tdfxfb: coding style improvement
[linux-2.6/pdupreez.git] / mm / memory.c
blobbd16dcaeefb8ce4e3b504916b81b67c536d0c4dc
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
72 unsigned long num_physpages;
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
80 void * high_memory;
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
85 int randomize_va_space __read_mostly = 1;
87 static int __init disable_randmaps(char *s)
89 randomize_va_space = 0;
90 return 1;
92 __setup("norandmaps", disable_randmaps);
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 void pgd_clear_bad(pgd_t *pgd)
103 pgd_ERROR(*pgd);
104 pgd_clear(pgd);
107 void pud_clear_bad(pud_t *pud)
109 pud_ERROR(*pud);
110 pud_clear(pud);
113 void pmd_clear_bad(pmd_t *pmd)
115 pmd_ERROR(*pmd);
116 pmd_clear(pmd);
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
125 struct page *page = pmd_page(*pmd);
126 pmd_clear(pmd);
127 pte_lock_deinit(page);
128 pte_free_tlb(tlb, page);
129 dec_zone_page_state(page, NR_PAGETABLE);
130 tlb->mm->nr_ptes--;
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 unsigned long addr, unsigned long end,
135 unsigned long floor, unsigned long ceiling)
137 pmd_t *pmd;
138 unsigned long next;
139 unsigned long start;
141 start = addr;
142 pmd = pmd_offset(pud, addr);
143 do {
144 next = pmd_addr_end(addr, end);
145 if (pmd_none_or_clear_bad(pmd))
146 continue;
147 free_pte_range(tlb, pmd);
148 } while (pmd++, addr = next, addr != end);
150 start &= PUD_MASK;
151 if (start < floor)
152 return;
153 if (ceiling) {
154 ceiling &= PUD_MASK;
155 if (!ceiling)
156 return;
158 if (end - 1 > ceiling - 1)
159 return;
161 pmd = pmd_offset(pud, start);
162 pud_clear(pud);
163 pmd_free_tlb(tlb, pmd);
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 unsigned long addr, unsigned long end,
168 unsigned long floor, unsigned long ceiling)
170 pud_t *pud;
171 unsigned long next;
172 unsigned long start;
174 start = addr;
175 pud = pud_offset(pgd, addr);
176 do {
177 next = pud_addr_end(addr, end);
178 if (pud_none_or_clear_bad(pud))
179 continue;
180 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 } while (pud++, addr = next, addr != end);
183 start &= PGDIR_MASK;
184 if (start < floor)
185 return;
186 if (ceiling) {
187 ceiling &= PGDIR_MASK;
188 if (!ceiling)
189 return;
191 if (end - 1 > ceiling - 1)
192 return;
194 pud = pud_offset(pgd, start);
195 pgd_clear(pgd);
196 pud_free_tlb(tlb, pud);
200 * This function frees user-level page tables of a process.
202 * Must be called with pagetable lock held.
204 void free_pgd_range(struct mmu_gather **tlb,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
208 pgd_t *pgd;
209 unsigned long next;
210 unsigned long start;
213 * The next few lines have given us lots of grief...
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
238 addr &= PMD_MASK;
239 if (addr < floor) {
240 addr += PMD_SIZE;
241 if (!addr)
242 return;
244 if (ceiling) {
245 ceiling &= PMD_MASK;
246 if (!ceiling)
247 return;
249 if (end - 1 > ceiling - 1)
250 end -= PMD_SIZE;
251 if (addr > end - 1)
252 return;
254 start = addr;
255 pgd = pgd_offset((*tlb)->mm, addr);
256 do {
257 next = pgd_addr_end(addr, end);
258 if (pgd_none_or_clear_bad(pgd))
259 continue;
260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 } while (pgd++, addr = next, addr != end);
263 if (!(*tlb)->fullmm)
264 flush_tlb_pgtables((*tlb)->mm, start, end);
267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268 unsigned long floor, unsigned long ceiling)
270 while (vma) {
271 struct vm_area_struct *next = vma->vm_next;
272 unsigned long addr = vma->vm_start;
275 * Hide vma from rmap and vmtruncate before freeing pgtables
277 anon_vma_unlink(vma);
278 unlink_file_vma(vma);
280 if (is_vm_hugetlb_page(vma)) {
281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282 floor, next? next->vm_start: ceiling);
283 } else {
285 * Optimization: gather nearby vmas into one call down
287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288 && !is_vm_hugetlb_page(next)) {
289 vma = next;
290 next = vma->vm_next;
291 anon_vma_unlink(vma);
292 unlink_file_vma(vma);
294 free_pgd_range(tlb, addr, vma->vm_end,
295 floor, next? next->vm_start: ceiling);
297 vma = next;
301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
303 struct page *new = pte_alloc_one(mm, address);
304 if (!new)
305 return -ENOMEM;
307 pte_lock_init(new);
308 spin_lock(&mm->page_table_lock);
309 if (pmd_present(*pmd)) { /* Another has populated it */
310 pte_lock_deinit(new);
311 pte_free(new);
312 } else {
313 mm->nr_ptes++;
314 inc_zone_page_state(new, NR_PAGETABLE);
315 pmd_populate(mm, pmd, new);
317 spin_unlock(&mm->page_table_lock);
318 return 0;
321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
323 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324 if (!new)
325 return -ENOMEM;
327 spin_lock(&init_mm.page_table_lock);
328 if (pmd_present(*pmd)) /* Another has populated it */
329 pte_free_kernel(new);
330 else
331 pmd_populate_kernel(&init_mm, pmd, new);
332 spin_unlock(&init_mm.page_table_lock);
333 return 0;
336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
338 if (file_rss)
339 add_mm_counter(mm, file_rss, file_rss);
340 if (anon_rss)
341 add_mm_counter(mm, anon_rss, anon_rss);
345 * This function is called to print an error when a bad pte
346 * is found. For example, we might have a PFN-mapped pte in
347 * a region that doesn't allow it.
349 * The calling function must still handle the error.
351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
353 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354 "vm_flags = %lx, vaddr = %lx\n",
355 (long long)pte_val(pte),
356 (vma->vm_mm == current->mm ? current->comm : "???"),
357 vma->vm_flags, vaddr);
358 dump_stack();
361 static inline int is_cow_mapping(unsigned int flags)
363 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
367 * This function gets the "struct page" associated with a pte.
369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370 * will have each page table entry just pointing to a raw page frame
371 * number, and as far as the VM layer is concerned, those do not have
372 * pages associated with them - even if the PFN might point to memory
373 * that otherwise is perfectly fine and has a "struct page".
375 * The way we recognize those mappings is through the rules set up
376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377 * and the vm_pgoff will point to the first PFN mapped: thus every
378 * page that is a raw mapping will always honor the rule
380 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
382 * and if that isn't true, the page has been COW'ed (in which case it
383 * _does_ have a "struct page" associated with it even if it is in a
384 * VM_PFNMAP range).
386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
388 unsigned long pfn = pte_pfn(pte);
390 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
391 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392 if (pfn == vma->vm_pgoff + off)
393 return NULL;
394 if (!is_cow_mapping(vma->vm_flags))
395 return NULL;
399 * Add some anal sanity checks for now. Eventually,
400 * we should just do "return pfn_to_page(pfn)", but
401 * in the meantime we check that we get a valid pfn,
402 * and that the resulting page looks ok.
404 if (unlikely(!pfn_valid(pfn))) {
405 print_bad_pte(vma, pte, addr);
406 return NULL;
410 * NOTE! We still have PageReserved() pages in the page
411 * tables.
413 * The PAGE_ZERO() pages and various VDSO mappings can
414 * cause them to exist.
416 return pfn_to_page(pfn);
420 * copy one vm_area from one task to the other. Assumes the page tables
421 * already present in the new task to be cleared in the whole range
422 * covered by this vma.
425 static inline void
426 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
427 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
428 unsigned long addr, int *rss)
430 unsigned long vm_flags = vma->vm_flags;
431 pte_t pte = *src_pte;
432 struct page *page;
434 /* pte contains position in swap or file, so copy. */
435 if (unlikely(!pte_present(pte))) {
436 if (!pte_file(pte)) {
437 swp_entry_t entry = pte_to_swp_entry(pte);
439 swap_duplicate(entry);
440 /* make sure dst_mm is on swapoff's mmlist. */
441 if (unlikely(list_empty(&dst_mm->mmlist))) {
442 spin_lock(&mmlist_lock);
443 if (list_empty(&dst_mm->mmlist))
444 list_add(&dst_mm->mmlist,
445 &src_mm->mmlist);
446 spin_unlock(&mmlist_lock);
448 if (is_write_migration_entry(entry) &&
449 is_cow_mapping(vm_flags)) {
451 * COW mappings require pages in both parent
452 * and child to be set to read.
454 make_migration_entry_read(&entry);
455 pte = swp_entry_to_pte(entry);
456 set_pte_at(src_mm, addr, src_pte, pte);
459 goto out_set_pte;
463 * If it's a COW mapping, write protect it both
464 * in the parent and the child
466 if (is_cow_mapping(vm_flags)) {
467 ptep_set_wrprotect(src_mm, addr, src_pte);
468 pte = pte_wrprotect(pte);
472 * If it's a shared mapping, mark it clean in
473 * the child
475 if (vm_flags & VM_SHARED)
476 pte = pte_mkclean(pte);
477 pte = pte_mkold(pte);
479 page = vm_normal_page(vma, addr, pte);
480 if (page) {
481 get_page(page);
482 page_dup_rmap(page, vma, addr);
483 rss[!!PageAnon(page)]++;
486 out_set_pte:
487 set_pte_at(dst_mm, addr, dst_pte, pte);
490 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
492 unsigned long addr, unsigned long end)
494 pte_t *src_pte, *dst_pte;
495 spinlock_t *src_ptl, *dst_ptl;
496 int progress = 0;
497 int rss[2];
499 again:
500 rss[1] = rss[0] = 0;
501 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
502 if (!dst_pte)
503 return -ENOMEM;
504 src_pte = pte_offset_map_nested(src_pmd, addr);
505 src_ptl = pte_lockptr(src_mm, src_pmd);
506 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
507 arch_enter_lazy_mmu_mode();
509 do {
511 * We are holding two locks at this point - either of them
512 * could generate latencies in another task on another CPU.
514 if (progress >= 32) {
515 progress = 0;
516 if (need_resched() ||
517 need_lockbreak(src_ptl) ||
518 need_lockbreak(dst_ptl))
519 break;
521 if (pte_none(*src_pte)) {
522 progress++;
523 continue;
525 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
526 progress += 8;
527 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
529 arch_leave_lazy_mmu_mode();
530 spin_unlock(src_ptl);
531 pte_unmap_nested(src_pte - 1);
532 add_mm_rss(dst_mm, rss[0], rss[1]);
533 pte_unmap_unlock(dst_pte - 1, dst_ptl);
534 cond_resched();
535 if (addr != end)
536 goto again;
537 return 0;
540 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
541 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
542 unsigned long addr, unsigned long end)
544 pmd_t *src_pmd, *dst_pmd;
545 unsigned long next;
547 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
548 if (!dst_pmd)
549 return -ENOMEM;
550 src_pmd = pmd_offset(src_pud, addr);
551 do {
552 next = pmd_addr_end(addr, end);
553 if (pmd_none_or_clear_bad(src_pmd))
554 continue;
555 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
556 vma, addr, next))
557 return -ENOMEM;
558 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
559 return 0;
562 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
563 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
564 unsigned long addr, unsigned long end)
566 pud_t *src_pud, *dst_pud;
567 unsigned long next;
569 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
570 if (!dst_pud)
571 return -ENOMEM;
572 src_pud = pud_offset(src_pgd, addr);
573 do {
574 next = pud_addr_end(addr, end);
575 if (pud_none_or_clear_bad(src_pud))
576 continue;
577 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
578 vma, addr, next))
579 return -ENOMEM;
580 } while (dst_pud++, src_pud++, addr = next, addr != end);
581 return 0;
584 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
585 struct vm_area_struct *vma)
587 pgd_t *src_pgd, *dst_pgd;
588 unsigned long next;
589 unsigned long addr = vma->vm_start;
590 unsigned long end = vma->vm_end;
593 * Don't copy ptes where a page fault will fill them correctly.
594 * Fork becomes much lighter when there are big shared or private
595 * readonly mappings. The tradeoff is that copy_page_range is more
596 * efficient than faulting.
598 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
599 if (!vma->anon_vma)
600 return 0;
603 if (is_vm_hugetlb_page(vma))
604 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
606 dst_pgd = pgd_offset(dst_mm, addr);
607 src_pgd = pgd_offset(src_mm, addr);
608 do {
609 next = pgd_addr_end(addr, end);
610 if (pgd_none_or_clear_bad(src_pgd))
611 continue;
612 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
613 vma, addr, next))
614 return -ENOMEM;
615 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
616 return 0;
619 static unsigned long zap_pte_range(struct mmu_gather *tlb,
620 struct vm_area_struct *vma, pmd_t *pmd,
621 unsigned long addr, unsigned long end,
622 long *zap_work, struct zap_details *details)
624 struct mm_struct *mm = tlb->mm;
625 pte_t *pte;
626 spinlock_t *ptl;
627 int file_rss = 0;
628 int anon_rss = 0;
630 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
631 arch_enter_lazy_mmu_mode();
632 do {
633 pte_t ptent = *pte;
634 if (pte_none(ptent)) {
635 (*zap_work)--;
636 continue;
639 (*zap_work) -= PAGE_SIZE;
641 if (pte_present(ptent)) {
642 struct page *page;
644 page = vm_normal_page(vma, addr, ptent);
645 if (unlikely(details) && page) {
647 * unmap_shared_mapping_pages() wants to
648 * invalidate cache without truncating:
649 * unmap shared but keep private pages.
651 if (details->check_mapping &&
652 details->check_mapping != page->mapping)
653 continue;
655 * Each page->index must be checked when
656 * invalidating or truncating nonlinear.
658 if (details->nonlinear_vma &&
659 (page->index < details->first_index ||
660 page->index > details->last_index))
661 continue;
663 ptent = ptep_get_and_clear_full(mm, addr, pte,
664 tlb->fullmm);
665 tlb_remove_tlb_entry(tlb, pte, addr);
666 if (unlikely(!page))
667 continue;
668 if (unlikely(details) && details->nonlinear_vma
669 && linear_page_index(details->nonlinear_vma,
670 addr) != page->index)
671 set_pte_at(mm, addr, pte,
672 pgoff_to_pte(page->index));
673 if (PageAnon(page))
674 anon_rss--;
675 else {
676 if (pte_dirty(ptent))
677 set_page_dirty(page);
678 if (pte_young(ptent))
679 SetPageReferenced(page);
680 file_rss--;
682 page_remove_rmap(page, vma);
683 tlb_remove_page(tlb, page);
684 continue;
687 * If details->check_mapping, we leave swap entries;
688 * if details->nonlinear_vma, we leave file entries.
690 if (unlikely(details))
691 continue;
692 if (!pte_file(ptent))
693 free_swap_and_cache(pte_to_swp_entry(ptent));
694 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
695 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
697 add_mm_rss(mm, file_rss, anon_rss);
698 arch_leave_lazy_mmu_mode();
699 pte_unmap_unlock(pte - 1, ptl);
701 return addr;
704 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
705 struct vm_area_struct *vma, pud_t *pud,
706 unsigned long addr, unsigned long end,
707 long *zap_work, struct zap_details *details)
709 pmd_t *pmd;
710 unsigned long next;
712 pmd = pmd_offset(pud, addr);
713 do {
714 next = pmd_addr_end(addr, end);
715 if (pmd_none_or_clear_bad(pmd)) {
716 (*zap_work)--;
717 continue;
719 next = zap_pte_range(tlb, vma, pmd, addr, next,
720 zap_work, details);
721 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
723 return addr;
726 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
727 struct vm_area_struct *vma, pgd_t *pgd,
728 unsigned long addr, unsigned long end,
729 long *zap_work, struct zap_details *details)
731 pud_t *pud;
732 unsigned long next;
734 pud = pud_offset(pgd, addr);
735 do {
736 next = pud_addr_end(addr, end);
737 if (pud_none_or_clear_bad(pud)) {
738 (*zap_work)--;
739 continue;
741 next = zap_pmd_range(tlb, vma, pud, addr, next,
742 zap_work, details);
743 } while (pud++, addr = next, (addr != end && *zap_work > 0));
745 return addr;
748 static unsigned long unmap_page_range(struct mmu_gather *tlb,
749 struct vm_area_struct *vma,
750 unsigned long addr, unsigned long end,
751 long *zap_work, struct zap_details *details)
753 pgd_t *pgd;
754 unsigned long next;
756 if (details && !details->check_mapping && !details->nonlinear_vma)
757 details = NULL;
759 BUG_ON(addr >= end);
760 tlb_start_vma(tlb, vma);
761 pgd = pgd_offset(vma->vm_mm, addr);
762 do {
763 next = pgd_addr_end(addr, end);
764 if (pgd_none_or_clear_bad(pgd)) {
765 (*zap_work)--;
766 continue;
768 next = zap_pud_range(tlb, vma, pgd, addr, next,
769 zap_work, details);
770 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
771 tlb_end_vma(tlb, vma);
773 return addr;
776 #ifdef CONFIG_PREEMPT
777 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
778 #else
779 /* No preempt: go for improved straight-line efficiency */
780 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
781 #endif
784 * unmap_vmas - unmap a range of memory covered by a list of vma's
785 * @tlbp: address of the caller's struct mmu_gather
786 * @vma: the starting vma
787 * @start_addr: virtual address at which to start unmapping
788 * @end_addr: virtual address at which to end unmapping
789 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
790 * @details: details of nonlinear truncation or shared cache invalidation
792 * Returns the end address of the unmapping (restart addr if interrupted).
794 * Unmap all pages in the vma list.
796 * We aim to not hold locks for too long (for scheduling latency reasons).
797 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
798 * return the ending mmu_gather to the caller.
800 * Only addresses between `start' and `end' will be unmapped.
802 * The VMA list must be sorted in ascending virtual address order.
804 * unmap_vmas() assumes that the caller will flush the whole unmapped address
805 * range after unmap_vmas() returns. So the only responsibility here is to
806 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
807 * drops the lock and schedules.
809 unsigned long unmap_vmas(struct mmu_gather **tlbp,
810 struct vm_area_struct *vma, unsigned long start_addr,
811 unsigned long end_addr, unsigned long *nr_accounted,
812 struct zap_details *details)
814 long zap_work = ZAP_BLOCK_SIZE;
815 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
816 int tlb_start_valid = 0;
817 unsigned long start = start_addr;
818 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
819 int fullmm = (*tlbp)->fullmm;
821 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
822 unsigned long end;
824 start = max(vma->vm_start, start_addr);
825 if (start >= vma->vm_end)
826 continue;
827 end = min(vma->vm_end, end_addr);
828 if (end <= vma->vm_start)
829 continue;
831 if (vma->vm_flags & VM_ACCOUNT)
832 *nr_accounted += (end - start) >> PAGE_SHIFT;
834 while (start != end) {
835 if (!tlb_start_valid) {
836 tlb_start = start;
837 tlb_start_valid = 1;
840 if (unlikely(is_vm_hugetlb_page(vma))) {
841 unmap_hugepage_range(vma, start, end);
842 zap_work -= (end - start) /
843 (HPAGE_SIZE / PAGE_SIZE);
844 start = end;
845 } else
846 start = unmap_page_range(*tlbp, vma,
847 start, end, &zap_work, details);
849 if (zap_work > 0) {
850 BUG_ON(start != end);
851 break;
854 tlb_finish_mmu(*tlbp, tlb_start, start);
856 if (need_resched() ||
857 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
858 if (i_mmap_lock) {
859 *tlbp = NULL;
860 goto out;
862 cond_resched();
865 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
866 tlb_start_valid = 0;
867 zap_work = ZAP_BLOCK_SIZE;
870 out:
871 return start; /* which is now the end (or restart) address */
875 * zap_page_range - remove user pages in a given range
876 * @vma: vm_area_struct holding the applicable pages
877 * @address: starting address of pages to zap
878 * @size: number of bytes to zap
879 * @details: details of nonlinear truncation or shared cache invalidation
881 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
882 unsigned long size, struct zap_details *details)
884 struct mm_struct *mm = vma->vm_mm;
885 struct mmu_gather *tlb;
886 unsigned long end = address + size;
887 unsigned long nr_accounted = 0;
889 lru_add_drain();
890 tlb = tlb_gather_mmu(mm, 0);
891 update_hiwater_rss(mm);
892 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
893 if (tlb)
894 tlb_finish_mmu(tlb, address, end);
895 return end;
899 * Do a quick page-table lookup for a single page.
901 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
902 unsigned int flags)
904 pgd_t *pgd;
905 pud_t *pud;
906 pmd_t *pmd;
907 pte_t *ptep, pte;
908 spinlock_t *ptl;
909 struct page *page;
910 struct mm_struct *mm = vma->vm_mm;
912 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
913 if (!IS_ERR(page)) {
914 BUG_ON(flags & FOLL_GET);
915 goto out;
918 page = NULL;
919 pgd = pgd_offset(mm, address);
920 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
921 goto no_page_table;
923 pud = pud_offset(pgd, address);
924 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
925 goto no_page_table;
927 pmd = pmd_offset(pud, address);
928 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
929 goto no_page_table;
931 if (pmd_huge(*pmd)) {
932 BUG_ON(flags & FOLL_GET);
933 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
934 goto out;
937 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
938 if (!ptep)
939 goto out;
941 pte = *ptep;
942 if (!pte_present(pte))
943 goto unlock;
944 if ((flags & FOLL_WRITE) && !pte_write(pte))
945 goto unlock;
946 page = vm_normal_page(vma, address, pte);
947 if (unlikely(!page))
948 goto unlock;
950 if (flags & FOLL_GET)
951 get_page(page);
952 if (flags & FOLL_TOUCH) {
953 if ((flags & FOLL_WRITE) &&
954 !pte_dirty(pte) && !PageDirty(page))
955 set_page_dirty(page);
956 mark_page_accessed(page);
958 unlock:
959 pte_unmap_unlock(ptep, ptl);
960 out:
961 return page;
963 no_page_table:
965 * When core dumping an enormous anonymous area that nobody
966 * has touched so far, we don't want to allocate page tables.
968 if (flags & FOLL_ANON) {
969 page = ZERO_PAGE(0);
970 if (flags & FOLL_GET)
971 get_page(page);
972 BUG_ON(flags & FOLL_WRITE);
974 return page;
977 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
978 unsigned long start, int len, int write, int force,
979 struct page **pages, struct vm_area_struct **vmas)
981 int i;
982 unsigned int vm_flags;
985 * Require read or write permissions.
986 * If 'force' is set, we only require the "MAY" flags.
988 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
989 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
990 i = 0;
992 do {
993 struct vm_area_struct *vma;
994 unsigned int foll_flags;
996 vma = find_extend_vma(mm, start);
997 if (!vma && in_gate_area(tsk, start)) {
998 unsigned long pg = start & PAGE_MASK;
999 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1000 pgd_t *pgd;
1001 pud_t *pud;
1002 pmd_t *pmd;
1003 pte_t *pte;
1004 if (write) /* user gate pages are read-only */
1005 return i ? : -EFAULT;
1006 if (pg > TASK_SIZE)
1007 pgd = pgd_offset_k(pg);
1008 else
1009 pgd = pgd_offset_gate(mm, pg);
1010 BUG_ON(pgd_none(*pgd));
1011 pud = pud_offset(pgd, pg);
1012 BUG_ON(pud_none(*pud));
1013 pmd = pmd_offset(pud, pg);
1014 if (pmd_none(*pmd))
1015 return i ? : -EFAULT;
1016 pte = pte_offset_map(pmd, pg);
1017 if (pte_none(*pte)) {
1018 pte_unmap(pte);
1019 return i ? : -EFAULT;
1021 if (pages) {
1022 struct page *page = vm_normal_page(gate_vma, start, *pte);
1023 pages[i] = page;
1024 if (page)
1025 get_page(page);
1027 pte_unmap(pte);
1028 if (vmas)
1029 vmas[i] = gate_vma;
1030 i++;
1031 start += PAGE_SIZE;
1032 len--;
1033 continue;
1036 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1037 || !(vm_flags & vma->vm_flags))
1038 return i ? : -EFAULT;
1040 if (is_vm_hugetlb_page(vma)) {
1041 i = follow_hugetlb_page(mm, vma, pages, vmas,
1042 &start, &len, i);
1043 continue;
1046 foll_flags = FOLL_TOUCH;
1047 if (pages)
1048 foll_flags |= FOLL_GET;
1049 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1050 (!vma->vm_ops || (!vma->vm_ops->nopage &&
1051 !vma->vm_ops->fault)))
1052 foll_flags |= FOLL_ANON;
1054 do {
1055 struct page *page;
1058 * If tsk is ooming, cut off its access to large memory
1059 * allocations. It has a pending SIGKILL, but it can't
1060 * be processed until returning to user space.
1062 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1063 return -ENOMEM;
1065 if (write)
1066 foll_flags |= FOLL_WRITE;
1068 cond_resched();
1069 while (!(page = follow_page(vma, start, foll_flags))) {
1070 int ret;
1071 ret = handle_mm_fault(mm, vma, start,
1072 foll_flags & FOLL_WRITE);
1073 if (ret & VM_FAULT_ERROR) {
1074 if (ret & VM_FAULT_OOM)
1075 return i ? i : -ENOMEM;
1076 else if (ret & VM_FAULT_SIGBUS)
1077 return i ? i : -EFAULT;
1078 BUG();
1080 if (ret & VM_FAULT_MAJOR)
1081 tsk->maj_flt++;
1082 else
1083 tsk->min_flt++;
1086 * The VM_FAULT_WRITE bit tells us that
1087 * do_wp_page has broken COW when necessary,
1088 * even if maybe_mkwrite decided not to set
1089 * pte_write. We can thus safely do subsequent
1090 * page lookups as if they were reads.
1092 if (ret & VM_FAULT_WRITE)
1093 foll_flags &= ~FOLL_WRITE;
1095 cond_resched();
1097 if (pages) {
1098 pages[i] = page;
1100 flush_anon_page(vma, page, start);
1101 flush_dcache_page(page);
1103 if (vmas)
1104 vmas[i] = vma;
1105 i++;
1106 start += PAGE_SIZE;
1107 len--;
1108 } while (len && start < vma->vm_end);
1109 } while (len);
1110 return i;
1112 EXPORT_SYMBOL(get_user_pages);
1114 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1116 pgd_t * pgd = pgd_offset(mm, addr);
1117 pud_t * pud = pud_alloc(mm, pgd, addr);
1118 if (pud) {
1119 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1120 if (pmd)
1121 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1123 return NULL;
1127 * This is the old fallback for page remapping.
1129 * For historical reasons, it only allows reserved pages. Only
1130 * old drivers should use this, and they needed to mark their
1131 * pages reserved for the old functions anyway.
1133 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1135 int retval;
1136 pte_t *pte;
1137 spinlock_t *ptl;
1139 retval = -EINVAL;
1140 if (PageAnon(page))
1141 goto out;
1142 retval = -ENOMEM;
1143 flush_dcache_page(page);
1144 pte = get_locked_pte(mm, addr, &ptl);
1145 if (!pte)
1146 goto out;
1147 retval = -EBUSY;
1148 if (!pte_none(*pte))
1149 goto out_unlock;
1151 /* Ok, finally just insert the thing.. */
1152 get_page(page);
1153 inc_mm_counter(mm, file_rss);
1154 page_add_file_rmap(page);
1155 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1157 retval = 0;
1158 out_unlock:
1159 pte_unmap_unlock(pte, ptl);
1160 out:
1161 return retval;
1165 * vm_insert_page - insert single page into user vma
1166 * @vma: user vma to map to
1167 * @addr: target user address of this page
1168 * @page: source kernel page
1170 * This allows drivers to insert individual pages they've allocated
1171 * into a user vma.
1173 * The page has to be a nice clean _individual_ kernel allocation.
1174 * If you allocate a compound page, you need to have marked it as
1175 * such (__GFP_COMP), or manually just split the page up yourself
1176 * (see split_page()).
1178 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1179 * took an arbitrary page protection parameter. This doesn't allow
1180 * that. Your vma protection will have to be set up correctly, which
1181 * means that if you want a shared writable mapping, you'd better
1182 * ask for a shared writable mapping!
1184 * The page does not need to be reserved.
1186 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1188 if (addr < vma->vm_start || addr >= vma->vm_end)
1189 return -EFAULT;
1190 if (!page_count(page))
1191 return -EINVAL;
1192 vma->vm_flags |= VM_INSERTPAGE;
1193 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1195 EXPORT_SYMBOL(vm_insert_page);
1198 * vm_insert_pfn - insert single pfn into user vma
1199 * @vma: user vma to map to
1200 * @addr: target user address of this page
1201 * @pfn: source kernel pfn
1203 * Similar to vm_inert_page, this allows drivers to insert individual pages
1204 * they've allocated into a user vma. Same comments apply.
1206 * This function should only be called from a vm_ops->fault handler, and
1207 * in that case the handler should return NULL.
1209 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1210 unsigned long pfn)
1212 struct mm_struct *mm = vma->vm_mm;
1213 int retval;
1214 pte_t *pte, entry;
1215 spinlock_t *ptl;
1217 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1218 BUG_ON(is_cow_mapping(vma->vm_flags));
1220 retval = -ENOMEM;
1221 pte = get_locked_pte(mm, addr, &ptl);
1222 if (!pte)
1223 goto out;
1224 retval = -EBUSY;
1225 if (!pte_none(*pte))
1226 goto out_unlock;
1228 /* Ok, finally just insert the thing.. */
1229 entry = pfn_pte(pfn, vma->vm_page_prot);
1230 set_pte_at(mm, addr, pte, entry);
1231 update_mmu_cache(vma, addr, entry);
1233 retval = 0;
1234 out_unlock:
1235 pte_unmap_unlock(pte, ptl);
1237 out:
1238 return retval;
1240 EXPORT_SYMBOL(vm_insert_pfn);
1243 * maps a range of physical memory into the requested pages. the old
1244 * mappings are removed. any references to nonexistent pages results
1245 * in null mappings (currently treated as "copy-on-access")
1247 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1248 unsigned long addr, unsigned long end,
1249 unsigned long pfn, pgprot_t prot)
1251 pte_t *pte;
1252 spinlock_t *ptl;
1254 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1255 if (!pte)
1256 return -ENOMEM;
1257 arch_enter_lazy_mmu_mode();
1258 do {
1259 BUG_ON(!pte_none(*pte));
1260 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1261 pfn++;
1262 } while (pte++, addr += PAGE_SIZE, addr != end);
1263 arch_leave_lazy_mmu_mode();
1264 pte_unmap_unlock(pte - 1, ptl);
1265 return 0;
1268 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1269 unsigned long addr, unsigned long end,
1270 unsigned long pfn, pgprot_t prot)
1272 pmd_t *pmd;
1273 unsigned long next;
1275 pfn -= addr >> PAGE_SHIFT;
1276 pmd = pmd_alloc(mm, pud, addr);
1277 if (!pmd)
1278 return -ENOMEM;
1279 do {
1280 next = pmd_addr_end(addr, end);
1281 if (remap_pte_range(mm, pmd, addr, next,
1282 pfn + (addr >> PAGE_SHIFT), prot))
1283 return -ENOMEM;
1284 } while (pmd++, addr = next, addr != end);
1285 return 0;
1288 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1289 unsigned long addr, unsigned long end,
1290 unsigned long pfn, pgprot_t prot)
1292 pud_t *pud;
1293 unsigned long next;
1295 pfn -= addr >> PAGE_SHIFT;
1296 pud = pud_alloc(mm, pgd, addr);
1297 if (!pud)
1298 return -ENOMEM;
1299 do {
1300 next = pud_addr_end(addr, end);
1301 if (remap_pmd_range(mm, pud, addr, next,
1302 pfn + (addr >> PAGE_SHIFT), prot))
1303 return -ENOMEM;
1304 } while (pud++, addr = next, addr != end);
1305 return 0;
1309 * remap_pfn_range - remap kernel memory to userspace
1310 * @vma: user vma to map to
1311 * @addr: target user address to start at
1312 * @pfn: physical address of kernel memory
1313 * @size: size of map area
1314 * @prot: page protection flags for this mapping
1316 * Note: this is only safe if the mm semaphore is held when called.
1318 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1319 unsigned long pfn, unsigned long size, pgprot_t prot)
1321 pgd_t *pgd;
1322 unsigned long next;
1323 unsigned long end = addr + PAGE_ALIGN(size);
1324 struct mm_struct *mm = vma->vm_mm;
1325 int err;
1328 * Physically remapped pages are special. Tell the
1329 * rest of the world about it:
1330 * VM_IO tells people not to look at these pages
1331 * (accesses can have side effects).
1332 * VM_RESERVED is specified all over the place, because
1333 * in 2.4 it kept swapout's vma scan off this vma; but
1334 * in 2.6 the LRU scan won't even find its pages, so this
1335 * flag means no more than count its pages in reserved_vm,
1336 * and omit it from core dump, even when VM_IO turned off.
1337 * VM_PFNMAP tells the core MM that the base pages are just
1338 * raw PFN mappings, and do not have a "struct page" associated
1339 * with them.
1341 * There's a horrible special case to handle copy-on-write
1342 * behaviour that some programs depend on. We mark the "original"
1343 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1345 if (is_cow_mapping(vma->vm_flags)) {
1346 if (addr != vma->vm_start || end != vma->vm_end)
1347 return -EINVAL;
1348 vma->vm_pgoff = pfn;
1351 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1353 BUG_ON(addr >= end);
1354 pfn -= addr >> PAGE_SHIFT;
1355 pgd = pgd_offset(mm, addr);
1356 flush_cache_range(vma, addr, end);
1357 do {
1358 next = pgd_addr_end(addr, end);
1359 err = remap_pud_range(mm, pgd, addr, next,
1360 pfn + (addr >> PAGE_SHIFT), prot);
1361 if (err)
1362 break;
1363 } while (pgd++, addr = next, addr != end);
1364 return err;
1366 EXPORT_SYMBOL(remap_pfn_range);
1368 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1369 unsigned long addr, unsigned long end,
1370 pte_fn_t fn, void *data)
1372 pte_t *pte;
1373 int err;
1374 struct page *pmd_page;
1375 spinlock_t *uninitialized_var(ptl);
1377 pte = (mm == &init_mm) ?
1378 pte_alloc_kernel(pmd, addr) :
1379 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1380 if (!pte)
1381 return -ENOMEM;
1383 BUG_ON(pmd_huge(*pmd));
1385 pmd_page = pmd_page(*pmd);
1387 do {
1388 err = fn(pte, pmd_page, addr, data);
1389 if (err)
1390 break;
1391 } while (pte++, addr += PAGE_SIZE, addr != end);
1393 if (mm != &init_mm)
1394 pte_unmap_unlock(pte-1, ptl);
1395 return err;
1398 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1399 unsigned long addr, unsigned long end,
1400 pte_fn_t fn, void *data)
1402 pmd_t *pmd;
1403 unsigned long next;
1404 int err;
1406 pmd = pmd_alloc(mm, pud, addr);
1407 if (!pmd)
1408 return -ENOMEM;
1409 do {
1410 next = pmd_addr_end(addr, end);
1411 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1412 if (err)
1413 break;
1414 } while (pmd++, addr = next, addr != end);
1415 return err;
1418 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1419 unsigned long addr, unsigned long end,
1420 pte_fn_t fn, void *data)
1422 pud_t *pud;
1423 unsigned long next;
1424 int err;
1426 pud = pud_alloc(mm, pgd, addr);
1427 if (!pud)
1428 return -ENOMEM;
1429 do {
1430 next = pud_addr_end(addr, end);
1431 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1432 if (err)
1433 break;
1434 } while (pud++, addr = next, addr != end);
1435 return err;
1439 * Scan a region of virtual memory, filling in page tables as necessary
1440 * and calling a provided function on each leaf page table.
1442 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1443 unsigned long size, pte_fn_t fn, void *data)
1445 pgd_t *pgd;
1446 unsigned long next;
1447 unsigned long end = addr + size;
1448 int err;
1450 BUG_ON(addr >= end);
1451 pgd = pgd_offset(mm, addr);
1452 do {
1453 next = pgd_addr_end(addr, end);
1454 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1455 if (err)
1456 break;
1457 } while (pgd++, addr = next, addr != end);
1458 return err;
1460 EXPORT_SYMBOL_GPL(apply_to_page_range);
1463 * handle_pte_fault chooses page fault handler according to an entry
1464 * which was read non-atomically. Before making any commitment, on
1465 * those architectures or configurations (e.g. i386 with PAE) which
1466 * might give a mix of unmatched parts, do_swap_page and do_file_page
1467 * must check under lock before unmapping the pte and proceeding
1468 * (but do_wp_page is only called after already making such a check;
1469 * and do_anonymous_page and do_no_page can safely check later on).
1471 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1472 pte_t *page_table, pte_t orig_pte)
1474 int same = 1;
1475 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1476 if (sizeof(pte_t) > sizeof(unsigned long)) {
1477 spinlock_t *ptl = pte_lockptr(mm, pmd);
1478 spin_lock(ptl);
1479 same = pte_same(*page_table, orig_pte);
1480 spin_unlock(ptl);
1482 #endif
1483 pte_unmap(page_table);
1484 return same;
1488 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1489 * servicing faults for write access. In the normal case, do always want
1490 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1491 * that do not have writing enabled, when used by access_process_vm.
1493 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1495 if (likely(vma->vm_flags & VM_WRITE))
1496 pte = pte_mkwrite(pte);
1497 return pte;
1500 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1503 * If the source page was a PFN mapping, we don't have
1504 * a "struct page" for it. We do a best-effort copy by
1505 * just copying from the original user address. If that
1506 * fails, we just zero-fill it. Live with it.
1508 if (unlikely(!src)) {
1509 void *kaddr = kmap_atomic(dst, KM_USER0);
1510 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1513 * This really shouldn't fail, because the page is there
1514 * in the page tables. But it might just be unreadable,
1515 * in which case we just give up and fill the result with
1516 * zeroes.
1518 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1519 memset(kaddr, 0, PAGE_SIZE);
1520 kunmap_atomic(kaddr, KM_USER0);
1521 flush_dcache_page(dst);
1522 return;
1525 copy_user_highpage(dst, src, va, vma);
1529 * This routine handles present pages, when users try to write
1530 * to a shared page. It is done by copying the page to a new address
1531 * and decrementing the shared-page counter for the old page.
1533 * Note that this routine assumes that the protection checks have been
1534 * done by the caller (the low-level page fault routine in most cases).
1535 * Thus we can safely just mark it writable once we've done any necessary
1536 * COW.
1538 * We also mark the page dirty at this point even though the page will
1539 * change only once the write actually happens. This avoids a few races,
1540 * and potentially makes it more efficient.
1542 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1543 * but allow concurrent faults), with pte both mapped and locked.
1544 * We return with mmap_sem still held, but pte unmapped and unlocked.
1546 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1547 unsigned long address, pte_t *page_table, pmd_t *pmd,
1548 spinlock_t *ptl, pte_t orig_pte)
1550 struct page *old_page, *new_page;
1551 pte_t entry;
1552 int reuse = 0, ret = 0;
1553 int page_mkwrite = 0;
1554 struct page *dirty_page = NULL;
1556 old_page = vm_normal_page(vma, address, orig_pte);
1557 if (!old_page)
1558 goto gotten;
1561 * Take out anonymous pages first, anonymous shared vmas are
1562 * not dirty accountable.
1564 if (PageAnon(old_page)) {
1565 if (!TestSetPageLocked(old_page)) {
1566 reuse = can_share_swap_page(old_page);
1567 unlock_page(old_page);
1569 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1570 (VM_WRITE|VM_SHARED))) {
1572 * Only catch write-faults on shared writable pages,
1573 * read-only shared pages can get COWed by
1574 * get_user_pages(.write=1, .force=1).
1576 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1578 * Notify the address space that the page is about to
1579 * become writable so that it can prohibit this or wait
1580 * for the page to get into an appropriate state.
1582 * We do this without the lock held, so that it can
1583 * sleep if it needs to.
1585 page_cache_get(old_page);
1586 pte_unmap_unlock(page_table, ptl);
1588 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1589 goto unwritable_page;
1592 * Since we dropped the lock we need to revalidate
1593 * the PTE as someone else may have changed it. If
1594 * they did, we just return, as we can count on the
1595 * MMU to tell us if they didn't also make it writable.
1597 page_table = pte_offset_map_lock(mm, pmd, address,
1598 &ptl);
1599 page_cache_release(old_page);
1600 if (!pte_same(*page_table, orig_pte))
1601 goto unlock;
1603 page_mkwrite = 1;
1605 dirty_page = old_page;
1606 get_page(dirty_page);
1607 reuse = 1;
1610 if (reuse) {
1611 flush_cache_page(vma, address, pte_pfn(orig_pte));
1612 entry = pte_mkyoung(orig_pte);
1613 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1614 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1615 update_mmu_cache(vma, address, entry);
1616 ret |= VM_FAULT_WRITE;
1617 goto unlock;
1621 * Ok, we need to copy. Oh, well..
1623 page_cache_get(old_page);
1624 gotten:
1625 pte_unmap_unlock(page_table, ptl);
1627 if (unlikely(anon_vma_prepare(vma)))
1628 goto oom;
1629 VM_BUG_ON(old_page == ZERO_PAGE(0));
1630 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1631 if (!new_page)
1632 goto oom;
1633 cow_user_page(new_page, old_page, address, vma);
1636 * Re-check the pte - we dropped the lock
1638 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1639 if (likely(pte_same(*page_table, orig_pte))) {
1640 if (old_page) {
1641 page_remove_rmap(old_page, vma);
1642 if (!PageAnon(old_page)) {
1643 dec_mm_counter(mm, file_rss);
1644 inc_mm_counter(mm, anon_rss);
1646 } else
1647 inc_mm_counter(mm, anon_rss);
1648 flush_cache_page(vma, address, pte_pfn(orig_pte));
1649 entry = mk_pte(new_page, vma->vm_page_prot);
1650 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1652 * Clear the pte entry and flush it first, before updating the
1653 * pte with the new entry. This will avoid a race condition
1654 * seen in the presence of one thread doing SMC and another
1655 * thread doing COW.
1657 ptep_clear_flush(vma, address, page_table);
1658 set_pte_at(mm, address, page_table, entry);
1659 update_mmu_cache(vma, address, entry);
1660 lru_cache_add_active(new_page);
1661 page_add_new_anon_rmap(new_page, vma, address);
1663 /* Free the old page.. */
1664 new_page = old_page;
1665 ret |= VM_FAULT_WRITE;
1667 if (new_page)
1668 page_cache_release(new_page);
1669 if (old_page)
1670 page_cache_release(old_page);
1671 unlock:
1672 pte_unmap_unlock(page_table, ptl);
1673 if (dirty_page) {
1675 * Yes, Virginia, this is actually required to prevent a race
1676 * with clear_page_dirty_for_io() from clearing the page dirty
1677 * bit after it clear all dirty ptes, but before a racing
1678 * do_wp_page installs a dirty pte.
1680 * do_no_page is protected similarly.
1682 wait_on_page_locked(dirty_page);
1683 set_page_dirty_balance(dirty_page, page_mkwrite);
1684 put_page(dirty_page);
1686 return ret;
1687 oom:
1688 if (old_page)
1689 page_cache_release(old_page);
1690 return VM_FAULT_OOM;
1692 unwritable_page:
1693 page_cache_release(old_page);
1694 return VM_FAULT_SIGBUS;
1698 * Helper functions for unmap_mapping_range().
1700 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1702 * We have to restart searching the prio_tree whenever we drop the lock,
1703 * since the iterator is only valid while the lock is held, and anyway
1704 * a later vma might be split and reinserted earlier while lock dropped.
1706 * The list of nonlinear vmas could be handled more efficiently, using
1707 * a placeholder, but handle it in the same way until a need is shown.
1708 * It is important to search the prio_tree before nonlinear list: a vma
1709 * may become nonlinear and be shifted from prio_tree to nonlinear list
1710 * while the lock is dropped; but never shifted from list to prio_tree.
1712 * In order to make forward progress despite restarting the search,
1713 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1714 * quickly skip it next time around. Since the prio_tree search only
1715 * shows us those vmas affected by unmapping the range in question, we
1716 * can't efficiently keep all vmas in step with mapping->truncate_count:
1717 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1718 * mapping->truncate_count and vma->vm_truncate_count are protected by
1719 * i_mmap_lock.
1721 * In order to make forward progress despite repeatedly restarting some
1722 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1723 * and restart from that address when we reach that vma again. It might
1724 * have been split or merged, shrunk or extended, but never shifted: so
1725 * restart_addr remains valid so long as it remains in the vma's range.
1726 * unmap_mapping_range forces truncate_count to leap over page-aligned
1727 * values so we can save vma's restart_addr in its truncate_count field.
1729 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1731 static void reset_vma_truncate_counts(struct address_space *mapping)
1733 struct vm_area_struct *vma;
1734 struct prio_tree_iter iter;
1736 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1737 vma->vm_truncate_count = 0;
1738 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1739 vma->vm_truncate_count = 0;
1742 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1743 unsigned long start_addr, unsigned long end_addr,
1744 struct zap_details *details)
1746 unsigned long restart_addr;
1747 int need_break;
1750 * files that support invalidating or truncating portions of the
1751 * file from under mmaped areas must have their ->fault function
1752 * return a locked page (and set VM_FAULT_LOCKED in the return).
1753 * This provides synchronisation against concurrent unmapping here.
1756 again:
1757 restart_addr = vma->vm_truncate_count;
1758 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1759 start_addr = restart_addr;
1760 if (start_addr >= end_addr) {
1761 /* Top of vma has been split off since last time */
1762 vma->vm_truncate_count = details->truncate_count;
1763 return 0;
1767 restart_addr = zap_page_range(vma, start_addr,
1768 end_addr - start_addr, details);
1769 need_break = need_resched() ||
1770 need_lockbreak(details->i_mmap_lock);
1772 if (restart_addr >= end_addr) {
1773 /* We have now completed this vma: mark it so */
1774 vma->vm_truncate_count = details->truncate_count;
1775 if (!need_break)
1776 return 0;
1777 } else {
1778 /* Note restart_addr in vma's truncate_count field */
1779 vma->vm_truncate_count = restart_addr;
1780 if (!need_break)
1781 goto again;
1784 spin_unlock(details->i_mmap_lock);
1785 cond_resched();
1786 spin_lock(details->i_mmap_lock);
1787 return -EINTR;
1790 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1791 struct zap_details *details)
1793 struct vm_area_struct *vma;
1794 struct prio_tree_iter iter;
1795 pgoff_t vba, vea, zba, zea;
1797 restart:
1798 vma_prio_tree_foreach(vma, &iter, root,
1799 details->first_index, details->last_index) {
1800 /* Skip quickly over those we have already dealt with */
1801 if (vma->vm_truncate_count == details->truncate_count)
1802 continue;
1804 vba = vma->vm_pgoff;
1805 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1806 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1807 zba = details->first_index;
1808 if (zba < vba)
1809 zba = vba;
1810 zea = details->last_index;
1811 if (zea > vea)
1812 zea = vea;
1814 if (unmap_mapping_range_vma(vma,
1815 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1816 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1817 details) < 0)
1818 goto restart;
1822 static inline void unmap_mapping_range_list(struct list_head *head,
1823 struct zap_details *details)
1825 struct vm_area_struct *vma;
1828 * In nonlinear VMAs there is no correspondence between virtual address
1829 * offset and file offset. So we must perform an exhaustive search
1830 * across *all* the pages in each nonlinear VMA, not just the pages
1831 * whose virtual address lies outside the file truncation point.
1833 restart:
1834 list_for_each_entry(vma, head, shared.vm_set.list) {
1835 /* Skip quickly over those we have already dealt with */
1836 if (vma->vm_truncate_count == details->truncate_count)
1837 continue;
1838 details->nonlinear_vma = vma;
1839 if (unmap_mapping_range_vma(vma, vma->vm_start,
1840 vma->vm_end, details) < 0)
1841 goto restart;
1846 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1847 * @mapping: the address space containing mmaps to be unmapped.
1848 * @holebegin: byte in first page to unmap, relative to the start of
1849 * the underlying file. This will be rounded down to a PAGE_SIZE
1850 * boundary. Note that this is different from vmtruncate(), which
1851 * must keep the partial page. In contrast, we must get rid of
1852 * partial pages.
1853 * @holelen: size of prospective hole in bytes. This will be rounded
1854 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1855 * end of the file.
1856 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1857 * but 0 when invalidating pagecache, don't throw away private data.
1859 void unmap_mapping_range(struct address_space *mapping,
1860 loff_t const holebegin, loff_t const holelen, int even_cows)
1862 struct zap_details details;
1863 pgoff_t hba = holebegin >> PAGE_SHIFT;
1864 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1866 /* Check for overflow. */
1867 if (sizeof(holelen) > sizeof(hlen)) {
1868 long long holeend =
1869 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1870 if (holeend & ~(long long)ULONG_MAX)
1871 hlen = ULONG_MAX - hba + 1;
1874 details.check_mapping = even_cows? NULL: mapping;
1875 details.nonlinear_vma = NULL;
1876 details.first_index = hba;
1877 details.last_index = hba + hlen - 1;
1878 if (details.last_index < details.first_index)
1879 details.last_index = ULONG_MAX;
1880 details.i_mmap_lock = &mapping->i_mmap_lock;
1882 spin_lock(&mapping->i_mmap_lock);
1884 /* Protect against endless unmapping loops */
1885 mapping->truncate_count++;
1886 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1887 if (mapping->truncate_count == 0)
1888 reset_vma_truncate_counts(mapping);
1889 mapping->truncate_count++;
1891 details.truncate_count = mapping->truncate_count;
1893 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1894 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1895 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1896 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1897 spin_unlock(&mapping->i_mmap_lock);
1899 EXPORT_SYMBOL(unmap_mapping_range);
1902 * vmtruncate - unmap mappings "freed" by truncate() syscall
1903 * @inode: inode of the file used
1904 * @offset: file offset to start truncating
1906 * NOTE! We have to be ready to update the memory sharing
1907 * between the file and the memory map for a potential last
1908 * incomplete page. Ugly, but necessary.
1910 int vmtruncate(struct inode * inode, loff_t offset)
1912 struct address_space *mapping = inode->i_mapping;
1913 unsigned long limit;
1915 if (inode->i_size < offset)
1916 goto do_expand;
1918 * truncation of in-use swapfiles is disallowed - it would cause
1919 * subsequent swapout to scribble on the now-freed blocks.
1921 if (IS_SWAPFILE(inode))
1922 goto out_busy;
1923 i_size_write(inode, offset);
1926 * unmap_mapping_range is called twice, first simply for efficiency
1927 * so that truncate_inode_pages does fewer single-page unmaps. However
1928 * after this first call, and before truncate_inode_pages finishes,
1929 * it is possible for private pages to be COWed, which remain after
1930 * truncate_inode_pages finishes, hence the second unmap_mapping_range
1931 * call must be made for correctness.
1933 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1934 truncate_inode_pages(mapping, offset);
1935 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1936 goto out_truncate;
1938 do_expand:
1939 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1940 if (limit != RLIM_INFINITY && offset > limit)
1941 goto out_sig;
1942 if (offset > inode->i_sb->s_maxbytes)
1943 goto out_big;
1944 i_size_write(inode, offset);
1946 out_truncate:
1947 if (inode->i_op && inode->i_op->truncate)
1948 inode->i_op->truncate(inode);
1949 return 0;
1950 out_sig:
1951 send_sig(SIGXFSZ, current, 0);
1952 out_big:
1953 return -EFBIG;
1954 out_busy:
1955 return -ETXTBSY;
1957 EXPORT_SYMBOL(vmtruncate);
1959 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1961 struct address_space *mapping = inode->i_mapping;
1964 * If the underlying filesystem is not going to provide
1965 * a way to truncate a range of blocks (punch a hole) -
1966 * we should return failure right now.
1968 if (!inode->i_op || !inode->i_op->truncate_range)
1969 return -ENOSYS;
1971 mutex_lock(&inode->i_mutex);
1972 down_write(&inode->i_alloc_sem);
1973 unmap_mapping_range(mapping, offset, (end - offset), 1);
1974 truncate_inode_pages_range(mapping, offset, end);
1975 unmap_mapping_range(mapping, offset, (end - offset), 1);
1976 inode->i_op->truncate_range(inode, offset, end);
1977 up_write(&inode->i_alloc_sem);
1978 mutex_unlock(&inode->i_mutex);
1980 return 0;
1984 * swapin_readahead - swap in pages in hope we need them soon
1985 * @entry: swap entry of this memory
1986 * @addr: address to start
1987 * @vma: user vma this addresses belong to
1989 * Primitive swap readahead code. We simply read an aligned block of
1990 * (1 << page_cluster) entries in the swap area. This method is chosen
1991 * because it doesn't cost us any seek time. We also make sure to queue
1992 * the 'original' request together with the readahead ones...
1994 * This has been extended to use the NUMA policies from the mm triggering
1995 * the readahead.
1997 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1999 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
2001 #ifdef CONFIG_NUMA
2002 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2003 #endif
2004 int i, num;
2005 struct page *new_page;
2006 unsigned long offset;
2009 * Get the number of handles we should do readahead io to.
2011 num = valid_swaphandles(entry, &offset);
2012 for (i = 0; i < num; offset++, i++) {
2013 /* Ok, do the async read-ahead now */
2014 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2015 offset), vma, addr);
2016 if (!new_page)
2017 break;
2018 page_cache_release(new_page);
2019 #ifdef CONFIG_NUMA
2021 * Find the next applicable VMA for the NUMA policy.
2023 addr += PAGE_SIZE;
2024 if (addr == 0)
2025 vma = NULL;
2026 if (vma) {
2027 if (addr >= vma->vm_end) {
2028 vma = next_vma;
2029 next_vma = vma ? vma->vm_next : NULL;
2031 if (vma && addr < vma->vm_start)
2032 vma = NULL;
2033 } else {
2034 if (next_vma && addr >= next_vma->vm_start) {
2035 vma = next_vma;
2036 next_vma = vma->vm_next;
2039 #endif
2041 lru_add_drain(); /* Push any new pages onto the LRU now */
2045 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2046 * but allow concurrent faults), and pte mapped but not yet locked.
2047 * We return with mmap_sem still held, but pte unmapped and unlocked.
2049 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2050 unsigned long address, pte_t *page_table, pmd_t *pmd,
2051 int write_access, pte_t orig_pte)
2053 spinlock_t *ptl;
2054 struct page *page;
2055 swp_entry_t entry;
2056 pte_t pte;
2057 int ret = 0;
2059 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2060 goto out;
2062 entry = pte_to_swp_entry(orig_pte);
2063 if (is_migration_entry(entry)) {
2064 migration_entry_wait(mm, pmd, address);
2065 goto out;
2067 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2068 page = lookup_swap_cache(entry);
2069 if (!page) {
2070 grab_swap_token(); /* Contend for token _before_ read-in */
2071 swapin_readahead(entry, address, vma);
2072 page = read_swap_cache_async(entry, vma, address);
2073 if (!page) {
2075 * Back out if somebody else faulted in this pte
2076 * while we released the pte lock.
2078 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2079 if (likely(pte_same(*page_table, orig_pte)))
2080 ret = VM_FAULT_OOM;
2081 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2082 goto unlock;
2085 /* Had to read the page from swap area: Major fault */
2086 ret = VM_FAULT_MAJOR;
2087 count_vm_event(PGMAJFAULT);
2090 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2091 mark_page_accessed(page);
2092 lock_page(page);
2095 * Back out if somebody else already faulted in this pte.
2097 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2098 if (unlikely(!pte_same(*page_table, orig_pte)))
2099 goto out_nomap;
2101 if (unlikely(!PageUptodate(page))) {
2102 ret = VM_FAULT_SIGBUS;
2103 goto out_nomap;
2106 /* The page isn't present yet, go ahead with the fault. */
2108 inc_mm_counter(mm, anon_rss);
2109 pte = mk_pte(page, vma->vm_page_prot);
2110 if (write_access && can_share_swap_page(page)) {
2111 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2112 write_access = 0;
2115 flush_icache_page(vma, page);
2116 set_pte_at(mm, address, page_table, pte);
2117 page_add_anon_rmap(page, vma, address);
2119 swap_free(entry);
2120 if (vm_swap_full())
2121 remove_exclusive_swap_page(page);
2122 unlock_page(page);
2124 if (write_access) {
2125 /* XXX: We could OR the do_wp_page code with this one? */
2126 if (do_wp_page(mm, vma, address,
2127 page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2128 ret = VM_FAULT_OOM;
2129 goto out;
2132 /* No need to invalidate - it was non-present before */
2133 update_mmu_cache(vma, address, pte);
2134 unlock:
2135 pte_unmap_unlock(page_table, ptl);
2136 out:
2137 return ret;
2138 out_nomap:
2139 pte_unmap_unlock(page_table, ptl);
2140 unlock_page(page);
2141 page_cache_release(page);
2142 return ret;
2146 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2147 * but allow concurrent faults), and pte mapped but not yet locked.
2148 * We return with mmap_sem still held, but pte unmapped and unlocked.
2150 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2151 unsigned long address, pte_t *page_table, pmd_t *pmd,
2152 int write_access)
2154 struct page *page;
2155 spinlock_t *ptl;
2156 pte_t entry;
2158 /* Allocate our own private page. */
2159 pte_unmap(page_table);
2161 if (unlikely(anon_vma_prepare(vma)))
2162 goto oom;
2163 page = alloc_zeroed_user_highpage_movable(vma, address);
2164 if (!page)
2165 goto oom;
2167 entry = mk_pte(page, vma->vm_page_prot);
2168 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2170 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2171 if (!pte_none(*page_table))
2172 goto release;
2173 inc_mm_counter(mm, anon_rss);
2174 lru_cache_add_active(page);
2175 page_add_new_anon_rmap(page, vma, address);
2176 set_pte_at(mm, address, page_table, entry);
2178 /* No need to invalidate - it was non-present before */
2179 update_mmu_cache(vma, address, entry);
2180 unlock:
2181 pte_unmap_unlock(page_table, ptl);
2182 return 0;
2183 release:
2184 page_cache_release(page);
2185 goto unlock;
2186 oom:
2187 return VM_FAULT_OOM;
2191 * __do_fault() tries to create a new page mapping. It aggressively
2192 * tries to share with existing pages, but makes a separate copy if
2193 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2194 * the next page fault.
2196 * As this is called only for pages that do not currently exist, we
2197 * do not need to flush old virtual caches or the TLB.
2199 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2200 * but allow concurrent faults), and pte neither mapped nor locked.
2201 * We return with mmap_sem still held, but pte unmapped and unlocked.
2203 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2204 unsigned long address, pmd_t *pmd,
2205 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2207 pte_t *page_table;
2208 spinlock_t *ptl;
2209 struct page *page;
2210 pte_t entry;
2211 int anon = 0;
2212 struct page *dirty_page = NULL;
2213 struct vm_fault vmf;
2214 int ret;
2215 int page_mkwrite = 0;
2217 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2218 vmf.pgoff = pgoff;
2219 vmf.flags = flags;
2220 vmf.page = NULL;
2222 BUG_ON(vma->vm_flags & VM_PFNMAP);
2224 if (likely(vma->vm_ops->fault)) {
2225 ret = vma->vm_ops->fault(vma, &vmf);
2226 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2227 return ret;
2228 } else {
2229 /* Legacy ->nopage path */
2230 ret = 0;
2231 vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2232 /* no page was available -- either SIGBUS or OOM */
2233 if (unlikely(vmf.page == NOPAGE_SIGBUS))
2234 return VM_FAULT_SIGBUS;
2235 else if (unlikely(vmf.page == NOPAGE_OOM))
2236 return VM_FAULT_OOM;
2240 * For consistency in subsequent calls, make the faulted page always
2241 * locked.
2243 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2244 lock_page(vmf.page);
2245 else
2246 VM_BUG_ON(!PageLocked(vmf.page));
2249 * Should we do an early C-O-W break?
2251 page = vmf.page;
2252 if (flags & FAULT_FLAG_WRITE) {
2253 if (!(vma->vm_flags & VM_SHARED)) {
2254 anon = 1;
2255 if (unlikely(anon_vma_prepare(vma))) {
2256 ret = VM_FAULT_OOM;
2257 goto out;
2259 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2260 vma, address);
2261 if (!page) {
2262 ret = VM_FAULT_OOM;
2263 goto out;
2265 copy_user_highpage(page, vmf.page, address, vma);
2266 } else {
2268 * If the page will be shareable, see if the backing
2269 * address space wants to know that the page is about
2270 * to become writable
2272 if (vma->vm_ops->page_mkwrite) {
2273 unlock_page(page);
2274 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2275 ret = VM_FAULT_SIGBUS;
2276 anon = 1; /* no anon but release vmf.page */
2277 goto out_unlocked;
2279 lock_page(page);
2281 * XXX: this is not quite right (racy vs
2282 * invalidate) to unlock and relock the page
2283 * like this, however a better fix requires
2284 * reworking page_mkwrite locking API, which
2285 * is better done later.
2287 if (!page->mapping) {
2288 ret = 0;
2289 anon = 1; /* no anon but release vmf.page */
2290 goto out;
2292 page_mkwrite = 1;
2298 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2301 * This silly early PAGE_DIRTY setting removes a race
2302 * due to the bad i386 page protection. But it's valid
2303 * for other architectures too.
2305 * Note that if write_access is true, we either now have
2306 * an exclusive copy of the page, or this is a shared mapping,
2307 * so we can make it writable and dirty to avoid having to
2308 * handle that later.
2310 /* Only go through if we didn't race with anybody else... */
2311 if (likely(pte_same(*page_table, orig_pte))) {
2312 flush_icache_page(vma, page);
2313 entry = mk_pte(page, vma->vm_page_prot);
2314 if (flags & FAULT_FLAG_WRITE)
2315 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2316 set_pte_at(mm, address, page_table, entry);
2317 if (anon) {
2318 inc_mm_counter(mm, anon_rss);
2319 lru_cache_add_active(page);
2320 page_add_new_anon_rmap(page, vma, address);
2321 } else {
2322 inc_mm_counter(mm, file_rss);
2323 page_add_file_rmap(page);
2324 if (flags & FAULT_FLAG_WRITE) {
2325 dirty_page = page;
2326 get_page(dirty_page);
2330 /* no need to invalidate: a not-present page won't be cached */
2331 update_mmu_cache(vma, address, entry);
2332 } else {
2333 if (anon)
2334 page_cache_release(page);
2335 else
2336 anon = 1; /* no anon but release faulted_page */
2339 pte_unmap_unlock(page_table, ptl);
2341 out:
2342 unlock_page(vmf.page);
2343 out_unlocked:
2344 if (anon)
2345 page_cache_release(vmf.page);
2346 else if (dirty_page) {
2347 set_page_dirty_balance(dirty_page, page_mkwrite);
2348 put_page(dirty_page);
2351 return ret;
2354 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2355 unsigned long address, pte_t *page_table, pmd_t *pmd,
2356 int write_access, pte_t orig_pte)
2358 pgoff_t pgoff = (((address & PAGE_MASK)
2359 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2360 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2362 pte_unmap(page_table);
2363 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2368 * do_no_pfn() tries to create a new page mapping for a page without
2369 * a struct_page backing it
2371 * As this is called only for pages that do not currently exist, we
2372 * do not need to flush old virtual caches or the TLB.
2374 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2375 * but allow concurrent faults), and pte mapped but not yet locked.
2376 * We return with mmap_sem still held, but pte unmapped and unlocked.
2378 * It is expected that the ->nopfn handler always returns the same pfn
2379 * for a given virtual mapping.
2381 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2383 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2384 unsigned long address, pte_t *page_table, pmd_t *pmd,
2385 int write_access)
2387 spinlock_t *ptl;
2388 pte_t entry;
2389 unsigned long pfn;
2391 pte_unmap(page_table);
2392 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2393 BUG_ON(is_cow_mapping(vma->vm_flags));
2395 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2396 if (unlikely(pfn == NOPFN_OOM))
2397 return VM_FAULT_OOM;
2398 else if (unlikely(pfn == NOPFN_SIGBUS))
2399 return VM_FAULT_SIGBUS;
2400 else if (unlikely(pfn == NOPFN_REFAULT))
2401 return 0;
2403 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2405 /* Only go through if we didn't race with anybody else... */
2406 if (pte_none(*page_table)) {
2407 entry = pfn_pte(pfn, vma->vm_page_prot);
2408 if (write_access)
2409 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2410 set_pte_at(mm, address, page_table, entry);
2412 pte_unmap_unlock(page_table, ptl);
2413 return 0;
2417 * Fault of a previously existing named mapping. Repopulate the pte
2418 * from the encoded file_pte if possible. This enables swappable
2419 * nonlinear vmas.
2421 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2422 * but allow concurrent faults), and pte mapped but not yet locked.
2423 * We return with mmap_sem still held, but pte unmapped and unlocked.
2425 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2426 unsigned long address, pte_t *page_table, pmd_t *pmd,
2427 int write_access, pte_t orig_pte)
2429 unsigned int flags = FAULT_FLAG_NONLINEAR |
2430 (write_access ? FAULT_FLAG_WRITE : 0);
2431 pgoff_t pgoff;
2433 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2434 return 0;
2436 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2437 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2439 * Page table corrupted: show pte and kill process.
2441 print_bad_pte(vma, orig_pte, address);
2442 return VM_FAULT_OOM;
2445 pgoff = pte_to_pgoff(orig_pte);
2446 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2450 * These routines also need to handle stuff like marking pages dirty
2451 * and/or accessed for architectures that don't do it in hardware (most
2452 * RISC architectures). The early dirtying is also good on the i386.
2454 * There is also a hook called "update_mmu_cache()" that architectures
2455 * with external mmu caches can use to update those (ie the Sparc or
2456 * PowerPC hashed page tables that act as extended TLBs).
2458 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2459 * but allow concurrent faults), and pte mapped but not yet locked.
2460 * We return with mmap_sem still held, but pte unmapped and unlocked.
2462 static inline int handle_pte_fault(struct mm_struct *mm,
2463 struct vm_area_struct *vma, unsigned long address,
2464 pte_t *pte, pmd_t *pmd, int write_access)
2466 pte_t entry;
2467 spinlock_t *ptl;
2469 entry = *pte;
2470 if (!pte_present(entry)) {
2471 if (pte_none(entry)) {
2472 if (vma->vm_ops) {
2473 if (vma->vm_ops->fault || vma->vm_ops->nopage)
2474 return do_linear_fault(mm, vma, address,
2475 pte, pmd, write_access, entry);
2476 if (unlikely(vma->vm_ops->nopfn))
2477 return do_no_pfn(mm, vma, address, pte,
2478 pmd, write_access);
2480 return do_anonymous_page(mm, vma, address,
2481 pte, pmd, write_access);
2483 if (pte_file(entry))
2484 return do_nonlinear_fault(mm, vma, address,
2485 pte, pmd, write_access, entry);
2486 return do_swap_page(mm, vma, address,
2487 pte, pmd, write_access, entry);
2490 ptl = pte_lockptr(mm, pmd);
2491 spin_lock(ptl);
2492 if (unlikely(!pte_same(*pte, entry)))
2493 goto unlock;
2494 if (write_access) {
2495 if (!pte_write(entry))
2496 return do_wp_page(mm, vma, address,
2497 pte, pmd, ptl, entry);
2498 entry = pte_mkdirty(entry);
2500 entry = pte_mkyoung(entry);
2501 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2502 update_mmu_cache(vma, address, entry);
2503 } else {
2505 * This is needed only for protection faults but the arch code
2506 * is not yet telling us if this is a protection fault or not.
2507 * This still avoids useless tlb flushes for .text page faults
2508 * with threads.
2510 if (write_access)
2511 flush_tlb_page(vma, address);
2513 unlock:
2514 pte_unmap_unlock(pte, ptl);
2515 return 0;
2519 * By the time we get here, we already hold the mm semaphore
2521 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2522 unsigned long address, int write_access)
2524 pgd_t *pgd;
2525 pud_t *pud;
2526 pmd_t *pmd;
2527 pte_t *pte;
2529 __set_current_state(TASK_RUNNING);
2531 count_vm_event(PGFAULT);
2533 if (unlikely(is_vm_hugetlb_page(vma)))
2534 return hugetlb_fault(mm, vma, address, write_access);
2536 pgd = pgd_offset(mm, address);
2537 pud = pud_alloc(mm, pgd, address);
2538 if (!pud)
2539 return VM_FAULT_OOM;
2540 pmd = pmd_alloc(mm, pud, address);
2541 if (!pmd)
2542 return VM_FAULT_OOM;
2543 pte = pte_alloc_map(mm, pmd, address);
2544 if (!pte)
2545 return VM_FAULT_OOM;
2547 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2550 #ifndef __PAGETABLE_PUD_FOLDED
2552 * Allocate page upper directory.
2553 * We've already handled the fast-path in-line.
2555 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2557 pud_t *new = pud_alloc_one(mm, address);
2558 if (!new)
2559 return -ENOMEM;
2561 spin_lock(&mm->page_table_lock);
2562 if (pgd_present(*pgd)) /* Another has populated it */
2563 pud_free(new);
2564 else
2565 pgd_populate(mm, pgd, new);
2566 spin_unlock(&mm->page_table_lock);
2567 return 0;
2569 #endif /* __PAGETABLE_PUD_FOLDED */
2571 #ifndef __PAGETABLE_PMD_FOLDED
2573 * Allocate page middle directory.
2574 * We've already handled the fast-path in-line.
2576 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2578 pmd_t *new = pmd_alloc_one(mm, address);
2579 if (!new)
2580 return -ENOMEM;
2582 spin_lock(&mm->page_table_lock);
2583 #ifndef __ARCH_HAS_4LEVEL_HACK
2584 if (pud_present(*pud)) /* Another has populated it */
2585 pmd_free(new);
2586 else
2587 pud_populate(mm, pud, new);
2588 #else
2589 if (pgd_present(*pud)) /* Another has populated it */
2590 pmd_free(new);
2591 else
2592 pgd_populate(mm, pud, new);
2593 #endif /* __ARCH_HAS_4LEVEL_HACK */
2594 spin_unlock(&mm->page_table_lock);
2595 return 0;
2597 #endif /* __PAGETABLE_PMD_FOLDED */
2599 int make_pages_present(unsigned long addr, unsigned long end)
2601 int ret, len, write;
2602 struct vm_area_struct * vma;
2604 vma = find_vma(current->mm, addr);
2605 if (!vma)
2606 return -1;
2607 write = (vma->vm_flags & VM_WRITE) != 0;
2608 BUG_ON(addr >= end);
2609 BUG_ON(end > vma->vm_end);
2610 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2611 ret = get_user_pages(current, current->mm, addr,
2612 len, write, 0, NULL, NULL);
2613 if (ret < 0)
2614 return ret;
2615 return ret == len ? 0 : -1;
2619 * Map a vmalloc()-space virtual address to the physical page.
2621 struct page * vmalloc_to_page(void * vmalloc_addr)
2623 unsigned long addr = (unsigned long) vmalloc_addr;
2624 struct page *page = NULL;
2625 pgd_t *pgd = pgd_offset_k(addr);
2626 pud_t *pud;
2627 pmd_t *pmd;
2628 pte_t *ptep, pte;
2630 if (!pgd_none(*pgd)) {
2631 pud = pud_offset(pgd, addr);
2632 if (!pud_none(*pud)) {
2633 pmd = pmd_offset(pud, addr);
2634 if (!pmd_none(*pmd)) {
2635 ptep = pte_offset_map(pmd, addr);
2636 pte = *ptep;
2637 if (pte_present(pte))
2638 page = pte_page(pte);
2639 pte_unmap(ptep);
2643 return page;
2646 EXPORT_SYMBOL(vmalloc_to_page);
2649 * Map a vmalloc()-space virtual address to the physical page frame number.
2651 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2653 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2656 EXPORT_SYMBOL(vmalloc_to_pfn);
2658 #if !defined(__HAVE_ARCH_GATE_AREA)
2660 #if defined(AT_SYSINFO_EHDR)
2661 static struct vm_area_struct gate_vma;
2663 static int __init gate_vma_init(void)
2665 gate_vma.vm_mm = NULL;
2666 gate_vma.vm_start = FIXADDR_USER_START;
2667 gate_vma.vm_end = FIXADDR_USER_END;
2668 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2669 gate_vma.vm_page_prot = __P101;
2671 * Make sure the vDSO gets into every core dump.
2672 * Dumping its contents makes post-mortem fully interpretable later
2673 * without matching up the same kernel and hardware config to see
2674 * what PC values meant.
2676 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2677 return 0;
2679 __initcall(gate_vma_init);
2680 #endif
2682 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2684 #ifdef AT_SYSINFO_EHDR
2685 return &gate_vma;
2686 #else
2687 return NULL;
2688 #endif
2691 int in_gate_area_no_task(unsigned long addr)
2693 #ifdef AT_SYSINFO_EHDR
2694 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2695 return 1;
2696 #endif
2697 return 0;
2700 #endif /* __HAVE_ARCH_GATE_AREA */
2703 * Access another process' address space.
2704 * Source/target buffer must be kernel space,
2705 * Do not walk the page table directly, use get_user_pages
2707 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2709 struct mm_struct *mm;
2710 struct vm_area_struct *vma;
2711 struct page *page;
2712 void *old_buf = buf;
2714 mm = get_task_mm(tsk);
2715 if (!mm)
2716 return 0;
2718 down_read(&mm->mmap_sem);
2719 /* ignore errors, just check how much was sucessfully transfered */
2720 while (len) {
2721 int bytes, ret, offset;
2722 void *maddr;
2724 ret = get_user_pages(tsk, mm, addr, 1,
2725 write, 1, &page, &vma);
2726 if (ret <= 0)
2727 break;
2729 bytes = len;
2730 offset = addr & (PAGE_SIZE-1);
2731 if (bytes > PAGE_SIZE-offset)
2732 bytes = PAGE_SIZE-offset;
2734 maddr = kmap(page);
2735 if (write) {
2736 copy_to_user_page(vma, page, addr,
2737 maddr + offset, buf, bytes);
2738 set_page_dirty_lock(page);
2739 } else {
2740 copy_from_user_page(vma, page, addr,
2741 buf, maddr + offset, bytes);
2743 kunmap(page);
2744 page_cache_release(page);
2745 len -= bytes;
2746 buf += bytes;
2747 addr += bytes;
2749 up_read(&mm->mmap_sem);
2750 mmput(mm);
2752 return buf - old_buf;
2754 EXPORT_SYMBOL_GPL(access_process_vm);