tdfxfb: coding style improvement
[linux-2.6/pdupreez.git] / mm / slab.c
blobe34bcb87a6ee19c7fadaa6a0f9ccbb5e956e8b79
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
144 #endif
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157 #endif
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
168 #endif
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 #endif
174 /* Legal flag mask for kmem_cache_create(). */
175 #if DEBUG
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_CACHE_DMA | \
179 SLAB_STORE_USER | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182 #else
183 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
184 SLAB_CACHE_DMA | \
185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
187 #endif
190 * kmem_bufctl_t:
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 typedef unsigned int kmem_bufctl_t;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
215 * struct slab
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct slab {
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
231 * struct slab_rcu
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct slab_rcu {
247 struct rcu_head head;
248 struct kmem_cache *cachep;
249 void *addr;
253 * struct array_cache
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
264 struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
269 spinlock_t lock;
270 void *entry[0]; /*
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
274 * [0] is for gcc 2.95. It should really be [].
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init {
284 struct array_cache cache;
285 void *entries[BOOT_CPUCACHE_ENTRIES];
289 * The slab lists for all objects.
291 struct kmem_list3 {
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
296 unsigned int free_limit;
297 unsigned int colour_next; /* Per-node cache coloring */
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
306 * Need this for bootstrapping a per node allocator.
308 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310 #define CACHE_CACHE 0
311 #define SIZE_AC 1
312 #define SIZE_L3 (1 + MAX_NUMNODES)
314 static int drain_freelist(struct kmem_cache *cache,
315 struct kmem_list3 *l3, int tofree);
316 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
318 static int enable_cpucache(struct kmem_cache *cachep);
319 static void cache_reap(struct work_struct *unused);
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
325 static __always_inline int index_of(const size_t size)
327 extern void __bad_size(void);
329 if (__builtin_constant_p(size)) {
330 int i = 0;
332 #define CACHE(x) \
333 if (size <=x) \
334 return i; \
335 else \
336 i++;
337 #include "linux/kmalloc_sizes.h"
338 #undef CACHE
339 __bad_size();
340 } else
341 __bad_size();
342 return 0;
345 static int slab_early_init = 1;
347 #define INDEX_AC index_of(sizeof(struct arraycache_init))
348 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
350 static void kmem_list3_init(struct kmem_list3 *parent)
352 INIT_LIST_HEAD(&parent->slabs_full);
353 INIT_LIST_HEAD(&parent->slabs_partial);
354 INIT_LIST_HEAD(&parent->slabs_free);
355 parent->shared = NULL;
356 parent->alien = NULL;
357 parent->colour_next = 0;
358 spin_lock_init(&parent->list_lock);
359 parent->free_objects = 0;
360 parent->free_touched = 0;
363 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 do { \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
367 } while (0)
369 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 do { \
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
374 } while (0)
377 * struct kmem_cache
379 * manages a cache.
382 struct kmem_cache {
383 /* 1) per-cpu data, touched during every alloc/free */
384 struct array_cache *array[NR_CPUS];
385 /* 2) Cache tunables. Protected by cache_chain_mutex */
386 unsigned int batchcount;
387 unsigned int limit;
388 unsigned int shared;
390 unsigned int buffer_size;
391 u32 reciprocal_buffer_size;
392 /* 3) touched by every alloc & free from the backend */
394 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */
397 /* 4) cache_grow/shrink */
398 /* order of pgs per slab (2^n) */
399 unsigned int gfporder;
401 /* force GFP flags, e.g. GFP_DMA */
402 gfp_t gfpflags;
404 size_t colour; /* cache colouring range */
405 unsigned int colour_off; /* colour offset */
406 struct kmem_cache *slabp_cache;
407 unsigned int slab_size;
408 unsigned int dflags; /* dynamic flags */
410 /* constructor func */
411 void (*ctor) (void *, struct kmem_cache *, unsigned long);
413 /* 5) cache creation/removal */
414 const char *name;
415 struct list_head next;
417 /* 6) statistics */
418 #if STATS
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
428 unsigned long node_overflow;
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
433 #endif
434 #if DEBUG
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
441 int obj_offset;
442 int obj_size;
443 #endif
445 * We put nodelists[] at the end of kmem_cache, because we want to size
446 * this array to nr_node_ids slots instead of MAX_NUMNODES
447 * (see kmem_cache_init())
448 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449 * is statically defined, so we reserve the max number of nodes.
451 struct kmem_list3 *nodelists[MAX_NUMNODES];
453 * Do not add fields after nodelists[]
457 #define CFLGS_OFF_SLAB (0x80000000UL)
458 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
460 #define BATCHREFILL_LIMIT 16
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
465 * OTOH the cpuarrays can contain lots of objects,
466 * which could lock up otherwise freeable slabs.
468 #define REAPTIMEOUT_CPUC (2*HZ)
469 #define REAPTIMEOUT_LIST3 (4*HZ)
471 #if STATS
472 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
473 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
474 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
475 #define STATS_INC_GROWN(x) ((x)->grown++)
476 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
477 #define STATS_SET_HIGH(x) \
478 do { \
479 if ((x)->num_active > (x)->high_mark) \
480 (x)->high_mark = (x)->num_active; \
481 } while (0)
482 #define STATS_INC_ERR(x) ((x)->errors++)
483 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
484 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
485 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
486 #define STATS_SET_FREEABLE(x, i) \
487 do { \
488 if ((x)->max_freeable < i) \
489 (x)->max_freeable = i; \
490 } while (0)
491 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
492 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
493 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
494 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
495 #else
496 #define STATS_INC_ACTIVE(x) do { } while (0)
497 #define STATS_DEC_ACTIVE(x) do { } while (0)
498 #define STATS_INC_ALLOCED(x) do { } while (0)
499 #define STATS_INC_GROWN(x) do { } while (0)
500 #define STATS_ADD_REAPED(x,y) do { } while (0)
501 #define STATS_SET_HIGH(x) do { } while (0)
502 #define STATS_INC_ERR(x) do { } while (0)
503 #define STATS_INC_NODEALLOCS(x) do { } while (0)
504 #define STATS_INC_NODEFREES(x) do { } while (0)
505 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
506 #define STATS_SET_FREEABLE(x, i) do { } while (0)
507 #define STATS_INC_ALLOCHIT(x) do { } while (0)
508 #define STATS_INC_ALLOCMISS(x) do { } while (0)
509 #define STATS_INC_FREEHIT(x) do { } while (0)
510 #define STATS_INC_FREEMISS(x) do { } while (0)
511 #endif
513 #if DEBUG
516 * memory layout of objects:
517 * 0 : objp
518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
519 * the end of an object is aligned with the end of the real
520 * allocation. Catches writes behind the end of the allocation.
521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
522 * redzone word.
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 * [BYTES_PER_WORD long]
528 static int obj_offset(struct kmem_cache *cachep)
530 return cachep->obj_offset;
533 static int obj_size(struct kmem_cache *cachep)
535 return cachep->obj_size;
538 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
540 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
541 return (unsigned long long*) (objp + obj_offset(cachep) -
542 sizeof(unsigned long long));
545 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
547 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548 if (cachep->flags & SLAB_STORE_USER)
549 return (unsigned long long *)(objp + cachep->buffer_size -
550 sizeof(unsigned long long) -
551 REDZONE_ALIGN);
552 return (unsigned long long *) (objp + cachep->buffer_size -
553 sizeof(unsigned long long));
556 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
558 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
559 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
562 #else
564 #define obj_offset(x) 0
565 #define obj_size(cachep) (cachep->buffer_size)
566 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
568 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
570 #endif
573 * Do not go above this order unless 0 objects fit into the slab.
575 #define BREAK_GFP_ORDER_HI 1
576 #define BREAK_GFP_ORDER_LO 0
577 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580 * Functions for storing/retrieving the cachep and or slab from the page
581 * allocator. These are used to find the slab an obj belongs to. With kfree(),
582 * these are used to find the cache which an obj belongs to.
584 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
586 page->lru.next = (struct list_head *)cache;
589 static inline struct kmem_cache *page_get_cache(struct page *page)
591 page = compound_head(page);
592 BUG_ON(!PageSlab(page));
593 return (struct kmem_cache *)page->lru.next;
596 static inline void page_set_slab(struct page *page, struct slab *slab)
598 page->lru.prev = (struct list_head *)slab;
601 static inline struct slab *page_get_slab(struct page *page)
603 BUG_ON(!PageSlab(page));
604 return (struct slab *)page->lru.prev;
607 static inline struct kmem_cache *virt_to_cache(const void *obj)
609 struct page *page = virt_to_head_page(obj);
610 return page_get_cache(page);
613 static inline struct slab *virt_to_slab(const void *obj)
615 struct page *page = virt_to_head_page(obj);
616 return page_get_slab(page);
619 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
620 unsigned int idx)
622 return slab->s_mem + cache->buffer_size * idx;
626 * We want to avoid an expensive divide : (offset / cache->buffer_size)
627 * Using the fact that buffer_size is a constant for a particular cache,
628 * we can replace (offset / cache->buffer_size) by
629 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
631 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
632 const struct slab *slab, void *obj)
634 u32 offset = (obj - slab->s_mem);
635 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
639 * These are the default caches for kmalloc. Custom caches can have other sizes.
641 struct cache_sizes malloc_sizes[] = {
642 #define CACHE(x) { .cs_size = (x) },
643 #include <linux/kmalloc_sizes.h>
644 CACHE(ULONG_MAX)
645 #undef CACHE
647 EXPORT_SYMBOL(malloc_sizes);
649 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
650 struct cache_names {
651 char *name;
652 char *name_dma;
655 static struct cache_names __initdata cache_names[] = {
656 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
657 #include <linux/kmalloc_sizes.h>
658 {NULL,}
659 #undef CACHE
662 static struct arraycache_init initarray_cache __initdata =
663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664 static struct arraycache_init initarray_generic =
665 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
667 /* internal cache of cache description objs */
668 static struct kmem_cache cache_cache = {
669 .batchcount = 1,
670 .limit = BOOT_CPUCACHE_ENTRIES,
671 .shared = 1,
672 .buffer_size = sizeof(struct kmem_cache),
673 .name = "kmem_cache",
676 #define BAD_ALIEN_MAGIC 0x01020304ul
678 #ifdef CONFIG_LOCKDEP
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
691 static struct lock_class_key on_slab_l3_key;
692 static struct lock_class_key on_slab_alc_key;
694 static inline void init_lock_keys(void)
697 int q;
698 struct cache_sizes *s = malloc_sizes;
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
724 s++;
727 #else
728 static inline void init_lock_keys(void)
731 #endif
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
737 static DEFINE_MUTEX(cache_chain_mutex);
738 static struct list_head cache_chain;
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
744 static enum {
745 NONE,
746 PARTIAL_AC,
747 PARTIAL_L3,
748 FULL
749 } g_cpucache_up;
752 * used by boot code to determine if it can use slab based allocator
754 int slab_is_available(void)
756 return g_cpucache_up == FULL;
759 static DEFINE_PER_CPU(struct delayed_work, reap_work);
761 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
763 return cachep->array[smp_processor_id()];
766 static inline struct kmem_cache *__find_general_cachep(size_t size,
767 gfp_t gfpflags)
769 struct cache_sizes *csizep = malloc_sizes;
771 #if DEBUG
772 /* This happens if someone tries to call
773 * kmem_cache_create(), or __kmalloc(), before
774 * the generic caches are initialized.
776 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
777 #endif
778 if (!size)
779 return ZERO_SIZE_PTR;
781 while (size > csizep->cs_size)
782 csizep++;
785 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
786 * has cs_{dma,}cachep==NULL. Thus no special case
787 * for large kmalloc calls required.
789 #ifdef CONFIG_ZONE_DMA
790 if (unlikely(gfpflags & GFP_DMA))
791 return csizep->cs_dmacachep;
792 #endif
793 return csizep->cs_cachep;
796 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
798 return __find_general_cachep(size, gfpflags);
801 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
803 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
807 * Calculate the number of objects and left-over bytes for a given buffer size.
809 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
810 size_t align, int flags, size_t *left_over,
811 unsigned int *num)
813 int nr_objs;
814 size_t mgmt_size;
815 size_t slab_size = PAGE_SIZE << gfporder;
818 * The slab management structure can be either off the slab or
819 * on it. For the latter case, the memory allocated for a
820 * slab is used for:
822 * - The struct slab
823 * - One kmem_bufctl_t for each object
824 * - Padding to respect alignment of @align
825 * - @buffer_size bytes for each object
827 * If the slab management structure is off the slab, then the
828 * alignment will already be calculated into the size. Because
829 * the slabs are all pages aligned, the objects will be at the
830 * correct alignment when allocated.
832 if (flags & CFLGS_OFF_SLAB) {
833 mgmt_size = 0;
834 nr_objs = slab_size / buffer_size;
836 if (nr_objs > SLAB_LIMIT)
837 nr_objs = SLAB_LIMIT;
838 } else {
840 * Ignore padding for the initial guess. The padding
841 * is at most @align-1 bytes, and @buffer_size is at
842 * least @align. In the worst case, this result will
843 * be one greater than the number of objects that fit
844 * into the memory allocation when taking the padding
845 * into account.
847 nr_objs = (slab_size - sizeof(struct slab)) /
848 (buffer_size + sizeof(kmem_bufctl_t));
851 * This calculated number will be either the right
852 * amount, or one greater than what we want.
854 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
855 > slab_size)
856 nr_objs--;
858 if (nr_objs > SLAB_LIMIT)
859 nr_objs = SLAB_LIMIT;
861 mgmt_size = slab_mgmt_size(nr_objs, align);
863 *num = nr_objs;
864 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
867 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
869 static void __slab_error(const char *function, struct kmem_cache *cachep,
870 char *msg)
872 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
873 function, cachep->name, msg);
874 dump_stack();
878 * By default on NUMA we use alien caches to stage the freeing of
879 * objects allocated from other nodes. This causes massive memory
880 * inefficiencies when using fake NUMA setup to split memory into a
881 * large number of small nodes, so it can be disabled on the command
882 * line
885 static int use_alien_caches __read_mostly = 1;
886 static int numa_platform __read_mostly = 1;
887 static int __init noaliencache_setup(char *s)
889 use_alien_caches = 0;
890 return 1;
892 __setup("noaliencache", noaliencache_setup);
894 #ifdef CONFIG_NUMA
896 * Special reaping functions for NUMA systems called from cache_reap().
897 * These take care of doing round robin flushing of alien caches (containing
898 * objects freed on different nodes from which they were allocated) and the
899 * flushing of remote pcps by calling drain_node_pages.
901 static DEFINE_PER_CPU(unsigned long, reap_node);
903 static void init_reap_node(int cpu)
905 int node;
907 node = next_node(cpu_to_node(cpu), node_online_map);
908 if (node == MAX_NUMNODES)
909 node = first_node(node_online_map);
911 per_cpu(reap_node, cpu) = node;
914 static void next_reap_node(void)
916 int node = __get_cpu_var(reap_node);
918 node = next_node(node, node_online_map);
919 if (unlikely(node >= MAX_NUMNODES))
920 node = first_node(node_online_map);
921 __get_cpu_var(reap_node) = node;
924 #else
925 #define init_reap_node(cpu) do { } while (0)
926 #define next_reap_node(void) do { } while (0)
927 #endif
930 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
931 * via the workqueue/eventd.
932 * Add the CPU number into the expiration time to minimize the possibility of
933 * the CPUs getting into lockstep and contending for the global cache chain
934 * lock.
936 static void __cpuinit start_cpu_timer(int cpu)
938 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
941 * When this gets called from do_initcalls via cpucache_init(),
942 * init_workqueues() has already run, so keventd will be setup
943 * at that time.
945 if (keventd_up() && reap_work->work.func == NULL) {
946 init_reap_node(cpu);
947 INIT_DELAYED_WORK(reap_work, cache_reap);
948 schedule_delayed_work_on(cpu, reap_work,
949 __round_jiffies_relative(HZ, cpu));
953 static struct array_cache *alloc_arraycache(int node, int entries,
954 int batchcount)
956 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
957 struct array_cache *nc = NULL;
959 nc = kmalloc_node(memsize, GFP_KERNEL, node);
960 if (nc) {
961 nc->avail = 0;
962 nc->limit = entries;
963 nc->batchcount = batchcount;
964 nc->touched = 0;
965 spin_lock_init(&nc->lock);
967 return nc;
971 * Transfer objects in one arraycache to another.
972 * Locking must be handled by the caller.
974 * Return the number of entries transferred.
976 static int transfer_objects(struct array_cache *to,
977 struct array_cache *from, unsigned int max)
979 /* Figure out how many entries to transfer */
980 int nr = min(min(from->avail, max), to->limit - to->avail);
982 if (!nr)
983 return 0;
985 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
986 sizeof(void *) *nr);
988 from->avail -= nr;
989 to->avail += nr;
990 to->touched = 1;
991 return nr;
994 #ifndef CONFIG_NUMA
996 #define drain_alien_cache(cachep, alien) do { } while (0)
997 #define reap_alien(cachep, l3) do { } while (0)
999 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1001 return (struct array_cache **)BAD_ALIEN_MAGIC;
1004 static inline void free_alien_cache(struct array_cache **ac_ptr)
1008 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1010 return 0;
1013 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1014 gfp_t flags)
1016 return NULL;
1019 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1020 gfp_t flags, int nodeid)
1022 return NULL;
1025 #else /* CONFIG_NUMA */
1027 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1028 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1030 static struct array_cache **alloc_alien_cache(int node, int limit)
1032 struct array_cache **ac_ptr;
1033 int memsize = sizeof(void *) * nr_node_ids;
1034 int i;
1036 if (limit > 1)
1037 limit = 12;
1038 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1039 if (ac_ptr) {
1040 for_each_node(i) {
1041 if (i == node || !node_online(i)) {
1042 ac_ptr[i] = NULL;
1043 continue;
1045 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1046 if (!ac_ptr[i]) {
1047 for (i--; i <= 0; i--)
1048 kfree(ac_ptr[i]);
1049 kfree(ac_ptr);
1050 return NULL;
1054 return ac_ptr;
1057 static void free_alien_cache(struct array_cache **ac_ptr)
1059 int i;
1061 if (!ac_ptr)
1062 return;
1063 for_each_node(i)
1064 kfree(ac_ptr[i]);
1065 kfree(ac_ptr);
1068 static void __drain_alien_cache(struct kmem_cache *cachep,
1069 struct array_cache *ac, int node)
1071 struct kmem_list3 *rl3 = cachep->nodelists[node];
1073 if (ac->avail) {
1074 spin_lock(&rl3->list_lock);
1076 * Stuff objects into the remote nodes shared array first.
1077 * That way we could avoid the overhead of putting the objects
1078 * into the free lists and getting them back later.
1080 if (rl3->shared)
1081 transfer_objects(rl3->shared, ac, ac->limit);
1083 free_block(cachep, ac->entry, ac->avail, node);
1084 ac->avail = 0;
1085 spin_unlock(&rl3->list_lock);
1090 * Called from cache_reap() to regularly drain alien caches round robin.
1092 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1094 int node = __get_cpu_var(reap_node);
1096 if (l3->alien) {
1097 struct array_cache *ac = l3->alien[node];
1099 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1100 __drain_alien_cache(cachep, ac, node);
1101 spin_unlock_irq(&ac->lock);
1106 static void drain_alien_cache(struct kmem_cache *cachep,
1107 struct array_cache **alien)
1109 int i = 0;
1110 struct array_cache *ac;
1111 unsigned long flags;
1113 for_each_online_node(i) {
1114 ac = alien[i];
1115 if (ac) {
1116 spin_lock_irqsave(&ac->lock, flags);
1117 __drain_alien_cache(cachep, ac, i);
1118 spin_unlock_irqrestore(&ac->lock, flags);
1123 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1125 struct slab *slabp = virt_to_slab(objp);
1126 int nodeid = slabp->nodeid;
1127 struct kmem_list3 *l3;
1128 struct array_cache *alien = NULL;
1129 int node;
1131 node = numa_node_id();
1134 * Make sure we are not freeing a object from another node to the array
1135 * cache on this cpu.
1137 if (likely(slabp->nodeid == node))
1138 return 0;
1140 l3 = cachep->nodelists[node];
1141 STATS_INC_NODEFREES(cachep);
1142 if (l3->alien && l3->alien[nodeid]) {
1143 alien = l3->alien[nodeid];
1144 spin_lock(&alien->lock);
1145 if (unlikely(alien->avail == alien->limit)) {
1146 STATS_INC_ACOVERFLOW(cachep);
1147 __drain_alien_cache(cachep, alien, nodeid);
1149 alien->entry[alien->avail++] = objp;
1150 spin_unlock(&alien->lock);
1151 } else {
1152 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1153 free_block(cachep, &objp, 1, nodeid);
1154 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1156 return 1;
1158 #endif
1160 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1161 unsigned long action, void *hcpu)
1163 long cpu = (long)hcpu;
1164 struct kmem_cache *cachep;
1165 struct kmem_list3 *l3 = NULL;
1166 int node = cpu_to_node(cpu);
1167 const int memsize = sizeof(struct kmem_list3);
1169 switch (action) {
1170 case CPU_LOCK_ACQUIRE:
1171 mutex_lock(&cache_chain_mutex);
1172 break;
1173 case CPU_UP_PREPARE:
1174 case CPU_UP_PREPARE_FROZEN:
1176 * We need to do this right in the beginning since
1177 * alloc_arraycache's are going to use this list.
1178 * kmalloc_node allows us to add the slab to the right
1179 * kmem_list3 and not this cpu's kmem_list3
1182 list_for_each_entry(cachep, &cache_chain, next) {
1184 * Set up the size64 kmemlist for cpu before we can
1185 * begin anything. Make sure some other cpu on this
1186 * node has not already allocated this
1188 if (!cachep->nodelists[node]) {
1189 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1190 if (!l3)
1191 goto bad;
1192 kmem_list3_init(l3);
1193 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1194 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1197 * The l3s don't come and go as CPUs come and
1198 * go. cache_chain_mutex is sufficient
1199 * protection here.
1201 cachep->nodelists[node] = l3;
1204 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1205 cachep->nodelists[node]->free_limit =
1206 (1 + nr_cpus_node(node)) *
1207 cachep->batchcount + cachep->num;
1208 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1212 * Now we can go ahead with allocating the shared arrays and
1213 * array caches
1215 list_for_each_entry(cachep, &cache_chain, next) {
1216 struct array_cache *nc;
1217 struct array_cache *shared = NULL;
1218 struct array_cache **alien = NULL;
1220 nc = alloc_arraycache(node, cachep->limit,
1221 cachep->batchcount);
1222 if (!nc)
1223 goto bad;
1224 if (cachep->shared) {
1225 shared = alloc_arraycache(node,
1226 cachep->shared * cachep->batchcount,
1227 0xbaadf00d);
1228 if (!shared)
1229 goto bad;
1231 if (use_alien_caches) {
1232 alien = alloc_alien_cache(node, cachep->limit);
1233 if (!alien)
1234 goto bad;
1236 cachep->array[cpu] = nc;
1237 l3 = cachep->nodelists[node];
1238 BUG_ON(!l3);
1240 spin_lock_irq(&l3->list_lock);
1241 if (!l3->shared) {
1243 * We are serialised from CPU_DEAD or
1244 * CPU_UP_CANCELLED by the cpucontrol lock
1246 l3->shared = shared;
1247 shared = NULL;
1249 #ifdef CONFIG_NUMA
1250 if (!l3->alien) {
1251 l3->alien = alien;
1252 alien = NULL;
1254 #endif
1255 spin_unlock_irq(&l3->list_lock);
1256 kfree(shared);
1257 free_alien_cache(alien);
1259 break;
1260 case CPU_ONLINE:
1261 case CPU_ONLINE_FROZEN:
1262 start_cpu_timer(cpu);
1263 break;
1264 #ifdef CONFIG_HOTPLUG_CPU
1265 case CPU_DOWN_PREPARE:
1266 case CPU_DOWN_PREPARE_FROZEN:
1268 * Shutdown cache reaper. Note that the cache_chain_mutex is
1269 * held so that if cache_reap() is invoked it cannot do
1270 * anything expensive but will only modify reap_work
1271 * and reschedule the timer.
1273 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1274 /* Now the cache_reaper is guaranteed to be not running. */
1275 per_cpu(reap_work, cpu).work.func = NULL;
1276 break;
1277 case CPU_DOWN_FAILED:
1278 case CPU_DOWN_FAILED_FROZEN:
1279 start_cpu_timer(cpu);
1280 break;
1281 case CPU_DEAD:
1282 case CPU_DEAD_FROZEN:
1284 * Even if all the cpus of a node are down, we don't free the
1285 * kmem_list3 of any cache. This to avoid a race between
1286 * cpu_down, and a kmalloc allocation from another cpu for
1287 * memory from the node of the cpu going down. The list3
1288 * structure is usually allocated from kmem_cache_create() and
1289 * gets destroyed at kmem_cache_destroy().
1291 /* fall thru */
1292 #endif
1293 case CPU_UP_CANCELED:
1294 case CPU_UP_CANCELED_FROZEN:
1295 list_for_each_entry(cachep, &cache_chain, next) {
1296 struct array_cache *nc;
1297 struct array_cache *shared;
1298 struct array_cache **alien;
1299 cpumask_t mask;
1301 mask = node_to_cpumask(node);
1302 /* cpu is dead; no one can alloc from it. */
1303 nc = cachep->array[cpu];
1304 cachep->array[cpu] = NULL;
1305 l3 = cachep->nodelists[node];
1307 if (!l3)
1308 goto free_array_cache;
1310 spin_lock_irq(&l3->list_lock);
1312 /* Free limit for this kmem_list3 */
1313 l3->free_limit -= cachep->batchcount;
1314 if (nc)
1315 free_block(cachep, nc->entry, nc->avail, node);
1317 if (!cpus_empty(mask)) {
1318 spin_unlock_irq(&l3->list_lock);
1319 goto free_array_cache;
1322 shared = l3->shared;
1323 if (shared) {
1324 free_block(cachep, shared->entry,
1325 shared->avail, node);
1326 l3->shared = NULL;
1329 alien = l3->alien;
1330 l3->alien = NULL;
1332 spin_unlock_irq(&l3->list_lock);
1334 kfree(shared);
1335 if (alien) {
1336 drain_alien_cache(cachep, alien);
1337 free_alien_cache(alien);
1339 free_array_cache:
1340 kfree(nc);
1343 * In the previous loop, all the objects were freed to
1344 * the respective cache's slabs, now we can go ahead and
1345 * shrink each nodelist to its limit.
1347 list_for_each_entry(cachep, &cache_chain, next) {
1348 l3 = cachep->nodelists[node];
1349 if (!l3)
1350 continue;
1351 drain_freelist(cachep, l3, l3->free_objects);
1353 break;
1354 case CPU_LOCK_RELEASE:
1355 mutex_unlock(&cache_chain_mutex);
1356 break;
1358 return NOTIFY_OK;
1359 bad:
1360 return NOTIFY_BAD;
1363 static struct notifier_block __cpuinitdata cpucache_notifier = {
1364 &cpuup_callback, NULL, 0
1368 * swap the static kmem_list3 with kmalloced memory
1370 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1371 int nodeid)
1373 struct kmem_list3 *ptr;
1375 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1376 BUG_ON(!ptr);
1378 local_irq_disable();
1379 memcpy(ptr, list, sizeof(struct kmem_list3));
1381 * Do not assume that spinlocks can be initialized via memcpy:
1383 spin_lock_init(&ptr->list_lock);
1385 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1386 cachep->nodelists[nodeid] = ptr;
1387 local_irq_enable();
1391 * Initialisation. Called after the page allocator have been initialised and
1392 * before smp_init().
1394 void __init kmem_cache_init(void)
1396 size_t left_over;
1397 struct cache_sizes *sizes;
1398 struct cache_names *names;
1399 int i;
1400 int order;
1401 int node;
1403 if (num_possible_nodes() == 1) {
1404 use_alien_caches = 0;
1405 numa_platform = 0;
1408 for (i = 0; i < NUM_INIT_LISTS; i++) {
1409 kmem_list3_init(&initkmem_list3[i]);
1410 if (i < MAX_NUMNODES)
1411 cache_cache.nodelists[i] = NULL;
1415 * Fragmentation resistance on low memory - only use bigger
1416 * page orders on machines with more than 32MB of memory.
1418 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1419 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1421 /* Bootstrap is tricky, because several objects are allocated
1422 * from caches that do not exist yet:
1423 * 1) initialize the cache_cache cache: it contains the struct
1424 * kmem_cache structures of all caches, except cache_cache itself:
1425 * cache_cache is statically allocated.
1426 * Initially an __init data area is used for the head array and the
1427 * kmem_list3 structures, it's replaced with a kmalloc allocated
1428 * array at the end of the bootstrap.
1429 * 2) Create the first kmalloc cache.
1430 * The struct kmem_cache for the new cache is allocated normally.
1431 * An __init data area is used for the head array.
1432 * 3) Create the remaining kmalloc caches, with minimally sized
1433 * head arrays.
1434 * 4) Replace the __init data head arrays for cache_cache and the first
1435 * kmalloc cache with kmalloc allocated arrays.
1436 * 5) Replace the __init data for kmem_list3 for cache_cache and
1437 * the other cache's with kmalloc allocated memory.
1438 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1441 node = numa_node_id();
1443 /* 1) create the cache_cache */
1444 INIT_LIST_HEAD(&cache_chain);
1445 list_add(&cache_cache.next, &cache_chain);
1446 cache_cache.colour_off = cache_line_size();
1447 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1448 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1451 * struct kmem_cache size depends on nr_node_ids, which
1452 * can be less than MAX_NUMNODES.
1454 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1455 nr_node_ids * sizeof(struct kmem_list3 *);
1456 #if DEBUG
1457 cache_cache.obj_size = cache_cache.buffer_size;
1458 #endif
1459 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1460 cache_line_size());
1461 cache_cache.reciprocal_buffer_size =
1462 reciprocal_value(cache_cache.buffer_size);
1464 for (order = 0; order < MAX_ORDER; order++) {
1465 cache_estimate(order, cache_cache.buffer_size,
1466 cache_line_size(), 0, &left_over, &cache_cache.num);
1467 if (cache_cache.num)
1468 break;
1470 BUG_ON(!cache_cache.num);
1471 cache_cache.gfporder = order;
1472 cache_cache.colour = left_over / cache_cache.colour_off;
1473 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1474 sizeof(struct slab), cache_line_size());
1476 /* 2+3) create the kmalloc caches */
1477 sizes = malloc_sizes;
1478 names = cache_names;
1481 * Initialize the caches that provide memory for the array cache and the
1482 * kmem_list3 structures first. Without this, further allocations will
1483 * bug.
1486 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1487 sizes[INDEX_AC].cs_size,
1488 ARCH_KMALLOC_MINALIGN,
1489 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1490 NULL);
1492 if (INDEX_AC != INDEX_L3) {
1493 sizes[INDEX_L3].cs_cachep =
1494 kmem_cache_create(names[INDEX_L3].name,
1495 sizes[INDEX_L3].cs_size,
1496 ARCH_KMALLOC_MINALIGN,
1497 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1498 NULL);
1501 slab_early_init = 0;
1503 while (sizes->cs_size != ULONG_MAX) {
1505 * For performance, all the general caches are L1 aligned.
1506 * This should be particularly beneficial on SMP boxes, as it
1507 * eliminates "false sharing".
1508 * Note for systems short on memory removing the alignment will
1509 * allow tighter packing of the smaller caches.
1511 if (!sizes->cs_cachep) {
1512 sizes->cs_cachep = kmem_cache_create(names->name,
1513 sizes->cs_size,
1514 ARCH_KMALLOC_MINALIGN,
1515 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1516 NULL);
1518 #ifdef CONFIG_ZONE_DMA
1519 sizes->cs_dmacachep = kmem_cache_create(
1520 names->name_dma,
1521 sizes->cs_size,
1522 ARCH_KMALLOC_MINALIGN,
1523 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1524 SLAB_PANIC,
1525 NULL);
1526 #endif
1527 sizes++;
1528 names++;
1530 /* 4) Replace the bootstrap head arrays */
1532 struct array_cache *ptr;
1534 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1536 local_irq_disable();
1537 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1538 memcpy(ptr, cpu_cache_get(&cache_cache),
1539 sizeof(struct arraycache_init));
1541 * Do not assume that spinlocks can be initialized via memcpy:
1543 spin_lock_init(&ptr->lock);
1545 cache_cache.array[smp_processor_id()] = ptr;
1546 local_irq_enable();
1548 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1550 local_irq_disable();
1551 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1552 != &initarray_generic.cache);
1553 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1554 sizeof(struct arraycache_init));
1556 * Do not assume that spinlocks can be initialized via memcpy:
1558 spin_lock_init(&ptr->lock);
1560 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1561 ptr;
1562 local_irq_enable();
1564 /* 5) Replace the bootstrap kmem_list3's */
1566 int nid;
1568 /* Replace the static kmem_list3 structures for the boot cpu */
1569 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1571 for_each_node_state(nid, N_NORMAL_MEMORY) {
1572 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1573 &initkmem_list3[SIZE_AC + nid], nid);
1575 if (INDEX_AC != INDEX_L3) {
1576 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1577 &initkmem_list3[SIZE_L3 + nid], nid);
1582 /* 6) resize the head arrays to their final sizes */
1584 struct kmem_cache *cachep;
1585 mutex_lock(&cache_chain_mutex);
1586 list_for_each_entry(cachep, &cache_chain, next)
1587 if (enable_cpucache(cachep))
1588 BUG();
1589 mutex_unlock(&cache_chain_mutex);
1592 /* Annotate slab for lockdep -- annotate the malloc caches */
1593 init_lock_keys();
1596 /* Done! */
1597 g_cpucache_up = FULL;
1600 * Register a cpu startup notifier callback that initializes
1601 * cpu_cache_get for all new cpus
1603 register_cpu_notifier(&cpucache_notifier);
1606 * The reap timers are started later, with a module init call: That part
1607 * of the kernel is not yet operational.
1611 static int __init cpucache_init(void)
1613 int cpu;
1616 * Register the timers that return unneeded pages to the page allocator
1618 for_each_online_cpu(cpu)
1619 start_cpu_timer(cpu);
1620 return 0;
1622 __initcall(cpucache_init);
1625 * Interface to system's page allocator. No need to hold the cache-lock.
1627 * If we requested dmaable memory, we will get it. Even if we
1628 * did not request dmaable memory, we might get it, but that
1629 * would be relatively rare and ignorable.
1631 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1633 struct page *page;
1634 int nr_pages;
1635 int i;
1637 #ifndef CONFIG_MMU
1639 * Nommu uses slab's for process anonymous memory allocations, and thus
1640 * requires __GFP_COMP to properly refcount higher order allocations
1642 flags |= __GFP_COMP;
1643 #endif
1645 flags |= cachep->gfpflags;
1646 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1647 flags |= __GFP_RECLAIMABLE;
1649 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1650 if (!page)
1651 return NULL;
1653 nr_pages = (1 << cachep->gfporder);
1654 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1655 add_zone_page_state(page_zone(page),
1656 NR_SLAB_RECLAIMABLE, nr_pages);
1657 else
1658 add_zone_page_state(page_zone(page),
1659 NR_SLAB_UNRECLAIMABLE, nr_pages);
1660 for (i = 0; i < nr_pages; i++)
1661 __SetPageSlab(page + i);
1662 return page_address(page);
1666 * Interface to system's page release.
1668 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1670 unsigned long i = (1 << cachep->gfporder);
1671 struct page *page = virt_to_page(addr);
1672 const unsigned long nr_freed = i;
1674 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1675 sub_zone_page_state(page_zone(page),
1676 NR_SLAB_RECLAIMABLE, nr_freed);
1677 else
1678 sub_zone_page_state(page_zone(page),
1679 NR_SLAB_UNRECLAIMABLE, nr_freed);
1680 while (i--) {
1681 BUG_ON(!PageSlab(page));
1682 __ClearPageSlab(page);
1683 page++;
1685 if (current->reclaim_state)
1686 current->reclaim_state->reclaimed_slab += nr_freed;
1687 free_pages((unsigned long)addr, cachep->gfporder);
1690 static void kmem_rcu_free(struct rcu_head *head)
1692 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1693 struct kmem_cache *cachep = slab_rcu->cachep;
1695 kmem_freepages(cachep, slab_rcu->addr);
1696 if (OFF_SLAB(cachep))
1697 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1700 #if DEBUG
1702 #ifdef CONFIG_DEBUG_PAGEALLOC
1703 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1704 unsigned long caller)
1706 int size = obj_size(cachep);
1708 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1710 if (size < 5 * sizeof(unsigned long))
1711 return;
1713 *addr++ = 0x12345678;
1714 *addr++ = caller;
1715 *addr++ = smp_processor_id();
1716 size -= 3 * sizeof(unsigned long);
1718 unsigned long *sptr = &caller;
1719 unsigned long svalue;
1721 while (!kstack_end(sptr)) {
1722 svalue = *sptr++;
1723 if (kernel_text_address(svalue)) {
1724 *addr++ = svalue;
1725 size -= sizeof(unsigned long);
1726 if (size <= sizeof(unsigned long))
1727 break;
1732 *addr++ = 0x87654321;
1734 #endif
1736 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1738 int size = obj_size(cachep);
1739 addr = &((char *)addr)[obj_offset(cachep)];
1741 memset(addr, val, size);
1742 *(unsigned char *)(addr + size - 1) = POISON_END;
1745 static void dump_line(char *data, int offset, int limit)
1747 int i;
1748 unsigned char error = 0;
1749 int bad_count = 0;
1751 printk(KERN_ERR "%03x:", offset);
1752 for (i = 0; i < limit; i++) {
1753 if (data[offset + i] != POISON_FREE) {
1754 error = data[offset + i];
1755 bad_count++;
1757 printk(" %02x", (unsigned char)data[offset + i]);
1759 printk("\n");
1761 if (bad_count == 1) {
1762 error ^= POISON_FREE;
1763 if (!(error & (error - 1))) {
1764 printk(KERN_ERR "Single bit error detected. Probably "
1765 "bad RAM.\n");
1766 #ifdef CONFIG_X86
1767 printk(KERN_ERR "Run memtest86+ or a similar memory "
1768 "test tool.\n");
1769 #else
1770 printk(KERN_ERR "Run a memory test tool.\n");
1771 #endif
1775 #endif
1777 #if DEBUG
1779 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1781 int i, size;
1782 char *realobj;
1784 if (cachep->flags & SLAB_RED_ZONE) {
1785 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1786 *dbg_redzone1(cachep, objp),
1787 *dbg_redzone2(cachep, objp));
1790 if (cachep->flags & SLAB_STORE_USER) {
1791 printk(KERN_ERR "Last user: [<%p>]",
1792 *dbg_userword(cachep, objp));
1793 print_symbol("(%s)",
1794 (unsigned long)*dbg_userword(cachep, objp));
1795 printk("\n");
1797 realobj = (char *)objp + obj_offset(cachep);
1798 size = obj_size(cachep);
1799 for (i = 0; i < size && lines; i += 16, lines--) {
1800 int limit;
1801 limit = 16;
1802 if (i + limit > size)
1803 limit = size - i;
1804 dump_line(realobj, i, limit);
1808 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1810 char *realobj;
1811 int size, i;
1812 int lines = 0;
1814 realobj = (char *)objp + obj_offset(cachep);
1815 size = obj_size(cachep);
1817 for (i = 0; i < size; i++) {
1818 char exp = POISON_FREE;
1819 if (i == size - 1)
1820 exp = POISON_END;
1821 if (realobj[i] != exp) {
1822 int limit;
1823 /* Mismatch ! */
1824 /* Print header */
1825 if (lines == 0) {
1826 printk(KERN_ERR
1827 "Slab corruption: %s start=%p, len=%d\n",
1828 cachep->name, realobj, size);
1829 print_objinfo(cachep, objp, 0);
1831 /* Hexdump the affected line */
1832 i = (i / 16) * 16;
1833 limit = 16;
1834 if (i + limit > size)
1835 limit = size - i;
1836 dump_line(realobj, i, limit);
1837 i += 16;
1838 lines++;
1839 /* Limit to 5 lines */
1840 if (lines > 5)
1841 break;
1844 if (lines != 0) {
1845 /* Print some data about the neighboring objects, if they
1846 * exist:
1848 struct slab *slabp = virt_to_slab(objp);
1849 unsigned int objnr;
1851 objnr = obj_to_index(cachep, slabp, objp);
1852 if (objnr) {
1853 objp = index_to_obj(cachep, slabp, objnr - 1);
1854 realobj = (char *)objp + obj_offset(cachep);
1855 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1856 realobj, size);
1857 print_objinfo(cachep, objp, 2);
1859 if (objnr + 1 < cachep->num) {
1860 objp = index_to_obj(cachep, slabp, objnr + 1);
1861 realobj = (char *)objp + obj_offset(cachep);
1862 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1863 realobj, size);
1864 print_objinfo(cachep, objp, 2);
1868 #endif
1870 #if DEBUG
1872 * slab_destroy_objs - destroy a slab and its objects
1873 * @cachep: cache pointer being destroyed
1874 * @slabp: slab pointer being destroyed
1876 * Call the registered destructor for each object in a slab that is being
1877 * destroyed.
1879 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1881 int i;
1882 for (i = 0; i < cachep->num; i++) {
1883 void *objp = index_to_obj(cachep, slabp, i);
1885 if (cachep->flags & SLAB_POISON) {
1886 #ifdef CONFIG_DEBUG_PAGEALLOC
1887 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1888 OFF_SLAB(cachep))
1889 kernel_map_pages(virt_to_page(objp),
1890 cachep->buffer_size / PAGE_SIZE, 1);
1891 else
1892 check_poison_obj(cachep, objp);
1893 #else
1894 check_poison_obj(cachep, objp);
1895 #endif
1897 if (cachep->flags & SLAB_RED_ZONE) {
1898 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1899 slab_error(cachep, "start of a freed object "
1900 "was overwritten");
1901 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1902 slab_error(cachep, "end of a freed object "
1903 "was overwritten");
1907 #else
1908 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1911 #endif
1914 * slab_destroy - destroy and release all objects in a slab
1915 * @cachep: cache pointer being destroyed
1916 * @slabp: slab pointer being destroyed
1918 * Destroy all the objs in a slab, and release the mem back to the system.
1919 * Before calling the slab must have been unlinked from the cache. The
1920 * cache-lock is not held/needed.
1922 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1924 void *addr = slabp->s_mem - slabp->colouroff;
1926 slab_destroy_objs(cachep, slabp);
1927 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1928 struct slab_rcu *slab_rcu;
1930 slab_rcu = (struct slab_rcu *)slabp;
1931 slab_rcu->cachep = cachep;
1932 slab_rcu->addr = addr;
1933 call_rcu(&slab_rcu->head, kmem_rcu_free);
1934 } else {
1935 kmem_freepages(cachep, addr);
1936 if (OFF_SLAB(cachep))
1937 kmem_cache_free(cachep->slabp_cache, slabp);
1942 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1943 * size of kmem_list3.
1945 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1947 int node;
1949 for_each_node_state(node, N_NORMAL_MEMORY) {
1950 cachep->nodelists[node] = &initkmem_list3[index + node];
1951 cachep->nodelists[node]->next_reap = jiffies +
1952 REAPTIMEOUT_LIST3 +
1953 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1957 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1959 int i;
1960 struct kmem_list3 *l3;
1962 for_each_online_cpu(i)
1963 kfree(cachep->array[i]);
1965 /* NUMA: free the list3 structures */
1966 for_each_online_node(i) {
1967 l3 = cachep->nodelists[i];
1968 if (l3) {
1969 kfree(l3->shared);
1970 free_alien_cache(l3->alien);
1971 kfree(l3);
1974 kmem_cache_free(&cache_cache, cachep);
1979 * calculate_slab_order - calculate size (page order) of slabs
1980 * @cachep: pointer to the cache that is being created
1981 * @size: size of objects to be created in this cache.
1982 * @align: required alignment for the objects.
1983 * @flags: slab allocation flags
1985 * Also calculates the number of objects per slab.
1987 * This could be made much more intelligent. For now, try to avoid using
1988 * high order pages for slabs. When the gfp() functions are more friendly
1989 * towards high-order requests, this should be changed.
1991 static size_t calculate_slab_order(struct kmem_cache *cachep,
1992 size_t size, size_t align, unsigned long flags)
1994 unsigned long offslab_limit;
1995 size_t left_over = 0;
1996 int gfporder;
1998 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1999 unsigned int num;
2000 size_t remainder;
2002 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2003 if (!num)
2004 continue;
2006 if (flags & CFLGS_OFF_SLAB) {
2008 * Max number of objs-per-slab for caches which
2009 * use off-slab slabs. Needed to avoid a possible
2010 * looping condition in cache_grow().
2012 offslab_limit = size - sizeof(struct slab);
2013 offslab_limit /= sizeof(kmem_bufctl_t);
2015 if (num > offslab_limit)
2016 break;
2019 /* Found something acceptable - save it away */
2020 cachep->num = num;
2021 cachep->gfporder = gfporder;
2022 left_over = remainder;
2025 * A VFS-reclaimable slab tends to have most allocations
2026 * as GFP_NOFS and we really don't want to have to be allocating
2027 * higher-order pages when we are unable to shrink dcache.
2029 if (flags & SLAB_RECLAIM_ACCOUNT)
2030 break;
2033 * Large number of objects is good, but very large slabs are
2034 * currently bad for the gfp()s.
2036 if (gfporder >= slab_break_gfp_order)
2037 break;
2040 * Acceptable internal fragmentation?
2042 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2043 break;
2045 return left_over;
2048 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2050 if (g_cpucache_up == FULL)
2051 return enable_cpucache(cachep);
2053 if (g_cpucache_up == NONE) {
2055 * Note: the first kmem_cache_create must create the cache
2056 * that's used by kmalloc(24), otherwise the creation of
2057 * further caches will BUG().
2059 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2062 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2063 * the first cache, then we need to set up all its list3s,
2064 * otherwise the creation of further caches will BUG().
2066 set_up_list3s(cachep, SIZE_AC);
2067 if (INDEX_AC == INDEX_L3)
2068 g_cpucache_up = PARTIAL_L3;
2069 else
2070 g_cpucache_up = PARTIAL_AC;
2071 } else {
2072 cachep->array[smp_processor_id()] =
2073 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2075 if (g_cpucache_up == PARTIAL_AC) {
2076 set_up_list3s(cachep, SIZE_L3);
2077 g_cpucache_up = PARTIAL_L3;
2078 } else {
2079 int node;
2080 for_each_node_state(node, N_NORMAL_MEMORY) {
2081 cachep->nodelists[node] =
2082 kmalloc_node(sizeof(struct kmem_list3),
2083 GFP_KERNEL, node);
2084 BUG_ON(!cachep->nodelists[node]);
2085 kmem_list3_init(cachep->nodelists[node]);
2089 cachep->nodelists[numa_node_id()]->next_reap =
2090 jiffies + REAPTIMEOUT_LIST3 +
2091 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2093 cpu_cache_get(cachep)->avail = 0;
2094 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2095 cpu_cache_get(cachep)->batchcount = 1;
2096 cpu_cache_get(cachep)->touched = 0;
2097 cachep->batchcount = 1;
2098 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2099 return 0;
2103 * kmem_cache_create - Create a cache.
2104 * @name: A string which is used in /proc/slabinfo to identify this cache.
2105 * @size: The size of objects to be created in this cache.
2106 * @align: The required alignment for the objects.
2107 * @flags: SLAB flags
2108 * @ctor: A constructor for the objects.
2110 * Returns a ptr to the cache on success, NULL on failure.
2111 * Cannot be called within a int, but can be interrupted.
2112 * The @ctor is run when new pages are allocated by the cache.
2114 * @name must be valid until the cache is destroyed. This implies that
2115 * the module calling this has to destroy the cache before getting unloaded.
2117 * The flags are
2119 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2120 * to catch references to uninitialised memory.
2122 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2123 * for buffer overruns.
2125 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2126 * cacheline. This can be beneficial if you're counting cycles as closely
2127 * as davem.
2129 struct kmem_cache *
2130 kmem_cache_create (const char *name, size_t size, size_t align,
2131 unsigned long flags,
2132 void (*ctor)(void*, struct kmem_cache *, unsigned long))
2134 size_t left_over, slab_size, ralign;
2135 struct kmem_cache *cachep = NULL, *pc;
2138 * Sanity checks... these are all serious usage bugs.
2140 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2141 size > KMALLOC_MAX_SIZE) {
2142 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2143 name);
2144 BUG();
2148 * We use cache_chain_mutex to ensure a consistent view of
2149 * cpu_online_map as well. Please see cpuup_callback
2151 mutex_lock(&cache_chain_mutex);
2153 list_for_each_entry(pc, &cache_chain, next) {
2154 char tmp;
2155 int res;
2158 * This happens when the module gets unloaded and doesn't
2159 * destroy its slab cache and no-one else reuses the vmalloc
2160 * area of the module. Print a warning.
2162 res = probe_kernel_address(pc->name, tmp);
2163 if (res) {
2164 printk(KERN_ERR
2165 "SLAB: cache with size %d has lost its name\n",
2166 pc->buffer_size);
2167 continue;
2170 if (!strcmp(pc->name, name)) {
2171 printk(KERN_ERR
2172 "kmem_cache_create: duplicate cache %s\n", name);
2173 dump_stack();
2174 goto oops;
2178 #if DEBUG
2179 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2180 #if FORCED_DEBUG
2182 * Enable redzoning and last user accounting, except for caches with
2183 * large objects, if the increased size would increase the object size
2184 * above the next power of two: caches with object sizes just above a
2185 * power of two have a significant amount of internal fragmentation.
2187 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2188 2 * sizeof(unsigned long long)))
2189 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2190 if (!(flags & SLAB_DESTROY_BY_RCU))
2191 flags |= SLAB_POISON;
2192 #endif
2193 if (flags & SLAB_DESTROY_BY_RCU)
2194 BUG_ON(flags & SLAB_POISON);
2195 #endif
2197 * Always checks flags, a caller might be expecting debug support which
2198 * isn't available.
2200 BUG_ON(flags & ~CREATE_MASK);
2203 * Check that size is in terms of words. This is needed to avoid
2204 * unaligned accesses for some archs when redzoning is used, and makes
2205 * sure any on-slab bufctl's are also correctly aligned.
2207 if (size & (BYTES_PER_WORD - 1)) {
2208 size += (BYTES_PER_WORD - 1);
2209 size &= ~(BYTES_PER_WORD - 1);
2212 /* calculate the final buffer alignment: */
2214 /* 1) arch recommendation: can be overridden for debug */
2215 if (flags & SLAB_HWCACHE_ALIGN) {
2217 * Default alignment: as specified by the arch code. Except if
2218 * an object is really small, then squeeze multiple objects into
2219 * one cacheline.
2221 ralign = cache_line_size();
2222 while (size <= ralign / 2)
2223 ralign /= 2;
2224 } else {
2225 ralign = BYTES_PER_WORD;
2229 * Redzoning and user store require word alignment or possibly larger.
2230 * Note this will be overridden by architecture or caller mandated
2231 * alignment if either is greater than BYTES_PER_WORD.
2233 if (flags & SLAB_STORE_USER)
2234 ralign = BYTES_PER_WORD;
2236 if (flags & SLAB_RED_ZONE) {
2237 ralign = REDZONE_ALIGN;
2238 /* If redzoning, ensure that the second redzone is suitably
2239 * aligned, by adjusting the object size accordingly. */
2240 size += REDZONE_ALIGN - 1;
2241 size &= ~(REDZONE_ALIGN - 1);
2244 /* 2) arch mandated alignment */
2245 if (ralign < ARCH_SLAB_MINALIGN) {
2246 ralign = ARCH_SLAB_MINALIGN;
2248 /* 3) caller mandated alignment */
2249 if (ralign < align) {
2250 ralign = align;
2252 /* disable debug if necessary */
2253 if (ralign > __alignof__(unsigned long long))
2254 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2256 * 4) Store it.
2258 align = ralign;
2260 /* Get cache's description obj. */
2261 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2262 if (!cachep)
2263 goto oops;
2265 #if DEBUG
2266 cachep->obj_size = size;
2269 * Both debugging options require word-alignment which is calculated
2270 * into align above.
2272 if (flags & SLAB_RED_ZONE) {
2273 /* add space for red zone words */
2274 cachep->obj_offset += sizeof(unsigned long long);
2275 size += 2 * sizeof(unsigned long long);
2277 if (flags & SLAB_STORE_USER) {
2278 /* user store requires one word storage behind the end of
2279 * the real object. But if the second red zone needs to be
2280 * aligned to 64 bits, we must allow that much space.
2282 if (flags & SLAB_RED_ZONE)
2283 size += REDZONE_ALIGN;
2284 else
2285 size += BYTES_PER_WORD;
2287 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2288 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2289 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2290 cachep->obj_offset += PAGE_SIZE - size;
2291 size = PAGE_SIZE;
2293 #endif
2294 #endif
2297 * Determine if the slab management is 'on' or 'off' slab.
2298 * (bootstrapping cannot cope with offslab caches so don't do
2299 * it too early on.)
2301 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2303 * Size is large, assume best to place the slab management obj
2304 * off-slab (should allow better packing of objs).
2306 flags |= CFLGS_OFF_SLAB;
2308 size = ALIGN(size, align);
2310 left_over = calculate_slab_order(cachep, size, align, flags);
2312 if (!cachep->num) {
2313 printk(KERN_ERR
2314 "kmem_cache_create: couldn't create cache %s.\n", name);
2315 kmem_cache_free(&cache_cache, cachep);
2316 cachep = NULL;
2317 goto oops;
2319 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2320 + sizeof(struct slab), align);
2323 * If the slab has been placed off-slab, and we have enough space then
2324 * move it on-slab. This is at the expense of any extra colouring.
2326 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2327 flags &= ~CFLGS_OFF_SLAB;
2328 left_over -= slab_size;
2331 if (flags & CFLGS_OFF_SLAB) {
2332 /* really off slab. No need for manual alignment */
2333 slab_size =
2334 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2337 cachep->colour_off = cache_line_size();
2338 /* Offset must be a multiple of the alignment. */
2339 if (cachep->colour_off < align)
2340 cachep->colour_off = align;
2341 cachep->colour = left_over / cachep->colour_off;
2342 cachep->slab_size = slab_size;
2343 cachep->flags = flags;
2344 cachep->gfpflags = 0;
2345 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2346 cachep->gfpflags |= GFP_DMA;
2347 cachep->buffer_size = size;
2348 cachep->reciprocal_buffer_size = reciprocal_value(size);
2350 if (flags & CFLGS_OFF_SLAB) {
2351 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2353 * This is a possibility for one of the malloc_sizes caches.
2354 * But since we go off slab only for object size greater than
2355 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2356 * this should not happen at all.
2357 * But leave a BUG_ON for some lucky dude.
2359 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2361 cachep->ctor = ctor;
2362 cachep->name = name;
2364 if (setup_cpu_cache(cachep)) {
2365 __kmem_cache_destroy(cachep);
2366 cachep = NULL;
2367 goto oops;
2370 /* cache setup completed, link it into the list */
2371 list_add(&cachep->next, &cache_chain);
2372 oops:
2373 if (!cachep && (flags & SLAB_PANIC))
2374 panic("kmem_cache_create(): failed to create slab `%s'\n",
2375 name);
2376 mutex_unlock(&cache_chain_mutex);
2377 return cachep;
2379 EXPORT_SYMBOL(kmem_cache_create);
2381 #if DEBUG
2382 static void check_irq_off(void)
2384 BUG_ON(!irqs_disabled());
2387 static void check_irq_on(void)
2389 BUG_ON(irqs_disabled());
2392 static void check_spinlock_acquired(struct kmem_cache *cachep)
2394 #ifdef CONFIG_SMP
2395 check_irq_off();
2396 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2397 #endif
2400 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2402 #ifdef CONFIG_SMP
2403 check_irq_off();
2404 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2405 #endif
2408 #else
2409 #define check_irq_off() do { } while(0)
2410 #define check_irq_on() do { } while(0)
2411 #define check_spinlock_acquired(x) do { } while(0)
2412 #define check_spinlock_acquired_node(x, y) do { } while(0)
2413 #endif
2415 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2416 struct array_cache *ac,
2417 int force, int node);
2419 static void do_drain(void *arg)
2421 struct kmem_cache *cachep = arg;
2422 struct array_cache *ac;
2423 int node = numa_node_id();
2425 check_irq_off();
2426 ac = cpu_cache_get(cachep);
2427 spin_lock(&cachep->nodelists[node]->list_lock);
2428 free_block(cachep, ac->entry, ac->avail, node);
2429 spin_unlock(&cachep->nodelists[node]->list_lock);
2430 ac->avail = 0;
2433 static void drain_cpu_caches(struct kmem_cache *cachep)
2435 struct kmem_list3 *l3;
2436 int node;
2438 on_each_cpu(do_drain, cachep, 1, 1);
2439 check_irq_on();
2440 for_each_online_node(node) {
2441 l3 = cachep->nodelists[node];
2442 if (l3 && l3->alien)
2443 drain_alien_cache(cachep, l3->alien);
2446 for_each_online_node(node) {
2447 l3 = cachep->nodelists[node];
2448 if (l3)
2449 drain_array(cachep, l3, l3->shared, 1, node);
2454 * Remove slabs from the list of free slabs.
2455 * Specify the number of slabs to drain in tofree.
2457 * Returns the actual number of slabs released.
2459 static int drain_freelist(struct kmem_cache *cache,
2460 struct kmem_list3 *l3, int tofree)
2462 struct list_head *p;
2463 int nr_freed;
2464 struct slab *slabp;
2466 nr_freed = 0;
2467 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2469 spin_lock_irq(&l3->list_lock);
2470 p = l3->slabs_free.prev;
2471 if (p == &l3->slabs_free) {
2472 spin_unlock_irq(&l3->list_lock);
2473 goto out;
2476 slabp = list_entry(p, struct slab, list);
2477 #if DEBUG
2478 BUG_ON(slabp->inuse);
2479 #endif
2480 list_del(&slabp->list);
2482 * Safe to drop the lock. The slab is no longer linked
2483 * to the cache.
2485 l3->free_objects -= cache->num;
2486 spin_unlock_irq(&l3->list_lock);
2487 slab_destroy(cache, slabp);
2488 nr_freed++;
2490 out:
2491 return nr_freed;
2494 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2495 static int __cache_shrink(struct kmem_cache *cachep)
2497 int ret = 0, i = 0;
2498 struct kmem_list3 *l3;
2500 drain_cpu_caches(cachep);
2502 check_irq_on();
2503 for_each_online_node(i) {
2504 l3 = cachep->nodelists[i];
2505 if (!l3)
2506 continue;
2508 drain_freelist(cachep, l3, l3->free_objects);
2510 ret += !list_empty(&l3->slabs_full) ||
2511 !list_empty(&l3->slabs_partial);
2513 return (ret ? 1 : 0);
2517 * kmem_cache_shrink - Shrink a cache.
2518 * @cachep: The cache to shrink.
2520 * Releases as many slabs as possible for a cache.
2521 * To help debugging, a zero exit status indicates all slabs were released.
2523 int kmem_cache_shrink(struct kmem_cache *cachep)
2525 int ret;
2526 BUG_ON(!cachep || in_interrupt());
2528 mutex_lock(&cache_chain_mutex);
2529 ret = __cache_shrink(cachep);
2530 mutex_unlock(&cache_chain_mutex);
2531 return ret;
2533 EXPORT_SYMBOL(kmem_cache_shrink);
2536 * kmem_cache_destroy - delete a cache
2537 * @cachep: the cache to destroy
2539 * Remove a &struct kmem_cache object from the slab cache.
2541 * It is expected this function will be called by a module when it is
2542 * unloaded. This will remove the cache completely, and avoid a duplicate
2543 * cache being allocated each time a module is loaded and unloaded, if the
2544 * module doesn't have persistent in-kernel storage across loads and unloads.
2546 * The cache must be empty before calling this function.
2548 * The caller must guarantee that noone will allocate memory from the cache
2549 * during the kmem_cache_destroy().
2551 void kmem_cache_destroy(struct kmem_cache *cachep)
2553 BUG_ON(!cachep || in_interrupt());
2555 /* Find the cache in the chain of caches. */
2556 mutex_lock(&cache_chain_mutex);
2558 * the chain is never empty, cache_cache is never destroyed
2560 list_del(&cachep->next);
2561 if (__cache_shrink(cachep)) {
2562 slab_error(cachep, "Can't free all objects");
2563 list_add(&cachep->next, &cache_chain);
2564 mutex_unlock(&cache_chain_mutex);
2565 return;
2568 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2569 synchronize_rcu();
2571 __kmem_cache_destroy(cachep);
2572 mutex_unlock(&cache_chain_mutex);
2574 EXPORT_SYMBOL(kmem_cache_destroy);
2577 * Get the memory for a slab management obj.
2578 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2579 * always come from malloc_sizes caches. The slab descriptor cannot
2580 * come from the same cache which is getting created because,
2581 * when we are searching for an appropriate cache for these
2582 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2583 * If we are creating a malloc_sizes cache here it would not be visible to
2584 * kmem_find_general_cachep till the initialization is complete.
2585 * Hence we cannot have slabp_cache same as the original cache.
2587 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2588 int colour_off, gfp_t local_flags,
2589 int nodeid)
2591 struct slab *slabp;
2593 if (OFF_SLAB(cachep)) {
2594 /* Slab management obj is off-slab. */
2595 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2596 local_flags & ~GFP_THISNODE, nodeid);
2597 if (!slabp)
2598 return NULL;
2599 } else {
2600 slabp = objp + colour_off;
2601 colour_off += cachep->slab_size;
2603 slabp->inuse = 0;
2604 slabp->colouroff = colour_off;
2605 slabp->s_mem = objp + colour_off;
2606 slabp->nodeid = nodeid;
2607 return slabp;
2610 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2612 return (kmem_bufctl_t *) (slabp + 1);
2615 static void cache_init_objs(struct kmem_cache *cachep,
2616 struct slab *slabp)
2618 int i;
2620 for (i = 0; i < cachep->num; i++) {
2621 void *objp = index_to_obj(cachep, slabp, i);
2622 #if DEBUG
2623 /* need to poison the objs? */
2624 if (cachep->flags & SLAB_POISON)
2625 poison_obj(cachep, objp, POISON_FREE);
2626 if (cachep->flags & SLAB_STORE_USER)
2627 *dbg_userword(cachep, objp) = NULL;
2629 if (cachep->flags & SLAB_RED_ZONE) {
2630 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2631 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2634 * Constructors are not allowed to allocate memory from the same
2635 * cache which they are a constructor for. Otherwise, deadlock.
2636 * They must also be threaded.
2638 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2639 cachep->ctor(objp + obj_offset(cachep), cachep,
2642 if (cachep->flags & SLAB_RED_ZONE) {
2643 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2644 slab_error(cachep, "constructor overwrote the"
2645 " end of an object");
2646 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2647 slab_error(cachep, "constructor overwrote the"
2648 " start of an object");
2650 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2651 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2652 kernel_map_pages(virt_to_page(objp),
2653 cachep->buffer_size / PAGE_SIZE, 0);
2654 #else
2655 if (cachep->ctor)
2656 cachep->ctor(objp, cachep, 0);
2657 #endif
2658 slab_bufctl(slabp)[i] = i + 1;
2660 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2661 slabp->free = 0;
2664 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2666 if (CONFIG_ZONE_DMA_FLAG) {
2667 if (flags & GFP_DMA)
2668 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2669 else
2670 BUG_ON(cachep->gfpflags & GFP_DMA);
2674 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2675 int nodeid)
2677 void *objp = index_to_obj(cachep, slabp, slabp->free);
2678 kmem_bufctl_t next;
2680 slabp->inuse++;
2681 next = slab_bufctl(slabp)[slabp->free];
2682 #if DEBUG
2683 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2684 WARN_ON(slabp->nodeid != nodeid);
2685 #endif
2686 slabp->free = next;
2688 return objp;
2691 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2692 void *objp, int nodeid)
2694 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2696 #if DEBUG
2697 /* Verify that the slab belongs to the intended node */
2698 WARN_ON(slabp->nodeid != nodeid);
2700 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2701 printk(KERN_ERR "slab: double free detected in cache "
2702 "'%s', objp %p\n", cachep->name, objp);
2703 BUG();
2705 #endif
2706 slab_bufctl(slabp)[objnr] = slabp->free;
2707 slabp->free = objnr;
2708 slabp->inuse--;
2712 * Map pages beginning at addr to the given cache and slab. This is required
2713 * for the slab allocator to be able to lookup the cache and slab of a
2714 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2716 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2717 void *addr)
2719 int nr_pages;
2720 struct page *page;
2722 page = virt_to_page(addr);
2724 nr_pages = 1;
2725 if (likely(!PageCompound(page)))
2726 nr_pages <<= cache->gfporder;
2728 do {
2729 page_set_cache(page, cache);
2730 page_set_slab(page, slab);
2731 page++;
2732 } while (--nr_pages);
2736 * Grow (by 1) the number of slabs within a cache. This is called by
2737 * kmem_cache_alloc() when there are no active objs left in a cache.
2739 static int cache_grow(struct kmem_cache *cachep,
2740 gfp_t flags, int nodeid, void *objp)
2742 struct slab *slabp;
2743 size_t offset;
2744 gfp_t local_flags;
2745 struct kmem_list3 *l3;
2748 * Be lazy and only check for valid flags here, keeping it out of the
2749 * critical path in kmem_cache_alloc().
2751 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2752 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2754 /* Take the l3 list lock to change the colour_next on this node */
2755 check_irq_off();
2756 l3 = cachep->nodelists[nodeid];
2757 spin_lock(&l3->list_lock);
2759 /* Get colour for the slab, and cal the next value. */
2760 offset = l3->colour_next;
2761 l3->colour_next++;
2762 if (l3->colour_next >= cachep->colour)
2763 l3->colour_next = 0;
2764 spin_unlock(&l3->list_lock);
2766 offset *= cachep->colour_off;
2768 if (local_flags & __GFP_WAIT)
2769 local_irq_enable();
2772 * The test for missing atomic flag is performed here, rather than
2773 * the more obvious place, simply to reduce the critical path length
2774 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2775 * will eventually be caught here (where it matters).
2777 kmem_flagcheck(cachep, flags);
2780 * Get mem for the objs. Attempt to allocate a physical page from
2781 * 'nodeid'.
2783 if (!objp)
2784 objp = kmem_getpages(cachep, local_flags, nodeid);
2785 if (!objp)
2786 goto failed;
2788 /* Get slab management. */
2789 slabp = alloc_slabmgmt(cachep, objp, offset,
2790 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2791 if (!slabp)
2792 goto opps1;
2794 slabp->nodeid = nodeid;
2795 slab_map_pages(cachep, slabp, objp);
2797 cache_init_objs(cachep, slabp);
2799 if (local_flags & __GFP_WAIT)
2800 local_irq_disable();
2801 check_irq_off();
2802 spin_lock(&l3->list_lock);
2804 /* Make slab active. */
2805 list_add_tail(&slabp->list, &(l3->slabs_free));
2806 STATS_INC_GROWN(cachep);
2807 l3->free_objects += cachep->num;
2808 spin_unlock(&l3->list_lock);
2809 return 1;
2810 opps1:
2811 kmem_freepages(cachep, objp);
2812 failed:
2813 if (local_flags & __GFP_WAIT)
2814 local_irq_disable();
2815 return 0;
2818 #if DEBUG
2821 * Perform extra freeing checks:
2822 * - detect bad pointers.
2823 * - POISON/RED_ZONE checking
2825 static void kfree_debugcheck(const void *objp)
2827 if (!virt_addr_valid(objp)) {
2828 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2829 (unsigned long)objp);
2830 BUG();
2834 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2836 unsigned long long redzone1, redzone2;
2838 redzone1 = *dbg_redzone1(cache, obj);
2839 redzone2 = *dbg_redzone2(cache, obj);
2842 * Redzone is ok.
2844 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2845 return;
2847 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2848 slab_error(cache, "double free detected");
2849 else
2850 slab_error(cache, "memory outside object was overwritten");
2852 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2853 obj, redzone1, redzone2);
2856 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2857 void *caller)
2859 struct page *page;
2860 unsigned int objnr;
2861 struct slab *slabp;
2863 objp -= obj_offset(cachep);
2864 kfree_debugcheck(objp);
2865 page = virt_to_head_page(objp);
2867 slabp = page_get_slab(page);
2869 if (cachep->flags & SLAB_RED_ZONE) {
2870 verify_redzone_free(cachep, objp);
2871 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2872 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2874 if (cachep->flags & SLAB_STORE_USER)
2875 *dbg_userword(cachep, objp) = caller;
2877 objnr = obj_to_index(cachep, slabp, objp);
2879 BUG_ON(objnr >= cachep->num);
2880 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2882 #ifdef CONFIG_DEBUG_SLAB_LEAK
2883 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2884 #endif
2885 if (cachep->flags & SLAB_POISON) {
2886 #ifdef CONFIG_DEBUG_PAGEALLOC
2887 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2888 store_stackinfo(cachep, objp, (unsigned long)caller);
2889 kernel_map_pages(virt_to_page(objp),
2890 cachep->buffer_size / PAGE_SIZE, 0);
2891 } else {
2892 poison_obj(cachep, objp, POISON_FREE);
2894 #else
2895 poison_obj(cachep, objp, POISON_FREE);
2896 #endif
2898 return objp;
2901 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2903 kmem_bufctl_t i;
2904 int entries = 0;
2906 /* Check slab's freelist to see if this obj is there. */
2907 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2908 entries++;
2909 if (entries > cachep->num || i >= cachep->num)
2910 goto bad;
2912 if (entries != cachep->num - slabp->inuse) {
2913 bad:
2914 printk(KERN_ERR "slab: Internal list corruption detected in "
2915 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2916 cachep->name, cachep->num, slabp, slabp->inuse);
2917 for (i = 0;
2918 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2919 i++) {
2920 if (i % 16 == 0)
2921 printk("\n%03x:", i);
2922 printk(" %02x", ((unsigned char *)slabp)[i]);
2924 printk("\n");
2925 BUG();
2928 #else
2929 #define kfree_debugcheck(x) do { } while(0)
2930 #define cache_free_debugcheck(x,objp,z) (objp)
2931 #define check_slabp(x,y) do { } while(0)
2932 #endif
2934 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2936 int batchcount;
2937 struct kmem_list3 *l3;
2938 struct array_cache *ac;
2939 int node;
2941 node = numa_node_id();
2943 check_irq_off();
2944 ac = cpu_cache_get(cachep);
2945 retry:
2946 batchcount = ac->batchcount;
2947 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2949 * If there was little recent activity on this cache, then
2950 * perform only a partial refill. Otherwise we could generate
2951 * refill bouncing.
2953 batchcount = BATCHREFILL_LIMIT;
2955 l3 = cachep->nodelists[node];
2957 BUG_ON(ac->avail > 0 || !l3);
2958 spin_lock(&l3->list_lock);
2960 /* See if we can refill from the shared array */
2961 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2962 goto alloc_done;
2964 while (batchcount > 0) {
2965 struct list_head *entry;
2966 struct slab *slabp;
2967 /* Get slab alloc is to come from. */
2968 entry = l3->slabs_partial.next;
2969 if (entry == &l3->slabs_partial) {
2970 l3->free_touched = 1;
2971 entry = l3->slabs_free.next;
2972 if (entry == &l3->slabs_free)
2973 goto must_grow;
2976 slabp = list_entry(entry, struct slab, list);
2977 check_slabp(cachep, slabp);
2978 check_spinlock_acquired(cachep);
2981 * The slab was either on partial or free list so
2982 * there must be at least one object available for
2983 * allocation.
2985 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2987 while (slabp->inuse < cachep->num && batchcount--) {
2988 STATS_INC_ALLOCED(cachep);
2989 STATS_INC_ACTIVE(cachep);
2990 STATS_SET_HIGH(cachep);
2992 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2993 node);
2995 check_slabp(cachep, slabp);
2997 /* move slabp to correct slabp list: */
2998 list_del(&slabp->list);
2999 if (slabp->free == BUFCTL_END)
3000 list_add(&slabp->list, &l3->slabs_full);
3001 else
3002 list_add(&slabp->list, &l3->slabs_partial);
3005 must_grow:
3006 l3->free_objects -= ac->avail;
3007 alloc_done:
3008 spin_unlock(&l3->list_lock);
3010 if (unlikely(!ac->avail)) {
3011 int x;
3012 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3014 /* cache_grow can reenable interrupts, then ac could change. */
3015 ac = cpu_cache_get(cachep);
3016 if (!x && ac->avail == 0) /* no objects in sight? abort */
3017 return NULL;
3019 if (!ac->avail) /* objects refilled by interrupt? */
3020 goto retry;
3022 ac->touched = 1;
3023 return ac->entry[--ac->avail];
3026 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3027 gfp_t flags)
3029 might_sleep_if(flags & __GFP_WAIT);
3030 #if DEBUG
3031 kmem_flagcheck(cachep, flags);
3032 #endif
3035 #if DEBUG
3036 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3037 gfp_t flags, void *objp, void *caller)
3039 if (!objp)
3040 return objp;
3041 if (cachep->flags & SLAB_POISON) {
3042 #ifdef CONFIG_DEBUG_PAGEALLOC
3043 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3044 kernel_map_pages(virt_to_page(objp),
3045 cachep->buffer_size / PAGE_SIZE, 1);
3046 else
3047 check_poison_obj(cachep, objp);
3048 #else
3049 check_poison_obj(cachep, objp);
3050 #endif
3051 poison_obj(cachep, objp, POISON_INUSE);
3053 if (cachep->flags & SLAB_STORE_USER)
3054 *dbg_userword(cachep, objp) = caller;
3056 if (cachep->flags & SLAB_RED_ZONE) {
3057 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3058 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3059 slab_error(cachep, "double free, or memory outside"
3060 " object was overwritten");
3061 printk(KERN_ERR
3062 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3063 objp, *dbg_redzone1(cachep, objp),
3064 *dbg_redzone2(cachep, objp));
3066 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3067 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3069 #ifdef CONFIG_DEBUG_SLAB_LEAK
3071 struct slab *slabp;
3072 unsigned objnr;
3074 slabp = page_get_slab(virt_to_head_page(objp));
3075 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3076 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3078 #endif
3079 objp += obj_offset(cachep);
3080 if (cachep->ctor && cachep->flags & SLAB_POISON)
3081 cachep->ctor(objp, cachep, 0);
3082 #if ARCH_SLAB_MINALIGN
3083 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3084 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3085 objp, ARCH_SLAB_MINALIGN);
3087 #endif
3088 return objp;
3090 #else
3091 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3092 #endif
3094 #ifdef CONFIG_FAILSLAB
3096 static struct failslab_attr {
3098 struct fault_attr attr;
3100 u32 ignore_gfp_wait;
3101 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3102 struct dentry *ignore_gfp_wait_file;
3103 #endif
3105 } failslab = {
3106 .attr = FAULT_ATTR_INITIALIZER,
3107 .ignore_gfp_wait = 1,
3110 static int __init setup_failslab(char *str)
3112 return setup_fault_attr(&failslab.attr, str);
3114 __setup("failslab=", setup_failslab);
3116 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3118 if (cachep == &cache_cache)
3119 return 0;
3120 if (flags & __GFP_NOFAIL)
3121 return 0;
3122 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3123 return 0;
3125 return should_fail(&failslab.attr, obj_size(cachep));
3128 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3130 static int __init failslab_debugfs(void)
3132 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3133 struct dentry *dir;
3134 int err;
3136 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3137 if (err)
3138 return err;
3139 dir = failslab.attr.dentries.dir;
3141 failslab.ignore_gfp_wait_file =
3142 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3143 &failslab.ignore_gfp_wait);
3145 if (!failslab.ignore_gfp_wait_file) {
3146 err = -ENOMEM;
3147 debugfs_remove(failslab.ignore_gfp_wait_file);
3148 cleanup_fault_attr_dentries(&failslab.attr);
3151 return err;
3154 late_initcall(failslab_debugfs);
3156 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3158 #else /* CONFIG_FAILSLAB */
3160 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3162 return 0;
3165 #endif /* CONFIG_FAILSLAB */
3167 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3169 void *objp;
3170 struct array_cache *ac;
3172 check_irq_off();
3174 ac = cpu_cache_get(cachep);
3175 if (likely(ac->avail)) {
3176 STATS_INC_ALLOCHIT(cachep);
3177 ac->touched = 1;
3178 objp = ac->entry[--ac->avail];
3179 } else {
3180 STATS_INC_ALLOCMISS(cachep);
3181 objp = cache_alloc_refill(cachep, flags);
3183 return objp;
3186 #ifdef CONFIG_NUMA
3188 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3190 * If we are in_interrupt, then process context, including cpusets and
3191 * mempolicy, may not apply and should not be used for allocation policy.
3193 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3195 int nid_alloc, nid_here;
3197 if (in_interrupt() || (flags & __GFP_THISNODE))
3198 return NULL;
3199 nid_alloc = nid_here = numa_node_id();
3200 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3201 nid_alloc = cpuset_mem_spread_node();
3202 else if (current->mempolicy)
3203 nid_alloc = slab_node(current->mempolicy);
3204 if (nid_alloc != nid_here)
3205 return ____cache_alloc_node(cachep, flags, nid_alloc);
3206 return NULL;
3210 * Fallback function if there was no memory available and no objects on a
3211 * certain node and fall back is permitted. First we scan all the
3212 * available nodelists for available objects. If that fails then we
3213 * perform an allocation without specifying a node. This allows the page
3214 * allocator to do its reclaim / fallback magic. We then insert the
3215 * slab into the proper nodelist and then allocate from it.
3217 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3219 struct zonelist *zonelist;
3220 gfp_t local_flags;
3221 struct zone **z;
3222 void *obj = NULL;
3223 int nid;
3225 if (flags & __GFP_THISNODE)
3226 return NULL;
3228 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3229 ->node_zonelists[gfp_zone(flags)];
3230 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3232 retry:
3234 * Look through allowed nodes for objects available
3235 * from existing per node queues.
3237 for (z = zonelist->zones; *z && !obj; z++) {
3238 nid = zone_to_nid(*z);
3240 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3241 cache->nodelists[nid] &&
3242 cache->nodelists[nid]->free_objects)
3243 obj = ____cache_alloc_node(cache,
3244 flags | GFP_THISNODE, nid);
3247 if (!obj) {
3249 * This allocation will be performed within the constraints
3250 * of the current cpuset / memory policy requirements.
3251 * We may trigger various forms of reclaim on the allowed
3252 * set and go into memory reserves if necessary.
3254 if (local_flags & __GFP_WAIT)
3255 local_irq_enable();
3256 kmem_flagcheck(cache, flags);
3257 obj = kmem_getpages(cache, flags, -1);
3258 if (local_flags & __GFP_WAIT)
3259 local_irq_disable();
3260 if (obj) {
3262 * Insert into the appropriate per node queues
3264 nid = page_to_nid(virt_to_page(obj));
3265 if (cache_grow(cache, flags, nid, obj)) {
3266 obj = ____cache_alloc_node(cache,
3267 flags | GFP_THISNODE, nid);
3268 if (!obj)
3270 * Another processor may allocate the
3271 * objects in the slab since we are
3272 * not holding any locks.
3274 goto retry;
3275 } else {
3276 /* cache_grow already freed obj */
3277 obj = NULL;
3281 return obj;
3285 * A interface to enable slab creation on nodeid
3287 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3288 int nodeid)
3290 struct list_head *entry;
3291 struct slab *slabp;
3292 struct kmem_list3 *l3;
3293 void *obj;
3294 int x;
3296 l3 = cachep->nodelists[nodeid];
3297 BUG_ON(!l3);
3299 retry:
3300 check_irq_off();
3301 spin_lock(&l3->list_lock);
3302 entry = l3->slabs_partial.next;
3303 if (entry == &l3->slabs_partial) {
3304 l3->free_touched = 1;
3305 entry = l3->slabs_free.next;
3306 if (entry == &l3->slabs_free)
3307 goto must_grow;
3310 slabp = list_entry(entry, struct slab, list);
3311 check_spinlock_acquired_node(cachep, nodeid);
3312 check_slabp(cachep, slabp);
3314 STATS_INC_NODEALLOCS(cachep);
3315 STATS_INC_ACTIVE(cachep);
3316 STATS_SET_HIGH(cachep);
3318 BUG_ON(slabp->inuse == cachep->num);
3320 obj = slab_get_obj(cachep, slabp, nodeid);
3321 check_slabp(cachep, slabp);
3322 l3->free_objects--;
3323 /* move slabp to correct slabp list: */
3324 list_del(&slabp->list);
3326 if (slabp->free == BUFCTL_END)
3327 list_add(&slabp->list, &l3->slabs_full);
3328 else
3329 list_add(&slabp->list, &l3->slabs_partial);
3331 spin_unlock(&l3->list_lock);
3332 goto done;
3334 must_grow:
3335 spin_unlock(&l3->list_lock);
3336 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3337 if (x)
3338 goto retry;
3340 return fallback_alloc(cachep, flags);
3342 done:
3343 return obj;
3347 * kmem_cache_alloc_node - Allocate an object on the specified node
3348 * @cachep: The cache to allocate from.
3349 * @flags: See kmalloc().
3350 * @nodeid: node number of the target node.
3351 * @caller: return address of caller, used for debug information
3353 * Identical to kmem_cache_alloc but it will allocate memory on the given
3354 * node, which can improve the performance for cpu bound structures.
3356 * Fallback to other node is possible if __GFP_THISNODE is not set.
3358 static __always_inline void *
3359 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3360 void *caller)
3362 unsigned long save_flags;
3363 void *ptr;
3365 if (should_failslab(cachep, flags))
3366 return NULL;
3368 cache_alloc_debugcheck_before(cachep, flags);
3369 local_irq_save(save_flags);
3371 if (unlikely(nodeid == -1))
3372 nodeid = numa_node_id();
3374 if (unlikely(!cachep->nodelists[nodeid])) {
3375 /* Node not bootstrapped yet */
3376 ptr = fallback_alloc(cachep, flags);
3377 goto out;
3380 if (nodeid == numa_node_id()) {
3382 * Use the locally cached objects if possible.
3383 * However ____cache_alloc does not allow fallback
3384 * to other nodes. It may fail while we still have
3385 * objects on other nodes available.
3387 ptr = ____cache_alloc(cachep, flags);
3388 if (ptr)
3389 goto out;
3391 /* ___cache_alloc_node can fall back to other nodes */
3392 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3393 out:
3394 local_irq_restore(save_flags);
3395 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3397 if (unlikely((flags & __GFP_ZERO) && ptr))
3398 memset(ptr, 0, obj_size(cachep));
3400 return ptr;
3403 static __always_inline void *
3404 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3406 void *objp;
3408 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3409 objp = alternate_node_alloc(cache, flags);
3410 if (objp)
3411 goto out;
3413 objp = ____cache_alloc(cache, flags);
3416 * We may just have run out of memory on the local node.
3417 * ____cache_alloc_node() knows how to locate memory on other nodes
3419 if (!objp)
3420 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3422 out:
3423 return objp;
3425 #else
3427 static __always_inline void *
3428 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3430 return ____cache_alloc(cachep, flags);
3433 #endif /* CONFIG_NUMA */
3435 static __always_inline void *
3436 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3438 unsigned long save_flags;
3439 void *objp;
3441 if (should_failslab(cachep, flags))
3442 return NULL;
3444 cache_alloc_debugcheck_before(cachep, flags);
3445 local_irq_save(save_flags);
3446 objp = __do_cache_alloc(cachep, flags);
3447 local_irq_restore(save_flags);
3448 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3449 prefetchw(objp);
3451 if (unlikely((flags & __GFP_ZERO) && objp))
3452 memset(objp, 0, obj_size(cachep));
3454 return objp;
3458 * Caller needs to acquire correct kmem_list's list_lock
3460 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3461 int node)
3463 int i;
3464 struct kmem_list3 *l3;
3466 for (i = 0; i < nr_objects; i++) {
3467 void *objp = objpp[i];
3468 struct slab *slabp;
3470 slabp = virt_to_slab(objp);
3471 l3 = cachep->nodelists[node];
3472 list_del(&slabp->list);
3473 check_spinlock_acquired_node(cachep, node);
3474 check_slabp(cachep, slabp);
3475 slab_put_obj(cachep, slabp, objp, node);
3476 STATS_DEC_ACTIVE(cachep);
3477 l3->free_objects++;
3478 check_slabp(cachep, slabp);
3480 /* fixup slab chains */
3481 if (slabp->inuse == 0) {
3482 if (l3->free_objects > l3->free_limit) {
3483 l3->free_objects -= cachep->num;
3484 /* No need to drop any previously held
3485 * lock here, even if we have a off-slab slab
3486 * descriptor it is guaranteed to come from
3487 * a different cache, refer to comments before
3488 * alloc_slabmgmt.
3490 slab_destroy(cachep, slabp);
3491 } else {
3492 list_add(&slabp->list, &l3->slabs_free);
3494 } else {
3495 /* Unconditionally move a slab to the end of the
3496 * partial list on free - maximum time for the
3497 * other objects to be freed, too.
3499 list_add_tail(&slabp->list, &l3->slabs_partial);
3504 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3506 int batchcount;
3507 struct kmem_list3 *l3;
3508 int node = numa_node_id();
3510 batchcount = ac->batchcount;
3511 #if DEBUG
3512 BUG_ON(!batchcount || batchcount > ac->avail);
3513 #endif
3514 check_irq_off();
3515 l3 = cachep->nodelists[node];
3516 spin_lock(&l3->list_lock);
3517 if (l3->shared) {
3518 struct array_cache *shared_array = l3->shared;
3519 int max = shared_array->limit - shared_array->avail;
3520 if (max) {
3521 if (batchcount > max)
3522 batchcount = max;
3523 memcpy(&(shared_array->entry[shared_array->avail]),
3524 ac->entry, sizeof(void *) * batchcount);
3525 shared_array->avail += batchcount;
3526 goto free_done;
3530 free_block(cachep, ac->entry, batchcount, node);
3531 free_done:
3532 #if STATS
3534 int i = 0;
3535 struct list_head *p;
3537 p = l3->slabs_free.next;
3538 while (p != &(l3->slabs_free)) {
3539 struct slab *slabp;
3541 slabp = list_entry(p, struct slab, list);
3542 BUG_ON(slabp->inuse);
3544 i++;
3545 p = p->next;
3547 STATS_SET_FREEABLE(cachep, i);
3549 #endif
3550 spin_unlock(&l3->list_lock);
3551 ac->avail -= batchcount;
3552 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3556 * Release an obj back to its cache. If the obj has a constructed state, it must
3557 * be in this state _before_ it is released. Called with disabled ints.
3559 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3561 struct array_cache *ac = cpu_cache_get(cachep);
3563 check_irq_off();
3564 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3567 * Skip calling cache_free_alien() when the platform is not numa.
3568 * This will avoid cache misses that happen while accessing slabp (which
3569 * is per page memory reference) to get nodeid. Instead use a global
3570 * variable to skip the call, which is mostly likely to be present in
3571 * the cache.
3573 if (numa_platform && cache_free_alien(cachep, objp))
3574 return;
3576 if (likely(ac->avail < ac->limit)) {
3577 STATS_INC_FREEHIT(cachep);
3578 ac->entry[ac->avail++] = objp;
3579 return;
3580 } else {
3581 STATS_INC_FREEMISS(cachep);
3582 cache_flusharray(cachep, ac);
3583 ac->entry[ac->avail++] = objp;
3588 * kmem_cache_alloc - Allocate an object
3589 * @cachep: The cache to allocate from.
3590 * @flags: See kmalloc().
3592 * Allocate an object from this cache. The flags are only relevant
3593 * if the cache has no available objects.
3595 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3597 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3599 EXPORT_SYMBOL(kmem_cache_alloc);
3602 * kmem_ptr_validate - check if an untrusted pointer might
3603 * be a slab entry.
3604 * @cachep: the cache we're checking against
3605 * @ptr: pointer to validate
3607 * This verifies that the untrusted pointer looks sane:
3608 * it is _not_ a guarantee that the pointer is actually
3609 * part of the slab cache in question, but it at least
3610 * validates that the pointer can be dereferenced and
3611 * looks half-way sane.
3613 * Currently only used for dentry validation.
3615 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3617 unsigned long addr = (unsigned long)ptr;
3618 unsigned long min_addr = PAGE_OFFSET;
3619 unsigned long align_mask = BYTES_PER_WORD - 1;
3620 unsigned long size = cachep->buffer_size;
3621 struct page *page;
3623 if (unlikely(addr < min_addr))
3624 goto out;
3625 if (unlikely(addr > (unsigned long)high_memory - size))
3626 goto out;
3627 if (unlikely(addr & align_mask))
3628 goto out;
3629 if (unlikely(!kern_addr_valid(addr)))
3630 goto out;
3631 if (unlikely(!kern_addr_valid(addr + size - 1)))
3632 goto out;
3633 page = virt_to_page(ptr);
3634 if (unlikely(!PageSlab(page)))
3635 goto out;
3636 if (unlikely(page_get_cache(page) != cachep))
3637 goto out;
3638 return 1;
3639 out:
3640 return 0;
3643 #ifdef CONFIG_NUMA
3644 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3646 return __cache_alloc_node(cachep, flags, nodeid,
3647 __builtin_return_address(0));
3649 EXPORT_SYMBOL(kmem_cache_alloc_node);
3651 static __always_inline void *
3652 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3654 struct kmem_cache *cachep;
3656 cachep = kmem_find_general_cachep(size, flags);
3657 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3658 return cachep;
3659 return kmem_cache_alloc_node(cachep, flags, node);
3662 #ifdef CONFIG_DEBUG_SLAB
3663 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3665 return __do_kmalloc_node(size, flags, node,
3666 __builtin_return_address(0));
3668 EXPORT_SYMBOL(__kmalloc_node);
3670 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3671 int node, void *caller)
3673 return __do_kmalloc_node(size, flags, node, caller);
3675 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3676 #else
3677 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3679 return __do_kmalloc_node(size, flags, node, NULL);
3681 EXPORT_SYMBOL(__kmalloc_node);
3682 #endif /* CONFIG_DEBUG_SLAB */
3683 #endif /* CONFIG_NUMA */
3686 * __do_kmalloc - allocate memory
3687 * @size: how many bytes of memory are required.
3688 * @flags: the type of memory to allocate (see kmalloc).
3689 * @caller: function caller for debug tracking of the caller
3691 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3692 void *caller)
3694 struct kmem_cache *cachep;
3696 /* If you want to save a few bytes .text space: replace
3697 * __ with kmem_.
3698 * Then kmalloc uses the uninlined functions instead of the inline
3699 * functions.
3701 cachep = __find_general_cachep(size, flags);
3702 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3703 return cachep;
3704 return __cache_alloc(cachep, flags, caller);
3708 #ifdef CONFIG_DEBUG_SLAB
3709 void *__kmalloc(size_t size, gfp_t flags)
3711 return __do_kmalloc(size, flags, __builtin_return_address(0));
3713 EXPORT_SYMBOL(__kmalloc);
3715 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3717 return __do_kmalloc(size, flags, caller);
3719 EXPORT_SYMBOL(__kmalloc_track_caller);
3721 #else
3722 void *__kmalloc(size_t size, gfp_t flags)
3724 return __do_kmalloc(size, flags, NULL);
3726 EXPORT_SYMBOL(__kmalloc);
3727 #endif
3730 * kmem_cache_free - Deallocate an object
3731 * @cachep: The cache the allocation was from.
3732 * @objp: The previously allocated object.
3734 * Free an object which was previously allocated from this
3735 * cache.
3737 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3739 unsigned long flags;
3741 BUG_ON(virt_to_cache(objp) != cachep);
3743 local_irq_save(flags);
3744 debug_check_no_locks_freed(objp, obj_size(cachep));
3745 __cache_free(cachep, objp);
3746 local_irq_restore(flags);
3748 EXPORT_SYMBOL(kmem_cache_free);
3751 * kfree - free previously allocated memory
3752 * @objp: pointer returned by kmalloc.
3754 * If @objp is NULL, no operation is performed.
3756 * Don't free memory not originally allocated by kmalloc()
3757 * or you will run into trouble.
3759 void kfree(const void *objp)
3761 struct kmem_cache *c;
3762 unsigned long flags;
3764 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3765 return;
3766 local_irq_save(flags);
3767 kfree_debugcheck(objp);
3768 c = virt_to_cache(objp);
3769 debug_check_no_locks_freed(objp, obj_size(c));
3770 __cache_free(c, (void *)objp);
3771 local_irq_restore(flags);
3773 EXPORT_SYMBOL(kfree);
3775 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3777 return obj_size(cachep);
3779 EXPORT_SYMBOL(kmem_cache_size);
3781 const char *kmem_cache_name(struct kmem_cache *cachep)
3783 return cachep->name;
3785 EXPORT_SYMBOL_GPL(kmem_cache_name);
3788 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3790 static int alloc_kmemlist(struct kmem_cache *cachep)
3792 int node;
3793 struct kmem_list3 *l3;
3794 struct array_cache *new_shared;
3795 struct array_cache **new_alien = NULL;
3797 for_each_node_state(node, N_NORMAL_MEMORY) {
3799 if (use_alien_caches) {
3800 new_alien = alloc_alien_cache(node, cachep->limit);
3801 if (!new_alien)
3802 goto fail;
3805 new_shared = NULL;
3806 if (cachep->shared) {
3807 new_shared = alloc_arraycache(node,
3808 cachep->shared*cachep->batchcount,
3809 0xbaadf00d);
3810 if (!new_shared) {
3811 free_alien_cache(new_alien);
3812 goto fail;
3816 l3 = cachep->nodelists[node];
3817 if (l3) {
3818 struct array_cache *shared = l3->shared;
3820 spin_lock_irq(&l3->list_lock);
3822 if (shared)
3823 free_block(cachep, shared->entry,
3824 shared->avail, node);
3826 l3->shared = new_shared;
3827 if (!l3->alien) {
3828 l3->alien = new_alien;
3829 new_alien = NULL;
3831 l3->free_limit = (1 + nr_cpus_node(node)) *
3832 cachep->batchcount + cachep->num;
3833 spin_unlock_irq(&l3->list_lock);
3834 kfree(shared);
3835 free_alien_cache(new_alien);
3836 continue;
3838 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3839 if (!l3) {
3840 free_alien_cache(new_alien);
3841 kfree(new_shared);
3842 goto fail;
3845 kmem_list3_init(l3);
3846 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3847 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3848 l3->shared = new_shared;
3849 l3->alien = new_alien;
3850 l3->free_limit = (1 + nr_cpus_node(node)) *
3851 cachep->batchcount + cachep->num;
3852 cachep->nodelists[node] = l3;
3854 return 0;
3856 fail:
3857 if (!cachep->next.next) {
3858 /* Cache is not active yet. Roll back what we did */
3859 node--;
3860 while (node >= 0) {
3861 if (cachep->nodelists[node]) {
3862 l3 = cachep->nodelists[node];
3864 kfree(l3->shared);
3865 free_alien_cache(l3->alien);
3866 kfree(l3);
3867 cachep->nodelists[node] = NULL;
3869 node--;
3872 return -ENOMEM;
3875 struct ccupdate_struct {
3876 struct kmem_cache *cachep;
3877 struct array_cache *new[NR_CPUS];
3880 static void do_ccupdate_local(void *info)
3882 struct ccupdate_struct *new = info;
3883 struct array_cache *old;
3885 check_irq_off();
3886 old = cpu_cache_get(new->cachep);
3888 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3889 new->new[smp_processor_id()] = old;
3892 /* Always called with the cache_chain_mutex held */
3893 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3894 int batchcount, int shared)
3896 struct ccupdate_struct *new;
3897 int i;
3899 new = kzalloc(sizeof(*new), GFP_KERNEL);
3900 if (!new)
3901 return -ENOMEM;
3903 for_each_online_cpu(i) {
3904 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3905 batchcount);
3906 if (!new->new[i]) {
3907 for (i--; i >= 0; i--)
3908 kfree(new->new[i]);
3909 kfree(new);
3910 return -ENOMEM;
3913 new->cachep = cachep;
3915 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3917 check_irq_on();
3918 cachep->batchcount = batchcount;
3919 cachep->limit = limit;
3920 cachep->shared = shared;
3922 for_each_online_cpu(i) {
3923 struct array_cache *ccold = new->new[i];
3924 if (!ccold)
3925 continue;
3926 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3927 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3928 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3929 kfree(ccold);
3931 kfree(new);
3932 return alloc_kmemlist(cachep);
3935 /* Called with cache_chain_mutex held always */
3936 static int enable_cpucache(struct kmem_cache *cachep)
3938 int err;
3939 int limit, shared;
3942 * The head array serves three purposes:
3943 * - create a LIFO ordering, i.e. return objects that are cache-warm
3944 * - reduce the number of spinlock operations.
3945 * - reduce the number of linked list operations on the slab and
3946 * bufctl chains: array operations are cheaper.
3947 * The numbers are guessed, we should auto-tune as described by
3948 * Bonwick.
3950 if (cachep->buffer_size > 131072)
3951 limit = 1;
3952 else if (cachep->buffer_size > PAGE_SIZE)
3953 limit = 8;
3954 else if (cachep->buffer_size > 1024)
3955 limit = 24;
3956 else if (cachep->buffer_size > 256)
3957 limit = 54;
3958 else
3959 limit = 120;
3962 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3963 * allocation behaviour: Most allocs on one cpu, most free operations
3964 * on another cpu. For these cases, an efficient object passing between
3965 * cpus is necessary. This is provided by a shared array. The array
3966 * replaces Bonwick's magazine layer.
3967 * On uniprocessor, it's functionally equivalent (but less efficient)
3968 * to a larger limit. Thus disabled by default.
3970 shared = 0;
3971 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3972 shared = 8;
3974 #if DEBUG
3976 * With debugging enabled, large batchcount lead to excessively long
3977 * periods with disabled local interrupts. Limit the batchcount
3979 if (limit > 32)
3980 limit = 32;
3981 #endif
3982 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3983 if (err)
3984 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3985 cachep->name, -err);
3986 return err;
3990 * Drain an array if it contains any elements taking the l3 lock only if
3991 * necessary. Note that the l3 listlock also protects the array_cache
3992 * if drain_array() is used on the shared array.
3994 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3995 struct array_cache *ac, int force, int node)
3997 int tofree;
3999 if (!ac || !ac->avail)
4000 return;
4001 if (ac->touched && !force) {
4002 ac->touched = 0;
4003 } else {
4004 spin_lock_irq(&l3->list_lock);
4005 if (ac->avail) {
4006 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4007 if (tofree > ac->avail)
4008 tofree = (ac->avail + 1) / 2;
4009 free_block(cachep, ac->entry, tofree, node);
4010 ac->avail -= tofree;
4011 memmove(ac->entry, &(ac->entry[tofree]),
4012 sizeof(void *) * ac->avail);
4014 spin_unlock_irq(&l3->list_lock);
4019 * cache_reap - Reclaim memory from caches.
4020 * @w: work descriptor
4022 * Called from workqueue/eventd every few seconds.
4023 * Purpose:
4024 * - clear the per-cpu caches for this CPU.
4025 * - return freeable pages to the main free memory pool.
4027 * If we cannot acquire the cache chain mutex then just give up - we'll try
4028 * again on the next iteration.
4030 static void cache_reap(struct work_struct *w)
4032 struct kmem_cache *searchp;
4033 struct kmem_list3 *l3;
4034 int node = numa_node_id();
4035 struct delayed_work *work =
4036 container_of(w, struct delayed_work, work);
4038 if (!mutex_trylock(&cache_chain_mutex))
4039 /* Give up. Setup the next iteration. */
4040 goto out;
4042 list_for_each_entry(searchp, &cache_chain, next) {
4043 check_irq_on();
4046 * We only take the l3 lock if absolutely necessary and we
4047 * have established with reasonable certainty that
4048 * we can do some work if the lock was obtained.
4050 l3 = searchp->nodelists[node];
4052 reap_alien(searchp, l3);
4054 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4057 * These are racy checks but it does not matter
4058 * if we skip one check or scan twice.
4060 if (time_after(l3->next_reap, jiffies))
4061 goto next;
4063 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4065 drain_array(searchp, l3, l3->shared, 0, node);
4067 if (l3->free_touched)
4068 l3->free_touched = 0;
4069 else {
4070 int freed;
4072 freed = drain_freelist(searchp, l3, (l3->free_limit +
4073 5 * searchp->num - 1) / (5 * searchp->num));
4074 STATS_ADD_REAPED(searchp, freed);
4076 next:
4077 cond_resched();
4079 check_irq_on();
4080 mutex_unlock(&cache_chain_mutex);
4081 next_reap_node();
4082 out:
4083 /* Set up the next iteration */
4084 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4087 #ifdef CONFIG_PROC_FS
4089 static void print_slabinfo_header(struct seq_file *m)
4092 * Output format version, so at least we can change it
4093 * without _too_ many complaints.
4095 #if STATS
4096 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4097 #else
4098 seq_puts(m, "slabinfo - version: 2.1\n");
4099 #endif
4100 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4101 "<objperslab> <pagesperslab>");
4102 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4103 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4104 #if STATS
4105 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4106 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4107 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4108 #endif
4109 seq_putc(m, '\n');
4112 static void *s_start(struct seq_file *m, loff_t *pos)
4114 loff_t n = *pos;
4116 mutex_lock(&cache_chain_mutex);
4117 if (!n)
4118 print_slabinfo_header(m);
4120 return seq_list_start(&cache_chain, *pos);
4123 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4125 return seq_list_next(p, &cache_chain, pos);
4128 static void s_stop(struct seq_file *m, void *p)
4130 mutex_unlock(&cache_chain_mutex);
4133 static int s_show(struct seq_file *m, void *p)
4135 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4136 struct slab *slabp;
4137 unsigned long active_objs;
4138 unsigned long num_objs;
4139 unsigned long active_slabs = 0;
4140 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4141 const char *name;
4142 char *error = NULL;
4143 int node;
4144 struct kmem_list3 *l3;
4146 active_objs = 0;
4147 num_slabs = 0;
4148 for_each_online_node(node) {
4149 l3 = cachep->nodelists[node];
4150 if (!l3)
4151 continue;
4153 check_irq_on();
4154 spin_lock_irq(&l3->list_lock);
4156 list_for_each_entry(slabp, &l3->slabs_full, list) {
4157 if (slabp->inuse != cachep->num && !error)
4158 error = "slabs_full accounting error";
4159 active_objs += cachep->num;
4160 active_slabs++;
4162 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4163 if (slabp->inuse == cachep->num && !error)
4164 error = "slabs_partial inuse accounting error";
4165 if (!slabp->inuse && !error)
4166 error = "slabs_partial/inuse accounting error";
4167 active_objs += slabp->inuse;
4168 active_slabs++;
4170 list_for_each_entry(slabp, &l3->slabs_free, list) {
4171 if (slabp->inuse && !error)
4172 error = "slabs_free/inuse accounting error";
4173 num_slabs++;
4175 free_objects += l3->free_objects;
4176 if (l3->shared)
4177 shared_avail += l3->shared->avail;
4179 spin_unlock_irq(&l3->list_lock);
4181 num_slabs += active_slabs;
4182 num_objs = num_slabs * cachep->num;
4183 if (num_objs - active_objs != free_objects && !error)
4184 error = "free_objects accounting error";
4186 name = cachep->name;
4187 if (error)
4188 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4190 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4191 name, active_objs, num_objs, cachep->buffer_size,
4192 cachep->num, (1 << cachep->gfporder));
4193 seq_printf(m, " : tunables %4u %4u %4u",
4194 cachep->limit, cachep->batchcount, cachep->shared);
4195 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4196 active_slabs, num_slabs, shared_avail);
4197 #if STATS
4198 { /* list3 stats */
4199 unsigned long high = cachep->high_mark;
4200 unsigned long allocs = cachep->num_allocations;
4201 unsigned long grown = cachep->grown;
4202 unsigned long reaped = cachep->reaped;
4203 unsigned long errors = cachep->errors;
4204 unsigned long max_freeable = cachep->max_freeable;
4205 unsigned long node_allocs = cachep->node_allocs;
4206 unsigned long node_frees = cachep->node_frees;
4207 unsigned long overflows = cachep->node_overflow;
4209 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4210 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4211 reaped, errors, max_freeable, node_allocs,
4212 node_frees, overflows);
4214 /* cpu stats */
4216 unsigned long allochit = atomic_read(&cachep->allochit);
4217 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4218 unsigned long freehit = atomic_read(&cachep->freehit);
4219 unsigned long freemiss = atomic_read(&cachep->freemiss);
4221 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4222 allochit, allocmiss, freehit, freemiss);
4224 #endif
4225 seq_putc(m, '\n');
4226 return 0;
4230 * slabinfo_op - iterator that generates /proc/slabinfo
4232 * Output layout:
4233 * cache-name
4234 * num-active-objs
4235 * total-objs
4236 * object size
4237 * num-active-slabs
4238 * total-slabs
4239 * num-pages-per-slab
4240 * + further values on SMP and with statistics enabled
4243 const struct seq_operations slabinfo_op = {
4244 .start = s_start,
4245 .next = s_next,
4246 .stop = s_stop,
4247 .show = s_show,
4250 #define MAX_SLABINFO_WRITE 128
4252 * slabinfo_write - Tuning for the slab allocator
4253 * @file: unused
4254 * @buffer: user buffer
4255 * @count: data length
4256 * @ppos: unused
4258 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4259 size_t count, loff_t *ppos)
4261 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4262 int limit, batchcount, shared, res;
4263 struct kmem_cache *cachep;
4265 if (count > MAX_SLABINFO_WRITE)
4266 return -EINVAL;
4267 if (copy_from_user(&kbuf, buffer, count))
4268 return -EFAULT;
4269 kbuf[MAX_SLABINFO_WRITE] = '\0';
4271 tmp = strchr(kbuf, ' ');
4272 if (!tmp)
4273 return -EINVAL;
4274 *tmp = '\0';
4275 tmp++;
4276 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4277 return -EINVAL;
4279 /* Find the cache in the chain of caches. */
4280 mutex_lock(&cache_chain_mutex);
4281 res = -EINVAL;
4282 list_for_each_entry(cachep, &cache_chain, next) {
4283 if (!strcmp(cachep->name, kbuf)) {
4284 if (limit < 1 || batchcount < 1 ||
4285 batchcount > limit || shared < 0) {
4286 res = 0;
4287 } else {
4288 res = do_tune_cpucache(cachep, limit,
4289 batchcount, shared);
4291 break;
4294 mutex_unlock(&cache_chain_mutex);
4295 if (res >= 0)
4296 res = count;
4297 return res;
4300 #ifdef CONFIG_DEBUG_SLAB_LEAK
4302 static void *leaks_start(struct seq_file *m, loff_t *pos)
4304 mutex_lock(&cache_chain_mutex);
4305 return seq_list_start(&cache_chain, *pos);
4308 static inline int add_caller(unsigned long *n, unsigned long v)
4310 unsigned long *p;
4311 int l;
4312 if (!v)
4313 return 1;
4314 l = n[1];
4315 p = n + 2;
4316 while (l) {
4317 int i = l/2;
4318 unsigned long *q = p + 2 * i;
4319 if (*q == v) {
4320 q[1]++;
4321 return 1;
4323 if (*q > v) {
4324 l = i;
4325 } else {
4326 p = q + 2;
4327 l -= i + 1;
4330 if (++n[1] == n[0])
4331 return 0;
4332 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4333 p[0] = v;
4334 p[1] = 1;
4335 return 1;
4338 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4340 void *p;
4341 int i;
4342 if (n[0] == n[1])
4343 return;
4344 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4345 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4346 continue;
4347 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4348 return;
4352 static void show_symbol(struct seq_file *m, unsigned long address)
4354 #ifdef CONFIG_KALLSYMS
4355 unsigned long offset, size;
4356 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4358 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4359 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4360 if (modname[0])
4361 seq_printf(m, " [%s]", modname);
4362 return;
4364 #endif
4365 seq_printf(m, "%p", (void *)address);
4368 static int leaks_show(struct seq_file *m, void *p)
4370 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4371 struct slab *slabp;
4372 struct kmem_list3 *l3;
4373 const char *name;
4374 unsigned long *n = m->private;
4375 int node;
4376 int i;
4378 if (!(cachep->flags & SLAB_STORE_USER))
4379 return 0;
4380 if (!(cachep->flags & SLAB_RED_ZONE))
4381 return 0;
4383 /* OK, we can do it */
4385 n[1] = 0;
4387 for_each_online_node(node) {
4388 l3 = cachep->nodelists[node];
4389 if (!l3)
4390 continue;
4392 check_irq_on();
4393 spin_lock_irq(&l3->list_lock);
4395 list_for_each_entry(slabp, &l3->slabs_full, list)
4396 handle_slab(n, cachep, slabp);
4397 list_for_each_entry(slabp, &l3->slabs_partial, list)
4398 handle_slab(n, cachep, slabp);
4399 spin_unlock_irq(&l3->list_lock);
4401 name = cachep->name;
4402 if (n[0] == n[1]) {
4403 /* Increase the buffer size */
4404 mutex_unlock(&cache_chain_mutex);
4405 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4406 if (!m->private) {
4407 /* Too bad, we are really out */
4408 m->private = n;
4409 mutex_lock(&cache_chain_mutex);
4410 return -ENOMEM;
4412 *(unsigned long *)m->private = n[0] * 2;
4413 kfree(n);
4414 mutex_lock(&cache_chain_mutex);
4415 /* Now make sure this entry will be retried */
4416 m->count = m->size;
4417 return 0;
4419 for (i = 0; i < n[1]; i++) {
4420 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4421 show_symbol(m, n[2*i+2]);
4422 seq_putc(m, '\n');
4425 return 0;
4428 const struct seq_operations slabstats_op = {
4429 .start = leaks_start,
4430 .next = s_next,
4431 .stop = s_stop,
4432 .show = leaks_show,
4434 #endif
4435 #endif
4438 * ksize - get the actual amount of memory allocated for a given object
4439 * @objp: Pointer to the object
4441 * kmalloc may internally round up allocations and return more memory
4442 * than requested. ksize() can be used to determine the actual amount of
4443 * memory allocated. The caller may use this additional memory, even though
4444 * a smaller amount of memory was initially specified with the kmalloc call.
4445 * The caller must guarantee that objp points to a valid object previously
4446 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4447 * must not be freed during the duration of the call.
4449 size_t ksize(const void *objp)
4451 BUG_ON(!objp);
4452 if (unlikely(objp == ZERO_SIZE_PTR))
4453 return 0;
4455 return obj_size(virt_to_cache(objp));