2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
22 #include <asm/pgtable.h>
25 #include <linux/hugetlb.h>
28 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
29 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
30 unsigned long hugepages_treat_as_movable
;
32 static int max_hstate
;
33 unsigned int default_hstate_idx
;
34 struct hstate hstates
[HUGE_MAX_HSTATE
];
36 __initdata
LIST_HEAD(huge_boot_pages
);
38 /* for command line parsing */
39 static struct hstate
* __initdata parsed_hstate
;
40 static unsigned long __initdata default_hstate_max_huge_pages
;
41 static unsigned long __initdata default_hstate_size
;
43 #define for_each_hstate(h) \
44 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 static DEFINE_SPINLOCK(hugetlb_lock
);
52 * Region tracking -- allows tracking of reservations and instantiated pages
53 * across the pages in a mapping.
55 * The region data structures are protected by a combination of the mmap_sem
56 * and the hugetlb_instantion_mutex. To access or modify a region the caller
57 * must either hold the mmap_sem for write, or the mmap_sem for read and
58 * the hugetlb_instantiation mutex:
60 * down_write(&mm->mmap_sem);
62 * down_read(&mm->mmap_sem);
63 * mutex_lock(&hugetlb_instantiation_mutex);
66 struct list_head link
;
71 static long region_add(struct list_head
*head
, long f
, long t
)
73 struct file_region
*rg
, *nrg
, *trg
;
75 /* Locate the region we are either in or before. */
76 list_for_each_entry(rg
, head
, link
)
80 /* Round our left edge to the current segment if it encloses us. */
84 /* Check for and consume any regions we now overlap with. */
86 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
87 if (&rg
->link
== head
)
92 /* If this area reaches higher then extend our area to
93 * include it completely. If this is not the first area
94 * which we intend to reuse, free it. */
107 static long region_chg(struct list_head
*head
, long f
, long t
)
109 struct file_region
*rg
, *nrg
;
112 /* Locate the region we are before or in. */
113 list_for_each_entry(rg
, head
, link
)
117 /* If we are below the current region then a new region is required.
118 * Subtle, allocate a new region at the position but make it zero
119 * size such that we can guarantee to record the reservation. */
120 if (&rg
->link
== head
|| t
< rg
->from
) {
121 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
126 INIT_LIST_HEAD(&nrg
->link
);
127 list_add(&nrg
->link
, rg
->link
.prev
);
132 /* Round our left edge to the current segment if it encloses us. */
137 /* Check for and consume any regions we now overlap with. */
138 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
139 if (&rg
->link
== head
)
144 /* We overlap with this area, if it extends futher than
145 * us then we must extend ourselves. Account for its
146 * existing reservation. */
151 chg
-= rg
->to
- rg
->from
;
156 static long region_truncate(struct list_head
*head
, long end
)
158 struct file_region
*rg
, *trg
;
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg
, head
, link
)
165 if (&rg
->link
== head
)
168 /* If we are in the middle of a region then adjust it. */
169 if (end
> rg
->from
) {
172 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
175 /* Drop any remaining regions. */
176 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
177 if (&rg
->link
== head
)
179 chg
+= rg
->to
- rg
->from
;
186 static long region_count(struct list_head
*head
, long f
, long t
)
188 struct file_region
*rg
;
191 /* Locate each segment we overlap with, and count that overlap. */
192 list_for_each_entry(rg
, head
, link
) {
201 seg_from
= max(rg
->from
, f
);
202 seg_to
= min(rg
->to
, t
);
204 chg
+= seg_to
- seg_from
;
211 * Convert the address within this vma to the page offset within
212 * the mapping, in pagecache page units; huge pages here.
214 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
215 struct vm_area_struct
*vma
, unsigned long address
)
217 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
218 (vma
->vm_pgoff
>> huge_page_order(h
));
222 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
223 * bits of the reservation map pointer, which are always clear due to
226 #define HPAGE_RESV_OWNER (1UL << 0)
227 #define HPAGE_RESV_UNMAPPED (1UL << 1)
228 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
231 * These helpers are used to track how many pages are reserved for
232 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
233 * is guaranteed to have their future faults succeed.
235 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
236 * the reserve counters are updated with the hugetlb_lock held. It is safe
237 * to reset the VMA at fork() time as it is not in use yet and there is no
238 * chance of the global counters getting corrupted as a result of the values.
240 * The private mapping reservation is represented in a subtly different
241 * manner to a shared mapping. A shared mapping has a region map associated
242 * with the underlying file, this region map represents the backing file
243 * pages which have ever had a reservation assigned which this persists even
244 * after the page is instantiated. A private mapping has a region map
245 * associated with the original mmap which is attached to all VMAs which
246 * reference it, this region map represents those offsets which have consumed
247 * reservation ie. where pages have been instantiated.
249 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
251 return (unsigned long)vma
->vm_private_data
;
254 static void set_vma_private_data(struct vm_area_struct
*vma
,
257 vma
->vm_private_data
= (void *)value
;
262 struct list_head regions
;
265 struct resv_map
*resv_map_alloc(void)
267 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
271 kref_init(&resv_map
->refs
);
272 INIT_LIST_HEAD(&resv_map
->regions
);
277 void resv_map_release(struct kref
*ref
)
279 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
281 /* Clear out any active regions before we release the map. */
282 region_truncate(&resv_map
->regions
, 0);
286 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
288 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
289 if (!(vma
->vm_flags
& VM_SHARED
))
290 return (struct resv_map
*)(get_vma_private_data(vma
) &
295 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
297 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
298 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
300 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
301 HPAGE_RESV_MASK
) | (unsigned long)map
);
304 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
306 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
307 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
309 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
312 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
314 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
316 return (get_vma_private_data(vma
) & flag
) != 0;
319 /* Decrement the reserved pages in the hugepage pool by one */
320 static void decrement_hugepage_resv_vma(struct hstate
*h
,
321 struct vm_area_struct
*vma
)
323 if (vma
->vm_flags
& VM_NORESERVE
)
326 if (vma
->vm_flags
& VM_SHARED
) {
327 /* Shared mappings always use reserves */
328 h
->resv_huge_pages
--;
329 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
331 * Only the process that called mmap() has reserves for
334 h
->resv_huge_pages
--;
338 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
339 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
341 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
342 if (!(vma
->vm_flags
& VM_SHARED
))
343 vma
->vm_private_data
= (void *)0;
346 /* Returns true if the VMA has associated reserve pages */
347 static int vma_has_reserves(struct vm_area_struct
*vma
)
349 if (vma
->vm_flags
& VM_SHARED
)
351 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
356 static void clear_huge_page(struct page
*page
,
357 unsigned long addr
, unsigned long sz
)
362 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
364 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
368 static void copy_huge_page(struct page
*dst
, struct page
*src
,
369 unsigned long addr
, struct vm_area_struct
*vma
)
372 struct hstate
*h
= hstate_vma(vma
);
375 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
377 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
381 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
383 int nid
= page_to_nid(page
);
384 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
385 h
->free_huge_pages
++;
386 h
->free_huge_pages_node
[nid
]++;
389 static struct page
*dequeue_huge_page(struct hstate
*h
)
392 struct page
*page
= NULL
;
394 for (nid
= 0; nid
< MAX_NUMNODES
; ++nid
) {
395 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
396 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
398 list_del(&page
->lru
);
399 h
->free_huge_pages
--;
400 h
->free_huge_pages_node
[nid
]--;
407 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
408 struct vm_area_struct
*vma
,
409 unsigned long address
, int avoid_reserve
)
412 struct page
*page
= NULL
;
413 struct mempolicy
*mpol
;
414 nodemask_t
*nodemask
;
415 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
416 htlb_alloc_mask
, &mpol
, &nodemask
);
421 * A child process with MAP_PRIVATE mappings created by their parent
422 * have no page reserves. This check ensures that reservations are
423 * not "stolen". The child may still get SIGKILLed
425 if (!vma_has_reserves(vma
) &&
426 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
429 /* If reserves cannot be used, ensure enough pages are in the pool */
430 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
433 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
434 MAX_NR_ZONES
- 1, nodemask
) {
435 nid
= zone_to_nid(zone
);
436 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
) &&
437 !list_empty(&h
->hugepage_freelists
[nid
])) {
438 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
440 list_del(&page
->lru
);
441 h
->free_huge_pages
--;
442 h
->free_huge_pages_node
[nid
]--;
445 decrement_hugepage_resv_vma(h
, vma
);
454 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
459 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
460 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
461 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
462 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
463 1 << PG_private
| 1<< PG_writeback
);
465 set_compound_page_dtor(page
, NULL
);
466 set_page_refcounted(page
);
467 arch_release_hugepage(page
);
468 __free_pages(page
, huge_page_order(h
));
471 struct hstate
*size_to_hstate(unsigned long size
)
476 if (huge_page_size(h
) == size
)
482 static void free_huge_page(struct page
*page
)
485 * Can't pass hstate in here because it is called from the
486 * compound page destructor.
488 struct hstate
*h
= page_hstate(page
);
489 int nid
= page_to_nid(page
);
490 struct address_space
*mapping
;
492 mapping
= (struct address_space
*) page_private(page
);
493 set_page_private(page
, 0);
494 BUG_ON(page_count(page
));
495 INIT_LIST_HEAD(&page
->lru
);
497 spin_lock(&hugetlb_lock
);
498 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
499 update_and_free_page(h
, page
);
500 h
->surplus_huge_pages
--;
501 h
->surplus_huge_pages_node
[nid
]--;
503 enqueue_huge_page(h
, page
);
505 spin_unlock(&hugetlb_lock
);
507 hugetlb_put_quota(mapping
, 1);
511 * Increment or decrement surplus_huge_pages. Keep node-specific counters
512 * balanced by operating on them in a round-robin fashion.
513 * Returns 1 if an adjustment was made.
515 static int adjust_pool_surplus(struct hstate
*h
, int delta
)
521 VM_BUG_ON(delta
!= -1 && delta
!= 1);
523 nid
= next_node(nid
, node_online_map
);
524 if (nid
== MAX_NUMNODES
)
525 nid
= first_node(node_online_map
);
527 /* To shrink on this node, there must be a surplus page */
528 if (delta
< 0 && !h
->surplus_huge_pages_node
[nid
])
530 /* Surplus cannot exceed the total number of pages */
531 if (delta
> 0 && h
->surplus_huge_pages_node
[nid
] >=
532 h
->nr_huge_pages_node
[nid
])
535 h
->surplus_huge_pages
+= delta
;
536 h
->surplus_huge_pages_node
[nid
] += delta
;
539 } while (nid
!= prev_nid
);
545 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
547 set_compound_page_dtor(page
, free_huge_page
);
548 spin_lock(&hugetlb_lock
);
550 h
->nr_huge_pages_node
[nid
]++;
551 spin_unlock(&hugetlb_lock
);
552 put_page(page
); /* free it into the hugepage allocator */
555 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
559 if (h
->order
>= MAX_ORDER
)
562 page
= alloc_pages_node(nid
,
563 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
564 __GFP_REPEAT
|__GFP_NOWARN
,
567 if (arch_prepare_hugepage(page
)) {
568 __free_pages(page
, HUGETLB_PAGE_ORDER
);
571 prep_new_huge_page(h
, page
, nid
);
578 * Use a helper variable to find the next node and then
579 * copy it back to hugetlb_next_nid afterwards:
580 * otherwise there's a window in which a racer might
581 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
582 * But we don't need to use a spin_lock here: it really
583 * doesn't matter if occasionally a racer chooses the
584 * same nid as we do. Move nid forward in the mask even
585 * if we just successfully allocated a hugepage so that
586 * the next caller gets hugepages on the next node.
588 static int hstate_next_node(struct hstate
*h
)
591 next_nid
= next_node(h
->hugetlb_next_nid
, node_online_map
);
592 if (next_nid
== MAX_NUMNODES
)
593 next_nid
= first_node(node_online_map
);
594 h
->hugetlb_next_nid
= next_nid
;
598 static int alloc_fresh_huge_page(struct hstate
*h
)
605 start_nid
= h
->hugetlb_next_nid
;
608 page
= alloc_fresh_huge_page_node(h
, h
->hugetlb_next_nid
);
611 next_nid
= hstate_next_node(h
);
612 } while (!page
&& h
->hugetlb_next_nid
!= start_nid
);
615 count_vm_event(HTLB_BUDDY_PGALLOC
);
617 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
622 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
623 struct vm_area_struct
*vma
, unsigned long address
)
628 if (h
->order
>= MAX_ORDER
)
632 * Assume we will successfully allocate the surplus page to
633 * prevent racing processes from causing the surplus to exceed
636 * This however introduces a different race, where a process B
637 * tries to grow the static hugepage pool while alloc_pages() is
638 * called by process A. B will only examine the per-node
639 * counters in determining if surplus huge pages can be
640 * converted to normal huge pages in adjust_pool_surplus(). A
641 * won't be able to increment the per-node counter, until the
642 * lock is dropped by B, but B doesn't drop hugetlb_lock until
643 * no more huge pages can be converted from surplus to normal
644 * state (and doesn't try to convert again). Thus, we have a
645 * case where a surplus huge page exists, the pool is grown, and
646 * the surplus huge page still exists after, even though it
647 * should just have been converted to a normal huge page. This
648 * does not leak memory, though, as the hugepage will be freed
649 * once it is out of use. It also does not allow the counters to
650 * go out of whack in adjust_pool_surplus() as we don't modify
651 * the node values until we've gotten the hugepage and only the
652 * per-node value is checked there.
654 spin_lock(&hugetlb_lock
);
655 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
656 spin_unlock(&hugetlb_lock
);
660 h
->surplus_huge_pages
++;
662 spin_unlock(&hugetlb_lock
);
664 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
665 __GFP_REPEAT
|__GFP_NOWARN
,
668 spin_lock(&hugetlb_lock
);
671 * This page is now managed by the hugetlb allocator and has
672 * no users -- drop the buddy allocator's reference.
674 put_page_testzero(page
);
675 VM_BUG_ON(page_count(page
));
676 nid
= page_to_nid(page
);
677 set_compound_page_dtor(page
, free_huge_page
);
679 * We incremented the global counters already
681 h
->nr_huge_pages_node
[nid
]++;
682 h
->surplus_huge_pages_node
[nid
]++;
683 __count_vm_event(HTLB_BUDDY_PGALLOC
);
686 h
->surplus_huge_pages
--;
687 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
689 spin_unlock(&hugetlb_lock
);
695 * Increase the hugetlb pool such that it can accomodate a reservation
698 static int gather_surplus_pages(struct hstate
*h
, int delta
)
700 struct list_head surplus_list
;
701 struct page
*page
, *tmp
;
703 int needed
, allocated
;
705 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
707 h
->resv_huge_pages
+= delta
;
712 INIT_LIST_HEAD(&surplus_list
);
716 spin_unlock(&hugetlb_lock
);
717 for (i
= 0; i
< needed
; i
++) {
718 page
= alloc_buddy_huge_page(h
, NULL
, 0);
721 * We were not able to allocate enough pages to
722 * satisfy the entire reservation so we free what
723 * we've allocated so far.
725 spin_lock(&hugetlb_lock
);
730 list_add(&page
->lru
, &surplus_list
);
735 * After retaking hugetlb_lock, we need to recalculate 'needed'
736 * because either resv_huge_pages or free_huge_pages may have changed.
738 spin_lock(&hugetlb_lock
);
739 needed
= (h
->resv_huge_pages
+ delta
) -
740 (h
->free_huge_pages
+ allocated
);
745 * The surplus_list now contains _at_least_ the number of extra pages
746 * needed to accomodate the reservation. Add the appropriate number
747 * of pages to the hugetlb pool and free the extras back to the buddy
748 * allocator. Commit the entire reservation here to prevent another
749 * process from stealing the pages as they are added to the pool but
750 * before they are reserved.
753 h
->resv_huge_pages
+= delta
;
756 /* Free the needed pages to the hugetlb pool */
757 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
760 list_del(&page
->lru
);
761 enqueue_huge_page(h
, page
);
764 /* Free unnecessary surplus pages to the buddy allocator */
765 if (!list_empty(&surplus_list
)) {
766 spin_unlock(&hugetlb_lock
);
767 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
768 list_del(&page
->lru
);
770 * The page has a reference count of zero already, so
771 * call free_huge_page directly instead of using
772 * put_page. This must be done with hugetlb_lock
773 * unlocked which is safe because free_huge_page takes
774 * hugetlb_lock before deciding how to free the page.
776 free_huge_page(page
);
778 spin_lock(&hugetlb_lock
);
785 * When releasing a hugetlb pool reservation, any surplus pages that were
786 * allocated to satisfy the reservation must be explicitly freed if they were
789 static void return_unused_surplus_pages(struct hstate
*h
,
790 unsigned long unused_resv_pages
)
794 unsigned long nr_pages
;
797 * We want to release as many surplus pages as possible, spread
798 * evenly across all nodes. Iterate across all nodes until we
799 * can no longer free unreserved surplus pages. This occurs when
800 * the nodes with surplus pages have no free pages.
802 unsigned long remaining_iterations
= num_online_nodes();
804 /* Uncommit the reservation */
805 h
->resv_huge_pages
-= unused_resv_pages
;
807 /* Cannot return gigantic pages currently */
808 if (h
->order
>= MAX_ORDER
)
811 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
813 while (remaining_iterations
-- && nr_pages
) {
814 nid
= next_node(nid
, node_online_map
);
815 if (nid
== MAX_NUMNODES
)
816 nid
= first_node(node_online_map
);
818 if (!h
->surplus_huge_pages_node
[nid
])
821 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
822 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
824 list_del(&page
->lru
);
825 update_and_free_page(h
, page
);
826 h
->free_huge_pages
--;
827 h
->free_huge_pages_node
[nid
]--;
828 h
->surplus_huge_pages
--;
829 h
->surplus_huge_pages_node
[nid
]--;
831 remaining_iterations
= num_online_nodes();
837 * Determine if the huge page at addr within the vma has an associated
838 * reservation. Where it does not we will need to logically increase
839 * reservation and actually increase quota before an allocation can occur.
840 * Where any new reservation would be required the reservation change is
841 * prepared, but not committed. Once the page has been quota'd allocated
842 * an instantiated the change should be committed via vma_commit_reservation.
843 * No action is required on failure.
845 static int vma_needs_reservation(struct hstate
*h
,
846 struct vm_area_struct
*vma
, unsigned long addr
)
848 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
849 struct inode
*inode
= mapping
->host
;
851 if (vma
->vm_flags
& VM_SHARED
) {
852 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
853 return region_chg(&inode
->i_mapping
->private_list
,
856 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
861 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
862 struct resv_map
*reservations
= vma_resv_map(vma
);
864 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
870 static void vma_commit_reservation(struct hstate
*h
,
871 struct vm_area_struct
*vma
, unsigned long addr
)
873 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
874 struct inode
*inode
= mapping
->host
;
876 if (vma
->vm_flags
& VM_SHARED
) {
877 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
878 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
880 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
881 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
882 struct resv_map
*reservations
= vma_resv_map(vma
);
884 /* Mark this page used in the map. */
885 region_add(&reservations
->regions
, idx
, idx
+ 1);
889 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
890 unsigned long addr
, int avoid_reserve
)
892 struct hstate
*h
= hstate_vma(vma
);
894 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
895 struct inode
*inode
= mapping
->host
;
899 * Processes that did not create the mapping will have no reserves and
900 * will not have accounted against quota. Check that the quota can be
901 * made before satisfying the allocation
902 * MAP_NORESERVE mappings may also need pages and quota allocated
903 * if no reserve mapping overlaps.
905 chg
= vma_needs_reservation(h
, vma
, addr
);
909 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
910 return ERR_PTR(-ENOSPC
);
912 spin_lock(&hugetlb_lock
);
913 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
914 spin_unlock(&hugetlb_lock
);
917 page
= alloc_buddy_huge_page(h
, vma
, addr
);
919 hugetlb_put_quota(inode
->i_mapping
, chg
);
920 return ERR_PTR(-VM_FAULT_OOM
);
924 set_page_refcounted(page
);
925 set_page_private(page
, (unsigned long) mapping
);
927 vma_commit_reservation(h
, vma
, addr
);
932 __attribute__((weak
)) int alloc_bootmem_huge_page(struct hstate
*h
)
934 struct huge_bootmem_page
*m
;
935 int nr_nodes
= nodes_weight(node_online_map
);
940 addr
= __alloc_bootmem_node_nopanic(
941 NODE_DATA(h
->hugetlb_next_nid
),
942 huge_page_size(h
), huge_page_size(h
), 0);
946 * Use the beginning of the huge page to store the
947 * huge_bootmem_page struct (until gather_bootmem
948 * puts them into the mem_map).
960 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
961 /* Put them into a private list first because mem_map is not up yet */
962 list_add(&m
->list
, &huge_boot_pages
);
967 /* Put bootmem huge pages into the standard lists after mem_map is up */
968 static void __init
gather_bootmem_prealloc(void)
970 struct huge_bootmem_page
*m
;
972 list_for_each_entry(m
, &huge_boot_pages
, list
) {
973 struct page
*page
= virt_to_page(m
);
974 struct hstate
*h
= m
->hstate
;
975 __ClearPageReserved(page
);
976 WARN_ON(page_count(page
) != 1);
977 prep_compound_page(page
, h
->order
);
978 prep_new_huge_page(h
, page
, page_to_nid(page
));
982 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
986 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
987 if (h
->order
>= MAX_ORDER
) {
988 if (!alloc_bootmem_huge_page(h
))
990 } else if (!alloc_fresh_huge_page(h
))
993 h
->max_huge_pages
= i
;
996 static void __init
hugetlb_init_hstates(void)
1000 for_each_hstate(h
) {
1001 /* oversize hugepages were init'ed in early boot */
1002 if (h
->order
< MAX_ORDER
)
1003 hugetlb_hstate_alloc_pages(h
);
1007 static char * __init
memfmt(char *buf
, unsigned long n
)
1009 if (n
>= (1UL << 30))
1010 sprintf(buf
, "%lu GB", n
>> 30);
1011 else if (n
>= (1UL << 20))
1012 sprintf(buf
, "%lu MB", n
>> 20);
1014 sprintf(buf
, "%lu KB", n
>> 10);
1018 static void __init
report_hugepages(void)
1022 for_each_hstate(h
) {
1024 printk(KERN_INFO
"HugeTLB registered %s page size, "
1025 "pre-allocated %ld pages\n",
1026 memfmt(buf
, huge_page_size(h
)),
1027 h
->free_huge_pages
);
1031 #ifdef CONFIG_HIGHMEM
1032 static void try_to_free_low(struct hstate
*h
, unsigned long count
)
1036 if (h
->order
>= MAX_ORDER
)
1039 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
1040 struct page
*page
, *next
;
1041 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1042 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1043 if (count
>= h
->nr_huge_pages
)
1045 if (PageHighMem(page
))
1047 list_del(&page
->lru
);
1048 update_and_free_page(h
, page
);
1049 h
->free_huge_pages
--;
1050 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1055 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
)
1060 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1061 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
)
1063 unsigned long min_count
, ret
;
1065 if (h
->order
>= MAX_ORDER
)
1066 return h
->max_huge_pages
;
1069 * Increase the pool size
1070 * First take pages out of surplus state. Then make up the
1071 * remaining difference by allocating fresh huge pages.
1073 * We might race with alloc_buddy_huge_page() here and be unable
1074 * to convert a surplus huge page to a normal huge page. That is
1075 * not critical, though, it just means the overall size of the
1076 * pool might be one hugepage larger than it needs to be, but
1077 * within all the constraints specified by the sysctls.
1079 spin_lock(&hugetlb_lock
);
1080 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1081 if (!adjust_pool_surplus(h
, -1))
1085 while (count
> persistent_huge_pages(h
)) {
1087 * If this allocation races such that we no longer need the
1088 * page, free_huge_page will handle it by freeing the page
1089 * and reducing the surplus.
1091 spin_unlock(&hugetlb_lock
);
1092 ret
= alloc_fresh_huge_page(h
);
1093 spin_lock(&hugetlb_lock
);
1100 * Decrease the pool size
1101 * First return free pages to the buddy allocator (being careful
1102 * to keep enough around to satisfy reservations). Then place
1103 * pages into surplus state as needed so the pool will shrink
1104 * to the desired size as pages become free.
1106 * By placing pages into the surplus state independent of the
1107 * overcommit value, we are allowing the surplus pool size to
1108 * exceed overcommit. There are few sane options here. Since
1109 * alloc_buddy_huge_page() is checking the global counter,
1110 * though, we'll note that we're not allowed to exceed surplus
1111 * and won't grow the pool anywhere else. Not until one of the
1112 * sysctls are changed, or the surplus pages go out of use.
1114 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1115 min_count
= max(count
, min_count
);
1116 try_to_free_low(h
, min_count
);
1117 while (min_count
< persistent_huge_pages(h
)) {
1118 struct page
*page
= dequeue_huge_page(h
);
1121 update_and_free_page(h
, page
);
1123 while (count
< persistent_huge_pages(h
)) {
1124 if (!adjust_pool_surplus(h
, 1))
1128 ret
= persistent_huge_pages(h
);
1129 spin_unlock(&hugetlb_lock
);
1133 #define HSTATE_ATTR_RO(_name) \
1134 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1136 #define HSTATE_ATTR(_name) \
1137 static struct kobj_attribute _name##_attr = \
1138 __ATTR(_name, 0644, _name##_show, _name##_store)
1140 static struct kobject
*hugepages_kobj
;
1141 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1143 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
)
1146 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1147 if (hstate_kobjs
[i
] == kobj
)
1153 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1154 struct kobj_attribute
*attr
, char *buf
)
1156 struct hstate
*h
= kobj_to_hstate(kobj
);
1157 return sprintf(buf
, "%lu\n", h
->nr_huge_pages
);
1159 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1160 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1163 unsigned long input
;
1164 struct hstate
*h
= kobj_to_hstate(kobj
);
1166 err
= strict_strtoul(buf
, 10, &input
);
1170 h
->max_huge_pages
= set_max_huge_pages(h
, input
);
1174 HSTATE_ATTR(nr_hugepages
);
1176 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1177 struct kobj_attribute
*attr
, char *buf
)
1179 struct hstate
*h
= kobj_to_hstate(kobj
);
1180 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1182 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1183 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1186 unsigned long input
;
1187 struct hstate
*h
= kobj_to_hstate(kobj
);
1189 err
= strict_strtoul(buf
, 10, &input
);
1193 spin_lock(&hugetlb_lock
);
1194 h
->nr_overcommit_huge_pages
= input
;
1195 spin_unlock(&hugetlb_lock
);
1199 HSTATE_ATTR(nr_overcommit_hugepages
);
1201 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1202 struct kobj_attribute
*attr
, char *buf
)
1204 struct hstate
*h
= kobj_to_hstate(kobj
);
1205 return sprintf(buf
, "%lu\n", h
->free_huge_pages
);
1207 HSTATE_ATTR_RO(free_hugepages
);
1209 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1210 struct kobj_attribute
*attr
, char *buf
)
1212 struct hstate
*h
= kobj_to_hstate(kobj
);
1213 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1215 HSTATE_ATTR_RO(resv_hugepages
);
1217 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1218 struct kobj_attribute
*attr
, char *buf
)
1220 struct hstate
*h
= kobj_to_hstate(kobj
);
1221 return sprintf(buf
, "%lu\n", h
->surplus_huge_pages
);
1223 HSTATE_ATTR_RO(surplus_hugepages
);
1225 static struct attribute
*hstate_attrs
[] = {
1226 &nr_hugepages_attr
.attr
,
1227 &nr_overcommit_hugepages_attr
.attr
,
1228 &free_hugepages_attr
.attr
,
1229 &resv_hugepages_attr
.attr
,
1230 &surplus_hugepages_attr
.attr
,
1234 static struct attribute_group hstate_attr_group
= {
1235 .attrs
= hstate_attrs
,
1238 static int __init
hugetlb_sysfs_add_hstate(struct hstate
*h
)
1242 hstate_kobjs
[h
- hstates
] = kobject_create_and_add(h
->name
,
1244 if (!hstate_kobjs
[h
- hstates
])
1247 retval
= sysfs_create_group(hstate_kobjs
[h
- hstates
],
1248 &hstate_attr_group
);
1250 kobject_put(hstate_kobjs
[h
- hstates
]);
1255 static void __init
hugetlb_sysfs_init(void)
1260 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1261 if (!hugepages_kobj
)
1264 for_each_hstate(h
) {
1265 err
= hugetlb_sysfs_add_hstate(h
);
1267 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1272 static void __exit
hugetlb_exit(void)
1276 for_each_hstate(h
) {
1277 kobject_put(hstate_kobjs
[h
- hstates
]);
1280 kobject_put(hugepages_kobj
);
1282 module_exit(hugetlb_exit
);
1284 static int __init
hugetlb_init(void)
1286 /* Some platform decide whether they support huge pages at boot
1287 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1288 * there is no such support
1290 if (HPAGE_SHIFT
== 0)
1293 if (!size_to_hstate(default_hstate_size
)) {
1294 default_hstate_size
= HPAGE_SIZE
;
1295 if (!size_to_hstate(default_hstate_size
))
1296 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1298 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1299 if (default_hstate_max_huge_pages
)
1300 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1302 hugetlb_init_hstates();
1304 gather_bootmem_prealloc();
1308 hugetlb_sysfs_init();
1312 module_init(hugetlb_init
);
1314 /* Should be called on processing a hugepagesz=... option */
1315 void __init
hugetlb_add_hstate(unsigned order
)
1320 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1321 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1324 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1326 h
= &hstates
[max_hstate
++];
1328 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1329 h
->nr_huge_pages
= 0;
1330 h
->free_huge_pages
= 0;
1331 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1332 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1333 h
->hugetlb_next_nid
= first_node(node_online_map
);
1334 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1335 huge_page_size(h
)/1024);
1340 static int __init
hugetlb_nrpages_setup(char *s
)
1343 static unsigned long *last_mhp
;
1346 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1347 * so this hugepages= parameter goes to the "default hstate".
1350 mhp
= &default_hstate_max_huge_pages
;
1352 mhp
= &parsed_hstate
->max_huge_pages
;
1354 if (mhp
== last_mhp
) {
1355 printk(KERN_WARNING
"hugepages= specified twice without "
1356 "interleaving hugepagesz=, ignoring\n");
1360 if (sscanf(s
, "%lu", mhp
) <= 0)
1364 * Global state is always initialized later in hugetlb_init.
1365 * But we need to allocate >= MAX_ORDER hstates here early to still
1366 * use the bootmem allocator.
1368 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1369 hugetlb_hstate_alloc_pages(parsed_hstate
);
1375 __setup("hugepages=", hugetlb_nrpages_setup
);
1377 static int __init
hugetlb_default_setup(char *s
)
1379 default_hstate_size
= memparse(s
, &s
);
1382 __setup("default_hugepagesz=", hugetlb_default_setup
);
1384 static unsigned int cpuset_mems_nr(unsigned int *array
)
1387 unsigned int nr
= 0;
1389 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1395 #ifdef CONFIG_SYSCTL
1396 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1397 struct file
*file
, void __user
*buffer
,
1398 size_t *length
, loff_t
*ppos
)
1400 struct hstate
*h
= &default_hstate
;
1404 tmp
= h
->max_huge_pages
;
1407 table
->maxlen
= sizeof(unsigned long);
1408 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1411 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
);
1416 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1417 struct file
*file
, void __user
*buffer
,
1418 size_t *length
, loff_t
*ppos
)
1420 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
1421 if (hugepages_treat_as_movable
)
1422 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1424 htlb_alloc_mask
= GFP_HIGHUSER
;
1428 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1429 struct file
*file
, void __user
*buffer
,
1430 size_t *length
, loff_t
*ppos
)
1432 struct hstate
*h
= &default_hstate
;
1436 tmp
= h
->nr_overcommit_huge_pages
;
1439 table
->maxlen
= sizeof(unsigned long);
1440 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1443 spin_lock(&hugetlb_lock
);
1444 h
->nr_overcommit_huge_pages
= tmp
;
1445 spin_unlock(&hugetlb_lock
);
1451 #endif /* CONFIG_SYSCTL */
1453 int hugetlb_report_meminfo(char *buf
)
1455 struct hstate
*h
= &default_hstate
;
1457 "HugePages_Total: %5lu\n"
1458 "HugePages_Free: %5lu\n"
1459 "HugePages_Rsvd: %5lu\n"
1460 "HugePages_Surp: %5lu\n"
1461 "Hugepagesize: %5lu kB\n",
1465 h
->surplus_huge_pages
,
1466 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1469 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1471 struct hstate
*h
= &default_hstate
;
1473 "Node %d HugePages_Total: %5u\n"
1474 "Node %d HugePages_Free: %5u\n"
1475 "Node %d HugePages_Surp: %5u\n",
1476 nid
, h
->nr_huge_pages_node
[nid
],
1477 nid
, h
->free_huge_pages_node
[nid
],
1478 nid
, h
->surplus_huge_pages_node
[nid
]);
1481 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1482 unsigned long hugetlb_total_pages(void)
1484 struct hstate
*h
= &default_hstate
;
1485 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1488 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
1492 spin_lock(&hugetlb_lock
);
1494 * When cpuset is configured, it breaks the strict hugetlb page
1495 * reservation as the accounting is done on a global variable. Such
1496 * reservation is completely rubbish in the presence of cpuset because
1497 * the reservation is not checked against page availability for the
1498 * current cpuset. Application can still potentially OOM'ed by kernel
1499 * with lack of free htlb page in cpuset that the task is in.
1500 * Attempt to enforce strict accounting with cpuset is almost
1501 * impossible (or too ugly) because cpuset is too fluid that
1502 * task or memory node can be dynamically moved between cpusets.
1504 * The change of semantics for shared hugetlb mapping with cpuset is
1505 * undesirable. However, in order to preserve some of the semantics,
1506 * we fall back to check against current free page availability as
1507 * a best attempt and hopefully to minimize the impact of changing
1508 * semantics that cpuset has.
1511 if (gather_surplus_pages(h
, delta
) < 0)
1514 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
1515 return_unused_surplus_pages(h
, delta
);
1522 return_unused_surplus_pages(h
, (unsigned long) -delta
);
1525 spin_unlock(&hugetlb_lock
);
1529 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
1531 struct resv_map
*reservations
= vma_resv_map(vma
);
1534 * This new VMA should share its siblings reservation map if present.
1535 * The VMA will only ever have a valid reservation map pointer where
1536 * it is being copied for another still existing VMA. As that VMA
1537 * has a reference to the reservation map it cannot dissappear until
1538 * after this open call completes. It is therefore safe to take a
1539 * new reference here without additional locking.
1542 kref_get(&reservations
->refs
);
1545 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
1547 struct hstate
*h
= hstate_vma(vma
);
1548 struct resv_map
*reservations
= vma_resv_map(vma
);
1549 unsigned long reserve
;
1550 unsigned long start
;
1554 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
1555 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
1557 reserve
= (end
- start
) -
1558 region_count(&reservations
->regions
, start
, end
);
1560 kref_put(&reservations
->refs
, resv_map_release
);
1563 hugetlb_acct_memory(h
, -reserve
);
1564 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
1570 * We cannot handle pagefaults against hugetlb pages at all. They cause
1571 * handle_mm_fault() to try to instantiate regular-sized pages in the
1572 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1575 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1581 struct vm_operations_struct hugetlb_vm_ops
= {
1582 .fault
= hugetlb_vm_op_fault
,
1583 .open
= hugetlb_vm_op_open
,
1584 .close
= hugetlb_vm_op_close
,
1587 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
1594 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
1596 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
1598 entry
= pte_mkyoung(entry
);
1599 entry
= pte_mkhuge(entry
);
1604 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
1605 unsigned long address
, pte_t
*ptep
)
1609 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
1610 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
1611 update_mmu_cache(vma
, address
, entry
);
1616 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
1617 struct vm_area_struct
*vma
)
1619 pte_t
*src_pte
, *dst_pte
, entry
;
1620 struct page
*ptepage
;
1623 struct hstate
*h
= hstate_vma(vma
);
1624 unsigned long sz
= huge_page_size(h
);
1626 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
1628 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
1629 src_pte
= huge_pte_offset(src
, addr
);
1632 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
1636 /* If the pagetables are shared don't copy or take references */
1637 if (dst_pte
== src_pte
)
1640 spin_lock(&dst
->page_table_lock
);
1641 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
1642 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
1644 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
1645 entry
= huge_ptep_get(src_pte
);
1646 ptepage
= pte_page(entry
);
1648 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
1650 spin_unlock(&src
->page_table_lock
);
1651 spin_unlock(&dst
->page_table_lock
);
1659 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1660 unsigned long end
, struct page
*ref_page
)
1662 struct mm_struct
*mm
= vma
->vm_mm
;
1663 unsigned long address
;
1668 struct hstate
*h
= hstate_vma(vma
);
1669 unsigned long sz
= huge_page_size(h
);
1672 * A page gathering list, protected by per file i_mmap_lock. The
1673 * lock is used to avoid list corruption from multiple unmapping
1674 * of the same page since we are using page->lru.
1676 LIST_HEAD(page_list
);
1678 WARN_ON(!is_vm_hugetlb_page(vma
));
1679 BUG_ON(start
& ~huge_page_mask(h
));
1680 BUG_ON(end
& ~huge_page_mask(h
));
1682 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1683 spin_lock(&mm
->page_table_lock
);
1684 for (address
= start
; address
< end
; address
+= sz
) {
1685 ptep
= huge_pte_offset(mm
, address
);
1689 if (huge_pmd_unshare(mm
, &address
, ptep
))
1693 * If a reference page is supplied, it is because a specific
1694 * page is being unmapped, not a range. Ensure the page we
1695 * are about to unmap is the actual page of interest.
1698 pte
= huge_ptep_get(ptep
);
1699 if (huge_pte_none(pte
))
1701 page
= pte_page(pte
);
1702 if (page
!= ref_page
)
1706 * Mark the VMA as having unmapped its page so that
1707 * future faults in this VMA will fail rather than
1708 * looking like data was lost
1710 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
1713 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1714 if (huge_pte_none(pte
))
1717 page
= pte_page(pte
);
1719 set_page_dirty(page
);
1720 list_add(&page
->lru
, &page_list
);
1722 spin_unlock(&mm
->page_table_lock
);
1723 flush_tlb_range(vma
, start
, end
);
1724 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1725 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
1726 list_del(&page
->lru
);
1731 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1732 unsigned long end
, struct page
*ref_page
)
1734 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1735 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
1736 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1740 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1741 * mappping it owns the reserve page for. The intention is to unmap the page
1742 * from other VMAs and let the children be SIGKILLed if they are faulting the
1745 int unmap_ref_private(struct mm_struct
*mm
,
1746 struct vm_area_struct
*vma
,
1748 unsigned long address
)
1750 struct vm_area_struct
*iter_vma
;
1751 struct address_space
*mapping
;
1752 struct prio_tree_iter iter
;
1756 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1757 * from page cache lookup which is in HPAGE_SIZE units.
1759 address
= address
& huge_page_mask(hstate_vma(vma
));
1760 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
1761 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
1762 mapping
= (struct address_space
*)page_private(page
);
1764 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1765 /* Do not unmap the current VMA */
1766 if (iter_vma
== vma
)
1770 * Unmap the page from other VMAs without their own reserves.
1771 * They get marked to be SIGKILLed if they fault in these
1772 * areas. This is because a future no-page fault on this VMA
1773 * could insert a zeroed page instead of the data existing
1774 * from the time of fork. This would look like data corruption
1776 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
1777 unmap_hugepage_range(iter_vma
,
1778 address
, address
+ HPAGE_SIZE
,
1785 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1786 unsigned long address
, pte_t
*ptep
, pte_t pte
,
1787 struct page
*pagecache_page
)
1789 struct hstate
*h
= hstate_vma(vma
);
1790 struct page
*old_page
, *new_page
;
1792 int outside_reserve
= 0;
1794 old_page
= pte_page(pte
);
1797 /* If no-one else is actually using this page, avoid the copy
1798 * and just make the page writable */
1799 avoidcopy
= (page_count(old_page
) == 1);
1801 set_huge_ptep_writable(vma
, address
, ptep
);
1806 * If the process that created a MAP_PRIVATE mapping is about to
1807 * perform a COW due to a shared page count, attempt to satisfy
1808 * the allocation without using the existing reserves. The pagecache
1809 * page is used to determine if the reserve at this address was
1810 * consumed or not. If reserves were used, a partial faulted mapping
1811 * at the time of fork() could consume its reserves on COW instead
1812 * of the full address range.
1814 if (!(vma
->vm_flags
& VM_SHARED
) &&
1815 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
1816 old_page
!= pagecache_page
)
1817 outside_reserve
= 1;
1819 page_cache_get(old_page
);
1820 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
1822 if (IS_ERR(new_page
)) {
1823 page_cache_release(old_page
);
1826 * If a process owning a MAP_PRIVATE mapping fails to COW,
1827 * it is due to references held by a child and an insufficient
1828 * huge page pool. To guarantee the original mappers
1829 * reliability, unmap the page from child processes. The child
1830 * may get SIGKILLed if it later faults.
1832 if (outside_reserve
) {
1833 BUG_ON(huge_pte_none(pte
));
1834 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
1835 BUG_ON(page_count(old_page
) != 1);
1836 BUG_ON(huge_pte_none(pte
));
1837 goto retry_avoidcopy
;
1842 return -PTR_ERR(new_page
);
1845 spin_unlock(&mm
->page_table_lock
);
1846 copy_huge_page(new_page
, old_page
, address
, vma
);
1847 __SetPageUptodate(new_page
);
1848 spin_lock(&mm
->page_table_lock
);
1850 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
1851 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
1853 huge_ptep_clear_flush(vma
, address
, ptep
);
1854 set_huge_pte_at(mm
, address
, ptep
,
1855 make_huge_pte(vma
, new_page
, 1));
1856 /* Make the old page be freed below */
1857 new_page
= old_page
;
1859 page_cache_release(new_page
);
1860 page_cache_release(old_page
);
1864 /* Return the pagecache page at a given address within a VMA */
1865 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
1866 struct vm_area_struct
*vma
, unsigned long address
)
1868 struct address_space
*mapping
;
1871 mapping
= vma
->vm_file
->f_mapping
;
1872 idx
= vma_hugecache_offset(h
, vma
, address
);
1874 return find_lock_page(mapping
, idx
);
1877 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1878 unsigned long address
, pte_t
*ptep
, int write_access
)
1880 struct hstate
*h
= hstate_vma(vma
);
1881 int ret
= VM_FAULT_SIGBUS
;
1885 struct address_space
*mapping
;
1889 * Currently, we are forced to kill the process in the event the
1890 * original mapper has unmapped pages from the child due to a failed
1891 * COW. Warn that such a situation has occured as it may not be obvious
1893 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
1895 "PID %d killed due to inadequate hugepage pool\n",
1900 mapping
= vma
->vm_file
->f_mapping
;
1901 idx
= vma_hugecache_offset(h
, vma
, address
);
1904 * Use page lock to guard against racing truncation
1905 * before we get page_table_lock.
1908 page
= find_lock_page(mapping
, idx
);
1910 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
1913 page
= alloc_huge_page(vma
, address
, 0);
1915 ret
= -PTR_ERR(page
);
1918 clear_huge_page(page
, address
, huge_page_size(h
));
1919 __SetPageUptodate(page
);
1921 if (vma
->vm_flags
& VM_SHARED
) {
1923 struct inode
*inode
= mapping
->host
;
1925 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
1933 spin_lock(&inode
->i_lock
);
1934 inode
->i_blocks
+= blocks_per_huge_page(h
);
1935 spin_unlock(&inode
->i_lock
);
1940 spin_lock(&mm
->page_table_lock
);
1941 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
1946 if (!huge_pte_none(huge_ptep_get(ptep
)))
1949 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
1950 && (vma
->vm_flags
& VM_SHARED
)));
1951 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
1953 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
1954 /* Optimization, do the COW without a second fault */
1955 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
1958 spin_unlock(&mm
->page_table_lock
);
1964 spin_unlock(&mm
->page_table_lock
);
1970 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1971 unsigned long address
, int write_access
)
1976 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
1977 struct hstate
*h
= hstate_vma(vma
);
1979 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
1981 return VM_FAULT_OOM
;
1984 * Serialize hugepage allocation and instantiation, so that we don't
1985 * get spurious allocation failures if two CPUs race to instantiate
1986 * the same page in the page cache.
1988 mutex_lock(&hugetlb_instantiation_mutex
);
1989 entry
= huge_ptep_get(ptep
);
1990 if (huge_pte_none(entry
)) {
1991 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
1992 mutex_unlock(&hugetlb_instantiation_mutex
);
1998 spin_lock(&mm
->page_table_lock
);
1999 /* Check for a racing update before calling hugetlb_cow */
2000 if (likely(pte_same(entry
, huge_ptep_get(ptep
))))
2001 if (write_access
&& !pte_write(entry
)) {
2003 page
= hugetlbfs_pagecache_page(h
, vma
, address
);
2004 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
, page
);
2010 spin_unlock(&mm
->page_table_lock
);
2011 mutex_unlock(&hugetlb_instantiation_mutex
);
2016 /* Can be overriden by architectures */
2017 __attribute__((weak
)) struct page
*
2018 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2019 pud_t
*pud
, int write
)
2025 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2026 struct page
**pages
, struct vm_area_struct
**vmas
,
2027 unsigned long *position
, int *length
, int i
,
2030 unsigned long pfn_offset
;
2031 unsigned long vaddr
= *position
;
2032 int remainder
= *length
;
2033 struct hstate
*h
= hstate_vma(vma
);
2035 spin_lock(&mm
->page_table_lock
);
2036 while (vaddr
< vma
->vm_end
&& remainder
) {
2041 * Some archs (sparc64, sh*) have multiple pte_ts to
2042 * each hugepage. We have to make * sure we get the
2043 * first, for the page indexing below to work.
2045 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2047 if (!pte
|| huge_pte_none(huge_ptep_get(pte
)) ||
2048 (write
&& !pte_write(huge_ptep_get(pte
)))) {
2051 spin_unlock(&mm
->page_table_lock
);
2052 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
2053 spin_lock(&mm
->page_table_lock
);
2054 if (!(ret
& VM_FAULT_ERROR
))
2063 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2064 page
= pte_page(huge_ptep_get(pte
));
2068 pages
[i
] = page
+ pfn_offset
;
2078 if (vaddr
< vma
->vm_end
&& remainder
&&
2079 pfn_offset
< pages_per_huge_page(h
)) {
2081 * We use pfn_offset to avoid touching the pageframes
2082 * of this compound page.
2087 spin_unlock(&mm
->page_table_lock
);
2088 *length
= remainder
;
2094 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2095 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2097 struct mm_struct
*mm
= vma
->vm_mm
;
2098 unsigned long start
= address
;
2101 struct hstate
*h
= hstate_vma(vma
);
2103 BUG_ON(address
>= end
);
2104 flush_cache_range(vma
, address
, end
);
2106 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2107 spin_lock(&mm
->page_table_lock
);
2108 for (; address
< end
; address
+= huge_page_size(h
)) {
2109 ptep
= huge_pte_offset(mm
, address
);
2112 if (huge_pmd_unshare(mm
, &address
, ptep
))
2114 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2115 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2116 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2117 set_huge_pte_at(mm
, address
, ptep
, pte
);
2120 spin_unlock(&mm
->page_table_lock
);
2121 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2123 flush_tlb_range(vma
, start
, end
);
2126 int hugetlb_reserve_pages(struct inode
*inode
,
2128 struct vm_area_struct
*vma
)
2131 struct hstate
*h
= hstate_inode(inode
);
2133 if (vma
&& vma
->vm_flags
& VM_NORESERVE
)
2137 * Shared mappings base their reservation on the number of pages that
2138 * are already allocated on behalf of the file. Private mappings need
2139 * to reserve the full area even if read-only as mprotect() may be
2140 * called to make the mapping read-write. Assume !vma is a shm mapping
2142 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2143 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2145 struct resv_map
*resv_map
= resv_map_alloc();
2151 set_vma_resv_map(vma
, resv_map
);
2152 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2158 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2160 ret
= hugetlb_acct_memory(h
, chg
);
2162 hugetlb_put_quota(inode
->i_mapping
, chg
);
2165 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2166 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2170 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2172 struct hstate
*h
= hstate_inode(inode
);
2173 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2175 spin_lock(&inode
->i_lock
);
2176 inode
->i_blocks
-= blocks_per_huge_page(h
);
2177 spin_unlock(&inode
->i_lock
);
2179 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2180 hugetlb_acct_memory(h
, -(chg
- freed
));