTE (this is
618 * the most common case)
619 * 2. There is a valid (present) pte with an associated HPTE. The
620 * current values of the pp bits in the HPTE prevent access
621 * because we are doing software DIRTY bit management and the
622 * page is currently not DIRTY.
626 old_pte = *ptep;
627 new_pte = old_pte;
629 rflags = 0x2 | (! (pte_val(new_pte) & _PAGE_RW));
630 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
631 rflags |= ((pte_val(new_pte) & _PAGE_EXEC) ? 0 : HW_NO_EXEC);
633 /* Check if pte already has an hpte (case 2) */
634 if (unlikely(pte_val(old_pte) & _PAGE_HASHPTE)) {
635 /* There MIGHT be an HPTE for this pte */
636 unsigned long hash, slot;
638 hash = hpt_hash(vpn, 1);
639 if (pte_val(old_pte) & _PAGE_SECONDARY)
640 hash = ~hash;
641 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
642 slot += (pte_val(old_pte) & _PAGE_GROUP_IX) >> 12;
644 if (ppc_md.hpte_updatepp(slot, rflags, va, 1, local) == -1)
645 pte_val(old_pte) &= ~_PAGE_HPTEFLAGS;
648 if (likely(!(pte_val(old_pte) & _PAGE_HASHPTE))) {
649 unsigned long hash = hpt_hash(vpn, 1);
650 unsigned long hpte_group;
652 prpn = pte_pfn(old_pte);
654 repeat:
655 hpte_group = ((hash & htab_hash_mask) *
656 HPTES_PER_GROUP) & ~0x7UL;
658 /* Update the linux pte with the HPTE slot */
659 pte_val(new_pte) &= ~_PAGE_HPTEFLAGS;
660 pte_val(new_pte) |= _PAGE_HASHPTE;
662 /* Add in WIMG bits */
663 /* XXX We should store these in the pte */
664 rflags |= _PAGE_COHERENT;
666 slot = ppc_md.hpte_insert(hpte_group, va, prpn,
667 HPTE_V_LARGE, rflags);
669 /* Primary is full, try the secondary */
670 if (unlikely(slot == -1)) {
671 pte_val(new_pte) |= _PAGE_SECONDARY;
672 hpte_group = ((~hash & htab_hash_mask) *
673 HPTES_PER_GROUP) & ~0x7UL;
674 slot = ppc_md.hpte_insert(hpte_group, va, prpn,
675 HPTE_V_LARGE, rflags);
676 if (slot == -1) {
677 if (mftb() & 0x1)
678 hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
680 ppc_md.hpte_remove(hpte_group);
681 goto repeat;
685 if (unlikely(slot == -2))
686 panic("hash_huge_page: pte_insert failed\n");
688 pte_val(new_pte) |= (slot<<12) & _PAGE_GROUP_IX;
691 * No need to use ldarx/stdcx here because all who
692 * might be updating the pte will hold the
693 * page_table_lock
695 *ptep = new_pte;
698 err = 0;
700 out:
701 spin_unlock(&mm->page_table_lock);
703 return err;