1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
37 #define DRIVERNAPI "-NAPI"
39 #define DRV_VERSION "7.3.15-k2"DRIVERNAPI
40 char e1000_driver_version
[] = DRV_VERSION
;
41 static char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
43 /* e1000_pci_tbl - PCI Device ID Table
45 * Last entry must be all 0s
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
50 static struct pci_device_id e1000_pci_tbl
[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107 INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108 INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109 INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110 /* required last entry */
114 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
116 int e1000_up(struct e1000_adapter
*adapter
);
117 void e1000_down(struct e1000_adapter
*adapter
);
118 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
119 void e1000_reset(struct e1000_adapter
*adapter
);
120 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
);
121 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
122 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
123 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
124 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
125 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
126 struct e1000_tx_ring
*txdr
);
127 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
128 struct e1000_rx_ring
*rxdr
);
129 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
130 struct e1000_tx_ring
*tx_ring
);
131 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
132 struct e1000_rx_ring
*rx_ring
);
133 void e1000_update_stats(struct e1000_adapter
*adapter
);
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
138 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
139 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
140 static int e1000_sw_init(struct e1000_adapter
*adapter
);
141 static int e1000_open(struct net_device
*netdev
);
142 static int e1000_close(struct net_device
*netdev
);
143 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
144 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
145 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
148 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
149 struct e1000_tx_ring
*tx_ring
);
150 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
151 struct e1000_rx_ring
*rx_ring
);
152 static void e1000_set_multi(struct net_device
*netdev
);
153 static void e1000_update_phy_info(unsigned long data
);
154 static void e1000_watchdog(unsigned long data
);
155 static void e1000_82547_tx_fifo_stall(unsigned long data
);
156 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
157 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
158 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
159 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
160 static irqreturn_t
e1000_intr(int irq
, void *data
);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t
e1000_intr_msi(int irq
, void *data
);
164 static boolean_t
e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
165 struct e1000_tx_ring
*tx_ring
);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device
*poll_dev
, int *budget
);
168 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
169 struct e1000_rx_ring
*rx_ring
,
170 int *work_done
, int work_to_do
);
171 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
172 struct e1000_rx_ring
*rx_ring
,
173 int *work_done
, int work_to_do
);
175 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
176 struct e1000_rx_ring
*rx_ring
);
177 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
178 struct e1000_rx_ring
*rx_ring
);
180 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
181 struct e1000_rx_ring
*rx_ring
,
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
184 struct e1000_rx_ring
*rx_ring
,
186 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
187 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
189 void e1000_set_ethtool_ops(struct net_device
*netdev
);
190 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
191 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
192 static void e1000_tx_timeout(struct net_device
*dev
);
193 static void e1000_reset_task(struct work_struct
*work
);
194 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
196 struct sk_buff
*skb
);
198 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
199 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
);
200 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
201 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
203 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
205 static int e1000_resume(struct pci_dev
*pdev
);
207 static void e1000_shutdown(struct pci_dev
*pdev
);
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device
*netdev
);
214 extern void e1000_check_options(struct e1000_adapter
*adapter
);
216 #define COPYBREAK_DEFAULT 256
217 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
218 module_param(copybreak
, uint
, 0644);
219 MODULE_PARM_DESC(copybreak
,
220 "Maximum size of packet that is copied to a new buffer on receive");
222 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
223 pci_channel_state_t state
);
224 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
225 static void e1000_io_resume(struct pci_dev
*pdev
);
227 static struct pci_error_handlers e1000_err_handler
= {
228 .error_detected
= e1000_io_error_detected
,
229 .slot_reset
= e1000_io_slot_reset
,
230 .resume
= e1000_io_resume
,
233 static struct pci_driver e1000_driver
= {
234 .name
= e1000_driver_name
,
235 .id_table
= e1000_pci_tbl
,
236 .probe
= e1000_probe
,
237 .remove
= __devexit_p(e1000_remove
),
239 /* Power Managment Hooks */
240 .suspend
= e1000_suspend
,
241 .resume
= e1000_resume
,
243 .shutdown
= e1000_shutdown
,
244 .err_handler
= &e1000_err_handler
247 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
248 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION
);
252 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
253 module_param(debug
, int, 0);
254 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
257 * e1000_init_module - Driver Registration Routine
259 * e1000_init_module is the first routine called when the driver is
260 * loaded. All it does is register with the PCI subsystem.
264 e1000_init_module(void)
267 printk(KERN_INFO
"%s - version %s\n",
268 e1000_driver_string
, e1000_driver_version
);
270 printk(KERN_INFO
"%s\n", e1000_copyright
);
272 ret
= pci_register_driver(&e1000_driver
);
273 if (copybreak
!= COPYBREAK_DEFAULT
) {
275 printk(KERN_INFO
"e1000: copybreak disabled\n");
277 printk(KERN_INFO
"e1000: copybreak enabled for "
278 "packets <= %u bytes\n", copybreak
);
283 module_init(e1000_init_module
);
286 * e1000_exit_module - Driver Exit Cleanup Routine
288 * e1000_exit_module is called just before the driver is removed
293 e1000_exit_module(void)
295 pci_unregister_driver(&e1000_driver
);
298 module_exit(e1000_exit_module
);
300 static int e1000_request_irq(struct e1000_adapter
*adapter
)
302 struct net_device
*netdev
= adapter
->netdev
;
306 #ifdef CONFIG_PCI_MSI
307 if (adapter
->hw
.mac_type
>= e1000_82571
) {
308 adapter
->have_msi
= TRUE
;
309 if ((err
= pci_enable_msi(adapter
->pdev
))) {
311 "Unable to allocate MSI interrupt Error: %d\n", err
);
312 adapter
->have_msi
= FALSE
;
315 if (adapter
->have_msi
) {
316 flags
&= ~IRQF_SHARED
;
317 err
= request_irq(adapter
->pdev
->irq
, &e1000_intr_msi
, flags
,
318 netdev
->name
, netdev
);
321 "Unable to allocate interrupt Error: %d\n", err
);
324 if ((err
= request_irq(adapter
->pdev
->irq
, &e1000_intr
, flags
,
325 netdev
->name
, netdev
)))
327 "Unable to allocate interrupt Error: %d\n", err
);
332 static void e1000_free_irq(struct e1000_adapter
*adapter
)
334 struct net_device
*netdev
= adapter
->netdev
;
336 free_irq(adapter
->pdev
->irq
, netdev
);
338 #ifdef CONFIG_PCI_MSI
339 if (adapter
->have_msi
)
340 pci_disable_msi(adapter
->pdev
);
345 * e1000_irq_disable - Mask off interrupt generation on the NIC
346 * @adapter: board private structure
350 e1000_irq_disable(struct e1000_adapter
*adapter
)
352 atomic_inc(&adapter
->irq_sem
);
353 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~0);
354 E1000_WRITE_FLUSH(&adapter
->hw
);
355 synchronize_irq(adapter
->pdev
->irq
);
359 * e1000_irq_enable - Enable default interrupt generation settings
360 * @adapter: board private structure
364 e1000_irq_enable(struct e1000_adapter
*adapter
)
366 if (likely(atomic_dec_and_test(&adapter
->irq_sem
))) {
367 E1000_WRITE_REG(&adapter
->hw
, IMS
, IMS_ENABLE_MASK
);
368 E1000_WRITE_FLUSH(&adapter
->hw
);
373 e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
375 struct net_device
*netdev
= adapter
->netdev
;
376 uint16_t vid
= adapter
->hw
.mng_cookie
.vlan_id
;
377 uint16_t old_vid
= adapter
->mng_vlan_id
;
378 if (adapter
->vlgrp
) {
379 if (!adapter
->vlgrp
->vlan_devices
[vid
]) {
380 if (adapter
->hw
.mng_cookie
.status
&
381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
382 e1000_vlan_rx_add_vid(netdev
, vid
);
383 adapter
->mng_vlan_id
= vid
;
385 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
387 if ((old_vid
!= (uint16_t)E1000_MNG_VLAN_NONE
) &&
389 !adapter
->vlgrp
->vlan_devices
[old_vid
])
390 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
392 adapter
->mng_vlan_id
= vid
;
397 * e1000_release_hw_control - release control of the h/w to f/w
398 * @adapter: address of board private structure
400 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
401 * For ASF and Pass Through versions of f/w this means that the
402 * driver is no longer loaded. For AMT version (only with 82573) i
403 * of the f/w this means that the network i/f is closed.
408 e1000_release_hw_control(struct e1000_adapter
*adapter
)
414 /* Let firmware taken over control of h/w */
415 switch (adapter
->hw
.mac_type
) {
418 case e1000_80003es2lan
:
419 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
420 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
421 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
424 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
425 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
426 swsm
& ~E1000_SWSM_DRV_LOAD
);
428 extcnf
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
429 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
430 extcnf
& ~E1000_CTRL_EXT_DRV_LOAD
);
438 * e1000_get_hw_control - get control of the h/w from f/w
439 * @adapter: address of board private structure
441 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
442 * For ASF and Pass Through versions of f/w this means that
443 * the driver is loaded. For AMT version (only with 82573)
444 * of the f/w this means that the network i/f is open.
449 e1000_get_hw_control(struct e1000_adapter
*adapter
)
455 /* Let firmware know the driver has taken over */
456 switch (adapter
->hw
.mac_type
) {
459 case e1000_80003es2lan
:
460 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
461 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
462 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
465 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
466 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
467 swsm
| E1000_SWSM_DRV_LOAD
);
470 extcnf
= E1000_READ_REG(&adapter
->hw
, EXTCNF_CTRL
);
471 E1000_WRITE_REG(&adapter
->hw
, EXTCNF_CTRL
,
472 extcnf
| E1000_EXTCNF_CTRL_SWFLAG
);
480 e1000_init_manageability(struct e1000_adapter
*adapter
)
482 if (adapter
->en_mng_pt
) {
483 uint32_t manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
485 /* disable hardware interception of ARP */
486 manc
&= ~(E1000_MANC_ARP_EN
);
488 /* enable receiving management packets to the host */
489 /* this will probably generate destination unreachable messages
490 * from the host OS, but the packets will be handled on SMBUS */
491 if (adapter
->hw
.has_manc2h
) {
492 uint32_t manc2h
= E1000_READ_REG(&adapter
->hw
, MANC2H
);
494 manc
|= E1000_MANC_EN_MNG2HOST
;
495 #define E1000_MNG2HOST_PORT_623 (1 << 5)
496 #define E1000_MNG2HOST_PORT_664 (1 << 6)
497 manc2h
|= E1000_MNG2HOST_PORT_623
;
498 manc2h
|= E1000_MNG2HOST_PORT_664
;
499 E1000_WRITE_REG(&adapter
->hw
, MANC2H
, manc2h
);
502 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
507 e1000_release_manageability(struct e1000_adapter
*adapter
)
509 if (adapter
->en_mng_pt
) {
510 uint32_t manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
512 /* re-enable hardware interception of ARP */
513 manc
|= E1000_MANC_ARP_EN
;
515 if (adapter
->hw
.has_manc2h
)
516 manc
&= ~E1000_MANC_EN_MNG2HOST
;
518 /* don't explicitly have to mess with MANC2H since
519 * MANC has an enable disable that gates MANC2H */
521 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
526 e1000_up(struct e1000_adapter
*adapter
)
528 struct net_device
*netdev
= adapter
->netdev
;
531 /* hardware has been reset, we need to reload some things */
533 e1000_set_multi(netdev
);
535 e1000_restore_vlan(adapter
);
536 e1000_init_manageability(adapter
);
538 e1000_configure_tx(adapter
);
539 e1000_setup_rctl(adapter
);
540 e1000_configure_rx(adapter
);
541 /* call E1000_DESC_UNUSED which always leaves
542 * at least 1 descriptor unused to make sure
543 * next_to_use != next_to_clean */
544 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
545 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
546 adapter
->alloc_rx_buf(adapter
, ring
,
547 E1000_DESC_UNUSED(ring
));
550 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
552 #ifdef CONFIG_E1000_NAPI
553 netif_poll_enable(netdev
);
555 e1000_irq_enable(adapter
);
557 clear_bit(__E1000_DOWN
, &adapter
->flags
);
559 /* fire a link change interrupt to start the watchdog */
560 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_LSC
);
565 * e1000_power_up_phy - restore link in case the phy was powered down
566 * @adapter: address of board private structure
568 * The phy may be powered down to save power and turn off link when the
569 * driver is unloaded and wake on lan is not enabled (among others)
570 * *** this routine MUST be followed by a call to e1000_reset ***
574 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
576 uint16_t mii_reg
= 0;
578 /* Just clear the power down bit to wake the phy back up */
579 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
580 /* according to the manual, the phy will retain its
581 * settings across a power-down/up cycle */
582 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
583 mii_reg
&= ~MII_CR_POWER_DOWN
;
584 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
588 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
590 /* Power down the PHY so no link is implied when interface is down *
591 * The PHY cannot be powered down if any of the following is TRUE *
594 * (c) SoL/IDER session is active */
595 if (!adapter
->wol
&& adapter
->hw
.mac_type
>= e1000_82540
&&
596 adapter
->hw
.media_type
== e1000_media_type_copper
) {
597 uint16_t mii_reg
= 0;
599 switch (adapter
->hw
.mac_type
) {
602 case e1000_82545_rev_3
:
604 case e1000_82546_rev_3
:
606 case e1000_82541_rev_2
:
608 case e1000_82547_rev_2
:
609 if (E1000_READ_REG(&adapter
->hw
, MANC
) &
616 case e1000_80003es2lan
:
618 if (e1000_check_mng_mode(&adapter
->hw
) ||
619 e1000_check_phy_reset_block(&adapter
->hw
))
625 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
626 mii_reg
|= MII_CR_POWER_DOWN
;
627 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
635 e1000_down(struct e1000_adapter
*adapter
)
637 struct net_device
*netdev
= adapter
->netdev
;
639 /* signal that we're down so the interrupt handler does not
640 * reschedule our watchdog timer */
641 set_bit(__E1000_DOWN
, &adapter
->flags
);
643 e1000_irq_disable(adapter
);
645 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
646 del_timer_sync(&adapter
->watchdog_timer
);
647 del_timer_sync(&adapter
->phy_info_timer
);
649 #ifdef CONFIG_E1000_NAPI
650 netif_poll_disable(netdev
);
652 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
653 adapter
->link_speed
= 0;
654 adapter
->link_duplex
= 0;
655 netif_carrier_off(netdev
);
656 netif_stop_queue(netdev
);
658 e1000_reset(adapter
);
659 e1000_clean_all_tx_rings(adapter
);
660 e1000_clean_all_rx_rings(adapter
);
664 e1000_reinit_locked(struct e1000_adapter
*adapter
)
666 WARN_ON(in_interrupt());
667 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
671 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
675 e1000_reset(struct e1000_adapter
*adapter
)
677 uint32_t pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
678 uint16_t fc_high_water_mark
= E1000_FC_HIGH_DIFF
;
679 boolean_t legacy_pba_adjust
= FALSE
;
681 /* Repartition Pba for greater than 9k mtu
682 * To take effect CTRL.RST is required.
685 switch (adapter
->hw
.mac_type
) {
686 case e1000_82542_rev2_0
:
687 case e1000_82542_rev2_1
:
692 case e1000_82541_rev_2
:
693 legacy_pba_adjust
= TRUE
;
697 case e1000_82545_rev_3
:
699 case e1000_82546_rev_3
:
703 case e1000_82547_rev_2
:
704 legacy_pba_adjust
= TRUE
;
709 case e1000_80003es2lan
:
717 case e1000_undefined
:
722 if (legacy_pba_adjust
== TRUE
) {
723 if (adapter
->netdev
->mtu
> E1000_RXBUFFER_8192
)
724 pba
-= 8; /* allocate more FIFO for Tx */
726 if (adapter
->hw
.mac_type
== e1000_82547
) {
727 adapter
->tx_fifo_head
= 0;
728 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
729 adapter
->tx_fifo_size
=
730 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
731 atomic_set(&adapter
->tx_fifo_stall
, 0);
733 } else if (adapter
->hw
.max_frame_size
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
734 /* adjust PBA for jumbo frames */
735 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
737 /* To maintain wire speed transmits, the Tx FIFO should be
738 * large enough to accomodate two full transmit packets,
739 * rounded up to the next 1KB and expressed in KB. Likewise,
740 * the Rx FIFO should be large enough to accomodate at least
741 * one full receive packet and is similarly rounded up and
742 * expressed in KB. */
743 pba
= E1000_READ_REG(&adapter
->hw
, PBA
);
744 /* upper 16 bits has Tx packet buffer allocation size in KB */
745 tx_space
= pba
>> 16;
746 /* lower 16 bits has Rx packet buffer allocation size in KB */
748 /* don't include ethernet FCS because hardware appends/strips */
749 min_rx_space
= adapter
->netdev
->mtu
+ ENET_HEADER_SIZE
+
751 min_tx_space
= min_rx_space
;
753 E1000_ROUNDUP(min_tx_space
, 1024);
755 E1000_ROUNDUP(min_rx_space
, 1024);
758 /* If current Tx allocation is less than the min Tx FIFO size,
759 * and the min Tx FIFO size is less than the current Rx FIFO
760 * allocation, take space away from current Rx allocation */
761 if (tx_space
< min_tx_space
&&
762 ((min_tx_space
- tx_space
) < pba
)) {
763 pba
= pba
- (min_tx_space
- tx_space
);
765 /* PCI/PCIx hardware has PBA alignment constraints */
766 switch (adapter
->hw
.mac_type
) {
767 case e1000_82545
... e1000_82546_rev_3
:
768 pba
&= ~(E1000_PBA_8K
- 1);
774 /* if short on rx space, rx wins and must trump tx
775 * adjustment or use Early Receive if available */
776 if (pba
< min_rx_space
) {
777 switch (adapter
->hw
.mac_type
) {
779 /* ERT enabled in e1000_configure_rx */
789 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
791 /* flow control settings */
792 /* Set the FC high water mark to 90% of the FIFO size.
793 * Required to clear last 3 LSB */
794 fc_high_water_mark
= ((pba
* 9216)/10) & 0xFFF8;
795 /* We can't use 90% on small FIFOs because the remainder
796 * would be less than 1 full frame. In this case, we size
797 * it to allow at least a full frame above the high water
799 if (pba
< E1000_PBA_16K
)
800 fc_high_water_mark
= (pba
* 1024) - 1600;
802 adapter
->hw
.fc_high_water
= fc_high_water_mark
;
803 adapter
->hw
.fc_low_water
= fc_high_water_mark
- 8;
804 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
805 adapter
->hw
.fc_pause_time
= 0xFFFF;
807 adapter
->hw
.fc_pause_time
= E1000_FC_PAUSE_TIME
;
808 adapter
->hw
.fc_send_xon
= 1;
809 adapter
->hw
.fc
= adapter
->hw
.original_fc
;
811 /* Allow time for pending master requests to run */
812 e1000_reset_hw(&adapter
->hw
);
813 if (adapter
->hw
.mac_type
>= e1000_82544
)
814 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
816 if (e1000_init_hw(&adapter
->hw
))
817 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
818 e1000_update_mng_vlan(adapter
);
820 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
821 if (adapter
->hw
.mac_type
>= e1000_82544
&&
822 adapter
->hw
.mac_type
<= e1000_82547_rev_2
&&
823 adapter
->hw
.autoneg
== 1 &&
824 adapter
->hw
.autoneg_advertised
== ADVERTISE_1000_FULL
) {
825 uint32_t ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
826 /* clear phy power management bit if we are in gig only mode,
827 * which if enabled will attempt negotiation to 100Mb, which
828 * can cause a loss of link at power off or driver unload */
829 ctrl
&= ~E1000_CTRL_SWDPIN3
;
830 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
833 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
834 E1000_WRITE_REG(&adapter
->hw
, VET
, ETHERNET_IEEE_VLAN_TYPE
);
836 e1000_reset_adaptive(&adapter
->hw
);
837 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
839 if (!adapter
->smart_power_down
&&
840 (adapter
->hw
.mac_type
== e1000_82571
||
841 adapter
->hw
.mac_type
== e1000_82572
)) {
842 uint16_t phy_data
= 0;
843 /* speed up time to link by disabling smart power down, ignore
844 * the return value of this function because there is nothing
845 * different we would do if it failed */
846 e1000_read_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
848 phy_data
&= ~IGP02E1000_PM_SPD
;
849 e1000_write_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
853 e1000_release_manageability(adapter
);
857 * e1000_probe - Device Initialization Routine
858 * @pdev: PCI device information struct
859 * @ent: entry in e1000_pci_tbl
861 * Returns 0 on success, negative on failure
863 * e1000_probe initializes an adapter identified by a pci_dev structure.
864 * The OS initialization, configuring of the adapter private structure,
865 * and a hardware reset occur.
869 e1000_probe(struct pci_dev
*pdev
,
870 const struct pci_device_id
*ent
)
872 struct net_device
*netdev
;
873 struct e1000_adapter
*adapter
;
874 unsigned long mmio_start
, mmio_len
;
875 unsigned long flash_start
, flash_len
;
877 static int cards_found
= 0;
878 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
879 int i
, err
, pci_using_dac
;
880 uint16_t eeprom_data
= 0;
881 uint16_t eeprom_apme_mask
= E1000_EEPROM_APME
;
882 if ((err
= pci_enable_device(pdev
)))
885 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) &&
886 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
))) {
889 if ((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) &&
890 (err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
))) {
891 E1000_ERR("No usable DMA configuration, aborting\n");
897 if ((err
= pci_request_regions(pdev
, e1000_driver_name
)))
900 pci_set_master(pdev
);
903 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
905 goto err_alloc_etherdev
;
907 SET_MODULE_OWNER(netdev
);
908 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
910 pci_set_drvdata(pdev
, netdev
);
911 adapter
= netdev_priv(netdev
);
912 adapter
->netdev
= netdev
;
913 adapter
->pdev
= pdev
;
914 adapter
->hw
.back
= adapter
;
915 adapter
->msg_enable
= (1 << debug
) - 1;
917 mmio_start
= pci_resource_start(pdev
, BAR_0
);
918 mmio_len
= pci_resource_len(pdev
, BAR_0
);
921 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
922 if (!adapter
->hw
.hw_addr
)
925 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
926 if (pci_resource_len(pdev
, i
) == 0)
928 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
929 adapter
->hw
.io_base
= pci_resource_start(pdev
, i
);
934 netdev
->open
= &e1000_open
;
935 netdev
->stop
= &e1000_close
;
936 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
937 netdev
->get_stats
= &e1000_get_stats
;
938 netdev
->set_multicast_list
= &e1000_set_multi
;
939 netdev
->set_mac_address
= &e1000_set_mac
;
940 netdev
->change_mtu
= &e1000_change_mtu
;
941 netdev
->do_ioctl
= &e1000_ioctl
;
942 e1000_set_ethtool_ops(netdev
);
943 netdev
->tx_timeout
= &e1000_tx_timeout
;
944 netdev
->watchdog_timeo
= 5 * HZ
;
945 #ifdef CONFIG_E1000_NAPI
946 netdev
->poll
= &e1000_clean
;
949 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
950 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
951 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
952 #ifdef CONFIG_NET_POLL_CONTROLLER
953 netdev
->poll_controller
= e1000_netpoll
;
955 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
957 netdev
->mem_start
= mmio_start
;
958 netdev
->mem_end
= mmio_start
+ mmio_len
;
959 netdev
->base_addr
= adapter
->hw
.io_base
;
961 adapter
->bd_number
= cards_found
;
963 /* setup the private structure */
965 if ((err
= e1000_sw_init(adapter
)))
969 /* Flash BAR mapping must happen after e1000_sw_init
970 * because it depends on mac_type */
971 if ((adapter
->hw
.mac_type
== e1000_ich8lan
) &&
972 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
973 flash_start
= pci_resource_start(pdev
, 1);
974 flash_len
= pci_resource_len(pdev
, 1);
975 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
976 if (!adapter
->hw
.flash_address
)
980 if (e1000_check_phy_reset_block(&adapter
->hw
))
981 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
983 if (adapter
->hw
.mac_type
>= e1000_82543
) {
984 netdev
->features
= NETIF_F_SG
|
988 NETIF_F_HW_VLAN_FILTER
;
989 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
990 netdev
->features
&= ~NETIF_F_HW_VLAN_FILTER
;
994 if ((adapter
->hw
.mac_type
>= e1000_82544
) &&
995 (adapter
->hw
.mac_type
!= e1000_82547
))
996 netdev
->features
|= NETIF_F_TSO
;
999 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
)
1000 netdev
->features
|= NETIF_F_TSO6
;
1004 netdev
->features
|= NETIF_F_HIGHDMA
;
1006 netdev
->features
|= NETIF_F_LLTX
;
1008 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(&adapter
->hw
);
1010 /* initialize eeprom parameters */
1012 if (e1000_init_eeprom_params(&adapter
->hw
)) {
1013 E1000_ERR("EEPROM initialization failed\n");
1017 /* before reading the EEPROM, reset the controller to
1018 * put the device in a known good starting state */
1020 e1000_reset_hw(&adapter
->hw
);
1022 /* make sure the EEPROM is good */
1024 if (e1000_validate_eeprom_checksum(&adapter
->hw
) < 0) {
1025 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
1029 /* copy the MAC address out of the EEPROM */
1031 if (e1000_read_mac_addr(&adapter
->hw
))
1032 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
1033 memcpy(netdev
->dev_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
1034 memcpy(netdev
->perm_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
1036 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1037 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
1041 e1000_get_bus_info(&adapter
->hw
);
1043 init_timer(&adapter
->tx_fifo_stall_timer
);
1044 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
1045 adapter
->tx_fifo_stall_timer
.data
= (unsigned long) adapter
;
1047 init_timer(&adapter
->watchdog_timer
);
1048 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
1049 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1051 init_timer(&adapter
->phy_info_timer
);
1052 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
1053 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1055 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1057 e1000_check_options(adapter
);
1059 /* Initial Wake on LAN setting
1060 * If APM wake is enabled in the EEPROM,
1061 * enable the ACPI Magic Packet filter
1064 switch (adapter
->hw
.mac_type
) {
1065 case e1000_82542_rev2_0
:
1066 case e1000_82542_rev2_1
:
1070 e1000_read_eeprom(&adapter
->hw
,
1071 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1072 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1075 e1000_read_eeprom(&adapter
->hw
,
1076 EEPROM_INIT_CONTROL1_REG
, 1, &eeprom_data
);
1077 eeprom_apme_mask
= E1000_EEPROM_ICH8_APME
;
1080 case e1000_82546_rev_3
:
1082 case e1000_80003es2lan
:
1083 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
){
1084 e1000_read_eeprom(&adapter
->hw
,
1085 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1090 e1000_read_eeprom(&adapter
->hw
,
1091 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1094 if (eeprom_data
& eeprom_apme_mask
)
1095 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1097 /* now that we have the eeprom settings, apply the special cases
1098 * where the eeprom may be wrong or the board simply won't support
1099 * wake on lan on a particular port */
1100 switch (pdev
->device
) {
1101 case E1000_DEV_ID_82546GB_PCIE
:
1102 adapter
->eeprom_wol
= 0;
1104 case E1000_DEV_ID_82546EB_FIBER
:
1105 case E1000_DEV_ID_82546GB_FIBER
:
1106 case E1000_DEV_ID_82571EB_FIBER
:
1107 /* Wake events only supported on port A for dual fiber
1108 * regardless of eeprom setting */
1109 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
)
1110 adapter
->eeprom_wol
= 0;
1112 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1113 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
1114 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
1115 /* if quad port adapter, disable WoL on all but port A */
1116 if (global_quad_port_a
!= 0)
1117 adapter
->eeprom_wol
= 0;
1119 adapter
->quad_port_a
= 1;
1120 /* Reset for multiple quad port adapters */
1121 if (++global_quad_port_a
== 4)
1122 global_quad_port_a
= 0;
1126 /* initialize the wol settings based on the eeprom settings */
1127 adapter
->wol
= adapter
->eeprom_wol
;
1129 /* print bus type/speed/width info */
1131 struct e1000_hw
*hw
= &adapter
->hw
;
1132 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
1133 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" :
1134 (hw
->bus_type
== e1000_bus_type_pci_express
? " Express":"")),
1135 ((hw
->bus_speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
1136 (hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1137 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1138 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1139 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1140 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" :
1141 (hw
->bus_width
== e1000_bus_width_pciex_4
) ? "Width x4" :
1142 (hw
->bus_width
== e1000_bus_width_pciex_1
) ? "Width x1" :
1146 for (i
= 0; i
< 6; i
++)
1147 printk("%2.2x%c", netdev
->dev_addr
[i
], i
== 5 ? '\n' : ':');
1149 /* reset the hardware with the new settings */
1150 e1000_reset(adapter
);
1152 /* If the controller is 82573 and f/w is AMT, do not set
1153 * DRV_LOAD until the interface is up. For all other cases,
1154 * let the f/w know that the h/w is now under the control
1156 if (adapter
->hw
.mac_type
!= e1000_82573
||
1157 !e1000_check_mng_mode(&adapter
->hw
))
1158 e1000_get_hw_control(adapter
);
1160 strcpy(netdev
->name
, "eth%d");
1161 if ((err
= register_netdev(netdev
)))
1164 /* tell the stack to leave us alone until e1000_open() is called */
1165 netif_carrier_off(netdev
);
1166 netif_stop_queue(netdev
);
1168 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1174 e1000_release_hw_control(adapter
);
1176 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1177 e1000_phy_hw_reset(&adapter
->hw
);
1179 if (adapter
->hw
.flash_address
)
1180 iounmap(adapter
->hw
.flash_address
);
1182 #ifdef CONFIG_E1000_NAPI
1183 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1184 dev_put(&adapter
->polling_netdev
[i
]);
1187 kfree(adapter
->tx_ring
);
1188 kfree(adapter
->rx_ring
);
1189 #ifdef CONFIG_E1000_NAPI
1190 kfree(adapter
->polling_netdev
);
1193 iounmap(adapter
->hw
.hw_addr
);
1195 free_netdev(netdev
);
1197 pci_release_regions(pdev
);
1200 pci_disable_device(pdev
);
1205 * e1000_remove - Device Removal Routine
1206 * @pdev: PCI device information struct
1208 * e1000_remove is called by the PCI subsystem to alert the driver
1209 * that it should release a PCI device. The could be caused by a
1210 * Hot-Plug event, or because the driver is going to be removed from
1214 static void __devexit
1215 e1000_remove(struct pci_dev
*pdev
)
1217 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1218 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1219 #ifdef CONFIG_E1000_NAPI
1223 flush_scheduled_work();
1225 e1000_release_manageability(adapter
);
1227 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1228 * would have already happened in close and is redundant. */
1229 e1000_release_hw_control(adapter
);
1231 unregister_netdev(netdev
);
1232 #ifdef CONFIG_E1000_NAPI
1233 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1234 dev_put(&adapter
->polling_netdev
[i
]);
1237 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1238 e1000_phy_hw_reset(&adapter
->hw
);
1240 kfree(adapter
->tx_ring
);
1241 kfree(adapter
->rx_ring
);
1242 #ifdef CONFIG_E1000_NAPI
1243 kfree(adapter
->polling_netdev
);
1246 iounmap(adapter
->hw
.hw_addr
);
1247 if (adapter
->hw
.flash_address
)
1248 iounmap(adapter
->hw
.flash_address
);
1249 pci_release_regions(pdev
);
1251 free_netdev(netdev
);
1253 pci_disable_device(pdev
);
1257 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1258 * @adapter: board private structure to initialize
1260 * e1000_sw_init initializes the Adapter private data structure.
1261 * Fields are initialized based on PCI device information and
1262 * OS network device settings (MTU size).
1265 static int __devinit
1266 e1000_sw_init(struct e1000_adapter
*adapter
)
1268 struct e1000_hw
*hw
= &adapter
->hw
;
1269 struct net_device
*netdev
= adapter
->netdev
;
1270 struct pci_dev
*pdev
= adapter
->pdev
;
1271 #ifdef CONFIG_E1000_NAPI
1275 /* PCI config space info */
1277 hw
->vendor_id
= pdev
->vendor
;
1278 hw
->device_id
= pdev
->device
;
1279 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1280 hw
->subsystem_id
= pdev
->subsystem_device
;
1282 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &hw
->revision_id
);
1284 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1286 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1287 adapter
->rx_ps_bsize0
= E1000_RXBUFFER_128
;
1288 hw
->max_frame_size
= netdev
->mtu
+
1289 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1290 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1292 /* identify the MAC */
1294 if (e1000_set_mac_type(hw
)) {
1295 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1299 switch (hw
->mac_type
) {
1304 case e1000_82541_rev_2
:
1305 case e1000_82547_rev_2
:
1306 hw
->phy_init_script
= 1;
1310 e1000_set_media_type(hw
);
1312 hw
->wait_autoneg_complete
= FALSE
;
1313 hw
->tbi_compatibility_en
= TRUE
;
1314 hw
->adaptive_ifs
= TRUE
;
1316 /* Copper options */
1318 if (hw
->media_type
== e1000_media_type_copper
) {
1319 hw
->mdix
= AUTO_ALL_MODES
;
1320 hw
->disable_polarity_correction
= FALSE
;
1321 hw
->master_slave
= E1000_MASTER_SLAVE
;
1324 adapter
->num_tx_queues
= 1;
1325 adapter
->num_rx_queues
= 1;
1327 if (e1000_alloc_queues(adapter
)) {
1328 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1332 #ifdef CONFIG_E1000_NAPI
1333 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1334 adapter
->polling_netdev
[i
].priv
= adapter
;
1335 adapter
->polling_netdev
[i
].poll
= &e1000_clean
;
1336 adapter
->polling_netdev
[i
].weight
= 64;
1337 dev_hold(&adapter
->polling_netdev
[i
]);
1338 set_bit(__LINK_STATE_START
, &adapter
->polling_netdev
[i
].state
);
1340 spin_lock_init(&adapter
->tx_queue_lock
);
1343 atomic_set(&adapter
->irq_sem
, 1);
1344 spin_lock_init(&adapter
->stats_lock
);
1346 set_bit(__E1000_DOWN
, &adapter
->flags
);
1352 * e1000_alloc_queues - Allocate memory for all rings
1353 * @adapter: board private structure to initialize
1355 * We allocate one ring per queue at run-time since we don't know the
1356 * number of queues at compile-time. The polling_netdev array is
1357 * intended for Multiqueue, but should work fine with a single queue.
1360 static int __devinit
1361 e1000_alloc_queues(struct e1000_adapter
*adapter
)
1365 size
= sizeof(struct e1000_tx_ring
) * adapter
->num_tx_queues
;
1366 adapter
->tx_ring
= kmalloc(size
, GFP_KERNEL
);
1367 if (!adapter
->tx_ring
)
1369 memset(adapter
->tx_ring
, 0, size
);
1371 size
= sizeof(struct e1000_rx_ring
) * adapter
->num_rx_queues
;
1372 adapter
->rx_ring
= kmalloc(size
, GFP_KERNEL
);
1373 if (!adapter
->rx_ring
) {
1374 kfree(adapter
->tx_ring
);
1377 memset(adapter
->rx_ring
, 0, size
);
1379 #ifdef CONFIG_E1000_NAPI
1380 size
= sizeof(struct net_device
) * adapter
->num_rx_queues
;
1381 adapter
->polling_netdev
= kmalloc(size
, GFP_KERNEL
);
1382 if (!adapter
->polling_netdev
) {
1383 kfree(adapter
->tx_ring
);
1384 kfree(adapter
->rx_ring
);
1387 memset(adapter
->polling_netdev
, 0, size
);
1390 return E1000_SUCCESS
;
1394 * e1000_open - Called when a network interface is made active
1395 * @netdev: network interface device structure
1397 * Returns 0 on success, negative value on failure
1399 * The open entry point is called when a network interface is made
1400 * active by the system (IFF_UP). At this point all resources needed
1401 * for transmit and receive operations are allocated, the interrupt
1402 * handler is registered with the OS, the watchdog timer is started,
1403 * and the stack is notified that the interface is ready.
1407 e1000_open(struct net_device
*netdev
)
1409 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1412 /* disallow open during test */
1413 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1416 /* allocate transmit descriptors */
1417 if ((err
= e1000_setup_all_tx_resources(adapter
)))
1420 /* allocate receive descriptors */
1421 if ((err
= e1000_setup_all_rx_resources(adapter
)))
1424 err
= e1000_request_irq(adapter
);
1428 e1000_power_up_phy(adapter
);
1430 if ((err
= e1000_up(adapter
)))
1432 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1433 if ((adapter
->hw
.mng_cookie
.status
&
1434 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1435 e1000_update_mng_vlan(adapter
);
1438 /* If AMT is enabled, let the firmware know that the network
1439 * interface is now open */
1440 if (adapter
->hw
.mac_type
== e1000_82573
&&
1441 e1000_check_mng_mode(&adapter
->hw
))
1442 e1000_get_hw_control(adapter
);
1444 return E1000_SUCCESS
;
1447 e1000_power_down_phy(adapter
);
1448 e1000_free_irq(adapter
);
1450 e1000_free_all_rx_resources(adapter
);
1452 e1000_free_all_tx_resources(adapter
);
1454 e1000_reset(adapter
);
1460 * e1000_close - Disables a network interface
1461 * @netdev: network interface device structure
1463 * Returns 0, this is not allowed to fail
1465 * The close entry point is called when an interface is de-activated
1466 * by the OS. The hardware is still under the drivers control, but
1467 * needs to be disabled. A global MAC reset is issued to stop the
1468 * hardware, and all transmit and receive resources are freed.
1472 e1000_close(struct net_device
*netdev
)
1474 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1476 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1477 e1000_down(adapter
);
1478 e1000_power_down_phy(adapter
);
1479 e1000_free_irq(adapter
);
1481 e1000_free_all_tx_resources(adapter
);
1482 e1000_free_all_rx_resources(adapter
);
1484 /* kill manageability vlan ID if supported, but not if a vlan with
1485 * the same ID is registered on the host OS (let 8021q kill it) */
1486 if ((adapter
->hw
.mng_cookie
.status
&
1487 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1489 adapter
->vlgrp
->vlan_devices
[adapter
->mng_vlan_id
])) {
1490 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1493 /* If AMT is enabled, let the firmware know that the network
1494 * interface is now closed */
1495 if (adapter
->hw
.mac_type
== e1000_82573
&&
1496 e1000_check_mng_mode(&adapter
->hw
))
1497 e1000_release_hw_control(adapter
);
1503 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1504 * @adapter: address of board private structure
1505 * @start: address of beginning of memory
1506 * @len: length of memory
1509 e1000_check_64k_bound(struct e1000_adapter
*adapter
,
1510 void *start
, unsigned long len
)
1512 unsigned long begin
= (unsigned long) start
;
1513 unsigned long end
= begin
+ len
;
1515 /* First rev 82545 and 82546 need to not allow any memory
1516 * write location to cross 64k boundary due to errata 23 */
1517 if (adapter
->hw
.mac_type
== e1000_82545
||
1518 adapter
->hw
.mac_type
== e1000_82546
) {
1519 return ((begin
^ (end
- 1)) >> 16) != 0 ? FALSE
: TRUE
;
1526 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1527 * @adapter: board private structure
1528 * @txdr: tx descriptor ring (for a specific queue) to setup
1530 * Return 0 on success, negative on failure
1534 e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1535 struct e1000_tx_ring
*txdr
)
1537 struct pci_dev
*pdev
= adapter
->pdev
;
1540 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1541 txdr
->buffer_info
= vmalloc(size
);
1542 if (!txdr
->buffer_info
) {
1544 "Unable to allocate memory for the transmit descriptor ring\n");
1547 memset(txdr
->buffer_info
, 0, size
);
1549 /* round up to nearest 4K */
1551 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1552 E1000_ROUNDUP(txdr
->size
, 4096);
1554 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1557 vfree(txdr
->buffer_info
);
1559 "Unable to allocate memory for the transmit descriptor ring\n");
1563 /* Fix for errata 23, can't cross 64kB boundary */
1564 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1565 void *olddesc
= txdr
->desc
;
1566 dma_addr_t olddma
= txdr
->dma
;
1567 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1568 "at %p\n", txdr
->size
, txdr
->desc
);
1569 /* Try again, without freeing the previous */
1570 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1571 /* Failed allocation, critical failure */
1573 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1574 goto setup_tx_desc_die
;
1577 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1579 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1581 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1583 "Unable to allocate aligned memory "
1584 "for the transmit descriptor ring\n");
1585 vfree(txdr
->buffer_info
);
1588 /* Free old allocation, new allocation was successful */
1589 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1592 memset(txdr
->desc
, 0, txdr
->size
);
1594 txdr
->next_to_use
= 0;
1595 txdr
->next_to_clean
= 0;
1596 spin_lock_init(&txdr
->tx_lock
);
1602 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1603 * (Descriptors) for all queues
1604 * @adapter: board private structure
1606 * Return 0 on success, negative on failure
1610 e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1614 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1615 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1618 "Allocation for Tx Queue %u failed\n", i
);
1619 for (i
-- ; i
>= 0; i
--)
1620 e1000_free_tx_resources(adapter
,
1621 &adapter
->tx_ring
[i
]);
1630 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1631 * @adapter: board private structure
1633 * Configure the Tx unit of the MAC after a reset.
1637 e1000_configure_tx(struct e1000_adapter
*adapter
)
1640 struct e1000_hw
*hw
= &adapter
->hw
;
1641 uint32_t tdlen
, tctl
, tipg
, tarc
;
1642 uint32_t ipgr1
, ipgr2
;
1644 /* Setup the HW Tx Head and Tail descriptor pointers */
1646 switch (adapter
->num_tx_queues
) {
1649 tdba
= adapter
->tx_ring
[0].dma
;
1650 tdlen
= adapter
->tx_ring
[0].count
*
1651 sizeof(struct e1000_tx_desc
);
1652 E1000_WRITE_REG(hw
, TDLEN
, tdlen
);
1653 E1000_WRITE_REG(hw
, TDBAH
, (tdba
>> 32));
1654 E1000_WRITE_REG(hw
, TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1655 E1000_WRITE_REG(hw
, TDT
, 0);
1656 E1000_WRITE_REG(hw
, TDH
, 0);
1657 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1658 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1662 /* Set the default values for the Tx Inter Packet Gap timer */
1663 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
&&
1664 (hw
->media_type
== e1000_media_type_fiber
||
1665 hw
->media_type
== e1000_media_type_internal_serdes
))
1666 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1668 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1670 switch (hw
->mac_type
) {
1671 case e1000_82542_rev2_0
:
1672 case e1000_82542_rev2_1
:
1673 tipg
= DEFAULT_82542_TIPG_IPGT
;
1674 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1675 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1677 case e1000_80003es2lan
:
1678 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1679 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
;
1682 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1683 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1686 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1687 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1688 E1000_WRITE_REG(hw
, TIPG
, tipg
);
1690 /* Set the Tx Interrupt Delay register */
1692 E1000_WRITE_REG(hw
, TIDV
, adapter
->tx_int_delay
);
1693 if (hw
->mac_type
>= e1000_82540
)
1694 E1000_WRITE_REG(hw
, TADV
, adapter
->tx_abs_int_delay
);
1696 /* Program the Transmit Control Register */
1698 tctl
= E1000_READ_REG(hw
, TCTL
);
1699 tctl
&= ~E1000_TCTL_CT
;
1700 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1701 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1703 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1704 tarc
= E1000_READ_REG(hw
, TARC0
);
1705 /* set the speed mode bit, we'll clear it if we're not at
1706 * gigabit link later */
1708 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1709 } else if (hw
->mac_type
== e1000_80003es2lan
) {
1710 tarc
= E1000_READ_REG(hw
, TARC0
);
1712 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1713 tarc
= E1000_READ_REG(hw
, TARC1
);
1715 E1000_WRITE_REG(hw
, TARC1
, tarc
);
1718 e1000_config_collision_dist(hw
);
1720 /* Setup Transmit Descriptor Settings for eop descriptor */
1721 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1723 /* only set IDE if we are delaying interrupts using the timers */
1724 if (adapter
->tx_int_delay
)
1725 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1727 if (hw
->mac_type
< e1000_82543
)
1728 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1730 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1732 /* Cache if we're 82544 running in PCI-X because we'll
1733 * need this to apply a workaround later in the send path. */
1734 if (hw
->mac_type
== e1000_82544
&&
1735 hw
->bus_type
== e1000_bus_type_pcix
)
1736 adapter
->pcix_82544
= 1;
1738 E1000_WRITE_REG(hw
, TCTL
, tctl
);
1743 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1744 * @adapter: board private structure
1745 * @rxdr: rx descriptor ring (for a specific queue) to setup
1747 * Returns 0 on success, negative on failure
1751 e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1752 struct e1000_rx_ring
*rxdr
)
1754 struct pci_dev
*pdev
= adapter
->pdev
;
1757 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1758 rxdr
->buffer_info
= vmalloc(size
);
1759 if (!rxdr
->buffer_info
) {
1761 "Unable to allocate memory for the receive descriptor ring\n");
1764 memset(rxdr
->buffer_info
, 0, size
);
1766 size
= sizeof(struct e1000_ps_page
) * rxdr
->count
;
1767 rxdr
->ps_page
= kmalloc(size
, GFP_KERNEL
);
1768 if (!rxdr
->ps_page
) {
1769 vfree(rxdr
->buffer_info
);
1771 "Unable to allocate memory for the receive descriptor ring\n");
1774 memset(rxdr
->ps_page
, 0, size
);
1776 size
= sizeof(struct e1000_ps_page_dma
) * rxdr
->count
;
1777 rxdr
->ps_page_dma
= kmalloc(size
, GFP_KERNEL
);
1778 if (!rxdr
->ps_page_dma
) {
1779 vfree(rxdr
->buffer_info
);
1780 kfree(rxdr
->ps_page
);
1782 "Unable to allocate memory for the receive descriptor ring\n");
1785 memset(rxdr
->ps_page_dma
, 0, size
);
1787 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
)
1788 desc_len
= sizeof(struct e1000_rx_desc
);
1790 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1792 /* Round up to nearest 4K */
1794 rxdr
->size
= rxdr
->count
* desc_len
;
1795 E1000_ROUNDUP(rxdr
->size
, 4096);
1797 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1801 "Unable to allocate memory for the receive descriptor ring\n");
1803 vfree(rxdr
->buffer_info
);
1804 kfree(rxdr
->ps_page
);
1805 kfree(rxdr
->ps_page_dma
);
1809 /* Fix for errata 23, can't cross 64kB boundary */
1810 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1811 void *olddesc
= rxdr
->desc
;
1812 dma_addr_t olddma
= rxdr
->dma
;
1813 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1814 "at %p\n", rxdr
->size
, rxdr
->desc
);
1815 /* Try again, without freeing the previous */
1816 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1817 /* Failed allocation, critical failure */
1819 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1821 "Unable to allocate memory "
1822 "for the receive descriptor ring\n");
1823 goto setup_rx_desc_die
;
1826 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1828 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1830 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1832 "Unable to allocate aligned memory "
1833 "for the receive descriptor ring\n");
1834 goto setup_rx_desc_die
;
1836 /* Free old allocation, new allocation was successful */
1837 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1840 memset(rxdr
->desc
, 0, rxdr
->size
);
1842 rxdr
->next_to_clean
= 0;
1843 rxdr
->next_to_use
= 0;
1849 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1850 * (Descriptors) for all queues
1851 * @adapter: board private structure
1853 * Return 0 on success, negative on failure
1857 e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1861 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1862 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1865 "Allocation for Rx Queue %u failed\n", i
);
1866 for (i
-- ; i
>= 0; i
--)
1867 e1000_free_rx_resources(adapter
,
1868 &adapter
->rx_ring
[i
]);
1877 * e1000_setup_rctl - configure the receive control registers
1878 * @adapter: Board private structure
1880 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1881 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1883 e1000_setup_rctl(struct e1000_adapter
*adapter
)
1885 uint32_t rctl
, rfctl
;
1886 uint32_t psrctl
= 0;
1887 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1891 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1893 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1895 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1896 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1897 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1899 if (adapter
->hw
.tbi_compatibility_on
== 1)
1900 rctl
|= E1000_RCTL_SBP
;
1902 rctl
&= ~E1000_RCTL_SBP
;
1904 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1905 rctl
&= ~E1000_RCTL_LPE
;
1907 rctl
|= E1000_RCTL_LPE
;
1909 /* Setup buffer sizes */
1910 rctl
&= ~E1000_RCTL_SZ_4096
;
1911 rctl
|= E1000_RCTL_BSEX
;
1912 switch (adapter
->rx_buffer_len
) {
1913 case E1000_RXBUFFER_256
:
1914 rctl
|= E1000_RCTL_SZ_256
;
1915 rctl
&= ~E1000_RCTL_BSEX
;
1917 case E1000_RXBUFFER_512
:
1918 rctl
|= E1000_RCTL_SZ_512
;
1919 rctl
&= ~E1000_RCTL_BSEX
;
1921 case E1000_RXBUFFER_1024
:
1922 rctl
|= E1000_RCTL_SZ_1024
;
1923 rctl
&= ~E1000_RCTL_BSEX
;
1925 case E1000_RXBUFFER_2048
:
1927 rctl
|= E1000_RCTL_SZ_2048
;
1928 rctl
&= ~E1000_RCTL_BSEX
;
1930 case E1000_RXBUFFER_4096
:
1931 rctl
|= E1000_RCTL_SZ_4096
;
1933 case E1000_RXBUFFER_8192
:
1934 rctl
|= E1000_RCTL_SZ_8192
;
1936 case E1000_RXBUFFER_16384
:
1937 rctl
|= E1000_RCTL_SZ_16384
;
1941 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1942 /* 82571 and greater support packet-split where the protocol
1943 * header is placed in skb->data and the packet data is
1944 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1945 * In the case of a non-split, skb->data is linearly filled,
1946 * followed by the page buffers. Therefore, skb->data is
1947 * sized to hold the largest protocol header.
1949 /* allocations using alloc_page take too long for regular MTU
1950 * so only enable packet split for jumbo frames */
1951 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
1952 if ((adapter
->hw
.mac_type
>= e1000_82571
) && (pages
<= 3) &&
1953 PAGE_SIZE
<= 16384 && (rctl
& E1000_RCTL_LPE
))
1954 adapter
->rx_ps_pages
= pages
;
1956 adapter
->rx_ps_pages
= 0;
1958 if (adapter
->rx_ps_pages
) {
1959 /* Configure extra packet-split registers */
1960 rfctl
= E1000_READ_REG(&adapter
->hw
, RFCTL
);
1961 rfctl
|= E1000_RFCTL_EXTEN
;
1962 /* disable packet split support for IPv6 extension headers,
1963 * because some malformed IPv6 headers can hang the RX */
1964 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
1965 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
1967 E1000_WRITE_REG(&adapter
->hw
, RFCTL
, rfctl
);
1969 rctl
|= E1000_RCTL_DTYP_PS
;
1971 psrctl
|= adapter
->rx_ps_bsize0
>>
1972 E1000_PSRCTL_BSIZE0_SHIFT
;
1974 switch (adapter
->rx_ps_pages
) {
1976 psrctl
|= PAGE_SIZE
<<
1977 E1000_PSRCTL_BSIZE3_SHIFT
;
1979 psrctl
|= PAGE_SIZE
<<
1980 E1000_PSRCTL_BSIZE2_SHIFT
;
1982 psrctl
|= PAGE_SIZE
>>
1983 E1000_PSRCTL_BSIZE1_SHIFT
;
1987 E1000_WRITE_REG(&adapter
->hw
, PSRCTL
, psrctl
);
1990 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1994 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1995 * @adapter: board private structure
1997 * Configure the Rx unit of the MAC after a reset.
2001 e1000_configure_rx(struct e1000_adapter
*adapter
)
2004 struct e1000_hw
*hw
= &adapter
->hw
;
2005 uint32_t rdlen
, rctl
, rxcsum
, ctrl_ext
;
2007 if (adapter
->rx_ps_pages
) {
2008 /* this is a 32 byte descriptor */
2009 rdlen
= adapter
->rx_ring
[0].count
*
2010 sizeof(union e1000_rx_desc_packet_split
);
2011 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2012 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2014 rdlen
= adapter
->rx_ring
[0].count
*
2015 sizeof(struct e1000_rx_desc
);
2016 adapter
->clean_rx
= e1000_clean_rx_irq
;
2017 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2020 /* disable receives while setting up the descriptors */
2021 rctl
= E1000_READ_REG(hw
, RCTL
);
2022 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
2024 /* set the Receive Delay Timer Register */
2025 E1000_WRITE_REG(hw
, RDTR
, adapter
->rx_int_delay
);
2027 if (hw
->mac_type
>= e1000_82540
) {
2028 E1000_WRITE_REG(hw
, RADV
, adapter
->rx_abs_int_delay
);
2029 if (adapter
->itr_setting
!= 0)
2030 E1000_WRITE_REG(hw
, ITR
,
2031 1000000000 / (adapter
->itr
* 256));
2034 if (hw
->mac_type
>= e1000_82571
) {
2035 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
2036 /* Reset delay timers after every interrupt */
2037 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
2038 #ifdef CONFIG_E1000_NAPI
2039 /* Auto-Mask interrupts upon ICR access */
2040 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2041 E1000_WRITE_REG(hw
, IAM
, 0xffffffff);
2043 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
2044 E1000_WRITE_FLUSH(hw
);
2047 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2048 * the Base and Length of the Rx Descriptor Ring */
2049 switch (adapter
->num_rx_queues
) {
2052 rdba
= adapter
->rx_ring
[0].dma
;
2053 E1000_WRITE_REG(hw
, RDLEN
, rdlen
);
2054 E1000_WRITE_REG(hw
, RDBAH
, (rdba
>> 32));
2055 E1000_WRITE_REG(hw
, RDBAL
, (rdba
& 0x00000000ffffffffULL
));
2056 E1000_WRITE_REG(hw
, RDT
, 0);
2057 E1000_WRITE_REG(hw
, RDH
, 0);
2058 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
2059 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
2063 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2064 if (hw
->mac_type
>= e1000_82543
) {
2065 rxcsum
= E1000_READ_REG(hw
, RXCSUM
);
2066 if (adapter
->rx_csum
== TRUE
) {
2067 rxcsum
|= E1000_RXCSUM_TUOFL
;
2069 /* Enable 82571 IPv4 payload checksum for UDP fragments
2070 * Must be used in conjunction with packet-split. */
2071 if ((hw
->mac_type
>= e1000_82571
) &&
2072 (adapter
->rx_ps_pages
)) {
2073 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2076 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2077 /* don't need to clear IPPCSE as it defaults to 0 */
2079 E1000_WRITE_REG(hw
, RXCSUM
, rxcsum
);
2082 /* enable early receives on 82573, only takes effect if using > 2048
2083 * byte total frame size. for example only for jumbo frames */
2084 #define E1000_ERT_2048 0x100
2085 if (hw
->mac_type
== e1000_82573
)
2086 E1000_WRITE_REG(hw
, ERT
, E1000_ERT_2048
);
2088 /* Enable Receives */
2089 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2093 * e1000_free_tx_resources - Free Tx Resources per Queue
2094 * @adapter: board private structure
2095 * @tx_ring: Tx descriptor ring for a specific queue
2097 * Free all transmit software resources
2101 e1000_free_tx_resources(struct e1000_adapter
*adapter
,
2102 struct e1000_tx_ring
*tx_ring
)
2104 struct pci_dev
*pdev
= adapter
->pdev
;
2106 e1000_clean_tx_ring(adapter
, tx_ring
);
2108 vfree(tx_ring
->buffer_info
);
2109 tx_ring
->buffer_info
= NULL
;
2111 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2113 tx_ring
->desc
= NULL
;
2117 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2118 * @adapter: board private structure
2120 * Free all transmit software resources
2124 e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
2128 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2129 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
2133 e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
2134 struct e1000_buffer
*buffer_info
)
2136 if (buffer_info
->dma
) {
2137 pci_unmap_page(adapter
->pdev
,
2139 buffer_info
->length
,
2141 buffer_info
->dma
= 0;
2143 if (buffer_info
->skb
) {
2144 dev_kfree_skb_any(buffer_info
->skb
);
2145 buffer_info
->skb
= NULL
;
2147 /* buffer_info must be completely set up in the transmit path */
2151 * e1000_clean_tx_ring - Free Tx Buffers
2152 * @adapter: board private structure
2153 * @tx_ring: ring to be cleaned
2157 e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
2158 struct e1000_tx_ring
*tx_ring
)
2160 struct e1000_buffer
*buffer_info
;
2164 /* Free all the Tx ring sk_buffs */
2166 for (i
= 0; i
< tx_ring
->count
; i
++) {
2167 buffer_info
= &tx_ring
->buffer_info
[i
];
2168 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2171 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2172 memset(tx_ring
->buffer_info
, 0, size
);
2174 /* Zero out the descriptor ring */
2176 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2178 tx_ring
->next_to_use
= 0;
2179 tx_ring
->next_to_clean
= 0;
2180 tx_ring
->last_tx_tso
= 0;
2182 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdh
);
2183 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
2187 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2188 * @adapter: board private structure
2192 e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2196 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2197 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2201 * e1000_free_rx_resources - Free Rx Resources
2202 * @adapter: board private structure
2203 * @rx_ring: ring to clean the resources from
2205 * Free all receive software resources
2209 e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2210 struct e1000_rx_ring
*rx_ring
)
2212 struct pci_dev
*pdev
= adapter
->pdev
;
2214 e1000_clean_rx_ring(adapter
, rx_ring
);
2216 vfree(rx_ring
->buffer_info
);
2217 rx_ring
->buffer_info
= NULL
;
2218 kfree(rx_ring
->ps_page
);
2219 rx_ring
->ps_page
= NULL
;
2220 kfree(rx_ring
->ps_page_dma
);
2221 rx_ring
->ps_page_dma
= NULL
;
2223 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2225 rx_ring
->desc
= NULL
;
2229 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2230 * @adapter: board private structure
2232 * Free all receive software resources
2236 e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2240 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2241 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2245 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2246 * @adapter: board private structure
2247 * @rx_ring: ring to free buffers from
2251 e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2252 struct e1000_rx_ring
*rx_ring
)
2254 struct e1000_buffer
*buffer_info
;
2255 struct e1000_ps_page
*ps_page
;
2256 struct e1000_ps_page_dma
*ps_page_dma
;
2257 struct pci_dev
*pdev
= adapter
->pdev
;
2261 /* Free all the Rx ring sk_buffs */
2262 for (i
= 0; i
< rx_ring
->count
; i
++) {
2263 buffer_info
= &rx_ring
->buffer_info
[i
];
2264 if (buffer_info
->skb
) {
2265 pci_unmap_single(pdev
,
2267 buffer_info
->length
,
2268 PCI_DMA_FROMDEVICE
);
2270 dev_kfree_skb(buffer_info
->skb
);
2271 buffer_info
->skb
= NULL
;
2273 ps_page
= &rx_ring
->ps_page
[i
];
2274 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
2275 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
2276 if (!ps_page
->ps_page
[j
]) break;
2277 pci_unmap_page(pdev
,
2278 ps_page_dma
->ps_page_dma
[j
],
2279 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2280 ps_page_dma
->ps_page_dma
[j
] = 0;
2281 put_page(ps_page
->ps_page
[j
]);
2282 ps_page
->ps_page
[j
] = NULL
;
2286 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2287 memset(rx_ring
->buffer_info
, 0, size
);
2288 size
= sizeof(struct e1000_ps_page
) * rx_ring
->count
;
2289 memset(rx_ring
->ps_page
, 0, size
);
2290 size
= sizeof(struct e1000_ps_page_dma
) * rx_ring
->count
;
2291 memset(rx_ring
->ps_page_dma
, 0, size
);
2293 /* Zero out the descriptor ring */
2295 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2297 rx_ring
->next_to_clean
= 0;
2298 rx_ring
->next_to_use
= 0;
2300 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdh
);
2301 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
2305 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2306 * @adapter: board private structure
2310 e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2314 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2315 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2318 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2319 * and memory write and invalidate disabled for certain operations
2322 e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2324 struct net_device
*netdev
= adapter
->netdev
;
2327 e1000_pci_clear_mwi(&adapter
->hw
);
2329 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2330 rctl
|= E1000_RCTL_RST
;
2331 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2332 E1000_WRITE_FLUSH(&adapter
->hw
);
2335 if (netif_running(netdev
))
2336 e1000_clean_all_rx_rings(adapter
);
2340 e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2342 struct net_device
*netdev
= adapter
->netdev
;
2345 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2346 rctl
&= ~E1000_RCTL_RST
;
2347 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2348 E1000_WRITE_FLUSH(&adapter
->hw
);
2351 if (adapter
->hw
.pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2352 e1000_pci_set_mwi(&adapter
->hw
);
2354 if (netif_running(netdev
)) {
2355 /* No need to loop, because 82542 supports only 1 queue */
2356 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2357 e1000_configure_rx(adapter
);
2358 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2363 * e1000_set_mac - Change the Ethernet Address of the NIC
2364 * @netdev: network interface device structure
2365 * @p: pointer to an address structure
2367 * Returns 0 on success, negative on failure
2371 e1000_set_mac(struct net_device
*netdev
, void *p
)
2373 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2374 struct sockaddr
*addr
= p
;
2376 if (!is_valid_ether_addr(addr
->sa_data
))
2377 return -EADDRNOTAVAIL
;
2379 /* 82542 2.0 needs to be in reset to write receive address registers */
2381 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2382 e1000_enter_82542_rst(adapter
);
2384 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2385 memcpy(adapter
->hw
.mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2387 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2389 /* With 82571 controllers, LAA may be overwritten (with the default)
2390 * due to controller reset from the other port. */
2391 if (adapter
->hw
.mac_type
== e1000_82571
) {
2392 /* activate the work around */
2393 adapter
->hw
.laa_is_present
= 1;
2395 /* Hold a copy of the LAA in RAR[14] This is done so that
2396 * between the time RAR[0] gets clobbered and the time it
2397 * gets fixed (in e1000_watchdog), the actual LAA is in one
2398 * of the RARs and no incoming packets directed to this port
2399 * are dropped. Eventaully the LAA will be in RAR[0] and
2401 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
,
2402 E1000_RAR_ENTRIES
- 1);
2405 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2406 e1000_leave_82542_rst(adapter
);
2412 * e1000_set_multi - Multicast and Promiscuous mode set
2413 * @netdev: network interface device structure
2415 * The set_multi entry point is called whenever the multicast address
2416 * list or the network interface flags are updated. This routine is
2417 * responsible for configuring the hardware for proper multicast,
2418 * promiscuous mode, and all-multi behavior.
2422 e1000_set_multi(struct net_device
*netdev
)
2424 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2425 struct e1000_hw
*hw
= &adapter
->hw
;
2426 struct dev_mc_list
*mc_ptr
;
2428 uint32_t hash_value
;
2429 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2430 int mta_reg_count
= (hw
->mac_type
== e1000_ich8lan
) ?
2431 E1000_NUM_MTA_REGISTERS_ICH8LAN
:
2432 E1000_NUM_MTA_REGISTERS
;
2434 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
2435 rar_entries
= E1000_RAR_ENTRIES_ICH8LAN
;
2437 /* reserve RAR[14] for LAA over-write work-around */
2438 if (adapter
->hw
.mac_type
== e1000_82571
)
2441 /* Check for Promiscuous and All Multicast modes */
2443 rctl
= E1000_READ_REG(hw
, RCTL
);
2445 if (netdev
->flags
& IFF_PROMISC
) {
2446 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2447 } else if (netdev
->flags
& IFF_ALLMULTI
) {
2448 rctl
|= E1000_RCTL_MPE
;
2449 rctl
&= ~E1000_RCTL_UPE
;
2451 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2454 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2456 /* 82542 2.0 needs to be in reset to write receive address registers */
2458 if (hw
->mac_type
== e1000_82542_rev2_0
)
2459 e1000_enter_82542_rst(adapter
);
2461 /* load the first 14 multicast address into the exact filters 1-14
2462 * RAR 0 is used for the station MAC adddress
2463 * if there are not 14 addresses, go ahead and clear the filters
2464 * -- with 82571 controllers only 0-13 entries are filled here
2466 mc_ptr
= netdev
->mc_list
;
2468 for (i
= 1; i
< rar_entries
; i
++) {
2470 e1000_rar_set(hw
, mc_ptr
->dmi_addr
, i
);
2471 mc_ptr
= mc_ptr
->next
;
2473 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2474 E1000_WRITE_FLUSH(hw
);
2475 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2476 E1000_WRITE_FLUSH(hw
);
2480 /* clear the old settings from the multicast hash table */
2482 for (i
= 0; i
< mta_reg_count
; i
++) {
2483 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
2484 E1000_WRITE_FLUSH(hw
);
2487 /* load any remaining addresses into the hash table */
2489 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2490 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->dmi_addr
);
2491 e1000_mta_set(hw
, hash_value
);
2494 if (hw
->mac_type
== e1000_82542_rev2_0
)
2495 e1000_leave_82542_rst(adapter
);
2498 /* Need to wait a few seconds after link up to get diagnostic information from
2502 e1000_update_phy_info(unsigned long data
)
2504 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2505 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2509 * e1000_82547_tx_fifo_stall - Timer Call-back
2510 * @data: pointer to adapter cast into an unsigned long
2514 e1000_82547_tx_fifo_stall(unsigned long data
)
2516 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2517 struct net_device
*netdev
= adapter
->netdev
;
2520 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2521 if ((E1000_READ_REG(&adapter
->hw
, TDT
) ==
2522 E1000_READ_REG(&adapter
->hw
, TDH
)) &&
2523 (E1000_READ_REG(&adapter
->hw
, TDFT
) ==
2524 E1000_READ_REG(&adapter
->hw
, TDFH
)) &&
2525 (E1000_READ_REG(&adapter
->hw
, TDFTS
) ==
2526 E1000_READ_REG(&adapter
->hw
, TDFHS
))) {
2527 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2528 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
2529 tctl
& ~E1000_TCTL_EN
);
2530 E1000_WRITE_REG(&adapter
->hw
, TDFT
,
2531 adapter
->tx_head_addr
);
2532 E1000_WRITE_REG(&adapter
->hw
, TDFH
,
2533 adapter
->tx_head_addr
);
2534 E1000_WRITE_REG(&adapter
->hw
, TDFTS
,
2535 adapter
->tx_head_addr
);
2536 E1000_WRITE_REG(&adapter
->hw
, TDFHS
,
2537 adapter
->tx_head_addr
);
2538 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2539 E1000_WRITE_FLUSH(&adapter
->hw
);
2541 adapter
->tx_fifo_head
= 0;
2542 atomic_set(&adapter
->tx_fifo_stall
, 0);
2543 netif_wake_queue(netdev
);
2545 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2551 * e1000_watchdog - Timer Call-back
2552 * @data: pointer to adapter cast into an unsigned long
2555 e1000_watchdog(unsigned long data
)
2557 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2558 struct net_device
*netdev
= adapter
->netdev
;
2559 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2560 uint32_t link
, tctl
;
2563 ret_val
= e1000_check_for_link(&adapter
->hw
);
2564 if ((ret_val
== E1000_ERR_PHY
) &&
2565 (adapter
->hw
.phy_type
== e1000_phy_igp_3
) &&
2566 (E1000_READ_REG(&adapter
->hw
, CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
2567 /* See e1000_kumeran_lock_loss_workaround() */
2569 "Gigabit has been disabled, downgrading speed\n");
2572 if (adapter
->hw
.mac_type
== e1000_82573
) {
2573 e1000_enable_tx_pkt_filtering(&adapter
->hw
);
2574 if (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
)
2575 e1000_update_mng_vlan(adapter
);
2578 if ((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2579 !(E1000_READ_REG(&adapter
->hw
, TXCW
) & E1000_TXCW_ANE
))
2580 link
= !adapter
->hw
.serdes_link_down
;
2582 link
= E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
;
2585 if (!netif_carrier_ok(netdev
)) {
2586 boolean_t txb2b
= 1;
2587 e1000_get_speed_and_duplex(&adapter
->hw
,
2588 &adapter
->link_speed
,
2589 &adapter
->link_duplex
);
2591 DPRINTK(LINK
, INFO
, "NIC Link is Up %d Mbps %s\n",
2592 adapter
->link_speed
,
2593 adapter
->link_duplex
== FULL_DUPLEX
?
2594 "Full Duplex" : "Half Duplex");
2596 /* tweak tx_queue_len according to speed/duplex
2597 * and adjust the timeout factor */
2598 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2599 adapter
->tx_timeout_factor
= 1;
2600 switch (adapter
->link_speed
) {
2603 netdev
->tx_queue_len
= 10;
2604 adapter
->tx_timeout_factor
= 8;
2608 netdev
->tx_queue_len
= 100;
2609 /* maybe add some timeout factor ? */
2613 if ((adapter
->hw
.mac_type
== e1000_82571
||
2614 adapter
->hw
.mac_type
== e1000_82572
) &&
2617 tarc0
= E1000_READ_REG(&adapter
->hw
, TARC0
);
2618 tarc0
&= ~(1 << 21);
2619 E1000_WRITE_REG(&adapter
->hw
, TARC0
, tarc0
);
2623 /* disable TSO for pcie and 10/100 speeds, to avoid
2624 * some hardware issues */
2625 if (!adapter
->tso_force
&&
2626 adapter
->hw
.bus_type
== e1000_bus_type_pci_express
){
2627 switch (adapter
->link_speed
) {
2631 "10/100 speed: disabling TSO\n");
2632 netdev
->features
&= ~NETIF_F_TSO
;
2634 netdev
->features
&= ~NETIF_F_TSO6
;
2638 netdev
->features
|= NETIF_F_TSO
;
2640 netdev
->features
|= NETIF_F_TSO6
;
2650 /* enable transmits in the hardware, need to do this
2651 * after setting TARC0 */
2652 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2653 tctl
|= E1000_TCTL_EN
;
2654 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2656 netif_carrier_on(netdev
);
2657 netif_wake_queue(netdev
);
2658 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2659 adapter
->smartspeed
= 0;
2661 /* make sure the receive unit is started */
2662 if (adapter
->hw
.rx_needs_kicking
) {
2663 struct e1000_hw
*hw
= &adapter
->hw
;
2664 uint32_t rctl
= E1000_READ_REG(hw
, RCTL
);
2665 E1000_WRITE_REG(hw
, RCTL
, rctl
| E1000_RCTL_EN
);
2669 if (netif_carrier_ok(netdev
)) {
2670 adapter
->link_speed
= 0;
2671 adapter
->link_duplex
= 0;
2672 DPRINTK(LINK
, INFO
, "NIC Link is Down\n");
2673 netif_carrier_off(netdev
);
2674 netif_stop_queue(netdev
);
2675 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2677 /* 80003ES2LAN workaround--
2678 * For packet buffer work-around on link down event;
2679 * disable receives in the ISR and
2680 * reset device here in the watchdog
2682 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
2684 schedule_work(&adapter
->reset_task
);
2687 e1000_smartspeed(adapter
);
2690 e1000_update_stats(adapter
);
2692 adapter
->hw
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2693 adapter
->tpt_old
= adapter
->stats
.tpt
;
2694 adapter
->hw
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2695 adapter
->colc_old
= adapter
->stats
.colc
;
2697 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2698 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2699 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2700 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2702 e1000_update_adaptive(&adapter
->hw
);
2704 if (!netif_carrier_ok(netdev
)) {
2705 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2706 /* We've lost link, so the controller stops DMA,
2707 * but we've got queued Tx work that's never going
2708 * to get done, so reset controller to flush Tx.
2709 * (Do the reset outside of interrupt context). */
2710 adapter
->tx_timeout_count
++;
2711 schedule_work(&adapter
->reset_task
);
2715 /* Cause software interrupt to ensure rx ring is cleaned */
2716 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_RXDMT0
);
2718 /* Force detection of hung controller every watchdog period */
2719 adapter
->detect_tx_hung
= TRUE
;
2721 /* With 82571 controllers, LAA may be overwritten due to controller
2722 * reset from the other port. Set the appropriate LAA in RAR[0] */
2723 if (adapter
->hw
.mac_type
== e1000_82571
&& adapter
->hw
.laa_is_present
)
2724 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2726 /* Reset the timer */
2727 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 2 * HZ
);
2730 enum latency_range
{
2734 latency_invalid
= 255
2738 * e1000_update_itr - update the dynamic ITR value based on statistics
2739 * Stores a new ITR value based on packets and byte
2740 * counts during the last interrupt. The advantage of per interrupt
2741 * computation is faster updates and more accurate ITR for the current
2742 * traffic pattern. Constants in this function were computed
2743 * based on theoretical maximum wire speed and thresholds were set based
2744 * on testing data as well as attempting to minimize response time
2745 * while increasing bulk throughput.
2746 * this functionality is controlled by the InterruptThrottleRate module
2747 * parameter (see e1000_param.c)
2748 * @adapter: pointer to adapter
2749 * @itr_setting: current adapter->itr
2750 * @packets: the number of packets during this measurement interval
2751 * @bytes: the number of bytes during this measurement interval
2753 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2754 uint16_t itr_setting
,
2758 unsigned int retval
= itr_setting
;
2759 struct e1000_hw
*hw
= &adapter
->hw
;
2761 if (unlikely(hw
->mac_type
< e1000_82540
))
2762 goto update_itr_done
;
2765 goto update_itr_done
;
2767 switch (itr_setting
) {
2768 case lowest_latency
:
2769 /* jumbo frames get bulk treatment*/
2770 if (bytes
/packets
> 8000)
2771 retval
= bulk_latency
;
2772 else if ((packets
< 5) && (bytes
> 512))
2773 retval
= low_latency
;
2775 case low_latency
: /* 50 usec aka 20000 ints/s */
2776 if (bytes
> 10000) {
2777 /* jumbo frames need bulk latency setting */
2778 if (bytes
/packets
> 8000)
2779 retval
= bulk_latency
;
2780 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2781 retval
= bulk_latency
;
2782 else if ((packets
> 35))
2783 retval
= lowest_latency
;
2784 } else if (bytes
/packets
> 2000)
2785 retval
= bulk_latency
;
2786 else if (packets
<= 2 && bytes
< 512)
2787 retval
= lowest_latency
;
2789 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2790 if (bytes
> 25000) {
2792 retval
= low_latency
;
2793 } else if (bytes
< 6000) {
2794 retval
= low_latency
;
2803 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2805 struct e1000_hw
*hw
= &adapter
->hw
;
2806 uint16_t current_itr
;
2807 uint32_t new_itr
= adapter
->itr
;
2809 if (unlikely(hw
->mac_type
< e1000_82540
))
2812 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2813 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2819 adapter
->tx_itr
= e1000_update_itr(adapter
,
2821 adapter
->total_tx_packets
,
2822 adapter
->total_tx_bytes
);
2823 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2824 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2825 adapter
->tx_itr
= low_latency
;
2827 adapter
->rx_itr
= e1000_update_itr(adapter
,
2829 adapter
->total_rx_packets
,
2830 adapter
->total_rx_bytes
);
2831 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2832 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2833 adapter
->rx_itr
= low_latency
;
2835 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2837 switch (current_itr
) {
2838 /* counts and packets in update_itr are dependent on these numbers */
2839 case lowest_latency
:
2843 new_itr
= 20000; /* aka hwitr = ~200 */
2853 if (new_itr
!= adapter
->itr
) {
2854 /* this attempts to bias the interrupt rate towards Bulk
2855 * by adding intermediate steps when interrupt rate is
2857 new_itr
= new_itr
> adapter
->itr
?
2858 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2860 adapter
->itr
= new_itr
;
2861 E1000_WRITE_REG(hw
, ITR
, 1000000000 / (new_itr
* 256));
2867 #define E1000_TX_FLAGS_CSUM 0x00000001
2868 #define E1000_TX_FLAGS_VLAN 0x00000002
2869 #define E1000_TX_FLAGS_TSO 0x00000004
2870 #define E1000_TX_FLAGS_IPV4 0x00000008
2871 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2872 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2875 e1000_tso(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2876 struct sk_buff
*skb
)
2879 struct e1000_context_desc
*context_desc
;
2880 struct e1000_buffer
*buffer_info
;
2882 uint32_t cmd_length
= 0;
2883 uint16_t ipcse
= 0, tucse
, mss
;
2884 uint8_t ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2887 if (skb_is_gso(skb
)) {
2888 if (skb_header_cloned(skb
)) {
2889 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2894 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
2895 mss
= skb_shinfo(skb
)->gso_size
;
2896 if (skb
->protocol
== htons(ETH_P_IP
)) {
2897 skb
->nh
.iph
->tot_len
= 0;
2898 skb
->nh
.iph
->check
= 0;
2900 ~csum_tcpudp_magic(skb
->nh
.iph
->saddr
,
2905 cmd_length
= E1000_TXD_CMD_IP
;
2906 ipcse
= skb
->h
.raw
- skb
->data
- 1;
2908 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2909 skb
->nh
.ipv6h
->payload_len
= 0;
2911 ~csum_ipv6_magic(&skb
->nh
.ipv6h
->saddr
,
2912 &skb
->nh
.ipv6h
->daddr
,
2919 ipcss
= skb
->nh
.raw
- skb
->data
;
2920 ipcso
= (void *)&(skb
->nh
.iph
->check
) - (void *)skb
->data
;
2921 tucss
= skb
->h
.raw
- skb
->data
;
2922 tucso
= (void *)&(skb
->h
.th
->check
) - (void *)skb
->data
;
2925 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2926 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2928 i
= tx_ring
->next_to_use
;
2929 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2930 buffer_info
= &tx_ring
->buffer_info
[i
];
2932 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2933 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2934 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2935 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2936 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2937 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2938 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2939 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2940 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2942 buffer_info
->time_stamp
= jiffies
;
2943 buffer_info
->next_to_watch
= i
;
2945 if (++i
== tx_ring
->count
) i
= 0;
2946 tx_ring
->next_to_use
= i
;
2956 e1000_tx_csum(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2957 struct sk_buff
*skb
)
2959 struct e1000_context_desc
*context_desc
;
2960 struct e1000_buffer
*buffer_info
;
2964 if (likely(skb
->ip_summed
== CHECKSUM_PARTIAL
)) {
2965 css
= skb
->h
.raw
- skb
->data
;
2967 i
= tx_ring
->next_to_use
;
2968 buffer_info
= &tx_ring
->buffer_info
[i
];
2969 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2971 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2972 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum_offset
;
2973 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2974 context_desc
->tcp_seg_setup
.data
= 0;
2975 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
2977 buffer_info
->time_stamp
= jiffies
;
2978 buffer_info
->next_to_watch
= i
;
2980 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2981 tx_ring
->next_to_use
= i
;
2989 #define E1000_MAX_TXD_PWR 12
2990 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2993 e1000_tx_map(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2994 struct sk_buff
*skb
, unsigned int first
, unsigned int max_per_txd
,
2995 unsigned int nr_frags
, unsigned int mss
)
2997 struct e1000_buffer
*buffer_info
;
2998 unsigned int len
= skb
->len
;
2999 unsigned int offset
= 0, size
, count
= 0, i
;
3001 len
-= skb
->data_len
;
3003 i
= tx_ring
->next_to_use
;
3006 buffer_info
= &tx_ring
->buffer_info
[i
];
3007 size
= min(len
, max_per_txd
);
3009 /* Workaround for Controller erratum --
3010 * descriptor for non-tso packet in a linear SKB that follows a
3011 * tso gets written back prematurely before the data is fully
3012 * DMA'd to the controller */
3013 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
3015 tx_ring
->last_tx_tso
= 0;
3019 /* Workaround for premature desc write-backs
3020 * in TSO mode. Append 4-byte sentinel desc */
3021 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
3024 /* work-around for errata 10 and it applies
3025 * to all controllers in PCI-X mode
3026 * The fix is to make sure that the first descriptor of a
3027 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3029 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
3030 (size
> 2015) && count
== 0))
3033 /* Workaround for potential 82544 hang in PCI-X. Avoid
3034 * terminating buffers within evenly-aligned dwords. */
3035 if (unlikely(adapter
->pcix_82544
&&
3036 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
3040 buffer_info
->length
= size
;
3042 pci_map_single(adapter
->pdev
,
3046 buffer_info
->time_stamp
= jiffies
;
3047 buffer_info
->next_to_watch
= i
;
3052 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3055 for (f
= 0; f
< nr_frags
; f
++) {
3056 struct skb_frag_struct
*frag
;
3058 frag
= &skb_shinfo(skb
)->frags
[f
];
3060 offset
= frag
->page_offset
;
3063 buffer_info
= &tx_ring
->buffer_info
[i
];
3064 size
= min(len
, max_per_txd
);
3066 /* Workaround for premature desc write-backs
3067 * in TSO mode. Append 4-byte sentinel desc */
3068 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
3071 /* Workaround for potential 82544 hang in PCI-X.
3072 * Avoid terminating buffers within evenly-aligned
3074 if (unlikely(adapter
->pcix_82544
&&
3075 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
3079 buffer_info
->length
= size
;
3081 pci_map_page(adapter
->pdev
,
3086 buffer_info
->time_stamp
= jiffies
;
3087 buffer_info
->next_to_watch
= i
;
3092 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3096 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
3097 tx_ring
->buffer_info
[i
].skb
= skb
;
3098 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3104 e1000_tx_queue(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
3105 int tx_flags
, int count
)
3107 struct e1000_tx_desc
*tx_desc
= NULL
;
3108 struct e1000_buffer
*buffer_info
;
3109 uint32_t txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3112 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
3113 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3115 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3117 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
3118 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3121 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
3122 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3123 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3126 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
3127 txd_lower
|= E1000_TXD_CMD_VLE
;
3128 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3131 i
= tx_ring
->next_to_use
;
3134 buffer_info
= &tx_ring
->buffer_info
[i
];
3135 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3136 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3137 tx_desc
->lower
.data
=
3138 cpu_to_le32(txd_lower
| buffer_info
->length
);
3139 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3140 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3143 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3145 /* Force memory writes to complete before letting h/w
3146 * know there are new descriptors to fetch. (Only
3147 * applicable for weak-ordered memory model archs,
3148 * such as IA-64). */
3151 tx_ring
->next_to_use
= i
;
3152 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
3153 /* we need this if more than one processor can write to our tail
3154 * at a time, it syncronizes IO on IA64/Altix systems */
3159 * 82547 workaround to avoid controller hang in half-duplex environment.
3160 * The workaround is to avoid queuing a large packet that would span
3161 * the internal Tx FIFO ring boundary by notifying the stack to resend
3162 * the packet at a later time. This gives the Tx FIFO an opportunity to
3163 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3164 * to the beginning of the Tx FIFO.
3167 #define E1000_FIFO_HDR 0x10
3168 #define E1000_82547_PAD_LEN 0x3E0
3171 e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3173 uint32_t fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3174 uint32_t skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3176 E1000_ROUNDUP(skb_fifo_len
, E1000_FIFO_HDR
);
3178 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3179 goto no_fifo_stall_required
;
3181 if (atomic_read(&adapter
->tx_fifo_stall
))
3184 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3185 atomic_set(&adapter
->tx_fifo_stall
, 1);
3189 no_fifo_stall_required
:
3190 adapter
->tx_fifo_head
+= skb_fifo_len
;
3191 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3192 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3196 #define MINIMUM_DHCP_PACKET_SIZE 282
3198 e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3200 struct e1000_hw
*hw
= &adapter
->hw
;
3201 uint16_t length
, offset
;
3202 if (vlan_tx_tag_present(skb
)) {
3203 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
3204 ( adapter
->hw
.mng_cookie
.status
&
3205 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
3208 if (skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) {
3209 struct ethhdr
*eth
= (struct ethhdr
*) skb
->data
;
3210 if ((htons(ETH_P_IP
) == eth
->h_proto
)) {
3211 const struct iphdr
*ip
=
3212 (struct iphdr
*)((uint8_t *)skb
->data
+14);
3213 if (IPPROTO_UDP
== ip
->protocol
) {
3214 struct udphdr
*udp
=
3215 (struct udphdr
*)((uint8_t *)ip
+
3217 if (ntohs(udp
->dest
) == 67) {
3218 offset
= (uint8_t *)udp
+ 8 - skb
->data
;
3219 length
= skb
->len
- offset
;
3221 return e1000_mng_write_dhcp_info(hw
,
3231 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3233 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3234 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3236 netif_stop_queue(netdev
);
3237 /* Herbert's original patch had:
3238 * smp_mb__after_netif_stop_queue();
3239 * but since that doesn't exist yet, just open code it. */
3242 /* We need to check again in a case another CPU has just
3243 * made room available. */
3244 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3248 netif_start_queue(netdev
);
3249 ++adapter
->restart_queue
;
3253 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3254 struct e1000_tx_ring
*tx_ring
, int size
)
3256 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3258 return __e1000_maybe_stop_tx(netdev
, size
);
3261 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3263 e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3265 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3266 struct e1000_tx_ring
*tx_ring
;
3267 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3268 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3269 unsigned int tx_flags
= 0;
3270 unsigned int len
= skb
->len
;
3271 unsigned long flags
;
3272 unsigned int nr_frags
= 0;
3273 unsigned int mss
= 0;
3277 len
-= skb
->data_len
;
3279 /* This goes back to the question of how to logically map a tx queue
3280 * to a flow. Right now, performance is impacted slightly negatively
3281 * if using multiple tx queues. If the stack breaks away from a
3282 * single qdisc implementation, we can look at this again. */
3283 tx_ring
= adapter
->tx_ring
;
3285 if (unlikely(skb
->len
<= 0)) {
3286 dev_kfree_skb_any(skb
);
3287 return NETDEV_TX_OK
;
3290 /* 82571 and newer doesn't need the workaround that limited descriptor
3292 if (adapter
->hw
.mac_type
>= e1000_82571
)
3296 mss
= skb_shinfo(skb
)->gso_size
;
3297 /* The controller does a simple calculation to
3298 * make sure there is enough room in the FIFO before
3299 * initiating the DMA for each buffer. The calc is:
3300 * 4 = ceil(buffer len/mss). To make sure we don't
3301 * overrun the FIFO, adjust the max buffer len if mss
3305 max_per_txd
= min(mss
<< 2, max_per_txd
);
3306 max_txd_pwr
= fls(max_per_txd
) - 1;
3308 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3309 * points to just header, pull a few bytes of payload from
3310 * frags into skb->data */
3311 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
3312 if (skb
->data_len
&& (hdr_len
== (skb
->len
- skb
->data_len
))) {
3313 switch (adapter
->hw
.mac_type
) {
3314 unsigned int pull_size
;
3316 /* Make sure we have room to chop off 4 bytes,
3317 * and that the end alignment will work out to
3318 * this hardware's requirements
3319 * NOTE: this is a TSO only workaround
3320 * if end byte alignment not correct move us
3321 * into the next dword */
3322 if ((unsigned long)(skb
->tail
- 1) & 4)
3329 pull_size
= min((unsigned int)4, skb
->data_len
);
3330 if (!__pskb_pull_tail(skb
, pull_size
)) {
3332 "__pskb_pull_tail failed.\n");
3333 dev_kfree_skb_any(skb
);
3334 return NETDEV_TX_OK
;
3336 len
= skb
->len
- skb
->data_len
;
3345 /* reserve a descriptor for the offload context */
3346 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3350 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
3355 /* Controller Erratum workaround */
3356 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3360 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3362 if (adapter
->pcix_82544
)
3365 /* work-around for errata 10 and it applies to all controllers
3366 * in PCI-X mode, so add one more descriptor to the count
3368 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
3372 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3373 for (f
= 0; f
< nr_frags
; f
++)
3374 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3376 if (adapter
->pcix_82544
)
3380 if (adapter
->hw
.tx_pkt_filtering
&&
3381 (adapter
->hw
.mac_type
== e1000_82573
))
3382 e1000_transfer_dhcp_info(adapter
, skb
);
3384 local_irq_save(flags
);
3385 if (!spin_trylock(&tx_ring
->tx_lock
)) {
3386 /* Collision - tell upper layer to requeue */
3387 local_irq_restore(flags
);
3388 return NETDEV_TX_LOCKED
;
3391 /* need: count + 2 desc gap to keep tail from touching
3392 * head, otherwise try next time */
3393 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2))) {
3394 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3395 return NETDEV_TX_BUSY
;
3398 if (unlikely(adapter
->hw
.mac_type
== e1000_82547
)) {
3399 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3400 netif_stop_queue(netdev
);
3401 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
3402 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3403 return NETDEV_TX_BUSY
;
3407 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3408 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3409 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3412 first
= tx_ring
->next_to_use
;
3414 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3416 dev_kfree_skb_any(skb
);
3417 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3418 return NETDEV_TX_OK
;
3422 tx_ring
->last_tx_tso
= 1;
3423 tx_flags
|= E1000_TX_FLAGS_TSO
;
3424 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3425 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3427 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3428 * 82571 hardware supports TSO capabilities for IPv6 as well...
3429 * no longer assume, we must. */
3430 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3431 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3433 e1000_tx_queue(adapter
, tx_ring
, tx_flags
,
3434 e1000_tx_map(adapter
, tx_ring
, skb
, first
,
3435 max_per_txd
, nr_frags
, mss
));
3437 netdev
->trans_start
= jiffies
;
3439 /* Make sure there is space in the ring for the next send. */
3440 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3442 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3443 return NETDEV_TX_OK
;
3447 * e1000_tx_timeout - Respond to a Tx Hang
3448 * @netdev: network interface device structure
3452 e1000_tx_timeout(struct net_device
*netdev
)
3454 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3456 /* Do the reset outside of interrupt context */
3457 adapter
->tx_timeout_count
++;
3458 schedule_work(&adapter
->reset_task
);
3462 e1000_reset_task(struct work_struct
*work
)
3464 struct e1000_adapter
*adapter
=
3465 container_of(work
, struct e1000_adapter
, reset_task
);
3467 e1000_reinit_locked(adapter
);
3471 * e1000_get_stats - Get System Network Statistics
3472 * @netdev: network interface device structure
3474 * Returns the address of the device statistics structure.
3475 * The statistics are actually updated from the timer callback.
3478 static struct net_device_stats
*
3479 e1000_get_stats(struct net_device
*netdev
)
3481 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3483 /* only return the current stats */
3484 return &adapter
->net_stats
;
3488 * e1000_change_mtu - Change the Maximum Transfer Unit
3489 * @netdev: network interface device structure
3490 * @new_mtu: new value for maximum frame size
3492 * Returns 0 on success, negative on failure
3496 e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3498 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3499 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3500 uint16_t eeprom_data
= 0;
3502 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3503 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3504 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3508 /* Adapter-specific max frame size limits. */
3509 switch (adapter
->hw
.mac_type
) {
3510 case e1000_undefined
... e1000_82542_rev2_1
:
3512 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3513 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3518 /* Jumbo Frames not supported if:
3519 * - this is not an 82573L device
3520 * - ASPM is enabled in any way (0x1A bits 3:2) */
3521 e1000_read_eeprom(&adapter
->hw
, EEPROM_INIT_3GIO_3
, 1,
3523 if ((adapter
->hw
.device_id
!= E1000_DEV_ID_82573L
) ||
3524 (eeprom_data
& EEPROM_WORD1A_ASPM_MASK
)) {
3525 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3527 "Jumbo Frames not supported.\n");
3532 /* ERT will be enabled later to enable wire speed receives */
3534 /* fall through to get support */
3537 case e1000_80003es2lan
:
3538 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3539 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3540 DPRINTK(PROBE
, ERR
, "MTU > 9216 not supported.\n");
3545 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3549 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3550 * means we reserve 2 more, this pushes us to allocate from the next
3552 * i.e. RXBUFFER_2048 --> size-4096 slab */
3554 if (max_frame
<= E1000_RXBUFFER_256
)
3555 adapter
->rx_buffer_len
= E1000_RXBUFFER_256
;
3556 else if (max_frame
<= E1000_RXBUFFER_512
)
3557 adapter
->rx_buffer_len
= E1000_RXBUFFER_512
;
3558 else if (max_frame
<= E1000_RXBUFFER_1024
)
3559 adapter
->rx_buffer_len
= E1000_RXBUFFER_1024
;
3560 else if (max_frame
<= E1000_RXBUFFER_2048
)
3561 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3562 else if (max_frame
<= E1000_RXBUFFER_4096
)
3563 adapter
->rx_buffer_len
= E1000_RXBUFFER_4096
;
3564 else if (max_frame
<= E1000_RXBUFFER_8192
)
3565 adapter
->rx_buffer_len
= E1000_RXBUFFER_8192
;
3566 else if (max_frame
<= E1000_RXBUFFER_16384
)
3567 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3569 /* adjust allocation if LPE protects us, and we aren't using SBP */
3570 if (!adapter
->hw
.tbi_compatibility_on
&&
3571 ((max_frame
== MAXIMUM_ETHERNET_FRAME_SIZE
) ||
3572 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3573 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3575 netdev
->mtu
= new_mtu
;
3576 adapter
->hw
.max_frame_size
= max_frame
;
3578 if (netif_running(netdev
))
3579 e1000_reinit_locked(adapter
);
3585 * e1000_update_stats - Update the board statistics counters
3586 * @adapter: board private structure
3590 e1000_update_stats(struct e1000_adapter
*adapter
)
3592 struct e1000_hw
*hw
= &adapter
->hw
;
3593 struct pci_dev
*pdev
= adapter
->pdev
;
3594 unsigned long flags
;
3597 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3600 * Prevent stats update while adapter is being reset, or if the pci
3601 * connection is down.
3603 if (adapter
->link_speed
== 0)
3605 if (pci_channel_offline(pdev
))
3608 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3610 /* these counters are modified from e1000_adjust_tbi_stats,
3611 * called from the interrupt context, so they must only
3612 * be written while holding adapter->stats_lock
3615 adapter
->stats
.crcerrs
+= E1000_READ_REG(hw
, CRCERRS
);
3616 adapter
->stats
.gprc
+= E1000_READ_REG(hw
, GPRC
);
3617 adapter
->stats
.gorcl
+= E1000_READ_REG(hw
, GORCL
);
3618 adapter
->stats
.gorch
+= E1000_READ_REG(hw
, GORCH
);
3619 adapter
->stats
.bprc
+= E1000_READ_REG(hw
, BPRC
);
3620 adapter
->stats
.mprc
+= E1000_READ_REG(hw
, MPRC
);
3621 adapter
->stats
.roc
+= E1000_READ_REG(hw
, ROC
);
3623 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3624 adapter
->stats
.prc64
+= E1000_READ_REG(hw
, PRC64
);
3625 adapter
->stats
.prc127
+= E1000_READ_REG(hw
, PRC127
);
3626 adapter
->stats
.prc255
+= E1000_READ_REG(hw
, PRC255
);
3627 adapter
->stats
.prc511
+= E1000_READ_REG(hw
, PRC511
);
3628 adapter
->stats
.prc1023
+= E1000_READ_REG(hw
, PRC1023
);
3629 adapter
->stats
.prc1522
+= E1000_READ_REG(hw
, PRC1522
);
3632 adapter
->stats
.symerrs
+= E1000_READ_REG(hw
, SYMERRS
);
3633 adapter
->stats
.mpc
+= E1000_READ_REG(hw
, MPC
);
3634 adapter
->stats
.scc
+= E1000_READ_REG(hw
, SCC
);
3635 adapter
->stats
.ecol
+= E1000_READ_REG(hw
, ECOL
);
3636 adapter
->stats
.mcc
+= E1000_READ_REG(hw
, MCC
);
3637 adapter
->stats
.latecol
+= E1000_READ_REG(hw
, LATECOL
);
3638 adapter
->stats
.dc
+= E1000_READ_REG(hw
, DC
);
3639 adapter
->stats
.sec
+= E1000_READ_REG(hw
, SEC
);
3640 adapter
->stats
.rlec
+= E1000_READ_REG(hw
, RLEC
);
3641 adapter
->stats
.xonrxc
+= E1000_READ_REG(hw
, XONRXC
);
3642 adapter
->stats
.xontxc
+= E1000_READ_REG(hw
, XONTXC
);
3643 adapter
->stats
.xoffrxc
+= E1000_READ_REG(hw
, XOFFRXC
);
3644 adapter
->stats
.xofftxc
+= E1000_READ_REG(hw
, XOFFTXC
);
3645 adapter
->stats
.fcruc
+= E1000_READ_REG(hw
, FCRUC
);
3646 adapter
->stats
.gptc
+= E1000_READ_REG(hw
, GPTC
);
3647 adapter
->stats
.gotcl
+= E1000_READ_REG(hw
, GOTCL
);
3648 adapter
->stats
.gotch
+= E1000_READ_REG(hw
, GOTCH
);
3649 adapter
->stats
.rnbc
+= E1000_READ_REG(hw
, RNBC
);
3650 adapter
->stats
.ruc
+= E1000_READ_REG(hw
, RUC
);
3651 adapter
->stats
.rfc
+= E1000_READ_REG(hw
, RFC
);
3652 adapter
->stats
.rjc
+= E1000_READ_REG(hw
, RJC
);
3653 adapter
->stats
.torl
+= E1000_READ_REG(hw
, TORL
);
3654 adapter
->stats
.torh
+= E1000_READ_REG(hw
, TORH
);
3655 adapter
->stats
.totl
+= E1000_READ_REG(hw
, TOTL
);
3656 adapter
->stats
.toth
+= E1000_READ_REG(hw
, TOTH
);
3657 adapter
->stats
.tpr
+= E1000_READ_REG(hw
, TPR
);
3659 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3660 adapter
->stats
.ptc64
+= E1000_READ_REG(hw
, PTC64
);
3661 adapter
->stats
.ptc127
+= E1000_READ_REG(hw
, PTC127
);
3662 adapter
->stats
.ptc255
+= E1000_READ_REG(hw
, PTC255
);
3663 adapter
->stats
.ptc511
+= E1000_READ_REG(hw
, PTC511
);
3664 adapter
->stats
.ptc1023
+= E1000_READ_REG(hw
, PTC1023
);
3665 adapter
->stats
.ptc1522
+= E1000_READ_REG(hw
, PTC1522
);
3668 adapter
->stats
.mptc
+= E1000_READ_REG(hw
, MPTC
);
3669 adapter
->stats
.bptc
+= E1000_READ_REG(hw
, BPTC
);
3671 /* used for adaptive IFS */
3673 hw
->tx_packet_delta
= E1000_READ_REG(hw
, TPT
);
3674 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3675 hw
->collision_delta
= E1000_READ_REG(hw
, COLC
);
3676 adapter
->stats
.colc
+= hw
->collision_delta
;
3678 if (hw
->mac_type
>= e1000_82543
) {
3679 adapter
->stats
.algnerrc
+= E1000_READ_REG(hw
, ALGNERRC
);
3680 adapter
->stats
.rxerrc
+= E1000_READ_REG(hw
, RXERRC
);
3681 adapter
->stats
.tncrs
+= E1000_READ_REG(hw
, TNCRS
);
3682 adapter
->stats
.cexterr
+= E1000_READ_REG(hw
, CEXTERR
);
3683 adapter
->stats
.tsctc
+= E1000_READ_REG(hw
, TSCTC
);
3684 adapter
->stats
.tsctfc
+= E1000_READ_REG(hw
, TSCTFC
);
3686 if (hw
->mac_type
> e1000_82547_rev_2
) {
3687 adapter
->stats
.iac
+= E1000_READ_REG(hw
, IAC
);
3688 adapter
->stats
.icrxoc
+= E1000_READ_REG(hw
, ICRXOC
);
3690 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3691 adapter
->stats
.icrxptc
+= E1000_READ_REG(hw
, ICRXPTC
);
3692 adapter
->stats
.icrxatc
+= E1000_READ_REG(hw
, ICRXATC
);
3693 adapter
->stats
.ictxptc
+= E1000_READ_REG(hw
, ICTXPTC
);
3694 adapter
->stats
.ictxatc
+= E1000_READ_REG(hw
, ICTXATC
);
3695 adapter
->stats
.ictxqec
+= E1000_READ_REG(hw
, ICTXQEC
);
3696 adapter
->stats
.ictxqmtc
+= E1000_READ_REG(hw
, ICTXQMTC
);
3697 adapter
->stats
.icrxdmtc
+= E1000_READ_REG(hw
, ICRXDMTC
);
3701 /* Fill out the OS statistics structure */
3702 adapter
->net_stats
.rx_packets
= adapter
->stats
.gprc
;
3703 adapter
->net_stats
.tx_packets
= adapter
->stats
.gptc
;
3704 adapter
->net_stats
.rx_bytes
= adapter
->stats
.gorcl
;
3705 adapter
->net_stats
.tx_bytes
= adapter
->stats
.gotcl
;
3706 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3707 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3711 /* RLEC on some newer hardware can be incorrect so build
3712 * our own version based on RUC and ROC */
3713 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3714 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3715 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3716 adapter
->stats
.cexterr
;
3717 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3718 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3719 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3720 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3721 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3724 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3725 adapter
->net_stats
.tx_errors
= adapter
->stats
.txerrc
;
3726 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3727 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3728 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3729 if (adapter
->hw
.bad_tx_carr_stats_fd
&&
3730 adapter
->link_duplex
== FULL_DUPLEX
) {
3731 adapter
->net_stats
.tx_carrier_errors
= 0;
3732 adapter
->stats
.tncrs
= 0;
3735 /* Tx Dropped needs to be maintained elsewhere */
3738 if (hw
->media_type
== e1000_media_type_copper
) {
3739 if ((adapter
->link_speed
== SPEED_1000
) &&
3740 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3741 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3742 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3745 if ((hw
->mac_type
<= e1000_82546
) &&
3746 (hw
->phy_type
== e1000_phy_m88
) &&
3747 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3748 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3751 /* Management Stats */
3752 if (adapter
->hw
.has_smbus
) {
3753 adapter
->stats
.mgptc
+= E1000_READ_REG(hw
, MGTPTC
);
3754 adapter
->stats
.mgprc
+= E1000_READ_REG(hw
, MGTPRC
);
3755 adapter
->stats
.mgpdc
+= E1000_READ_REG(hw
, MGTPDC
);
3758 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3760 #ifdef CONFIG_PCI_MSI
3763 * e1000_intr_msi - Interrupt Handler
3764 * @irq: interrupt number
3765 * @data: pointer to a network interface device structure
3769 irqreturn_t
e1000_intr_msi(int irq
, void *data
)
3771 struct net_device
*netdev
= data
;
3772 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3773 struct e1000_hw
*hw
= &adapter
->hw
;
3774 #ifndef CONFIG_E1000_NAPI
3778 /* this code avoids the read of ICR but has to get 1000 interrupts
3779 * at every link change event before it will notice the change */
3780 if (++adapter
->detect_link
>= 1000) {
3781 uint32_t icr
= E1000_READ_REG(hw
, ICR
);
3782 #ifdef CONFIG_E1000_NAPI
3783 /* read ICR disables interrupts using IAM, so keep up with our
3784 * enable/disable accounting */
3785 atomic_inc(&adapter
->irq_sem
);
3787 adapter
->detect_link
= 0;
3788 if ((icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) &&
3789 (icr
& E1000_ICR_INT_ASSERTED
)) {
3790 hw
->get_link_status
= 1;
3791 /* 80003ES2LAN workaround--
3792 * For packet buffer work-around on link down event;
3793 * disable receives here in the ISR and
3794 * reset adapter in watchdog
3796 if (netif_carrier_ok(netdev
) &&
3797 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3798 /* disable receives */
3799 uint32_t rctl
= E1000_READ_REG(hw
, RCTL
);
3800 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3802 /* guard against interrupt when we're going down */
3803 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3804 mod_timer(&adapter
->watchdog_timer
,
3808 E1000_WRITE_REG(hw
, ICR
, (0xffffffff & ~(E1000_ICR_RXSEQ
|
3810 /* bummer we have to flush here, but things break otherwise as
3811 * some event appears to be lost or delayed and throughput
3812 * drops. In almost all tests this flush is un-necessary */
3813 E1000_WRITE_FLUSH(hw
);
3814 #ifdef CONFIG_E1000_NAPI
3815 /* Interrupt Auto-Mask (IAM)...upon writing ICR, interrupts are
3816 * masked. No need for the IMC write, but it does mean we
3817 * should account for it ASAP. */
3818 atomic_inc(&adapter
->irq_sem
);
3822 #ifdef CONFIG_E1000_NAPI
3823 if (likely(netif_rx_schedule_prep(netdev
))) {
3824 adapter
->total_tx_bytes
= 0;
3825 adapter
->total_tx_packets
= 0;
3826 adapter
->total_rx_bytes
= 0;
3827 adapter
->total_rx_packets
= 0;
3828 __netif_rx_schedule(netdev
);
3830 e1000_irq_enable(adapter
);
3832 adapter
->total_tx_bytes
= 0;
3833 adapter
->total_rx_bytes
= 0;
3834 adapter
->total_tx_packets
= 0;
3835 adapter
->total_rx_packets
= 0;
3837 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3838 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3839 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3842 if (likely(adapter
->itr_setting
& 3))
3843 e1000_set_itr(adapter
);
3851 * e1000_intr - Interrupt Handler
3852 * @irq: interrupt number
3853 * @data: pointer to a network interface device structure
3857 e1000_intr(int irq
, void *data
)
3859 struct net_device
*netdev
= data
;
3860 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3861 struct e1000_hw
*hw
= &adapter
->hw
;
3862 uint32_t rctl
, icr
= E1000_READ_REG(hw
, ICR
);
3863 #ifndef CONFIG_E1000_NAPI
3867 return IRQ_NONE
; /* Not our interrupt */
3869 #ifdef CONFIG_E1000_NAPI
3870 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3871 * not set, then the adapter didn't send an interrupt */
3872 if (unlikely(hw
->mac_type
>= e1000_82571
&&
3873 !(icr
& E1000_ICR_INT_ASSERTED
)))
3876 /* Interrupt Auto-Mask...upon reading ICR,
3877 * interrupts are masked. No need for the
3878 * IMC write, but it does mean we should
3879 * account for it ASAP. */
3880 if (likely(hw
->mac_type
>= e1000_82571
))
3881 atomic_inc(&adapter
->irq_sem
);
3884 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3885 hw
->get_link_status
= 1;
3886 /* 80003ES2LAN workaround--
3887 * For packet buffer work-around on link down event;
3888 * disable receives here in the ISR and
3889 * reset adapter in watchdog
3891 if (netif_carrier_ok(netdev
) &&
3892 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3893 /* disable receives */
3894 rctl
= E1000_READ_REG(hw
, RCTL
);
3895 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3897 /* guard against interrupt when we're going down */
3898 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3899 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3902 #ifdef CONFIG_E1000_NAPI
3903 if (unlikely(hw
->mac_type
< e1000_82571
)) {
3904 /* disable interrupts, without the synchronize_irq bit */
3905 atomic_inc(&adapter
->irq_sem
);
3906 E1000_WRITE_REG(hw
, IMC
, ~0);
3907 E1000_WRITE_FLUSH(hw
);
3909 if (likely(netif_rx_schedule_prep(netdev
))) {
3910 adapter
->total_tx_bytes
= 0;
3911 adapter
->total_tx_packets
= 0;
3912 adapter
->total_rx_bytes
= 0;
3913 adapter
->total_rx_packets
= 0;
3914 __netif_rx_schedule(netdev
);
3916 /* this really should not happen! if it does it is basically a
3917 * bug, but not a hard error, so enable ints and continue */
3918 e1000_irq_enable(adapter
);
3920 /* Writing IMC and IMS is needed for 82547.
3921 * Due to Hub Link bus being occupied, an interrupt
3922 * de-assertion message is not able to be sent.
3923 * When an interrupt assertion message is generated later,
3924 * two messages are re-ordered and sent out.
3925 * That causes APIC to think 82547 is in de-assertion
3926 * state, while 82547 is in assertion state, resulting
3927 * in dead lock. Writing IMC forces 82547 into
3928 * de-assertion state.
3930 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
) {
3931 atomic_inc(&adapter
->irq_sem
);
3932 E1000_WRITE_REG(hw
, IMC
, ~0);
3935 adapter
->total_tx_bytes
= 0;
3936 adapter
->total_rx_bytes
= 0;
3937 adapter
->total_tx_packets
= 0;
3938 adapter
->total_rx_packets
= 0;
3940 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3941 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3942 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3945 if (likely(adapter
->itr_setting
& 3))
3946 e1000_set_itr(adapter
);
3948 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
)
3949 e1000_irq_enable(adapter
);
3955 #ifdef CONFIG_E1000_NAPI
3957 * e1000_clean - NAPI Rx polling callback
3958 * @adapter: board private structure
3962 e1000_clean(struct net_device
*poll_dev
, int *budget
)
3964 struct e1000_adapter
*adapter
;
3965 int work_to_do
= min(*budget
, poll_dev
->quota
);
3966 int tx_cleaned
= 0, work_done
= 0;
3968 /* Must NOT use netdev_priv macro here. */
3969 adapter
= poll_dev
->priv
;
3971 /* Keep link state information with original netdev */
3972 if (!netif_carrier_ok(poll_dev
))
3975 /* e1000_clean is called per-cpu. This lock protects
3976 * tx_ring[0] from being cleaned by multiple cpus
3977 * simultaneously. A failure obtaining the lock means
3978 * tx_ring[0] is currently being cleaned anyway. */
3979 if (spin_trylock(&adapter
->tx_queue_lock
)) {
3980 tx_cleaned
= e1000_clean_tx_irq(adapter
,
3981 &adapter
->tx_ring
[0]);
3982 spin_unlock(&adapter
->tx_queue_lock
);
3985 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0],
3986 &work_done
, work_to_do
);
3988 *budget
-= work_done
;
3989 poll_dev
->quota
-= work_done
;
3991 /* If no Tx and not enough Rx work done, exit the polling mode */
3992 if ((!tx_cleaned
&& (work_done
== 0)) ||
3993 !netif_running(poll_dev
)) {
3995 if (likely(adapter
->itr_setting
& 3))
3996 e1000_set_itr(adapter
);
3997 netif_rx_complete(poll_dev
);
3998 e1000_irq_enable(adapter
);
4007 * e1000_clean_tx_irq - Reclaim resources after transmit completes
4008 * @adapter: board private structure
4012 e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
4013 struct e1000_tx_ring
*tx_ring
)
4015 struct net_device
*netdev
= adapter
->netdev
;
4016 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
4017 struct e1000_buffer
*buffer_info
;
4018 unsigned int i
, eop
;
4019 #ifdef CONFIG_E1000_NAPI
4020 unsigned int count
= 0;
4022 boolean_t cleaned
= FALSE
;
4023 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
4025 i
= tx_ring
->next_to_clean
;
4026 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4027 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
4029 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
4030 for (cleaned
= FALSE
; !cleaned
; ) {
4031 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
4032 buffer_info
= &tx_ring
->buffer_info
[i
];
4033 cleaned
= (i
== eop
);
4036 struct sk_buff
*skb
= buffer_info
->skb
;
4037 unsigned int segs
= skb_shinfo(skb
)->gso_segs
;
4038 total_tx_packets
+= segs
;
4040 total_tx_bytes
+= skb
->len
;
4042 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
4043 tx_desc
->upper
.data
= 0;
4045 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
4048 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4049 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
4050 #ifdef CONFIG_E1000_NAPI
4051 #define E1000_TX_WEIGHT 64
4052 /* weight of a sort for tx, to avoid endless transmit cleanup */
4053 if (count
++ == E1000_TX_WEIGHT
) break;
4057 tx_ring
->next_to_clean
= i
;
4059 #define TX_WAKE_THRESHOLD 32
4060 if (unlikely(cleaned
&& netif_carrier_ok(netdev
) &&
4061 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
4062 /* Make sure that anybody stopping the queue after this
4063 * sees the new next_to_clean.
4066 if (netif_queue_stopped(netdev
)) {
4067 netif_wake_queue(netdev
);
4068 ++adapter
->restart_queue
;
4072 if (adapter
->detect_tx_hung
) {
4073 /* Detect a transmit hang in hardware, this serializes the
4074 * check with the clearing of time_stamp and movement of i */
4075 adapter
->detect_tx_hung
= FALSE
;
4076 if (tx_ring
->buffer_info
[eop
].dma
&&
4077 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
4078 (adapter
->tx_timeout_factor
* HZ
))
4079 && !(E1000_READ_REG(&adapter
->hw
, STATUS
) &
4080 E1000_STATUS_TXOFF
)) {
4082 /* detected Tx unit hang */
4083 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
4087 " next_to_use <%x>\n"
4088 " next_to_clean <%x>\n"
4089 "buffer_info[next_to_clean]\n"
4090 " time_stamp <%lx>\n"
4091 " next_to_watch <%x>\n"
4093 " next_to_watch.status <%x>\n",
4094 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
4095 sizeof(struct e1000_tx_ring
)),
4096 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdh
),
4097 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdt
),
4098 tx_ring
->next_to_use
,
4099 tx_ring
->next_to_clean
,
4100 tx_ring
->buffer_info
[eop
].time_stamp
,
4103 eop_desc
->upper
.fields
.status
);
4104 netif_stop_queue(netdev
);
4107 adapter
->total_tx_bytes
+= total_tx_bytes
;
4108 adapter
->total_tx_packets
+= total_tx_packets
;
4113 * e1000_rx_checksum - Receive Checksum Offload for 82543
4114 * @adapter: board private structure
4115 * @status_err: receive descriptor status and error fields
4116 * @csum: receive descriptor csum field
4117 * @sk_buff: socket buffer with received data
4121 e1000_rx_checksum(struct e1000_adapter
*adapter
,
4122 uint32_t status_err
, uint32_t csum
,
4123 struct sk_buff
*skb
)
4125 uint16_t status
= (uint16_t)status_err
;
4126 uint8_t errors
= (uint8_t)(status_err
>> 24);
4127 skb
->ip_summed
= CHECKSUM_NONE
;
4129 /* 82543 or newer only */
4130 if (unlikely(adapter
->hw
.mac_type
< e1000_82543
)) return;
4131 /* Ignore Checksum bit is set */
4132 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
4133 /* TCP/UDP checksum error bit is set */
4134 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
4135 /* let the stack verify checksum errors */
4136 adapter
->hw_csum_err
++;
4139 /* TCP/UDP Checksum has not been calculated */
4140 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
) {
4141 if (!(status
& E1000_RXD_STAT_TCPCS
))
4144 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
4147 /* It must be a TCP or UDP packet with a valid checksum */
4148 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
4149 /* TCP checksum is good */
4150 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
4151 } else if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
4152 /* IP fragment with UDP payload */
4153 /* Hardware complements the payload checksum, so we undo it
4154 * and then put the value in host order for further stack use.
4156 csum
= ntohl(csum
^ 0xFFFF);
4158 skb
->ip_summed
= CHECKSUM_COMPLETE
;
4160 adapter
->hw_csum_good
++;
4164 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4165 * @adapter: board private structure
4169 #ifdef CONFIG_E1000_NAPI
4170 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4171 struct e1000_rx_ring
*rx_ring
,
4172 int *work_done
, int work_to_do
)
4174 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4175 struct e1000_rx_ring
*rx_ring
)
4178 struct net_device
*netdev
= adapter
->netdev
;
4179 struct pci_dev
*pdev
= adapter
->pdev
;
4180 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
4181 struct e1000_buffer
*buffer_info
, *next_buffer
;
4182 unsigned long flags
;
4186 int cleaned_count
= 0;
4187 boolean_t cleaned
= FALSE
;
4188 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4190 i
= rx_ring
->next_to_clean
;
4191 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4192 buffer_info
= &rx_ring
->buffer_info
[i
];
4194 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4195 struct sk_buff
*skb
;
4198 #ifdef CONFIG_E1000_NAPI
4199 if (*work_done
>= work_to_do
)
4203 status
= rx_desc
->status
;
4204 skb
= buffer_info
->skb
;
4205 buffer_info
->skb
= NULL
;
4207 prefetch(skb
->data
- NET_IP_ALIGN
);
4209 if (++i
== rx_ring
->count
) i
= 0;
4210 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4213 next_buffer
= &rx_ring
->buffer_info
[i
];
4217 pci_unmap_single(pdev
,
4219 buffer_info
->length
,
4220 PCI_DMA_FROMDEVICE
);
4222 length
= le16_to_cpu(rx_desc
->length
);
4224 if (unlikely(!(status
& E1000_RXD_STAT_EOP
))) {
4225 /* All receives must fit into a single buffer */
4226 E1000_DBG("%s: Receive packet consumed multiple"
4227 " buffers\n", netdev
->name
);
4229 buffer_info
->skb
= skb
;
4233 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4234 last_byte
= *(skb
->data
+ length
- 1);
4235 if (TBI_ACCEPT(&adapter
->hw
, status
,
4236 rx_desc
->errors
, length
, last_byte
)) {
4237 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4238 e1000_tbi_adjust_stats(&adapter
->hw
,
4241 spin_unlock_irqrestore(&adapter
->stats_lock
,
4246 buffer_info
->skb
= skb
;
4251 /* adjust length to remove Ethernet CRC, this must be
4252 * done after the TBI_ACCEPT workaround above */
4255 /* probably a little skewed due to removing CRC */
4256 total_rx_bytes
+= length
;
4259 /* code added for copybreak, this should improve
4260 * performance for small packets with large amounts
4261 * of reassembly being done in the stack */
4262 if (length
< copybreak
) {
4263 struct sk_buff
*new_skb
=
4264 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
4266 skb_reserve(new_skb
, NET_IP_ALIGN
);
4267 memcpy(new_skb
->data
- NET_IP_ALIGN
,
4268 skb
->data
- NET_IP_ALIGN
,
4269 length
+ NET_IP_ALIGN
);
4270 /* save the skb in buffer_info as good */
4271 buffer_info
->skb
= skb
;
4274 /* else just continue with the old one */
4276 /* end copybreak code */
4277 skb_put(skb
, length
);
4279 /* Receive Checksum Offload */
4280 e1000_rx_checksum(adapter
,
4281 (uint32_t)(status
) |
4282 ((uint32_t)(rx_desc
->errors
) << 24),
4283 le16_to_cpu(rx_desc
->csum
), skb
);
4285 skb
->protocol
= eth_type_trans(skb
, netdev
);
4286 #ifdef CONFIG_E1000_NAPI
4287 if (unlikely(adapter
->vlgrp
&&
4288 (status
& E1000_RXD_STAT_VP
))) {
4289 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4290 le16_to_cpu(rx_desc
->special
) &
4291 E1000_RXD_SPC_VLAN_MASK
);
4293 netif_receive_skb(skb
);
4295 #else /* CONFIG_E1000_NAPI */
4296 if (unlikely(adapter
->vlgrp
&&
4297 (status
& E1000_RXD_STAT_VP
))) {
4298 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
4299 le16_to_cpu(rx_desc
->special
) &
4300 E1000_RXD_SPC_VLAN_MASK
);
4304 #endif /* CONFIG_E1000_NAPI */
4305 netdev
->last_rx
= jiffies
;
4308 rx_desc
->status
= 0;
4310 /* return some buffers to hardware, one at a time is too slow */
4311 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4312 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4316 /* use prefetched values */
4318 buffer_info
= next_buffer
;
4320 rx_ring
->next_to_clean
= i
;
4322 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4324 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4326 adapter
->total_rx_packets
+= total_rx_packets
;
4327 adapter
->total_rx_bytes
+= total_rx_bytes
;
4332 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4333 * @adapter: board private structure
4337 #ifdef CONFIG_E1000_NAPI
4338 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
4339 struct e1000_rx_ring
*rx_ring
,
4340 int *work_done
, int work_to_do
)
4342 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
4343 struct e1000_rx_ring
*rx_ring
)
4346 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
4347 struct net_device
*netdev
= adapter
->netdev
;
4348 struct pci_dev
*pdev
= adapter
->pdev
;
4349 struct e1000_buffer
*buffer_info
, *next_buffer
;
4350 struct e1000_ps_page
*ps_page
;
4351 struct e1000_ps_page_dma
*ps_page_dma
;
4352 struct sk_buff
*skb
;
4354 uint32_t length
, staterr
;
4355 int cleaned_count
= 0;
4356 boolean_t cleaned
= FALSE
;
4357 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4359 i
= rx_ring
->next_to_clean
;
4360 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4361 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
4362 buffer_info
= &rx_ring
->buffer_info
[i
];
4364 while (staterr
& E1000_RXD_STAT_DD
) {
4365 ps_page
= &rx_ring
->ps_page
[i
];
4366 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4367 #ifdef CONFIG_E1000_NAPI
4368 if (unlikely(*work_done
>= work_to_do
))
4372 skb
= buffer_info
->skb
;
4374 /* in the packet split case this is header only */
4375 prefetch(skb
->data
- NET_IP_ALIGN
);
4377 if (++i
== rx_ring
->count
) i
= 0;
4378 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
4381 next_buffer
= &rx_ring
->buffer_info
[i
];
4385 pci_unmap_single(pdev
, buffer_info
->dma
,
4386 buffer_info
->length
,
4387 PCI_DMA_FROMDEVICE
);
4389 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
))) {
4390 E1000_DBG("%s: Packet Split buffers didn't pick up"
4391 " the full packet\n", netdev
->name
);
4392 dev_kfree_skb_irq(skb
);
4396 if (unlikely(staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
)) {
4397 dev_kfree_skb_irq(skb
);
4401 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
4403 if (unlikely(!length
)) {
4404 E1000_DBG("%s: Last part of the packet spanning"
4405 " multiple descriptors\n", netdev
->name
);
4406 dev_kfree_skb_irq(skb
);
4411 skb_put(skb
, length
);
4414 /* this looks ugly, but it seems compiler issues make it
4415 more efficient than reusing j */
4416 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
4418 /* page alloc/put takes too long and effects small packet
4419 * throughput, so unsplit small packets and save the alloc/put*/
4420 if (l1
&& (l1
<= copybreak
) && ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
4422 /* there is no documentation about how to call
4423 * kmap_atomic, so we can't hold the mapping
4425 pci_dma_sync_single_for_cpu(pdev
,
4426 ps_page_dma
->ps_page_dma
[0],
4428 PCI_DMA_FROMDEVICE
);
4429 vaddr
= kmap_atomic(ps_page
->ps_page
[0],
4430 KM_SKB_DATA_SOFTIRQ
);
4431 memcpy(skb
->tail
, vaddr
, l1
);
4432 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
4433 pci_dma_sync_single_for_device(pdev
,
4434 ps_page_dma
->ps_page_dma
[0],
4435 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
4436 /* remove the CRC */
4443 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
4444 if (!(length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
])))
4446 pci_unmap_page(pdev
, ps_page_dma
->ps_page_dma
[j
],
4447 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
4448 ps_page_dma
->ps_page_dma
[j
] = 0;
4449 skb_fill_page_desc(skb
, j
, ps_page
->ps_page
[j
], 0,
4451 ps_page
->ps_page
[j
] = NULL
;
4453 skb
->data_len
+= length
;
4454 skb
->truesize
+= length
;
4457 /* strip the ethernet crc, problem is we're using pages now so
4458 * this whole operation can get a little cpu intensive */
4459 pskb_trim(skb
, skb
->len
- 4);
4462 total_rx_bytes
+= skb
->len
;
4465 e1000_rx_checksum(adapter
, staterr
,
4466 le16_to_cpu(rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
4467 skb
->protocol
= eth_type_trans(skb
, netdev
);
4469 if (likely(rx_desc
->wb
.upper
.header_status
&
4470 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
)))
4471 adapter
->rx_hdr_split
++;
4472 #ifdef CONFIG_E1000_NAPI
4473 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
4474 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4475 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
4476 E1000_RXD_SPC_VLAN_MASK
);
4478 netif_receive_skb(skb
);
4480 #else /* CONFIG_E1000_NAPI */
4481 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
4482 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
4483 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
4484 E1000_RXD_SPC_VLAN_MASK
);
4488 #endif /* CONFIG_E1000_NAPI */
4489 netdev
->last_rx
= jiffies
;
4492 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
4493 buffer_info
->skb
= NULL
;
4495 /* return some buffers to hardware, one at a time is too slow */
4496 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4497 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4501 /* use prefetched values */
4503 buffer_info
= next_buffer
;
4505 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
4507 rx_ring
->next_to_clean
= i
;
4509 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4511 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4513 adapter
->total_rx_packets
+= total_rx_packets
;
4514 adapter
->total_rx_bytes
+= total_rx_bytes
;
4519 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4520 * @adapter: address of board private structure
4524 e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4525 struct e1000_rx_ring
*rx_ring
,
4528 struct net_device
*netdev
= adapter
->netdev
;
4529 struct pci_dev
*pdev
= adapter
->pdev
;
4530 struct e1000_rx_desc
*rx_desc
;
4531 struct e1000_buffer
*buffer_info
;
4532 struct sk_buff
*skb
;
4534 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
4536 i
= rx_ring
->next_to_use
;
4537 buffer_info
= &rx_ring
->buffer_info
[i
];
4539 while (cleaned_count
--) {
4540 skb
= buffer_info
->skb
;
4546 skb
= netdev_alloc_skb(netdev
, bufsz
);
4547 if (unlikely(!skb
)) {
4548 /* Better luck next round */
4549 adapter
->alloc_rx_buff_failed
++;
4553 /* Fix for errata 23, can't cross 64kB boundary */
4554 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4555 struct sk_buff
*oldskb
= skb
;
4556 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4557 "at %p\n", bufsz
, skb
->data
);
4558 /* Try again, without freeing the previous */
4559 skb
= netdev_alloc_skb(netdev
, bufsz
);
4560 /* Failed allocation, critical failure */
4562 dev_kfree_skb(oldskb
);
4566 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4569 dev_kfree_skb(oldskb
);
4570 break; /* while !buffer_info->skb */
4573 /* Use new allocation */
4574 dev_kfree_skb(oldskb
);
4576 /* Make buffer alignment 2 beyond a 16 byte boundary
4577 * this will result in a 16 byte aligned IP header after
4578 * the 14 byte MAC header is removed
4580 skb_reserve(skb
, NET_IP_ALIGN
);
4582 buffer_info
->skb
= skb
;
4583 buffer_info
->length
= adapter
->rx_buffer_len
;
4585 buffer_info
->dma
= pci_map_single(pdev
,
4587 adapter
->rx_buffer_len
,
4588 PCI_DMA_FROMDEVICE
);
4590 /* Fix for errata 23, can't cross 64kB boundary */
4591 if (!e1000_check_64k_bound(adapter
,
4592 (void *)(unsigned long)buffer_info
->dma
,
4593 adapter
->rx_buffer_len
)) {
4594 DPRINTK(RX_ERR
, ERR
,
4595 "dma align check failed: %u bytes at %p\n",
4596 adapter
->rx_buffer_len
,
4597 (void *)(unsigned long)buffer_info
->dma
);
4599 buffer_info
->skb
= NULL
;
4601 pci_unmap_single(pdev
, buffer_info
->dma
,
4602 adapter
->rx_buffer_len
,
4603 PCI_DMA_FROMDEVICE
);
4605 break; /* while !buffer_info->skb */
4607 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4608 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4610 if (unlikely(++i
== rx_ring
->count
))
4612 buffer_info
= &rx_ring
->buffer_info
[i
];
4615 if (likely(rx_ring
->next_to_use
!= i
)) {
4616 rx_ring
->next_to_use
= i
;
4617 if (unlikely(i
-- == 0))
4618 i
= (rx_ring
->count
- 1);
4620 /* Force memory writes to complete before letting h/w
4621 * know there are new descriptors to fetch. (Only
4622 * applicable for weak-ordered memory model archs,
4623 * such as IA-64). */
4625 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4630 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4631 * @adapter: address of board private structure
4635 e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
4636 struct e1000_rx_ring
*rx_ring
,
4639 struct net_device
*netdev
= adapter
->netdev
;
4640 struct pci_dev
*pdev
= adapter
->pdev
;
4641 union e1000_rx_desc_packet_split
*rx_desc
;
4642 struct e1000_buffer
*buffer_info
;
4643 struct e1000_ps_page
*ps_page
;
4644 struct e1000_ps_page_dma
*ps_page_dma
;
4645 struct sk_buff
*skb
;
4648 i
= rx_ring
->next_to_use
;
4649 buffer_info
= &rx_ring
->buffer_info
[i
];
4650 ps_page
= &rx_ring
->ps_page
[i
];
4651 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4653 while (cleaned_count
--) {
4654 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4656 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
4657 if (j
< adapter
->rx_ps_pages
) {
4658 if (likely(!ps_page
->ps_page
[j
])) {
4659 ps_page
->ps_page
[j
] =
4660 alloc_page(GFP_ATOMIC
);
4661 if (unlikely(!ps_page
->ps_page
[j
])) {
4662 adapter
->alloc_rx_buff_failed
++;
4665 ps_page_dma
->ps_page_dma
[j
] =
4667 ps_page
->ps_page
[j
],
4669 PCI_DMA_FROMDEVICE
);
4671 /* Refresh the desc even if buffer_addrs didn't
4672 * change because each write-back erases
4675 rx_desc
->read
.buffer_addr
[j
+1] =
4676 cpu_to_le64(ps_page_dma
->ps_page_dma
[j
]);
4678 rx_desc
->read
.buffer_addr
[j
+1] = ~0;
4681 skb
= netdev_alloc_skb(netdev
,
4682 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
4684 if (unlikely(!skb
)) {
4685 adapter
->alloc_rx_buff_failed
++;
4689 /* Make buffer alignment 2 beyond a 16 byte boundary
4690 * this will result in a 16 byte aligned IP header after
4691 * the 14 byte MAC header is removed
4693 skb_reserve(skb
, NET_IP_ALIGN
);
4695 buffer_info
->skb
= skb
;
4696 buffer_info
->length
= adapter
->rx_ps_bsize0
;
4697 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4698 adapter
->rx_ps_bsize0
,
4699 PCI_DMA_FROMDEVICE
);
4701 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
4703 if (unlikely(++i
== rx_ring
->count
)) i
= 0;
4704 buffer_info
= &rx_ring
->buffer_info
[i
];
4705 ps_page
= &rx_ring
->ps_page
[i
];
4706 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4710 if (likely(rx_ring
->next_to_use
!= i
)) {
4711 rx_ring
->next_to_use
= i
;
4712 if (unlikely(i
-- == 0)) i
= (rx_ring
->count
- 1);
4714 /* Force memory writes to complete before letting h/w
4715 * know there are new descriptors to fetch. (Only
4716 * applicable for weak-ordered memory model archs,
4717 * such as IA-64). */
4719 /* Hardware increments by 16 bytes, but packet split
4720 * descriptors are 32 bytes...so we increment tail
4723 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4728 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4733 e1000_smartspeed(struct e1000_adapter
*adapter
)
4735 uint16_t phy_status
;
4738 if ((adapter
->hw
.phy_type
!= e1000_phy_igp
) || !adapter
->hw
.autoneg
||
4739 !(adapter
->hw
.autoneg_advertised
& ADVERTISE_1000_FULL
))
4742 if (adapter
->smartspeed
== 0) {
4743 /* If Master/Slave config fault is asserted twice,
4744 * we assume back-to-back */
4745 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4746 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4747 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4748 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4749 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4750 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4751 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4752 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
,
4754 adapter
->smartspeed
++;
4755 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4756 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
,
4758 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4759 MII_CR_RESTART_AUTO_NEG
);
4760 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
,
4765 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4766 /* If still no link, perhaps using 2/3 pair cable */
4767 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4768 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4769 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, phy_ctrl
);
4770 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4771 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_ctrl
)) {
4772 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4773 MII_CR_RESTART_AUTO_NEG
);
4774 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_ctrl
);
4777 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4778 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4779 adapter
->smartspeed
= 0;
4790 e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4796 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4810 e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4812 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4813 struct mii_ioctl_data
*data
= if_mii(ifr
);
4817 unsigned long flags
;
4819 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
4824 data
->phy_id
= adapter
->hw
.phy_addr
;
4827 if (!capable(CAP_NET_ADMIN
))
4829 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4830 if (e1000_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4832 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4835 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4838 if (!capable(CAP_NET_ADMIN
))
4840 if (data
->reg_num
& ~(0x1F))
4842 mii_reg
= data
->val_in
;
4843 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4844 if (e1000_write_phy_reg(&adapter
->hw
, data
->reg_num
,
4846 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4849 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
4850 switch (data
->reg_num
) {
4852 if (mii_reg
& MII_CR_POWER_DOWN
)
4854 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4855 adapter
->hw
.autoneg
= 1;
4856 adapter
->hw
.autoneg_advertised
= 0x2F;
4859 spddplx
= SPEED_1000
;
4860 else if (mii_reg
& 0x2000)
4861 spddplx
= SPEED_100
;
4864 spddplx
+= (mii_reg
& 0x100)
4867 retval
= e1000_set_spd_dplx(adapter
,
4870 spin_unlock_irqrestore(
4871 &adapter
->stats_lock
,
4876 if (netif_running(adapter
->netdev
))
4877 e1000_reinit_locked(adapter
);
4879 e1000_reset(adapter
);
4881 case M88E1000_PHY_SPEC_CTRL
:
4882 case M88E1000_EXT_PHY_SPEC_CTRL
:
4883 if (e1000_phy_reset(&adapter
->hw
)) {
4884 spin_unlock_irqrestore(
4885 &adapter
->stats_lock
, flags
);
4891 switch (data
->reg_num
) {
4893 if (mii_reg
& MII_CR_POWER_DOWN
)
4895 if (netif_running(adapter
->netdev
))
4896 e1000_reinit_locked(adapter
);
4898 e1000_reset(adapter
);
4902 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4907 return E1000_SUCCESS
;
4911 e1000_pci_set_mwi(struct e1000_hw
*hw
)
4913 struct e1000_adapter
*adapter
= hw
->back
;
4914 int ret_val
= pci_set_mwi(adapter
->pdev
);
4917 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4921 e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4923 struct e1000_adapter
*adapter
= hw
->back
;
4925 pci_clear_mwi(adapter
->pdev
);
4929 e1000_read_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4931 struct e1000_adapter
*adapter
= hw
->back
;
4933 pci_read_config_word(adapter
->pdev
, reg
, value
);
4937 e1000_write_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4939 struct e1000_adapter
*adapter
= hw
->back
;
4941 pci_write_config_word(adapter
->pdev
, reg
, *value
);
4945 e1000_read_pcie_cap_reg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4947 struct e1000_adapter
*adapter
= hw
->back
;
4948 uint16_t cap_offset
;
4950 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
4952 return -E1000_ERR_CONFIG
;
4954 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
4956 return E1000_SUCCESS
;
4960 e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, uint32_t value
)
4966 e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
)
4968 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4969 uint32_t ctrl
, rctl
;
4971 e1000_irq_disable(adapter
);
4972 adapter
->vlgrp
= grp
;
4975 /* enable VLAN tag insert/strip */
4976 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4977 ctrl
|= E1000_CTRL_VME
;
4978 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4980 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4981 /* enable VLAN receive filtering */
4982 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4983 rctl
|= E1000_RCTL_VFE
;
4984 rctl
&= ~E1000_RCTL_CFIEN
;
4985 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4986 e1000_update_mng_vlan(adapter
);
4989 /* disable VLAN tag insert/strip */
4990 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4991 ctrl
&= ~E1000_CTRL_VME
;
4992 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4994 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4995 /* disable VLAN filtering */
4996 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4997 rctl
&= ~E1000_RCTL_VFE
;
4998 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4999 if (adapter
->mng_vlan_id
!=
5000 (uint16_t)E1000_MNG_VLAN_NONE
) {
5001 e1000_vlan_rx_kill_vid(netdev
,
5002 adapter
->mng_vlan_id
);
5003 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
5008 e1000_irq_enable(adapter
);
5012 e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
)
5014 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5015 uint32_t vfta
, index
;
5017 if ((adapter
->hw
.mng_cookie
.status
&
5018 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
5019 (vid
== adapter
->mng_vlan_id
))
5021 /* add VID to filter table */
5022 index
= (vid
>> 5) & 0x7F;
5023 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
5024 vfta
|= (1 << (vid
& 0x1F));
5025 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
5029 e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
)
5031 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5032 uint32_t vfta
, index
;
5034 e1000_irq_disable(adapter
);
5037 adapter
->vlgrp
->vlan_devices
[vid
] = NULL
;
5039 e1000_irq_enable(adapter
);
5041 if ((adapter
->hw
.mng_cookie
.status
&
5042 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
5043 (vid
== adapter
->mng_vlan_id
)) {
5044 /* release control to f/w */
5045 e1000_release_hw_control(adapter
);
5049 /* remove VID from filter table */
5050 index
= (vid
>> 5) & 0x7F;
5051 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
5052 vfta
&= ~(1 << (vid
& 0x1F));
5053 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
5057 e1000_restore_vlan(struct e1000_adapter
*adapter
)
5059 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
5061 if (adapter
->vlgrp
) {
5063 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
5064 if (!adapter
->vlgrp
->vlan_devices
[vid
])
5066 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
5072 e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
)
5074 adapter
->hw
.autoneg
= 0;
5076 /* Fiber NICs only allow 1000 gbps Full duplex */
5077 if ((adapter
->hw
.media_type
== e1000_media_type_fiber
) &&
5078 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
5079 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
5084 case SPEED_10
+ DUPLEX_HALF
:
5085 adapter
->hw
.forced_speed_duplex
= e1000_10_half
;
5087 case SPEED_10
+ DUPLEX_FULL
:
5088 adapter
->hw
.forced_speed_duplex
= e1000_10_full
;
5090 case SPEED_100
+ DUPLEX_HALF
:
5091 adapter
->hw
.forced_speed_duplex
= e1000_100_half
;
5093 case SPEED_100
+ DUPLEX_FULL
:
5094 adapter
->hw
.forced_speed_duplex
= e1000_100_full
;
5096 case SPEED_1000
+ DUPLEX_FULL
:
5097 adapter
->hw
.autoneg
= 1;
5098 adapter
->hw
.autoneg_advertised
= ADVERTISE_1000_FULL
;
5100 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
5102 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
5109 /* Save/restore 16 or 64 dwords of PCI config space depending on which
5110 * bus we're on (PCI(X) vs. PCI-E)
5112 #define PCIE_CONFIG_SPACE_LEN 256
5113 #define PCI_CONFIG_SPACE_LEN 64
5115 e1000_pci_save_state(struct e1000_adapter
*adapter
)
5117 struct pci_dev
*dev
= adapter
->pdev
;
5121 if (adapter
->hw
.mac_type
>= e1000_82571
)
5122 size
= PCIE_CONFIG_SPACE_LEN
;
5124 size
= PCI_CONFIG_SPACE_LEN
;
5126 WARN_ON(adapter
->config_space
!= NULL
);
5128 adapter
->config_space
= kmalloc(size
, GFP_KERNEL
);
5129 if (!adapter
->config_space
) {
5130 DPRINTK(PROBE
, ERR
, "unable to allocate %d bytes\n", size
);
5133 for (i
= 0; i
< (size
/ 4); i
++)
5134 pci_read_config_dword(dev
, i
* 4, &adapter
->config_space
[i
]);
5139 e1000_pci_restore_state(struct e1000_adapter
*adapter
)
5141 struct pci_dev
*dev
= adapter
->pdev
;
5145 if (adapter
->config_space
== NULL
)
5148 if (adapter
->hw
.mac_type
>= e1000_82571
)
5149 size
= PCIE_CONFIG_SPACE_LEN
;
5151 size
= PCI_CONFIG_SPACE_LEN
;
5152 for (i
= 0; i
< (size
/ 4); i
++)
5153 pci_write_config_dword(dev
, i
* 4, adapter
->config_space
[i
]);
5154 kfree(adapter
->config_space
);
5155 adapter
->config_space
= NULL
;
5158 #endif /* CONFIG_PM */
5161 e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5163 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5164 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5165 uint32_t ctrl
, ctrl_ext
, rctl
, status
;
5166 uint32_t wufc
= adapter
->wol
;
5171 netif_device_detach(netdev
);
5173 if (netif_running(netdev
)) {
5174 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
5175 e1000_down(adapter
);
5179 /* Implement our own version of pci_save_state(pdev) because pci-
5180 * express adapters have 256-byte config spaces. */
5181 retval
= e1000_pci_save_state(adapter
);
5186 status
= E1000_READ_REG(&adapter
->hw
, STATUS
);
5187 if (status
& E1000_STATUS_LU
)
5188 wufc
&= ~E1000_WUFC_LNKC
;
5191 e1000_setup_rctl(adapter
);
5192 e1000_set_multi(netdev
);
5194 /* turn on all-multi mode if wake on multicast is enabled */
5195 if (wufc
& E1000_WUFC_MC
) {
5196 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
5197 rctl
|= E1000_RCTL_MPE
;
5198 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
5201 if (adapter
->hw
.mac_type
>= e1000_82540
) {
5202 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
5203 /* advertise wake from D3Cold */
5204 #define E1000_CTRL_ADVD3WUC 0x00100000
5205 /* phy power management enable */
5206 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5207 ctrl
|= E1000_CTRL_ADVD3WUC
|
5208 E1000_CTRL_EN_PHY_PWR_MGMT
;
5209 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
5212 if (adapter
->hw
.media_type
== e1000_media_type_fiber
||
5213 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
5214 /* keep the laser running in D3 */
5215 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
5216 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
5217 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
, ctrl_ext
);
5220 /* Allow time for pending master requests to run */
5221 e1000_disable_pciex_master(&adapter
->hw
);
5223 E1000_WRITE_REG(&adapter
->hw
, WUC
, E1000_WUC_PME_EN
);
5224 E1000_WRITE_REG(&adapter
->hw
, WUFC
, wufc
);
5225 pci_enable_wake(pdev
, PCI_D3hot
, 1);
5226 pci_enable_wake(pdev
, PCI_D3cold
, 1);
5228 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
5229 E1000_WRITE_REG(&adapter
->hw
, WUFC
, 0);
5230 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5231 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5234 e1000_release_manageability(adapter
);
5236 /* make sure adapter isn't asleep if manageability is enabled */
5237 if (adapter
->en_mng_pt
) {
5238 pci_enable_wake(pdev
, PCI_D3hot
, 1);
5239 pci_enable_wake(pdev
, PCI_D3cold
, 1);
5242 if (adapter
->hw
.phy_type
== e1000_phy_igp_3
)
5243 e1000_phy_powerdown_workaround(&adapter
->hw
);
5245 if (netif_running(netdev
))
5246 e1000_free_irq(adapter
);
5248 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5249 * would have already happened in close and is redundant. */
5250 e1000_release_hw_control(adapter
);
5252 pci_disable_device(pdev
);
5254 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
5261 e1000_resume(struct pci_dev
*pdev
)
5263 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5264 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5267 pci_set_power_state(pdev
, PCI_D0
);
5268 e1000_pci_restore_state(adapter
);
5269 if ((err
= pci_enable_device(pdev
))) {
5270 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
5273 pci_set_master(pdev
);
5275 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5276 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5278 if (netif_running(netdev
) && (err
= e1000_request_irq(adapter
)))
5281 e1000_power_up_phy(adapter
);
5282 e1000_reset(adapter
);
5283 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
5285 e1000_init_manageability(adapter
);
5287 if (netif_running(netdev
))
5290 netif_device_attach(netdev
);
5292 /* If the controller is 82573 and f/w is AMT, do not set
5293 * DRV_LOAD until the interface is up. For all other cases,
5294 * let the f/w know that the h/w is now under the control
5296 if (adapter
->hw
.mac_type
!= e1000_82573
||
5297 !e1000_check_mng_mode(&adapter
->hw
))
5298 e1000_get_hw_control(adapter
);
5304 static void e1000_shutdown(struct pci_dev
*pdev
)
5306 e1000_suspend(pdev
, PMSG_SUSPEND
);
5309 #ifdef CONFIG_NET_POLL_CONTROLLER
5311 * Polling 'interrupt' - used by things like netconsole to send skbs
5312 * without having to re-enable interrupts. It's not called while
5313 * the interrupt routine is executing.
5316 e1000_netpoll(struct net_device
*netdev
)
5318 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5320 disable_irq(adapter
->pdev
->irq
);
5321 e1000_intr(adapter
->pdev
->irq
, netdev
);
5322 e1000_clean_tx_irq(adapter
, adapter
->tx_ring
);
5323 #ifndef CONFIG_E1000_NAPI
5324 adapter
->clean_rx(adapter
, adapter
->rx_ring
);
5326 enable_irq(adapter
->pdev
->irq
);
5331 * e1000_io_error_detected - called when PCI error is detected
5332 * @pdev: Pointer to PCI device
5333 * @state: The current pci conneection state
5335 * This function is called after a PCI bus error affecting
5336 * this device has been detected.
5338 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
5340 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5341 struct e1000_adapter
*adapter
= netdev
->priv
;
5343 netif_device_detach(netdev
);
5345 if (netif_running(netdev
))
5346 e1000_down(adapter
);
5347 pci_disable_device(pdev
);
5349 /* Request a slot slot reset. */
5350 return PCI_ERS_RESULT_NEED_RESET
;
5354 * e1000_io_slot_reset - called after the pci bus has been reset.
5355 * @pdev: Pointer to PCI device
5357 * Restart the card from scratch, as if from a cold-boot. Implementation
5358 * resembles the first-half of the e1000_resume routine.
5360 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5362 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5363 struct e1000_adapter
*adapter
= netdev
->priv
;
5365 if (pci_enable_device(pdev
)) {
5366 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
5367 return PCI_ERS_RESULT_DISCONNECT
;
5369 pci_set_master(pdev
);
5371 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5372 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5374 e1000_reset(adapter
);
5375 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
5377 return PCI_ERS_RESULT_RECOVERED
;
5381 * e1000_io_resume - called when traffic can start flowing again.
5382 * @pdev: Pointer to PCI device
5384 * This callback is called when the error recovery driver tells us that
5385 * its OK to resume normal operation. Implementation resembles the
5386 * second-half of the e1000_resume routine.
5388 static void e1000_io_resume(struct pci_dev
*pdev
)
5390 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5391 struct e1000_adapter
*adapter
= netdev
->priv
;
5393 e1000_init_manageability(adapter
);
5395 if (netif_running(netdev
)) {
5396 if (e1000_up(adapter
)) {
5397 printk("e1000: can't bring device back up after reset\n");
5402 netif_device_attach(netdev
);
5404 /* If the controller is 82573 and f/w is AMT, do not set
5405 * DRV_LOAD until the interface is up. For all other cases,
5406 * let the f/w know that the h/w is now under the control
5408 if (adapter
->hw
.mac_type
!= e1000_82573
||
5409 !e1000_check_mng_mode(&adapter
->hw
))
5410 e1000_get_hw_control(adapter
);