2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
54 #include <linux/raid/bitmap.h>
60 #define NR_STRIPES 256
61 #define STRIPE_SIZE PAGE_SIZE
62 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
63 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
64 #define IO_THRESHOLD 1
65 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK (NR_HASH - 1)
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 # define CHECK_DEVLOCK()
91 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
102 static inline int raid6_next_disk(int disk
, int raid_disks
)
105 return (disk
< raid_disks
) ? disk
: 0;
107 static void print_raid5_conf (raid5_conf_t
*conf
);
109 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
111 if (atomic_dec_and_test(&sh
->count
)) {
112 BUG_ON(!list_empty(&sh
->lru
));
113 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
114 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
115 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
116 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
117 blk_plug_device(conf
->mddev
->queue
);
118 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
119 sh
->bm_seq
- conf
->seq_write
> 0) {
120 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
121 blk_plug_device(conf
->mddev
->queue
);
123 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
124 list_add_tail(&sh
->lru
, &conf
->handle_list
);
126 md_wakeup_thread(conf
->mddev
->thread
);
128 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
129 atomic_dec(&conf
->preread_active_stripes
);
130 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
131 md_wakeup_thread(conf
->mddev
->thread
);
133 atomic_dec(&conf
->active_stripes
);
134 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
135 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
136 wake_up(&conf
->wait_for_stripe
);
141 static void release_stripe(struct stripe_head
*sh
)
143 raid5_conf_t
*conf
= sh
->raid_conf
;
146 spin_lock_irqsave(&conf
->device_lock
, flags
);
147 __release_stripe(conf
, sh
);
148 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
151 static inline void remove_hash(struct stripe_head
*sh
)
153 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh
->sector
);
155 hlist_del_init(&sh
->hash
);
158 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
160 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
162 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh
->sector
);
165 hlist_add_head(&sh
->hash
, hp
);
169 /* find an idle stripe, make sure it is unhashed, and return it. */
170 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
172 struct stripe_head
*sh
= NULL
;
173 struct list_head
*first
;
176 if (list_empty(&conf
->inactive_list
))
178 first
= conf
->inactive_list
.next
;
179 sh
= list_entry(first
, struct stripe_head
, lru
);
180 list_del_init(first
);
182 atomic_inc(&conf
->active_stripes
);
187 static void shrink_buffers(struct stripe_head
*sh
, int num
)
192 for (i
=0; i
<num
; i
++) {
196 sh
->dev
[i
].page
= NULL
;
201 static int grow_buffers(struct stripe_head
*sh
, int num
)
205 for (i
=0; i
<num
; i
++) {
208 if (!(page
= alloc_page(GFP_KERNEL
))) {
211 sh
->dev
[i
].page
= page
;
216 static void raid5_build_block (struct stripe_head
*sh
, int i
);
218 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
, int disks
)
220 raid5_conf_t
*conf
= sh
->raid_conf
;
223 BUG_ON(atomic_read(&sh
->count
) != 0);
224 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
227 PRINTK("init_stripe called, stripe %llu\n",
228 (unsigned long long)sh
->sector
);
238 for (i
= sh
->disks
; i
--; ) {
239 struct r5dev
*dev
= &sh
->dev
[i
];
241 if (dev
->toread
|| dev
->towrite
|| dev
->written
||
242 test_bit(R5_LOCKED
, &dev
->flags
)) {
243 printk("sector=%llx i=%d %p %p %p %d\n",
244 (unsigned long long)sh
->sector
, i
, dev
->toread
,
245 dev
->towrite
, dev
->written
,
246 test_bit(R5_LOCKED
, &dev
->flags
));
250 raid5_build_block(sh
, i
);
252 insert_hash(conf
, sh
);
255 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
)
257 struct stripe_head
*sh
;
258 struct hlist_node
*hn
;
261 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector
);
262 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
263 if (sh
->sector
== sector
&& sh
->disks
== disks
)
265 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector
);
269 static void unplug_slaves(mddev_t
*mddev
);
270 static void raid5_unplug_device(request_queue_t
*q
);
272 static struct stripe_head
*get_active_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
,
273 int pd_idx
, int noblock
)
275 struct stripe_head
*sh
;
277 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector
);
279 spin_lock_irq(&conf
->device_lock
);
282 wait_event_lock_irq(conf
->wait_for_stripe
,
284 conf
->device_lock
, /* nothing */);
285 sh
= __find_stripe(conf
, sector
, disks
);
287 if (!conf
->inactive_blocked
)
288 sh
= get_free_stripe(conf
);
289 if (noblock
&& sh
== NULL
)
292 conf
->inactive_blocked
= 1;
293 wait_event_lock_irq(conf
->wait_for_stripe
,
294 !list_empty(&conf
->inactive_list
) &&
295 (atomic_read(&conf
->active_stripes
)
296 < (conf
->max_nr_stripes
*3/4)
297 || !conf
->inactive_blocked
),
299 raid5_unplug_device(conf
->mddev
->queue
)
301 conf
->inactive_blocked
= 0;
303 init_stripe(sh
, sector
, pd_idx
, disks
);
305 if (atomic_read(&sh
->count
)) {
306 BUG_ON(!list_empty(&sh
->lru
));
308 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
309 atomic_inc(&conf
->active_stripes
);
310 if (list_empty(&sh
->lru
) &&
311 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
313 list_del_init(&sh
->lru
);
316 } while (sh
== NULL
);
319 atomic_inc(&sh
->count
);
321 spin_unlock_irq(&conf
->device_lock
);
325 static int grow_one_stripe(raid5_conf_t
*conf
)
327 struct stripe_head
*sh
;
328 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
331 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
332 sh
->raid_conf
= conf
;
333 spin_lock_init(&sh
->lock
);
335 if (grow_buffers(sh
, conf
->raid_disks
)) {
336 shrink_buffers(sh
, conf
->raid_disks
);
337 kmem_cache_free(conf
->slab_cache
, sh
);
340 sh
->disks
= conf
->raid_disks
;
341 /* we just created an active stripe so... */
342 atomic_set(&sh
->count
, 1);
343 atomic_inc(&conf
->active_stripes
);
344 INIT_LIST_HEAD(&sh
->lru
);
349 static int grow_stripes(raid5_conf_t
*conf
, int num
)
352 int devs
= conf
->raid_disks
;
354 sprintf(conf
->cache_name
[0], "raid5/%s", mdname(conf
->mddev
));
355 sprintf(conf
->cache_name
[1], "raid5/%s-alt", mdname(conf
->mddev
));
356 conf
->active_name
= 0;
357 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
358 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
362 conf
->slab_cache
= sc
;
363 conf
->pool_size
= devs
;
365 if (!grow_one_stripe(conf
))
370 #ifdef CONFIG_MD_RAID5_RESHAPE
371 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
373 /* Make all the stripes able to hold 'newsize' devices.
374 * New slots in each stripe get 'page' set to a new page.
376 * This happens in stages:
377 * 1/ create a new kmem_cache and allocate the required number of
379 * 2/ gather all the old stripe_heads and tranfer the pages across
380 * to the new stripe_heads. This will have the side effect of
381 * freezing the array as once all stripe_heads have been collected,
382 * no IO will be possible. Old stripe heads are freed once their
383 * pages have been transferred over, and the old kmem_cache is
384 * freed when all stripes are done.
385 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
386 * we simple return a failre status - no need to clean anything up.
387 * 4/ allocate new pages for the new slots in the new stripe_heads.
388 * If this fails, we don't bother trying the shrink the
389 * stripe_heads down again, we just leave them as they are.
390 * As each stripe_head is processed the new one is released into
393 * Once step2 is started, we cannot afford to wait for a write,
394 * so we use GFP_NOIO allocations.
396 struct stripe_head
*osh
, *nsh
;
397 LIST_HEAD(newstripes
);
398 struct disk_info
*ndisks
;
403 if (newsize
<= conf
->pool_size
)
404 return 0; /* never bother to shrink */
407 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
408 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
413 for (i
= conf
->max_nr_stripes
; i
; i
--) {
414 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
418 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
420 nsh
->raid_conf
= conf
;
421 spin_lock_init(&nsh
->lock
);
423 list_add(&nsh
->lru
, &newstripes
);
426 /* didn't get enough, give up */
427 while (!list_empty(&newstripes
)) {
428 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
430 kmem_cache_free(sc
, nsh
);
432 kmem_cache_destroy(sc
);
435 /* Step 2 - Must use GFP_NOIO now.
436 * OK, we have enough stripes, start collecting inactive
437 * stripes and copying them over
439 list_for_each_entry(nsh
, &newstripes
, lru
) {
440 spin_lock_irq(&conf
->device_lock
);
441 wait_event_lock_irq(conf
->wait_for_stripe
,
442 !list_empty(&conf
->inactive_list
),
444 unplug_slaves(conf
->mddev
)
446 osh
= get_free_stripe(conf
);
447 spin_unlock_irq(&conf
->device_lock
);
448 atomic_set(&nsh
->count
, 1);
449 for(i
=0; i
<conf
->pool_size
; i
++)
450 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
451 for( ; i
<newsize
; i
++)
452 nsh
->dev
[i
].page
= NULL
;
453 kmem_cache_free(conf
->slab_cache
, osh
);
455 kmem_cache_destroy(conf
->slab_cache
);
458 * At this point, we are holding all the stripes so the array
459 * is completely stalled, so now is a good time to resize
462 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
464 for (i
=0; i
<conf
->raid_disks
; i
++)
465 ndisks
[i
] = conf
->disks
[i
];
467 conf
->disks
= ndisks
;
471 /* Step 4, return new stripes to service */
472 while(!list_empty(&newstripes
)) {
473 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
474 list_del_init(&nsh
->lru
);
475 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
476 if (nsh
->dev
[i
].page
== NULL
) {
477 struct page
*p
= alloc_page(GFP_NOIO
);
478 nsh
->dev
[i
].page
= p
;
484 /* critical section pass, GFP_NOIO no longer needed */
486 conf
->slab_cache
= sc
;
487 conf
->active_name
= 1-conf
->active_name
;
488 conf
->pool_size
= newsize
;
493 static int drop_one_stripe(raid5_conf_t
*conf
)
495 struct stripe_head
*sh
;
497 spin_lock_irq(&conf
->device_lock
);
498 sh
= get_free_stripe(conf
);
499 spin_unlock_irq(&conf
->device_lock
);
502 BUG_ON(atomic_read(&sh
->count
));
503 shrink_buffers(sh
, conf
->pool_size
);
504 kmem_cache_free(conf
->slab_cache
, sh
);
505 atomic_dec(&conf
->active_stripes
);
509 static void shrink_stripes(raid5_conf_t
*conf
)
511 while (drop_one_stripe(conf
))
514 if (conf
->slab_cache
)
515 kmem_cache_destroy(conf
->slab_cache
);
516 conf
->slab_cache
= NULL
;
519 static int raid5_end_read_request(struct bio
* bi
, unsigned int bytes_done
,
522 struct stripe_head
*sh
= bi
->bi_private
;
523 raid5_conf_t
*conf
= sh
->raid_conf
;
524 int disks
= sh
->disks
, i
;
525 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
526 char b
[BDEVNAME_SIZE
];
532 for (i
=0 ; i
<disks
; i
++)
533 if (bi
== &sh
->dev
[i
].req
)
536 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
537 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
548 spin_lock_irqsave(&conf
->device_lock
, flags
);
549 /* we can return a buffer if we bypassed the cache or
550 * if the top buffer is not in highmem. If there are
551 * multiple buffers, leave the extra work to
554 buffer
= sh
->bh_read
[i
];
556 (!PageHighMem(buffer
->b_page
)
557 || buffer
->b_page
== bh
->b_page
)
559 sh
->bh_read
[i
] = buffer
->b_reqnext
;
560 buffer
->b_reqnext
= NULL
;
563 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
564 if (sh
->bh_page
[i
]==bh
->b_page
)
565 set_buffer_uptodate(bh
);
567 if (buffer
->b_page
!= bh
->b_page
)
568 memcpy(buffer
->b_data
, bh
->b_data
, bh
->b_size
);
569 buffer
->b_end_io(buffer
, 1);
572 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
574 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
575 rdev
= conf
->disks
[i
].rdev
;
576 printk(KERN_INFO
"raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
577 mdname(conf
->mddev
), STRIPE_SECTORS
,
578 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
579 bdevname(rdev
->bdev
, b
));
580 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
581 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
583 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
584 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
586 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
588 rdev
= conf
->disks
[i
].rdev
;
590 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
591 atomic_inc(&rdev
->read_errors
);
592 if (conf
->mddev
->degraded
)
593 printk(KERN_WARNING
"raid5:%s: read error not correctable (sector %llu on %s).\n",
595 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
597 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
599 printk(KERN_WARNING
"raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
601 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
603 else if (atomic_read(&rdev
->read_errors
)
604 > conf
->max_nr_stripes
)
606 "raid5:%s: Too many read errors, failing device %s.\n",
607 mdname(conf
->mddev
), bdn
);
611 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
613 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
614 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
615 md_error(conf
->mddev
, rdev
);
618 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
620 /* must restore b_page before unlocking buffer... */
621 if (sh
->bh_page
[i
] != bh
->b_page
) {
622 bh
->b_page
= sh
->bh_page
[i
];
623 bh
->b_data
= page_address(bh
->b_page
);
624 clear_buffer_uptodate(bh
);
627 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
628 set_bit(STRIPE_HANDLE
, &sh
->state
);
633 static int raid5_end_write_request (struct bio
*bi
, unsigned int bytes_done
,
636 struct stripe_head
*sh
= bi
->bi_private
;
637 raid5_conf_t
*conf
= sh
->raid_conf
;
638 int disks
= sh
->disks
, i
;
640 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
645 for (i
=0 ; i
<disks
; i
++)
646 if (bi
== &sh
->dev
[i
].req
)
649 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
650 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
657 spin_lock_irqsave(&conf
->device_lock
, flags
);
659 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
661 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
663 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
664 set_bit(STRIPE_HANDLE
, &sh
->state
);
665 __release_stripe(conf
, sh
);
666 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
671 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
673 static void raid5_build_block (struct stripe_head
*sh
, int i
)
675 struct r5dev
*dev
= &sh
->dev
[i
];
678 dev
->req
.bi_io_vec
= &dev
->vec
;
680 dev
->req
.bi_max_vecs
++;
681 dev
->vec
.bv_page
= dev
->page
;
682 dev
->vec
.bv_len
= STRIPE_SIZE
;
683 dev
->vec
.bv_offset
= 0;
685 dev
->req
.bi_sector
= sh
->sector
;
686 dev
->req
.bi_private
= sh
;
689 dev
->sector
= compute_blocknr(sh
, i
);
692 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
694 char b
[BDEVNAME_SIZE
];
695 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
696 PRINTK("raid5: error called\n");
698 if (!test_bit(Faulty
, &rdev
->flags
)) {
700 if (test_bit(In_sync
, &rdev
->flags
)) {
701 conf
->working_disks
--;
703 conf
->failed_disks
++;
704 clear_bit(In_sync
, &rdev
->flags
);
706 * if recovery was running, make sure it aborts.
708 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
710 set_bit(Faulty
, &rdev
->flags
);
712 "raid5: Disk failure on %s, disabling device."
713 " Operation continuing on %d devices\n",
714 bdevname(rdev
->bdev
,b
), conf
->working_disks
);
719 * Input: a 'big' sector number,
720 * Output: index of the data and parity disk, and the sector # in them.
722 static sector_t
raid5_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
723 unsigned int data_disks
, unsigned int * dd_idx
,
724 unsigned int * pd_idx
, raid5_conf_t
*conf
)
727 unsigned long chunk_number
;
728 unsigned int chunk_offset
;
730 int sectors_per_chunk
= conf
->chunk_size
>> 9;
732 /* First compute the information on this sector */
735 * Compute the chunk number and the sector offset inside the chunk
737 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
738 chunk_number
= r_sector
;
739 BUG_ON(r_sector
!= chunk_number
);
742 * Compute the stripe number
744 stripe
= chunk_number
/ data_disks
;
747 * Compute the data disk and parity disk indexes inside the stripe
749 *dd_idx
= chunk_number
% data_disks
;
752 * Select the parity disk based on the user selected algorithm.
754 switch(conf
->level
) {
756 *pd_idx
= data_disks
;
759 switch (conf
->algorithm
) {
760 case ALGORITHM_LEFT_ASYMMETRIC
:
761 *pd_idx
= data_disks
- stripe
% raid_disks
;
762 if (*dd_idx
>= *pd_idx
)
765 case ALGORITHM_RIGHT_ASYMMETRIC
:
766 *pd_idx
= stripe
% raid_disks
;
767 if (*dd_idx
>= *pd_idx
)
770 case ALGORITHM_LEFT_SYMMETRIC
:
771 *pd_idx
= data_disks
- stripe
% raid_disks
;
772 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
774 case ALGORITHM_RIGHT_SYMMETRIC
:
775 *pd_idx
= stripe
% raid_disks
;
776 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
779 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
786 switch (conf
->algorithm
) {
787 case ALGORITHM_LEFT_ASYMMETRIC
:
788 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
789 if (*pd_idx
== raid_disks
-1)
790 (*dd_idx
)++; /* Q D D D P */
791 else if (*dd_idx
>= *pd_idx
)
792 (*dd_idx
) += 2; /* D D P Q D */
794 case ALGORITHM_RIGHT_ASYMMETRIC
:
795 *pd_idx
= stripe
% raid_disks
;
796 if (*pd_idx
== raid_disks
-1)
797 (*dd_idx
)++; /* Q D D D P */
798 else if (*dd_idx
>= *pd_idx
)
799 (*dd_idx
) += 2; /* D D P Q D */
801 case ALGORITHM_LEFT_SYMMETRIC
:
802 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
803 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
805 case ALGORITHM_RIGHT_SYMMETRIC
:
806 *pd_idx
= stripe
% raid_disks
;
807 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
810 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
817 * Finally, compute the new sector number
819 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
824 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
826 raid5_conf_t
*conf
= sh
->raid_conf
;
827 int raid_disks
= sh
->disks
, data_disks
= raid_disks
- 1;
828 sector_t new_sector
= sh
->sector
, check
;
829 int sectors_per_chunk
= conf
->chunk_size
>> 9;
832 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
836 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
838 BUG_ON(new_sector
!= stripe
);
842 switch(conf
->level
) {
845 switch (conf
->algorithm
) {
846 case ALGORITHM_LEFT_ASYMMETRIC
:
847 case ALGORITHM_RIGHT_ASYMMETRIC
:
851 case ALGORITHM_LEFT_SYMMETRIC
:
852 case ALGORITHM_RIGHT_SYMMETRIC
:
855 i
-= (sh
->pd_idx
+ 1);
858 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
863 data_disks
= raid_disks
- 2;
864 if (i
== raid6_next_disk(sh
->pd_idx
, raid_disks
))
865 return 0; /* It is the Q disk */
866 switch (conf
->algorithm
) {
867 case ALGORITHM_LEFT_ASYMMETRIC
:
868 case ALGORITHM_RIGHT_ASYMMETRIC
:
869 if (sh
->pd_idx
== raid_disks
-1)
871 else if (i
> sh
->pd_idx
)
872 i
-= 2; /* D D P Q D */
874 case ALGORITHM_LEFT_SYMMETRIC
:
875 case ALGORITHM_RIGHT_SYMMETRIC
:
876 if (sh
->pd_idx
== raid_disks
-1)
882 i
-= (sh
->pd_idx
+ 2);
886 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
892 chunk_number
= stripe
* data_disks
+ i
;
893 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
895 check
= raid5_compute_sector (r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
896 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
897 printk(KERN_ERR
"compute_blocknr: map not correct\n");
906 * Copy data between a page in the stripe cache, and one or more bion
907 * The page could align with the middle of the bio, or there could be
908 * several bion, each with several bio_vecs, which cover part of the page
909 * Multiple bion are linked together on bi_next. There may be extras
910 * at the end of this list. We ignore them.
912 static void copy_data(int frombio
, struct bio
*bio
,
916 char *pa
= page_address(page
);
921 if (bio
->bi_sector
>= sector
)
922 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
924 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
925 bio_for_each_segment(bvl
, bio
, i
) {
926 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
930 if (page_offset
< 0) {
931 b_offset
= -page_offset
;
932 page_offset
+= b_offset
;
936 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
937 clen
= STRIPE_SIZE
- page_offset
;
941 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
943 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
945 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
946 __bio_kunmap_atomic(ba
, KM_USER0
);
948 if (clen
< len
) /* hit end of page */
954 #define check_xor() do { \
955 if (count == MAX_XOR_BLOCKS) { \
956 xor_block(count, STRIPE_SIZE, ptr); \
962 static void compute_block(struct stripe_head
*sh
, int dd_idx
)
964 int i
, count
, disks
= sh
->disks
;
965 void *ptr
[MAX_XOR_BLOCKS
], *p
;
967 PRINTK("compute_block, stripe %llu, idx %d\n",
968 (unsigned long long)sh
->sector
, dd_idx
);
970 ptr
[0] = page_address(sh
->dev
[dd_idx
].page
);
971 memset(ptr
[0], 0, STRIPE_SIZE
);
973 for (i
= disks
; i
--; ) {
976 p
= page_address(sh
->dev
[i
].page
);
977 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
980 printk(KERN_ERR
"compute_block() %d, stripe %llu, %d"
981 " not present\n", dd_idx
,
982 (unsigned long long)sh
->sector
, i
);
987 xor_block(count
, STRIPE_SIZE
, ptr
);
988 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
991 static void compute_parity5(struct stripe_head
*sh
, int method
)
993 raid5_conf_t
*conf
= sh
->raid_conf
;
994 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
, count
;
995 void *ptr
[MAX_XOR_BLOCKS
];
998 PRINTK("compute_parity5, stripe %llu, method %d\n",
999 (unsigned long long)sh
->sector
, method
);
1002 ptr
[0] = page_address(sh
->dev
[pd_idx
].page
);
1004 case READ_MODIFY_WRITE
:
1005 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
));
1006 for (i
=disks
; i
-- ;) {
1009 if (sh
->dev
[i
].towrite
&&
1010 test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
)) {
1011 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
1012 chosen
= sh
->dev
[i
].towrite
;
1013 sh
->dev
[i
].towrite
= NULL
;
1015 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1016 wake_up(&conf
->wait_for_overlap
);
1018 BUG_ON(sh
->dev
[i
].written
);
1019 sh
->dev
[i
].written
= chosen
;
1024 case RECONSTRUCT_WRITE
:
1025 memset(ptr
[0], 0, STRIPE_SIZE
);
1026 for (i
= disks
; i
-- ;)
1027 if (i
!=pd_idx
&& sh
->dev
[i
].towrite
) {
1028 chosen
= sh
->dev
[i
].towrite
;
1029 sh
->dev
[i
].towrite
= NULL
;
1031 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1032 wake_up(&conf
->wait_for_overlap
);
1034 BUG_ON(sh
->dev
[i
].written
);
1035 sh
->dev
[i
].written
= chosen
;
1042 xor_block(count
, STRIPE_SIZE
, ptr
);
1046 for (i
= disks
; i
--;)
1047 if (sh
->dev
[i
].written
) {
1048 sector_t sector
= sh
->dev
[i
].sector
;
1049 struct bio
*wbi
= sh
->dev
[i
].written
;
1050 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1051 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1052 wbi
= r5_next_bio(wbi
, sector
);
1055 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1056 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1060 case RECONSTRUCT_WRITE
:
1064 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
1068 case READ_MODIFY_WRITE
:
1069 for (i
= disks
; i
--;)
1070 if (sh
->dev
[i
].written
) {
1071 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
1076 xor_block(count
, STRIPE_SIZE
, ptr
);
1078 if (method
!= CHECK_PARITY
) {
1079 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1080 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1082 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1085 static void compute_parity6(struct stripe_head
*sh
, int method
)
1087 raid6_conf_t
*conf
= sh
->raid_conf
;
1088 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= conf
->raid_disks
, count
;
1090 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1093 qd_idx
= raid6_next_disk(pd_idx
, disks
);
1094 d0_idx
= raid6_next_disk(qd_idx
, disks
);
1096 PRINTK("compute_parity, stripe %llu, method %d\n",
1097 (unsigned long long)sh
->sector
, method
);
1100 case READ_MODIFY_WRITE
:
1101 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1102 case RECONSTRUCT_WRITE
:
1103 for (i
= disks
; i
-- ;)
1104 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1105 chosen
= sh
->dev
[i
].towrite
;
1106 sh
->dev
[i
].towrite
= NULL
;
1108 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1109 wake_up(&conf
->wait_for_overlap
);
1111 if (sh
->dev
[i
].written
) BUG();
1112 sh
->dev
[i
].written
= chosen
;
1116 BUG(); /* Not implemented yet */
1119 for (i
= disks
; i
--;)
1120 if (sh
->dev
[i
].written
) {
1121 sector_t sector
= sh
->dev
[i
].sector
;
1122 struct bio
*wbi
= sh
->dev
[i
].written
;
1123 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1124 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1125 wbi
= r5_next_bio(wbi
, sector
);
1128 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1129 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1133 // case RECONSTRUCT_WRITE:
1134 // case CHECK_PARITY:
1135 // case UPDATE_PARITY:
1136 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1137 /* FIX: Is this ordering of drives even remotely optimal? */
1141 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1142 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1143 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
1144 i
= raid6_next_disk(i
, disks
);
1145 } while ( i
!= d0_idx
);
1149 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
1152 case RECONSTRUCT_WRITE
:
1153 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1154 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1155 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1156 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1159 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1160 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1166 /* Compute one missing block */
1167 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1169 raid6_conf_t
*conf
= sh
->raid_conf
;
1170 int i
, count
, disks
= conf
->raid_disks
;
1171 void *ptr
[MAX_XOR_BLOCKS
], *p
;
1172 int pd_idx
= sh
->pd_idx
;
1173 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1175 PRINTK("compute_block_1, stripe %llu, idx %d\n",
1176 (unsigned long long)sh
->sector
, dd_idx
);
1178 if ( dd_idx
== qd_idx
) {
1179 /* We're actually computing the Q drive */
1180 compute_parity6(sh
, UPDATE_PARITY
);
1182 ptr
[0] = page_address(sh
->dev
[dd_idx
].page
);
1183 if (!nozero
) memset(ptr
[0], 0, STRIPE_SIZE
);
1185 for (i
= disks
; i
--; ) {
1186 if (i
== dd_idx
|| i
== qd_idx
)
1188 p
= page_address(sh
->dev
[i
].page
);
1189 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1192 printk("compute_block() %d, stripe %llu, %d"
1193 " not present\n", dd_idx
,
1194 (unsigned long long)sh
->sector
, i
);
1199 xor_block(count
, STRIPE_SIZE
, ptr
);
1200 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1201 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1205 /* Compute two missing blocks */
1206 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1208 raid6_conf_t
*conf
= sh
->raid_conf
;
1209 int i
, count
, disks
= conf
->raid_disks
;
1210 int pd_idx
= sh
->pd_idx
;
1211 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1212 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
1215 /* faila and failb are disk numbers relative to d0_idx */
1216 /* pd_idx become disks-2 and qd_idx become disks-1 */
1217 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
1218 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
1220 BUG_ON(faila
== failb
);
1221 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1223 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1224 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
1226 if ( failb
== disks
-1 ) {
1227 /* Q disk is one of the missing disks */
1228 if ( faila
== disks
-2 ) {
1229 /* Missing P+Q, just recompute */
1230 compute_parity6(sh
, UPDATE_PARITY
);
1233 /* We're missing D+Q; recompute D from P */
1234 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
, 0);
1235 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1240 /* We're missing D+P or D+D; build pointer table */
1242 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1248 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1249 i
= raid6_next_disk(i
, disks
);
1250 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
1251 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1252 printk("compute_2 with missing block %d/%d\n", count
, i
);
1253 } while ( i
!= d0_idx
);
1255 if ( failb
== disks
-2 ) {
1256 /* We're missing D+P. */
1257 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
1259 /* We're missing D+D. */
1260 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
1263 /* Both the above update both missing blocks */
1264 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1265 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1272 * Each stripe/dev can have one or more bion attached.
1273 * toread/towrite point to the first in a chain.
1274 * The bi_next chain must be in order.
1276 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1279 raid5_conf_t
*conf
= sh
->raid_conf
;
1282 PRINTK("adding bh b#%llu to stripe s#%llu\n",
1283 (unsigned long long)bi
->bi_sector
,
1284 (unsigned long long)sh
->sector
);
1287 spin_lock(&sh
->lock
);
1288 spin_lock_irq(&conf
->device_lock
);
1290 bip
= &sh
->dev
[dd_idx
].towrite
;
1291 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1294 bip
= &sh
->dev
[dd_idx
].toread
;
1295 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1296 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1298 bip
= & (*bip
)->bi_next
;
1300 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1303 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1307 bi
->bi_phys_segments
++;
1308 spin_unlock_irq(&conf
->device_lock
);
1309 spin_unlock(&sh
->lock
);
1311 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1312 (unsigned long long)bi
->bi_sector
,
1313 (unsigned long long)sh
->sector
, dd_idx
);
1315 if (conf
->mddev
->bitmap
&& firstwrite
) {
1316 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1318 sh
->bm_seq
= conf
->seq_flush
+1;
1319 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1323 /* check if page is covered */
1324 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1325 for (bi
=sh
->dev
[dd_idx
].towrite
;
1326 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1327 bi
&& bi
->bi_sector
<= sector
;
1328 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1329 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1330 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1332 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1333 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1338 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1339 spin_unlock_irq(&conf
->device_lock
);
1340 spin_unlock(&sh
->lock
);
1344 static void end_reshape(raid5_conf_t
*conf
);
1346 static int page_is_zero(struct page
*p
)
1348 char *a
= page_address(p
);
1349 return ((*(u32
*)a
) == 0 &&
1350 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1353 static int stripe_to_pdidx(sector_t stripe
, raid5_conf_t
*conf
, int disks
)
1355 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1356 sector_t x
= stripe
;
1358 int chunk_offset
= sector_div(x
, sectors_per_chunk
);
1360 raid5_compute_sector(stripe
*(disks
-1)*sectors_per_chunk
1361 + chunk_offset
, disks
, disks
-1, &dd_idx
, &pd_idx
, conf
);
1367 * handle_stripe - do things to a stripe.
1369 * We lock the stripe and then examine the state of various bits
1370 * to see what needs to be done.
1372 * return some read request which now have data
1373 * return some write requests which are safely on disc
1374 * schedule a read on some buffers
1375 * schedule a write of some buffers
1376 * return confirmation of parity correctness
1378 * Parity calculations are done inside the stripe lock
1379 * buffers are taken off read_list or write_list, and bh_cache buffers
1380 * get BH_Lock set before the stripe lock is released.
1384 static void handle_stripe5(struct stripe_head
*sh
)
1386 raid5_conf_t
*conf
= sh
->raid_conf
;
1387 int disks
= sh
->disks
;
1388 struct bio
*return_bi
= NULL
;
1391 int syncing
, expanding
, expanded
;
1392 int locked
=0, uptodate
=0, to_read
=0, to_write
=0, failed
=0, written
=0;
1393 int non_overwrite
= 0;
1397 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1398 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
),
1401 spin_lock(&sh
->lock
);
1402 clear_bit(STRIPE_HANDLE
, &sh
->state
);
1403 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1405 syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
1406 expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
1407 expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
1408 /* Now to look around and see what can be done */
1411 for (i
=disks
; i
--; ) {
1414 clear_bit(R5_Insync
, &dev
->flags
);
1416 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1417 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
1418 /* maybe we can reply to a read */
1419 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
1420 struct bio
*rbi
, *rbi2
;
1421 PRINTK("Return read for disc %d\n", i
);
1422 spin_lock_irq(&conf
->device_lock
);
1425 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1426 wake_up(&conf
->wait_for_overlap
);
1427 spin_unlock_irq(&conf
->device_lock
);
1428 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1429 copy_data(0, rbi
, dev
->page
, dev
->sector
);
1430 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1431 spin_lock_irq(&conf
->device_lock
);
1432 if (--rbi
->bi_phys_segments
== 0) {
1433 rbi
->bi_next
= return_bi
;
1436 spin_unlock_irq(&conf
->device_lock
);
1441 /* now count some things */
1442 if (test_bit(R5_LOCKED
, &dev
->flags
)) locked
++;
1443 if (test_bit(R5_UPTODATE
, &dev
->flags
)) uptodate
++;
1446 if (dev
->toread
) to_read
++;
1449 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
1452 if (dev
->written
) written
++;
1453 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1454 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
1455 /* The ReadError flag will just be confusing now */
1456 clear_bit(R5_ReadError
, &dev
->flags
);
1457 clear_bit(R5_ReWrite
, &dev
->flags
);
1459 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
1460 || test_bit(R5_ReadError
, &dev
->flags
)) {
1464 set_bit(R5_Insync
, &dev
->flags
);
1467 PRINTK("locked=%d uptodate=%d to_read=%d"
1468 " to_write=%d failed=%d failed_num=%d\n",
1469 locked
, uptodate
, to_read
, to_write
, failed
, failed_num
);
1470 /* check if the array has lost two devices and, if so, some requests might
1473 if (failed
> 1 && to_read
+to_write
+written
) {
1474 for (i
=disks
; i
--; ) {
1477 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1480 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1481 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
1482 /* multiple read failures in one stripe */
1483 md_error(conf
->mddev
, rdev
);
1487 spin_lock_irq(&conf
->device_lock
);
1488 /* fail all writes first */
1489 bi
= sh
->dev
[i
].towrite
;
1490 sh
->dev
[i
].towrite
= NULL
;
1491 if (bi
) { to_write
--; bitmap_end
= 1; }
1493 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1494 wake_up(&conf
->wait_for_overlap
);
1496 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
1497 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1498 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1499 if (--bi
->bi_phys_segments
== 0) {
1500 md_write_end(conf
->mddev
);
1501 bi
->bi_next
= return_bi
;
1506 /* and fail all 'written' */
1507 bi
= sh
->dev
[i
].written
;
1508 sh
->dev
[i
].written
= NULL
;
1509 if (bi
) bitmap_end
= 1;
1510 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1511 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1512 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1513 if (--bi
->bi_phys_segments
== 0) {
1514 md_write_end(conf
->mddev
);
1515 bi
->bi_next
= return_bi
;
1521 /* fail any reads if this device is non-operational */
1522 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
1523 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1524 bi
= sh
->dev
[i
].toread
;
1525 sh
->dev
[i
].toread
= NULL
;
1526 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1527 wake_up(&conf
->wait_for_overlap
);
1529 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
1530 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1531 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1532 if (--bi
->bi_phys_segments
== 0) {
1533 bi
->bi_next
= return_bi
;
1539 spin_unlock_irq(&conf
->device_lock
);
1541 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1542 STRIPE_SECTORS
, 0, 0);
1545 if (failed
> 1 && syncing
) {
1546 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
1547 clear_bit(STRIPE_SYNCING
, &sh
->state
);
1551 /* might be able to return some write requests if the parity block
1552 * is safe, or on a failed drive
1554 dev
= &sh
->dev
[sh
->pd_idx
];
1556 ( (test_bit(R5_Insync
, &dev
->flags
) && !test_bit(R5_LOCKED
, &dev
->flags
) &&
1557 test_bit(R5_UPTODATE
, &dev
->flags
))
1558 || (failed
== 1 && failed_num
== sh
->pd_idx
))
1560 /* any written block on an uptodate or failed drive can be returned.
1561 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1562 * never LOCKED, so we don't need to test 'failed' directly.
1564 for (i
=disks
; i
--; )
1565 if (sh
->dev
[i
].written
) {
1567 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1568 test_bit(R5_UPTODATE
, &dev
->flags
) ) {
1569 /* We can return any write requests */
1570 struct bio
*wbi
, *wbi2
;
1572 PRINTK("Return write for disc %d\n", i
);
1573 spin_lock_irq(&conf
->device_lock
);
1575 dev
->written
= NULL
;
1576 while (wbi
&& wbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1577 wbi2
= r5_next_bio(wbi
, dev
->sector
);
1578 if (--wbi
->bi_phys_segments
== 0) {
1579 md_write_end(conf
->mddev
);
1580 wbi
->bi_next
= return_bi
;
1585 if (dev
->towrite
== NULL
)
1587 spin_unlock_irq(&conf
->device_lock
);
1589 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1591 !test_bit(STRIPE_DEGRADED
, &sh
->state
), 0);
1596 /* Now we might consider reading some blocks, either to check/generate
1597 * parity, or to satisfy requests
1598 * or to load a block that is being partially written.
1600 if (to_read
|| non_overwrite
|| (syncing
&& (uptodate
< disks
)) || expanding
) {
1601 for (i
=disks
; i
--;) {
1603 if (!test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1605 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1608 (failed
&& (sh
->dev
[failed_num
].toread
||
1609 (sh
->dev
[failed_num
].towrite
&& !test_bit(R5_OVERWRITE
, &sh
->dev
[failed_num
].flags
))))
1612 /* we would like to get this block, possibly
1613 * by computing it, but we might not be able to
1615 if (uptodate
== disks
-1) {
1616 PRINTK("Computing block %d\n", i
);
1617 compute_block(sh
, i
);
1619 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
1620 set_bit(R5_LOCKED
, &dev
->flags
);
1621 set_bit(R5_Wantread
, &dev
->flags
);
1623 /* if I am just reading this block and we don't have
1624 a failed drive, or any pending writes then sidestep the cache */
1625 if (sh
->bh_read
[i
] && !sh
->bh_read
[i
]->b_reqnext
&&
1626 ! syncing
&& !failed
&& !to_write
) {
1627 sh
->bh_cache
[i
]->b_page
= sh
->bh_read
[i
]->b_page
;
1628 sh
->bh_cache
[i
]->b_data
= sh
->bh_read
[i
]->b_data
;
1632 PRINTK("Reading block %d (sync=%d)\n",
1637 set_bit(STRIPE_HANDLE
, &sh
->state
);
1640 /* now to consider writing and what else, if anything should be read */
1643 for (i
=disks
; i
--;) {
1644 /* would I have to read this buffer for read_modify_write */
1646 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
1647 (!test_bit(R5_LOCKED
, &dev
->flags
)
1649 || sh
->bh_page
[i
]!=bh
->b_page
1652 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
1653 if (test_bit(R5_Insync
, &dev
->flags
)
1654 /* && !(!mddev->insync && i == sh->pd_idx) */
1657 else rmw
+= 2*disks
; /* cannot read it */
1659 /* Would I have to read this buffer for reconstruct_write */
1660 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
1661 (!test_bit(R5_LOCKED
, &dev
->flags
)
1663 || sh
->bh_page
[i
] != bh
->b_page
1666 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
1667 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
1668 else rcw
+= 2*disks
;
1671 PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1672 (unsigned long long)sh
->sector
, rmw
, rcw
);
1673 set_bit(STRIPE_HANDLE
, &sh
->state
);
1674 if (rmw
< rcw
&& rmw
> 0)
1675 /* prefer read-modify-write, but need to get some data */
1676 for (i
=disks
; i
--;) {
1678 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
1679 !test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1680 test_bit(R5_Insync
, &dev
->flags
)) {
1681 if (test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
1683 PRINTK("Read_old block %d for r-m-w\n", i
);
1684 set_bit(R5_LOCKED
, &dev
->flags
);
1685 set_bit(R5_Wantread
, &dev
->flags
);
1688 set_bit(STRIPE_DELAYED
, &sh
->state
);
1689 set_bit(STRIPE_HANDLE
, &sh
->state
);
1693 if (rcw
<= rmw
&& rcw
> 0)
1694 /* want reconstruct write, but need to get some data */
1695 for (i
=disks
; i
--;) {
1697 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
1698 !test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1699 test_bit(R5_Insync
, &dev
->flags
)) {
1700 if (test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
1702 PRINTK("Read_old block %d for Reconstruct\n", i
);
1703 set_bit(R5_LOCKED
, &dev
->flags
);
1704 set_bit(R5_Wantread
, &dev
->flags
);
1707 set_bit(STRIPE_DELAYED
, &sh
->state
);
1708 set_bit(STRIPE_HANDLE
, &sh
->state
);
1712 /* now if nothing is locked, and if we have enough data, we can start a write request */
1713 if (locked
== 0 && (rcw
== 0 ||rmw
== 0) &&
1714 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
1715 PRINTK("Computing parity...\n");
1716 compute_parity5(sh
, rcw
==0 ? RECONSTRUCT_WRITE
: READ_MODIFY_WRITE
);
1717 /* now every locked buffer is ready to be written */
1719 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
1720 PRINTK("Writing block %d\n", i
);
1722 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
1723 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
)
1724 || (i
==sh
->pd_idx
&& failed
== 0))
1725 set_bit(STRIPE_INSYNC
, &sh
->state
);
1727 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
1728 atomic_dec(&conf
->preread_active_stripes
);
1729 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
1730 md_wakeup_thread(conf
->mddev
->thread
);
1735 /* maybe we need to check and possibly fix the parity for this stripe
1736 * Any reads will already have been scheduled, so we just see if enough data
1739 if (syncing
&& locked
== 0 &&
1740 !test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1741 set_bit(STRIPE_HANDLE
, &sh
->state
);
1743 BUG_ON(uptodate
!= disks
);
1744 compute_parity5(sh
, CHECK_PARITY
);
1746 if (page_is_zero(sh
->dev
[sh
->pd_idx
].page
)) {
1747 /* parity is correct (on disc, not in buffer any more) */
1748 set_bit(STRIPE_INSYNC
, &sh
->state
);
1750 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
1751 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
1752 /* don't try to repair!! */
1753 set_bit(STRIPE_INSYNC
, &sh
->state
);
1755 compute_block(sh
, sh
->pd_idx
);
1760 if (!test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1761 /* either failed parity check, or recovery is happening */
1763 failed_num
= sh
->pd_idx
;
1764 dev
= &sh
->dev
[failed_num
];
1765 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
1766 BUG_ON(uptodate
!= disks
);
1768 set_bit(R5_LOCKED
, &dev
->flags
);
1769 set_bit(R5_Wantwrite
, &dev
->flags
);
1770 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
1772 set_bit(STRIPE_INSYNC
, &sh
->state
);
1775 if (syncing
&& locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1776 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
1777 clear_bit(STRIPE_SYNCING
, &sh
->state
);
1780 /* If the failed drive is just a ReadError, then we might need to progress
1781 * the repair/check process
1783 if (failed
== 1 && ! conf
->mddev
->ro
&&
1784 test_bit(R5_ReadError
, &sh
->dev
[failed_num
].flags
)
1785 && !test_bit(R5_LOCKED
, &sh
->dev
[failed_num
].flags
)
1786 && test_bit(R5_UPTODATE
, &sh
->dev
[failed_num
].flags
)
1788 dev
= &sh
->dev
[failed_num
];
1789 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
1790 set_bit(R5_Wantwrite
, &dev
->flags
);
1791 set_bit(R5_ReWrite
, &dev
->flags
);
1792 set_bit(R5_LOCKED
, &dev
->flags
);
1795 /* let's read it back */
1796 set_bit(R5_Wantread
, &dev
->flags
);
1797 set_bit(R5_LOCKED
, &dev
->flags
);
1802 if (expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
1803 /* Need to write out all blocks after computing parity */
1804 sh
->disks
= conf
->raid_disks
;
1805 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
, conf
->raid_disks
);
1806 compute_parity5(sh
, RECONSTRUCT_WRITE
);
1807 for (i
= conf
->raid_disks
; i
--;) {
1808 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1810 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
1812 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
1813 } else if (expanded
) {
1814 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
1815 atomic_dec(&conf
->reshape_stripes
);
1816 wake_up(&conf
->wait_for_overlap
);
1817 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
1820 if (expanding
&& locked
== 0) {
1821 /* We have read all the blocks in this stripe and now we need to
1822 * copy some of them into a target stripe for expand.
1824 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
1825 for (i
=0; i
< sh
->disks
; i
++)
1826 if (i
!= sh
->pd_idx
) {
1827 int dd_idx
, pd_idx
, j
;
1828 struct stripe_head
*sh2
;
1830 sector_t bn
= compute_blocknr(sh
, i
);
1831 sector_t s
= raid5_compute_sector(bn
, conf
->raid_disks
,
1833 &dd_idx
, &pd_idx
, conf
);
1834 sh2
= get_active_stripe(conf
, s
, conf
->raid_disks
, pd_idx
, 1);
1836 /* so far only the early blocks of this stripe
1837 * have been requested. When later blocks
1838 * get requested, we will try again
1841 if(!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
1842 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
1843 /* must have already done this block */
1844 release_stripe(sh2
);
1847 memcpy(page_address(sh2
->dev
[dd_idx
].page
),
1848 page_address(sh
->dev
[i
].page
),
1850 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
1851 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
1852 for (j
=0; j
<conf
->raid_disks
; j
++)
1853 if (j
!= sh2
->pd_idx
&&
1854 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
1856 if (j
== conf
->raid_disks
) {
1857 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
1858 set_bit(STRIPE_HANDLE
, &sh2
->state
);
1860 release_stripe(sh2
);
1864 spin_unlock(&sh
->lock
);
1866 while ((bi
=return_bi
)) {
1867 int bytes
= bi
->bi_size
;
1869 return_bi
= bi
->bi_next
;
1872 bi
->bi_end_io(bi
, bytes
, 0);
1874 for (i
=disks
; i
-- ;) {
1878 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
1880 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
1885 bi
= &sh
->dev
[i
].req
;
1889 bi
->bi_end_io
= raid5_end_write_request
;
1891 bi
->bi_end_io
= raid5_end_read_request
;
1894 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1895 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
1898 atomic_inc(&rdev
->nr_pending
);
1902 if (syncing
|| expanding
|| expanded
)
1903 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
1905 bi
->bi_bdev
= rdev
->bdev
;
1906 PRINTK("for %llu schedule op %ld on disc %d\n",
1907 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
1908 atomic_inc(&sh
->count
);
1909 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
1910 bi
->bi_flags
= 1 << BIO_UPTODATE
;
1912 bi
->bi_max_vecs
= 1;
1914 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
1915 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1916 bi
->bi_io_vec
[0].bv_offset
= 0;
1917 bi
->bi_size
= STRIPE_SIZE
;
1920 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1921 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
1922 generic_make_request(bi
);
1925 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1926 PRINTK("skip op %ld on disc %d for sector %llu\n",
1927 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
1928 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1929 set_bit(STRIPE_HANDLE
, &sh
->state
);
1934 static void handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
1936 raid6_conf_t
*conf
= sh
->raid_conf
;
1937 int disks
= conf
->raid_disks
;
1938 struct bio
*return_bi
= NULL
;
1942 int locked
=0, uptodate
=0, to_read
=0, to_write
=0, failed
=0, written
=0;
1943 int non_overwrite
= 0;
1944 int failed_num
[2] = {0, 0};
1945 struct r5dev
*dev
, *pdev
, *qdev
;
1946 int pd_idx
= sh
->pd_idx
;
1947 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1948 int p_failed
, q_failed
;
1950 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1951 (unsigned long long)sh
->sector
, sh
->state
, atomic_read(&sh
->count
),
1954 spin_lock(&sh
->lock
);
1955 clear_bit(STRIPE_HANDLE
, &sh
->state
);
1956 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1958 syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
1959 /* Now to look around and see what can be done */
1962 for (i
=disks
; i
--; ) {
1965 clear_bit(R5_Insync
, &dev
->flags
);
1967 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1968 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
1969 /* maybe we can reply to a read */
1970 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
1971 struct bio
*rbi
, *rbi2
;
1972 PRINTK("Return read for disc %d\n", i
);
1973 spin_lock_irq(&conf
->device_lock
);
1976 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1977 wake_up(&conf
->wait_for_overlap
);
1978 spin_unlock_irq(&conf
->device_lock
);
1979 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1980 copy_data(0, rbi
, dev
->page
, dev
->sector
);
1981 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1982 spin_lock_irq(&conf
->device_lock
);
1983 if (--rbi
->bi_phys_segments
== 0) {
1984 rbi
->bi_next
= return_bi
;
1987 spin_unlock_irq(&conf
->device_lock
);
1992 /* now count some things */
1993 if (test_bit(R5_LOCKED
, &dev
->flags
)) locked
++;
1994 if (test_bit(R5_UPTODATE
, &dev
->flags
)) uptodate
++;
1997 if (dev
->toread
) to_read
++;
2000 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2003 if (dev
->written
) written
++;
2004 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2005 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2006 /* The ReadError flag will just be confusing now */
2007 clear_bit(R5_ReadError
, &dev
->flags
);
2008 clear_bit(R5_ReWrite
, &dev
->flags
);
2010 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2011 || test_bit(R5_ReadError
, &dev
->flags
)) {
2013 failed_num
[failed
] = i
;
2016 set_bit(R5_Insync
, &dev
->flags
);
2019 PRINTK("locked=%d uptodate=%d to_read=%d"
2020 " to_write=%d failed=%d failed_num=%d,%d\n",
2021 locked
, uptodate
, to_read
, to_write
, failed
,
2022 failed_num
[0], failed_num
[1]);
2023 /* check if the array has lost >2 devices and, if so, some requests might
2026 if (failed
> 2 && to_read
+to_write
+written
) {
2027 for (i
=disks
; i
--; ) {
2030 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2033 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2034 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2035 /* multiple read failures in one stripe */
2036 md_error(conf
->mddev
, rdev
);
2040 spin_lock_irq(&conf
->device_lock
);
2041 /* fail all writes first */
2042 bi
= sh
->dev
[i
].towrite
;
2043 sh
->dev
[i
].towrite
= NULL
;
2044 if (bi
) { to_write
--; bitmap_end
= 1; }
2046 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2047 wake_up(&conf
->wait_for_overlap
);
2049 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
2050 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2051 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2052 if (--bi
->bi_phys_segments
== 0) {
2053 md_write_end(conf
->mddev
);
2054 bi
->bi_next
= return_bi
;
2059 /* and fail all 'written' */
2060 bi
= sh
->dev
[i
].written
;
2061 sh
->dev
[i
].written
= NULL
;
2062 if (bi
) bitmap_end
= 1;
2063 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2064 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2065 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2066 if (--bi
->bi_phys_segments
== 0) {
2067 md_write_end(conf
->mddev
);
2068 bi
->bi_next
= return_bi
;
2074 /* fail any reads if this device is non-operational */
2075 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2076 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2077 bi
= sh
->dev
[i
].toread
;
2078 sh
->dev
[i
].toread
= NULL
;
2079 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2080 wake_up(&conf
->wait_for_overlap
);
2082 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
2083 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2084 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2085 if (--bi
->bi_phys_segments
== 0) {
2086 bi
->bi_next
= return_bi
;
2092 spin_unlock_irq(&conf
->device_lock
);
2094 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2095 STRIPE_SECTORS
, 0, 0);
2098 if (failed
> 2 && syncing
) {
2099 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2100 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2105 * might be able to return some write requests if the parity blocks
2106 * are safe, or on a failed drive
2108 pdev
= &sh
->dev
[pd_idx
];
2109 p_failed
= (failed
>= 1 && failed_num
[0] == pd_idx
)
2110 || (failed
>= 2 && failed_num
[1] == pd_idx
);
2111 qdev
= &sh
->dev
[qd_idx
];
2112 q_failed
= (failed
>= 1 && failed_num
[0] == qd_idx
)
2113 || (failed
>= 2 && failed_num
[1] == qd_idx
);
2116 ( p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
2117 && !test_bit(R5_LOCKED
, &pdev
->flags
)
2118 && test_bit(R5_UPTODATE
, &pdev
->flags
))) ) &&
2119 ( q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
2120 && !test_bit(R5_LOCKED
, &qdev
->flags
)
2121 && test_bit(R5_UPTODATE
, &qdev
->flags
))) ) ) {
2122 /* any written block on an uptodate or failed drive can be
2123 * returned. Note that if we 'wrote' to a failed drive,
2124 * it will be UPTODATE, but never LOCKED, so we don't need
2125 * to test 'failed' directly.
2127 for (i
=disks
; i
--; )
2128 if (sh
->dev
[i
].written
) {
2130 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2131 test_bit(R5_UPTODATE
, &dev
->flags
) ) {
2132 /* We can return any write requests */
2134 struct bio
*wbi
, *wbi2
;
2135 PRINTK("Return write for stripe %llu disc %d\n",
2136 (unsigned long long)sh
->sector
, i
);
2137 spin_lock_irq(&conf
->device_lock
);
2139 dev
->written
= NULL
;
2140 while (wbi
&& wbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
2141 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2142 if (--wbi
->bi_phys_segments
== 0) {
2143 md_write_end(conf
->mddev
);
2144 wbi
->bi_next
= return_bi
;
2149 if (dev
->towrite
== NULL
)
2151 spin_unlock_irq(&conf
->device_lock
);
2153 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2155 !test_bit(STRIPE_DEGRADED
, &sh
->state
), 0);
2160 /* Now we might consider reading some blocks, either to check/generate
2161 * parity, or to satisfy requests
2162 * or to load a block that is being partially written.
2164 if (to_read
|| non_overwrite
|| (to_write
&& failed
) || (syncing
&& (uptodate
< disks
))) {
2165 for (i
=disks
; i
--;) {
2167 if (!test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2169 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2171 (failed
>= 1 && (sh
->dev
[failed_num
[0]].toread
|| to_write
)) ||
2172 (failed
>= 2 && (sh
->dev
[failed_num
[1]].toread
|| to_write
))
2175 /* we would like to get this block, possibly
2176 * by computing it, but we might not be able to
2178 if (uptodate
== disks
-1) {
2179 PRINTK("Computing stripe %llu block %d\n",
2180 (unsigned long long)sh
->sector
, i
);
2181 compute_block_1(sh
, i
, 0);
2183 } else if ( uptodate
== disks
-2 && failed
>= 2 ) {
2184 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2186 for (other
=disks
; other
--;) {
2189 if ( !test_bit(R5_UPTODATE
, &sh
->dev
[other
].flags
) )
2193 PRINTK("Computing stripe %llu blocks %d,%d\n",
2194 (unsigned long long)sh
->sector
, i
, other
);
2195 compute_block_2(sh
, i
, other
);
2197 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2198 set_bit(R5_LOCKED
, &dev
->flags
);
2199 set_bit(R5_Wantread
, &dev
->flags
);
2201 /* if I am just reading this block and we don't have
2202 a failed drive, or any pending writes then sidestep the cache */
2203 if (sh
->bh_read
[i
] && !sh
->bh_read
[i
]->b_reqnext
&&
2204 ! syncing
&& !failed
&& !to_write
) {
2205 sh
->bh_cache
[i
]->b_page
= sh
->bh_read
[i
]->b_page
;
2206 sh
->bh_cache
[i
]->b_data
= sh
->bh_read
[i
]->b_data
;
2210 PRINTK("Reading block %d (sync=%d)\n",
2215 set_bit(STRIPE_HANDLE
, &sh
->state
);
2218 /* now to consider writing and what else, if anything should be read */
2220 int rcw
=0, must_compute
=0;
2221 for (i
=disks
; i
--;) {
2223 /* Would I have to read this buffer for reconstruct_write */
2224 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2225 && i
!= pd_idx
&& i
!= qd_idx
2226 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2228 || sh
->bh_page
[i
] != bh
->b_page
2231 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2232 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2234 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i
, dev
->flags
);
2239 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2240 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2241 set_bit(STRIPE_HANDLE
, &sh
->state
);
2244 /* want reconstruct write, but need to get some data */
2245 for (i
=disks
; i
--;) {
2247 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2248 && !(failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2249 && !test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2250 test_bit(R5_Insync
, &dev
->flags
)) {
2251 if (test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
2253 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2254 (unsigned long long)sh
->sector
, i
);
2255 set_bit(R5_LOCKED
, &dev
->flags
);
2256 set_bit(R5_Wantread
, &dev
->flags
);
2259 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2260 (unsigned long long)sh
->sector
, i
);
2261 set_bit(STRIPE_DELAYED
, &sh
->state
);
2262 set_bit(STRIPE_HANDLE
, &sh
->state
);
2266 /* now if nothing is locked, and if we have enough data, we can start a write request */
2267 if (locked
== 0 && rcw
== 0 &&
2268 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2269 if ( must_compute
> 0 ) {
2270 /* We have failed blocks and need to compute them */
2273 case 1: compute_block_1(sh
, failed_num
[0], 0); break;
2274 case 2: compute_block_2(sh
, failed_num
[0], failed_num
[1]); break;
2275 default: BUG(); /* This request should have been failed? */
2279 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh
->sector
);
2280 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2281 /* now every locked buffer is ready to be written */
2283 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2284 PRINTK("Writing stripe %llu block %d\n",
2285 (unsigned long long)sh
->sector
, i
);
2287 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2289 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2290 set_bit(STRIPE_INSYNC
, &sh
->state
);
2292 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2293 atomic_dec(&conf
->preread_active_stripes
);
2294 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
2295 md_wakeup_thread(conf
->mddev
->thread
);
2300 /* maybe we need to check and possibly fix the parity for this stripe
2301 * Any reads will already have been scheduled, so we just see if enough data
2304 if (syncing
&& locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2305 int update_p
= 0, update_q
= 0;
2308 set_bit(STRIPE_HANDLE
, &sh
->state
);
2311 BUG_ON(uptodate
< disks
);
2312 /* Want to check and possibly repair P and Q.
2313 * However there could be one 'failed' device, in which
2314 * case we can only check one of them, possibly using the
2315 * other to generate missing data
2318 /* If !tmp_page, we cannot do the calculations,
2319 * but as we have set STRIPE_HANDLE, we will soon be called
2320 * by stripe_handle with a tmp_page - just wait until then.
2323 if (failed
== q_failed
) {
2324 /* The only possible failed device holds 'Q', so it makes
2325 * sense to check P (If anything else were failed, we would
2326 * have used P to recreate it).
2328 compute_block_1(sh
, pd_idx
, 1);
2329 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2330 compute_block_1(sh
,pd_idx
,0);
2334 if (!q_failed
&& failed
< 2) {
2335 /* q is not failed, and we didn't use it to generate
2336 * anything, so it makes sense to check it
2338 memcpy(page_address(tmp_page
),
2339 page_address(sh
->dev
[qd_idx
].page
),
2341 compute_parity6(sh
, UPDATE_PARITY
);
2342 if (memcmp(page_address(tmp_page
),
2343 page_address(sh
->dev
[qd_idx
].page
),
2345 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2349 if (update_p
|| update_q
) {
2350 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2351 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2352 /* don't try to repair!! */
2353 update_p
= update_q
= 0;
2356 /* now write out any block on a failed drive,
2357 * or P or Q if they need it
2361 dev
= &sh
->dev
[failed_num
[1]];
2363 set_bit(R5_LOCKED
, &dev
->flags
);
2364 set_bit(R5_Wantwrite
, &dev
->flags
);
2367 dev
= &sh
->dev
[failed_num
[0]];
2369 set_bit(R5_LOCKED
, &dev
->flags
);
2370 set_bit(R5_Wantwrite
, &dev
->flags
);
2374 dev
= &sh
->dev
[pd_idx
];
2376 set_bit(R5_LOCKED
, &dev
->flags
);
2377 set_bit(R5_Wantwrite
, &dev
->flags
);
2380 dev
= &sh
->dev
[qd_idx
];
2382 set_bit(R5_LOCKED
, &dev
->flags
);
2383 set_bit(R5_Wantwrite
, &dev
->flags
);
2385 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2387 set_bit(STRIPE_INSYNC
, &sh
->state
);
2391 if (syncing
&& locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2392 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2393 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2396 /* If the failed drives are just a ReadError, then we might need
2397 * to progress the repair/check process
2399 if (failed
<= 2 && ! conf
->mddev
->ro
)
2400 for (i
=0; i
<failed
;i
++) {
2401 dev
= &sh
->dev
[failed_num
[i
]];
2402 if (test_bit(R5_ReadError
, &dev
->flags
)
2403 && !test_bit(R5_LOCKED
, &dev
->flags
)
2404 && test_bit(R5_UPTODATE
, &dev
->flags
)
2406 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2407 set_bit(R5_Wantwrite
, &dev
->flags
);
2408 set_bit(R5_ReWrite
, &dev
->flags
);
2409 set_bit(R5_LOCKED
, &dev
->flags
);
2411 /* let's read it back */
2412 set_bit(R5_Wantread
, &dev
->flags
);
2413 set_bit(R5_LOCKED
, &dev
->flags
);
2417 spin_unlock(&sh
->lock
);
2419 while ((bi
=return_bi
)) {
2420 int bytes
= bi
->bi_size
;
2422 return_bi
= bi
->bi_next
;
2425 bi
->bi_end_io(bi
, bytes
, 0);
2427 for (i
=disks
; i
-- ;) {
2431 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
2433 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
2438 bi
= &sh
->dev
[i
].req
;
2442 bi
->bi_end_io
= raid5_end_write_request
;
2444 bi
->bi_end_io
= raid5_end_read_request
;
2447 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2448 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
2451 atomic_inc(&rdev
->nr_pending
);
2456 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
2458 bi
->bi_bdev
= rdev
->bdev
;
2459 PRINTK("for %llu schedule op %ld on disc %d\n",
2460 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
2461 atomic_inc(&sh
->count
);
2462 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
2463 bi
->bi_flags
= 1 << BIO_UPTODATE
;
2465 bi
->bi_max_vecs
= 1;
2467 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
2468 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
2469 bi
->bi_io_vec
[0].bv_offset
= 0;
2470 bi
->bi_size
= STRIPE_SIZE
;
2473 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
2474 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2475 generic_make_request(bi
);
2478 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2479 PRINTK("skip op %ld on disc %d for sector %llu\n",
2480 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
2481 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2482 set_bit(STRIPE_HANDLE
, &sh
->state
);
2487 static void handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
2489 if (sh
->raid_conf
->level
== 6)
2490 handle_stripe6(sh
, tmp_page
);
2497 static void raid5_activate_delayed(raid5_conf_t
*conf
)
2499 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
2500 while (!list_empty(&conf
->delayed_list
)) {
2501 struct list_head
*l
= conf
->delayed_list
.next
;
2502 struct stripe_head
*sh
;
2503 sh
= list_entry(l
, struct stripe_head
, lru
);
2505 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2506 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
2507 atomic_inc(&conf
->preread_active_stripes
);
2508 list_add_tail(&sh
->lru
, &conf
->handle_list
);
2513 static void activate_bit_delay(raid5_conf_t
*conf
)
2515 /* device_lock is held */
2516 struct list_head head
;
2517 list_add(&head
, &conf
->bitmap_list
);
2518 list_del_init(&conf
->bitmap_list
);
2519 while (!list_empty(&head
)) {
2520 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
2521 list_del_init(&sh
->lru
);
2522 atomic_inc(&sh
->count
);
2523 __release_stripe(conf
, sh
);
2527 static void unplug_slaves(mddev_t
*mddev
)
2529 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2533 for (i
=0; i
<mddev
->raid_disks
; i
++) {
2534 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2535 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
2536 request_queue_t
*r_queue
= bdev_get_queue(rdev
->bdev
);
2538 atomic_inc(&rdev
->nr_pending
);
2541 if (r_queue
->unplug_fn
)
2542 r_queue
->unplug_fn(r_queue
);
2544 rdev_dec_pending(rdev
, mddev
);
2551 static void raid5_unplug_device(request_queue_t
*q
)
2553 mddev_t
*mddev
= q
->queuedata
;
2554 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2555 unsigned long flags
;
2557 spin_lock_irqsave(&conf
->device_lock
, flags
);
2559 if (blk_remove_plug(q
)) {
2561 raid5_activate_delayed(conf
);
2563 md_wakeup_thread(mddev
->thread
);
2565 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2567 unplug_slaves(mddev
);
2570 static int raid5_issue_flush(request_queue_t
*q
, struct gendisk
*disk
,
2571 sector_t
*error_sector
)
2573 mddev_t
*mddev
= q
->queuedata
;
2574 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2578 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
2579 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2580 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
2581 struct block_device
*bdev
= rdev
->bdev
;
2582 request_queue_t
*r_queue
= bdev_get_queue(bdev
);
2584 if (!r_queue
->issue_flush_fn
)
2587 atomic_inc(&rdev
->nr_pending
);
2589 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
2591 rdev_dec_pending(rdev
, mddev
);
2600 static int make_request(request_queue_t
*q
, struct bio
* bi
)
2602 mddev_t
*mddev
= q
->queuedata
;
2603 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2604 unsigned int dd_idx
, pd_idx
;
2605 sector_t new_sector
;
2606 sector_t logical_sector
, last_sector
;
2607 struct stripe_head
*sh
;
2608 const int rw
= bio_data_dir(bi
);
2611 if (unlikely(bio_barrier(bi
))) {
2612 bio_endio(bi
, bi
->bi_size
, -EOPNOTSUPP
);
2616 md_write_start(mddev
, bi
);
2618 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
2619 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bi
));
2621 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
2622 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2624 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
2626 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
2628 int disks
, data_disks
;
2631 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
2632 if (likely(conf
->expand_progress
== MaxSector
))
2633 disks
= conf
->raid_disks
;
2635 /* spinlock is needed as expand_progress may be
2636 * 64bit on a 32bit platform, and so it might be
2637 * possible to see a half-updated value
2638 * Ofcourse expand_progress could change after
2639 * the lock is dropped, so once we get a reference
2640 * to the stripe that we think it is, we will have
2643 spin_lock_irq(&conf
->device_lock
);
2644 disks
= conf
->raid_disks
;
2645 if (logical_sector
>= conf
->expand_progress
)
2646 disks
= conf
->previous_raid_disks
;
2648 if (logical_sector
>= conf
->expand_lo
) {
2649 spin_unlock_irq(&conf
->device_lock
);
2654 spin_unlock_irq(&conf
->device_lock
);
2656 data_disks
= disks
- conf
->max_degraded
;
2658 new_sector
= raid5_compute_sector(logical_sector
, disks
, data_disks
,
2659 &dd_idx
, &pd_idx
, conf
);
2660 PRINTK("raid5: make_request, sector %llu logical %llu\n",
2661 (unsigned long long)new_sector
,
2662 (unsigned long long)logical_sector
);
2664 sh
= get_active_stripe(conf
, new_sector
, disks
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
2666 if (unlikely(conf
->expand_progress
!= MaxSector
)) {
2667 /* expansion might have moved on while waiting for a
2668 * stripe, so we must do the range check again.
2669 * Expansion could still move past after this
2670 * test, but as we are holding a reference to
2671 * 'sh', we know that if that happens,
2672 * STRIPE_EXPANDING will get set and the expansion
2673 * won't proceed until we finish with the stripe.
2676 spin_lock_irq(&conf
->device_lock
);
2677 if (logical_sector
< conf
->expand_progress
&&
2678 disks
== conf
->previous_raid_disks
)
2679 /* mismatch, need to try again */
2681 spin_unlock_irq(&conf
->device_lock
);
2687 /* FIXME what if we get a false positive because these
2688 * are being updated.
2690 if (logical_sector
>= mddev
->suspend_lo
&&
2691 logical_sector
< mddev
->suspend_hi
) {
2697 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
2698 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
2699 /* Stripe is busy expanding or
2700 * add failed due to overlap. Flush everything
2703 raid5_unplug_device(mddev
->queue
);
2708 finish_wait(&conf
->wait_for_overlap
, &w
);
2709 handle_stripe(sh
, NULL
);
2712 /* cannot get stripe for read-ahead, just give-up */
2713 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2714 finish_wait(&conf
->wait_for_overlap
, &w
);
2719 spin_lock_irq(&conf
->device_lock
);
2720 remaining
= --bi
->bi_phys_segments
;
2721 spin_unlock_irq(&conf
->device_lock
);
2722 if (remaining
== 0) {
2723 int bytes
= bi
->bi_size
;
2726 md_write_end(mddev
);
2728 bi
->bi_end_io(bi
, bytes
, 0);
2733 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
2735 /* reshaping is quite different to recovery/resync so it is
2736 * handled quite separately ... here.
2738 * On each call to sync_request, we gather one chunk worth of
2739 * destination stripes and flag them as expanding.
2740 * Then we find all the source stripes and request reads.
2741 * As the reads complete, handle_stripe will copy the data
2742 * into the destination stripe and release that stripe.
2744 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
2745 struct stripe_head
*sh
;
2747 sector_t first_sector
, last_sector
;
2752 sector_t writepos
, safepos
, gap
;
2754 if (sector_nr
== 0 &&
2755 conf
->expand_progress
!= 0) {
2756 /* restarting in the middle, skip the initial sectors */
2757 sector_nr
= conf
->expand_progress
;
2758 sector_div(sector_nr
, conf
->raid_disks
-1);
2763 /* we update the metadata when there is more than 3Meg
2764 * in the block range (that is rather arbitrary, should
2765 * probably be time based) or when the data about to be
2766 * copied would over-write the source of the data at
2767 * the front of the range.
2768 * i.e. one new_stripe forward from expand_progress new_maps
2769 * to after where expand_lo old_maps to
2771 writepos
= conf
->expand_progress
+
2772 conf
->chunk_size
/512*(conf
->raid_disks
-1);
2773 sector_div(writepos
, conf
->raid_disks
-1);
2774 safepos
= conf
->expand_lo
;
2775 sector_div(safepos
, conf
->previous_raid_disks
-1);
2776 gap
= conf
->expand_progress
- conf
->expand_lo
;
2778 if (writepos
>= safepos
||
2779 gap
> (conf
->raid_disks
-1)*3000*2 /*3Meg*/) {
2780 /* Cannot proceed until we've updated the superblock... */
2781 wait_event(conf
->wait_for_overlap
,
2782 atomic_read(&conf
->reshape_stripes
)==0);
2783 mddev
->reshape_position
= conf
->expand_progress
;
2784 mddev
->sb_dirty
= 1;
2785 md_wakeup_thread(mddev
->thread
);
2786 wait_event(mddev
->sb_wait
, mddev
->sb_dirty
== 0 ||
2787 kthread_should_stop());
2788 spin_lock_irq(&conf
->device_lock
);
2789 conf
->expand_lo
= mddev
->reshape_position
;
2790 spin_unlock_irq(&conf
->device_lock
);
2791 wake_up(&conf
->wait_for_overlap
);
2794 for (i
=0; i
< conf
->chunk_size
/512; i
+= STRIPE_SECTORS
) {
2797 pd_idx
= stripe_to_pdidx(sector_nr
+i
, conf
, conf
->raid_disks
);
2798 sh
= get_active_stripe(conf
, sector_nr
+i
,
2799 conf
->raid_disks
, pd_idx
, 0);
2800 set_bit(STRIPE_EXPANDING
, &sh
->state
);
2801 atomic_inc(&conf
->reshape_stripes
);
2802 /* If any of this stripe is beyond the end of the old
2803 * array, then we need to zero those blocks
2805 for (j
=sh
->disks
; j
--;) {
2807 if (j
== sh
->pd_idx
)
2809 s
= compute_blocknr(sh
, j
);
2810 if (s
< (mddev
->array_size
<<1)) {
2814 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
2815 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
2816 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
2819 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2820 set_bit(STRIPE_HANDLE
, &sh
->state
);
2824 spin_lock_irq(&conf
->device_lock
);
2825 conf
->expand_progress
= (sector_nr
+ i
)*(conf
->raid_disks
-1);
2826 spin_unlock_irq(&conf
->device_lock
);
2827 /* Ok, those stripe are ready. We can start scheduling
2828 * reads on the source stripes.
2829 * The source stripes are determined by mapping the first and last
2830 * block on the destination stripes.
2832 raid_disks
= conf
->previous_raid_disks
;
2833 data_disks
= raid_disks
- 1;
2835 raid5_compute_sector(sector_nr
*(conf
->raid_disks
-1),
2836 raid_disks
, data_disks
,
2837 &dd_idx
, &pd_idx
, conf
);
2839 raid5_compute_sector((sector_nr
+conf
->chunk_size
/512)
2840 *(conf
->raid_disks
-1) -1,
2841 raid_disks
, data_disks
,
2842 &dd_idx
, &pd_idx
, conf
);
2843 if (last_sector
>= (mddev
->size
<<1))
2844 last_sector
= (mddev
->size
<<1)-1;
2845 while (first_sector
<= last_sector
) {
2846 pd_idx
= stripe_to_pdidx(first_sector
, conf
, conf
->previous_raid_disks
);
2847 sh
= get_active_stripe(conf
, first_sector
,
2848 conf
->previous_raid_disks
, pd_idx
, 0);
2849 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2850 set_bit(STRIPE_HANDLE
, &sh
->state
);
2852 first_sector
+= STRIPE_SECTORS
;
2854 return conf
->chunk_size
>>9;
2857 /* FIXME go_faster isn't used */
2858 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2860 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
2861 struct stripe_head
*sh
;
2863 int raid_disks
= conf
->raid_disks
;
2864 sector_t max_sector
= mddev
->size
<< 1;
2866 int still_degraded
= 0;
2869 if (sector_nr
>= max_sector
) {
2870 /* just being told to finish up .. nothing much to do */
2871 unplug_slaves(mddev
);
2872 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2877 if (mddev
->curr_resync
< max_sector
) /* aborted */
2878 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2880 else /* completed sync */
2882 bitmap_close_sync(mddev
->bitmap
);
2887 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2888 return reshape_request(mddev
, sector_nr
, skipped
);
2890 /* if there is too many failed drives and we are trying
2891 * to resync, then assert that we are finished, because there is
2892 * nothing we can do.
2894 if (mddev
->degraded
>= conf
->max_degraded
&&
2895 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2896 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
2900 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2901 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2902 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
2903 /* we can skip this block, and probably more */
2904 sync_blocks
/= STRIPE_SECTORS
;
2906 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
2909 pd_idx
= stripe_to_pdidx(sector_nr
, conf
, raid_disks
);
2910 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 1);
2912 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 0);
2913 /* make sure we don't swamp the stripe cache if someone else
2914 * is trying to get access
2916 schedule_timeout_uninterruptible(1);
2918 /* Need to check if array will still be degraded after recovery/resync
2919 * We don't need to check the 'failed' flag as when that gets set,
2922 for (i
=0; i
<mddev
->raid_disks
; i
++)
2923 if (conf
->disks
[i
].rdev
== NULL
)
2926 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
2928 spin_lock(&sh
->lock
);
2929 set_bit(STRIPE_SYNCING
, &sh
->state
);
2930 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2931 spin_unlock(&sh
->lock
);
2933 handle_stripe(sh
, NULL
);
2936 return STRIPE_SECTORS
;
2940 * This is our raid5 kernel thread.
2942 * We scan the hash table for stripes which can be handled now.
2943 * During the scan, completed stripes are saved for us by the interrupt
2944 * handler, so that they will not have to wait for our next wakeup.
2946 static void raid5d (mddev_t
*mddev
)
2948 struct stripe_head
*sh
;
2949 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2952 PRINTK("+++ raid5d active\n");
2954 md_check_recovery(mddev
);
2957 spin_lock_irq(&conf
->device_lock
);
2959 struct list_head
*first
;
2961 if (conf
->seq_flush
!= conf
->seq_write
) {
2962 int seq
= conf
->seq_flush
;
2963 spin_unlock_irq(&conf
->device_lock
);
2964 bitmap_unplug(mddev
->bitmap
);
2965 spin_lock_irq(&conf
->device_lock
);
2966 conf
->seq_write
= seq
;
2967 activate_bit_delay(conf
);
2970 if (list_empty(&conf
->handle_list
) &&
2971 atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
&&
2972 !blk_queue_plugged(mddev
->queue
) &&
2973 !list_empty(&conf
->delayed_list
))
2974 raid5_activate_delayed(conf
);
2976 if (list_empty(&conf
->handle_list
))
2979 first
= conf
->handle_list
.next
;
2980 sh
= list_entry(first
, struct stripe_head
, lru
);
2982 list_del_init(first
);
2983 atomic_inc(&sh
->count
);
2984 BUG_ON(atomic_read(&sh
->count
)!= 1);
2985 spin_unlock_irq(&conf
->device_lock
);
2988 handle_stripe(sh
, conf
->spare_page
);
2991 spin_lock_irq(&conf
->device_lock
);
2993 PRINTK("%d stripes handled\n", handled
);
2995 spin_unlock_irq(&conf
->device_lock
);
2997 unplug_slaves(mddev
);
2999 PRINTK("--- raid5d inactive\n");
3003 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
3005 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3007 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
3013 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
3015 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3018 if (len
>= PAGE_SIZE
)
3023 new = simple_strtoul(page
, &end
, 10);
3024 if (!*page
|| (*end
&& *end
!= '\n') )
3026 if (new <= 16 || new > 32768)
3028 while (new < conf
->max_nr_stripes
) {
3029 if (drop_one_stripe(conf
))
3030 conf
->max_nr_stripes
--;
3034 while (new > conf
->max_nr_stripes
) {
3035 if (grow_one_stripe(conf
))
3036 conf
->max_nr_stripes
++;
3042 static struct md_sysfs_entry
3043 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
3044 raid5_show_stripe_cache_size
,
3045 raid5_store_stripe_cache_size
);
3048 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
3050 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3052 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
3057 static struct md_sysfs_entry
3058 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
3060 static struct attribute
*raid5_attrs
[] = {
3061 &raid5_stripecache_size
.attr
,
3062 &raid5_stripecache_active
.attr
,
3065 static struct attribute_group raid5_attrs_group
= {
3067 .attrs
= raid5_attrs
,
3070 static int run(mddev_t
*mddev
)
3073 int raid_disk
, memory
;
3075 struct disk_info
*disk
;
3076 struct list_head
*tmp
;
3078 if (mddev
->level
!= 5 && mddev
->level
!= 4 && mddev
->level
!= 6) {
3079 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
3080 mdname(mddev
), mddev
->level
);
3084 if (mddev
->reshape_position
!= MaxSector
) {
3085 /* Check that we can continue the reshape.
3086 * Currently only disks can change, it must
3087 * increase, and we must be past the point where
3088 * a stripe over-writes itself
3090 sector_t here_new
, here_old
;
3093 if (mddev
->new_level
!= mddev
->level
||
3094 mddev
->new_layout
!= mddev
->layout
||
3095 mddev
->new_chunk
!= mddev
->chunk_size
) {
3096 printk(KERN_ERR
"raid5: %s: unsupported reshape required - aborting.\n",
3100 if (mddev
->delta_disks
<= 0) {
3101 printk(KERN_ERR
"raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3105 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3106 /* reshape_position must be on a new-stripe boundary, and one
3107 * further up in new geometry must map after here in old geometry.
3109 here_new
= mddev
->reshape_position
;
3110 if (sector_div(here_new
, (mddev
->chunk_size
>>9)*(mddev
->raid_disks
-1))) {
3111 printk(KERN_ERR
"raid5: reshape_position not on a stripe boundary\n");
3114 /* here_new is the stripe we will write to */
3115 here_old
= mddev
->reshape_position
;
3116 sector_div(here_old
, (mddev
->chunk_size
>>9)*(old_disks
-1));
3117 /* here_old is the first stripe that we might need to read from */
3118 if (here_new
>= here_old
) {
3119 /* Reading from the same stripe as writing to - bad */
3120 printk(KERN_ERR
"raid5: reshape_position too early for auto-recovery - aborting.\n");
3123 printk(KERN_INFO
"raid5: reshape will continue\n");
3124 /* OK, we should be able to continue; */
3128 mddev
->private = kzalloc(sizeof (raid5_conf_t
), GFP_KERNEL
);
3129 if ((conf
= mddev
->private) == NULL
)
3131 if (mddev
->reshape_position
== MaxSector
) {
3132 conf
->previous_raid_disks
= conf
->raid_disks
= mddev
->raid_disks
;
3134 conf
->raid_disks
= mddev
->raid_disks
;
3135 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3138 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
3143 conf
->mddev
= mddev
;
3145 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
3148 if (mddev
->level
== 6) {
3149 conf
->spare_page
= alloc_page(GFP_KERNEL
);
3150 if (!conf
->spare_page
)
3153 spin_lock_init(&conf
->device_lock
);
3154 init_waitqueue_head(&conf
->wait_for_stripe
);
3155 init_waitqueue_head(&conf
->wait_for_overlap
);
3156 INIT_LIST_HEAD(&conf
->handle_list
);
3157 INIT_LIST_HEAD(&conf
->delayed_list
);
3158 INIT_LIST_HEAD(&conf
->bitmap_list
);
3159 INIT_LIST_HEAD(&conf
->inactive_list
);
3160 atomic_set(&conf
->active_stripes
, 0);
3161 atomic_set(&conf
->preread_active_stripes
, 0);
3163 PRINTK("raid5: run(%s) called.\n", mdname(mddev
));
3165 ITERATE_RDEV(mddev
,rdev
,tmp
) {
3166 raid_disk
= rdev
->raid_disk
;
3167 if (raid_disk
>= conf
->raid_disks
3170 disk
= conf
->disks
+ raid_disk
;
3174 if (test_bit(In_sync
, &rdev
->flags
)) {
3175 char b
[BDEVNAME_SIZE
];
3176 printk(KERN_INFO
"raid5: device %s operational as raid"
3177 " disk %d\n", bdevname(rdev
->bdev
,b
),
3179 conf
->working_disks
++;
3184 * 0 for a fully functional array, 1 or 2 for a degraded array.
3186 mddev
->degraded
= conf
->failed_disks
= conf
->raid_disks
- conf
->working_disks
;
3187 conf
->mddev
= mddev
;
3188 conf
->chunk_size
= mddev
->chunk_size
;
3189 conf
->level
= mddev
->level
;
3190 if (conf
->level
== 6)
3191 conf
->max_degraded
= 2;
3193 conf
->max_degraded
= 1;
3194 conf
->algorithm
= mddev
->layout
;
3195 conf
->max_nr_stripes
= NR_STRIPES
;
3196 conf
->expand_progress
= mddev
->reshape_position
;
3198 /* device size must be a multiple of chunk size */
3199 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
3200 mddev
->resync_max_sectors
= mddev
->size
<< 1;
3202 if (conf
->level
== 6 && conf
->raid_disks
< 4) {
3203 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
3204 mdname(mddev
), conf
->raid_disks
);
3207 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
3208 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
3209 conf
->chunk_size
, mdname(mddev
));
3212 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
3214 "raid5: unsupported parity algorithm %d for %s\n",
3215 conf
->algorithm
, mdname(mddev
));
3218 if (mddev
->degraded
> conf
->max_degraded
) {
3219 printk(KERN_ERR
"raid5: not enough operational devices for %s"
3220 " (%d/%d failed)\n",
3221 mdname(mddev
), conf
->failed_disks
, conf
->raid_disks
);
3225 if (mddev
->degraded
> 0 &&
3226 mddev
->recovery_cp
!= MaxSector
) {
3227 if (mddev
->ok_start_degraded
)
3229 "raid5: starting dirty degraded array: %s"
3230 "- data corruption possible.\n",
3234 "raid5: cannot start dirty degraded array for %s\n",
3241 mddev
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
3242 if (!mddev
->thread
) {
3244 "raid5: couldn't allocate thread for %s\n",
3249 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
3250 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
3251 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
3253 "raid5: couldn't allocate %dkB for buffers\n", memory
);
3254 shrink_stripes(conf
);
3255 md_unregister_thread(mddev
->thread
);
3258 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
3259 memory
, mdname(mddev
));
3261 if (mddev
->degraded
== 0)
3262 printk("raid5: raid level %d set %s active with %d out of %d"
3263 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
3264 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
3267 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
3268 " out of %d devices, algorithm %d\n", conf
->level
,
3269 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3270 mddev
->raid_disks
, conf
->algorithm
);
3272 print_raid5_conf(conf
);
3274 if (conf
->expand_progress
!= MaxSector
) {
3275 printk("...ok start reshape thread\n");
3276 conf
->expand_lo
= conf
->expand_progress
;
3277 atomic_set(&conf
->reshape_stripes
, 0);
3278 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3279 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3280 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3281 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3282 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3286 /* read-ahead size must cover two whole stripes, which is
3287 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3290 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
3291 int stripe
= data_disks
*
3292 (mddev
->chunk_size
/ PAGE_SIZE
);
3293 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3294 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3297 /* Ok, everything is just fine now */
3298 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
);
3300 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
3301 mddev
->queue
->issue_flush_fn
= raid5_issue_flush
;
3302 mddev
->array_size
= mddev
->size
* (conf
->previous_raid_disks
-
3303 conf
->max_degraded
);
3308 print_raid5_conf(conf
);
3309 safe_put_page(conf
->spare_page
);
3311 kfree(conf
->stripe_hashtbl
);
3314 mddev
->private = NULL
;
3315 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
3321 static int stop(mddev_t
*mddev
)
3323 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3325 md_unregister_thread(mddev
->thread
);
3326 mddev
->thread
= NULL
;
3327 shrink_stripes(conf
);
3328 kfree(conf
->stripe_hashtbl
);
3329 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
3330 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
3333 mddev
->private = NULL
;
3338 static void print_sh (struct seq_file
*seq
, struct stripe_head
*sh
)
3342 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
3343 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
3344 seq_printf(seq
, "sh %llu, count %d.\n",
3345 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
3346 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
3347 for (i
= 0; i
< sh
->disks
; i
++) {
3348 seq_printf(seq
, "(cache%d: %p %ld) ",
3349 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
3351 seq_printf(seq
, "\n");
3354 static void printall (struct seq_file
*seq
, raid5_conf_t
*conf
)
3356 struct stripe_head
*sh
;
3357 struct hlist_node
*hn
;
3360 spin_lock_irq(&conf
->device_lock
);
3361 for (i
= 0; i
< NR_HASH
; i
++) {
3362 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
3363 if (sh
->raid_conf
!= conf
)
3368 spin_unlock_irq(&conf
->device_lock
);
3372 static void status (struct seq_file
*seq
, mddev_t
*mddev
)
3374 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3377 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
3378 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->working_disks
);
3379 for (i
= 0; i
< conf
->raid_disks
; i
++)
3380 seq_printf (seq
, "%s",
3381 conf
->disks
[i
].rdev
&&
3382 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
3383 seq_printf (seq
, "]");
3385 seq_printf (seq
, "\n");
3386 printall(seq
, conf
);
3390 static void print_raid5_conf (raid5_conf_t
*conf
)
3393 struct disk_info
*tmp
;
3395 printk("RAID5 conf printout:\n");
3397 printk("(conf==NULL)\n");
3400 printk(" --- rd:%d wd:%d fd:%d\n", conf
->raid_disks
,
3401 conf
->working_disks
, conf
->failed_disks
);
3403 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3404 char b
[BDEVNAME_SIZE
];
3405 tmp
= conf
->disks
+ i
;
3407 printk(" disk %d, o:%d, dev:%s\n",
3408 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
3409 bdevname(tmp
->rdev
->bdev
,b
));
3413 static int raid5_spare_active(mddev_t
*mddev
)
3416 raid5_conf_t
*conf
= mddev
->private;
3417 struct disk_info
*tmp
;
3419 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3420 tmp
= conf
->disks
+ i
;
3422 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
3423 && !test_bit(In_sync
, &tmp
->rdev
->flags
)) {
3425 conf
->failed_disks
--;
3426 conf
->working_disks
++;
3427 set_bit(In_sync
, &tmp
->rdev
->flags
);
3430 print_raid5_conf(conf
);
3434 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
3436 raid5_conf_t
*conf
= mddev
->private;
3439 struct disk_info
*p
= conf
->disks
+ number
;
3441 print_raid5_conf(conf
);
3444 if (test_bit(In_sync
, &rdev
->flags
) ||
3445 atomic_read(&rdev
->nr_pending
)) {
3451 if (atomic_read(&rdev
->nr_pending
)) {
3452 /* lost the race, try later */
3459 print_raid5_conf(conf
);
3463 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
3465 raid5_conf_t
*conf
= mddev
->private;
3468 struct disk_info
*p
;
3470 if (mddev
->degraded
> conf
->max_degraded
)
3471 /* no point adding a device */
3475 * find the disk ... but prefer rdev->saved_raid_disk
3478 if (rdev
->saved_raid_disk
>= 0 &&
3479 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
3480 disk
= rdev
->saved_raid_disk
;
3483 for ( ; disk
< conf
->raid_disks
; disk
++)
3484 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
3485 clear_bit(In_sync
, &rdev
->flags
);
3486 rdev
->raid_disk
= disk
;
3488 if (rdev
->saved_raid_disk
!= disk
)
3490 rcu_assign_pointer(p
->rdev
, rdev
);
3493 print_raid5_conf(conf
);
3497 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
3499 /* no resync is happening, and there is enough space
3500 * on all devices, so we can resize.
3501 * We need to make sure resync covers any new space.
3502 * If the array is shrinking we should possibly wait until
3503 * any io in the removed space completes, but it hardly seems
3506 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3508 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
3509 mddev
->array_size
= (sectors
* (mddev
->raid_disks
-conf
->max_degraded
))>>1;
3510 set_capacity(mddev
->gendisk
, mddev
->array_size
<< 1);
3512 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
3513 mddev
->recovery_cp
= mddev
->size
<< 1;
3514 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3516 mddev
->size
= sectors
/2;
3517 mddev
->resync_max_sectors
= sectors
;
3521 #ifdef CONFIG_MD_RAID5_RESHAPE
3522 static int raid5_check_reshape(mddev_t
*mddev
)
3524 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3527 if (mddev
->delta_disks
< 0 ||
3528 mddev
->new_level
!= mddev
->level
)
3529 return -EINVAL
; /* Cannot shrink array or change level yet */
3530 if (mddev
->delta_disks
== 0)
3531 return 0; /* nothing to do */
3533 /* Can only proceed if there are plenty of stripe_heads.
3534 * We need a minimum of one full stripe,, and for sensible progress
3535 * it is best to have about 4 times that.
3536 * If we require 4 times, then the default 256 4K stripe_heads will
3537 * allow for chunk sizes up to 256K, which is probably OK.
3538 * If the chunk size is greater, user-space should request more
3539 * stripe_heads first.
3541 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
3542 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
3543 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
3544 (mddev
->chunk_size
/ STRIPE_SIZE
)*4);
3548 err
= resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
3552 /* looks like we might be able to manage this */
3556 static int raid5_start_reshape(mddev_t
*mddev
)
3558 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3560 struct list_head
*rtmp
;
3562 int added_devices
= 0;
3564 if (mddev
->degraded
||
3565 test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
3568 ITERATE_RDEV(mddev
, rdev
, rtmp
)
3569 if (rdev
->raid_disk
< 0 &&
3570 !test_bit(Faulty
, &rdev
->flags
))
3573 if (spares
< mddev
->delta_disks
-1)
3574 /* Not enough devices even to make a degraded array
3579 atomic_set(&conf
->reshape_stripes
, 0);
3580 spin_lock_irq(&conf
->device_lock
);
3581 conf
->previous_raid_disks
= conf
->raid_disks
;
3582 conf
->raid_disks
+= mddev
->delta_disks
;
3583 conf
->expand_progress
= 0;
3584 conf
->expand_lo
= 0;
3585 spin_unlock_irq(&conf
->device_lock
);
3587 /* Add some new drives, as many as will fit.
3588 * We know there are enough to make the newly sized array work.
3590 ITERATE_RDEV(mddev
, rdev
, rtmp
)
3591 if (rdev
->raid_disk
< 0 &&
3592 !test_bit(Faulty
, &rdev
->flags
)) {
3593 if (raid5_add_disk(mddev
, rdev
)) {
3595 set_bit(In_sync
, &rdev
->flags
);
3596 conf
->working_disks
++;
3598 rdev
->recovery_offset
= 0;
3599 sprintf(nm
, "rd%d", rdev
->raid_disk
);
3600 sysfs_create_link(&mddev
->kobj
, &rdev
->kobj
, nm
);
3605 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
) - added_devices
;
3606 mddev
->raid_disks
= conf
->raid_disks
;
3607 mddev
->reshape_position
= 0;
3608 mddev
->sb_dirty
= 1;
3610 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3611 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3612 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3613 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3614 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3616 if (!mddev
->sync_thread
) {
3617 mddev
->recovery
= 0;
3618 spin_lock_irq(&conf
->device_lock
);
3619 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
3620 conf
->expand_progress
= MaxSector
;
3621 spin_unlock_irq(&conf
->device_lock
);
3624 md_wakeup_thread(mddev
->sync_thread
);
3625 md_new_event(mddev
);
3630 static void end_reshape(raid5_conf_t
*conf
)
3632 struct block_device
*bdev
;
3634 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
3635 conf
->mddev
->array_size
= conf
->mddev
->size
* (conf
->raid_disks
-1);
3636 set_capacity(conf
->mddev
->gendisk
, conf
->mddev
->array_size
<< 1);
3637 conf
->mddev
->changed
= 1;
3639 bdev
= bdget_disk(conf
->mddev
->gendisk
, 0);
3641 mutex_lock(&bdev
->bd_inode
->i_mutex
);
3642 i_size_write(bdev
->bd_inode
, conf
->mddev
->array_size
<< 10);
3643 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
3646 spin_lock_irq(&conf
->device_lock
);
3647 conf
->expand_progress
= MaxSector
;
3648 spin_unlock_irq(&conf
->device_lock
);
3649 conf
->mddev
->reshape_position
= MaxSector
;
3651 /* read-ahead size must cover two whole stripes, which is
3652 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3655 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
3656 int stripe
= data_disks
*
3657 (conf
->mddev
->chunk_size
/ PAGE_SIZE
);
3658 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3659 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3664 static void raid5_quiesce(mddev_t
*mddev
, int state
)
3666 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3669 case 2: /* resume for a suspend */
3670 wake_up(&conf
->wait_for_overlap
);
3673 case 1: /* stop all writes */
3674 spin_lock_irq(&conf
->device_lock
);
3676 wait_event_lock_irq(conf
->wait_for_stripe
,
3677 atomic_read(&conf
->active_stripes
) == 0,
3678 conf
->device_lock
, /* nothing */);
3679 spin_unlock_irq(&conf
->device_lock
);
3682 case 0: /* re-enable writes */
3683 spin_lock_irq(&conf
->device_lock
);
3685 wake_up(&conf
->wait_for_stripe
);
3686 wake_up(&conf
->wait_for_overlap
);
3687 spin_unlock_irq(&conf
->device_lock
);
3692 static struct mdk_personality raid6_personality
=
3696 .owner
= THIS_MODULE
,
3697 .make_request
= make_request
,
3701 .error_handler
= error
,
3702 .hot_add_disk
= raid5_add_disk
,
3703 .hot_remove_disk
= raid5_remove_disk
,
3704 .spare_active
= raid5_spare_active
,
3705 .sync_request
= sync_request
,
3706 .resize
= raid5_resize
,
3707 .quiesce
= raid5_quiesce
,
3709 static struct mdk_personality raid5_personality
=
3713 .owner
= THIS_MODULE
,
3714 .make_request
= make_request
,
3718 .error_handler
= error
,
3719 .hot_add_disk
= raid5_add_disk
,
3720 .hot_remove_disk
= raid5_remove_disk
,
3721 .spare_active
= raid5_spare_active
,
3722 .sync_request
= sync_request
,
3723 .resize
= raid5_resize
,
3724 #ifdef CONFIG_MD_RAID5_RESHAPE
3725 .check_reshape
= raid5_check_reshape
,
3726 .start_reshape
= raid5_start_reshape
,
3728 .quiesce
= raid5_quiesce
,
3731 static struct mdk_personality raid4_personality
=
3735 .owner
= THIS_MODULE
,
3736 .make_request
= make_request
,
3740 .error_handler
= error
,
3741 .hot_add_disk
= raid5_add_disk
,
3742 .hot_remove_disk
= raid5_remove_disk
,
3743 .spare_active
= raid5_spare_active
,
3744 .sync_request
= sync_request
,
3745 .resize
= raid5_resize
,
3746 .quiesce
= raid5_quiesce
,
3749 static int __init
raid5_init(void)
3753 e
= raid6_select_algo();
3756 register_md_personality(&raid6_personality
);
3757 register_md_personality(&raid5_personality
);
3758 register_md_personality(&raid4_personality
);
3762 static void raid5_exit(void)
3764 unregister_md_personality(&raid6_personality
);
3765 unregister_md_personality(&raid5_personality
);
3766 unregister_md_personality(&raid4_personality
);
3769 module_init(raid5_init
);
3770 module_exit(raid5_exit
);
3771 MODULE_LICENSE("GPL");
3772 MODULE_ALIAS("md-personality-4"); /* RAID5 */
3773 MODULE_ALIAS("md-raid5");
3774 MODULE_ALIAS("md-raid4");
3775 MODULE_ALIAS("md-level-5");
3776 MODULE_ALIAS("md-level-4");
3777 MODULE_ALIAS("md-personality-8"); /* RAID6 */
3778 MODULE_ALIAS("md-raid6");
3779 MODULE_ALIAS("md-level-6");
3781 /* This used to be two separate modules, they were: */
3782 MODULE_ALIAS("raid5");
3783 MODULE_ALIAS("raid6");