[ARM] Fix XIP_KERNEL build error in arch/arm/mm/mmu.c
[linux-2.6/pdupreez.git] / drivers / md / md.c
blob8dbab2ef38857f1f0cff938701869e3b067d7b44
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/kthread.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/buffer_head.h> /* for invalidate_bdev */
42 #include <linux/suspend.h>
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
47 #include <linux/init.h>
49 #include <linux/file.h>
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
55 #include <asm/unaligned.h>
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
74 static void md_print_devices(void);
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80 * is 1000 KB/sec, so the extra system load does not show up that much.
81 * Increase it if you want to have more _guaranteed_ speed. Note that
82 * the RAID driver will use the maximum available bandwidth if the IO
83 * subsystem is idle. There is also an 'absolute maximum' reconstruction
84 * speed limit - in case reconstruction slows down your system despite
85 * idle IO detection.
87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88 * or /sys/block/mdX/md/sync_speed_{min,max}
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
95 return mddev->sync_speed_min ?
96 mddev->sync_speed_min : sysctl_speed_limit_min;
99 static inline int speed_max(mddev_t *mddev)
101 return mddev->sync_speed_max ?
102 mddev->sync_speed_max : sysctl_speed_limit_max;
105 static struct ctl_table_header *raid_table_header;
107 static ctl_table raid_table[] = {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
110 .procname = "speed_limit_min",
111 .data = &sysctl_speed_limit_min,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
117 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
118 .procname = "speed_limit_max",
119 .data = &sysctl_speed_limit_max,
120 .maxlen = sizeof(int),
121 .mode = S_IRUGO|S_IWUSR,
122 .proc_handler = &proc_dointvec,
124 { .ctl_name = 0 }
127 static ctl_table raid_dir_table[] = {
129 .ctl_name = DEV_RAID,
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
135 { .ctl_name = 0 }
138 static ctl_table raid_root_table[] = {
140 .ctl_name = CTL_DEV,
141 .procname = "dev",
142 .maxlen = 0,
143 .mode = 0555,
144 .child = raid_dir_table,
146 { .ctl_name = 0 }
149 static struct block_device_operations md_fops;
151 static int start_readonly;
154 * We have a system wide 'event count' that is incremented
155 * on any 'interesting' event, and readers of /proc/mdstat
156 * can use 'poll' or 'select' to find out when the event
157 * count increases.
159 * Events are:
160 * start array, stop array, error, add device, remove device,
161 * start build, activate spare
163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
164 static atomic_t md_event_count;
165 void md_new_event(mddev_t *mddev)
167 atomic_inc(&md_event_count);
168 wake_up(&md_event_waiters);
169 sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 EXPORT_SYMBOL_GPL(md_new_event);
173 /* Alternate version that can be called from interrupts
174 * when calling sysfs_notify isn't needed.
176 static void md_new_event_inintr(mddev_t *mddev)
178 atomic_inc(&md_event_count);
179 wake_up(&md_event_waiters);
183 * Enables to iterate over all existing md arrays
184 * all_mddevs_lock protects this list.
186 static LIST_HEAD(all_mddevs);
187 static DEFINE_SPINLOCK(all_mddevs_lock);
191 * iterates through all used mddevs in the system.
192 * We take care to grab the all_mddevs_lock whenever navigating
193 * the list, and to always hold a refcount when unlocked.
194 * Any code which breaks out of this loop while own
195 * a reference to the current mddev and must mddev_put it.
197 #define ITERATE_MDDEV(mddev,tmp) \
199 for (({ spin_lock(&all_mddevs_lock); \
200 tmp = all_mddevs.next; \
201 mddev = NULL;}); \
202 ({ if (tmp != &all_mddevs) \
203 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
204 spin_unlock(&all_mddevs_lock); \
205 if (mddev) mddev_put(mddev); \
206 mddev = list_entry(tmp, mddev_t, all_mddevs); \
207 tmp != &all_mddevs;}); \
208 ({ spin_lock(&all_mddevs_lock); \
209 tmp = tmp->next;}) \
213 static int md_fail_request (request_queue_t *q, struct bio *bio)
215 bio_io_error(bio, bio->bi_size);
216 return 0;
219 static inline mddev_t *mddev_get(mddev_t *mddev)
221 atomic_inc(&mddev->active);
222 return mddev;
225 static void mddev_put(mddev_t *mddev)
227 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
228 return;
229 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
230 list_del(&mddev->all_mddevs);
231 spin_unlock(&all_mddevs_lock);
232 blk_cleanup_queue(mddev->queue);
233 kobject_unregister(&mddev->kobj);
234 } else
235 spin_unlock(&all_mddevs_lock);
238 static mddev_t * mddev_find(dev_t unit)
240 mddev_t *mddev, *new = NULL;
242 retry:
243 spin_lock(&all_mddevs_lock);
244 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
245 if (mddev->unit == unit) {
246 mddev_get(mddev);
247 spin_unlock(&all_mddevs_lock);
248 kfree(new);
249 return mddev;
252 if (new) {
253 list_add(&new->all_mddevs, &all_mddevs);
254 spin_unlock(&all_mddevs_lock);
255 return new;
257 spin_unlock(&all_mddevs_lock);
259 new = kzalloc(sizeof(*new), GFP_KERNEL);
260 if (!new)
261 return NULL;
263 new->unit = unit;
264 if (MAJOR(unit) == MD_MAJOR)
265 new->md_minor = MINOR(unit);
266 else
267 new->md_minor = MINOR(unit) >> MdpMinorShift;
269 mutex_init(&new->reconfig_mutex);
270 INIT_LIST_HEAD(&new->disks);
271 INIT_LIST_HEAD(&new->all_mddevs);
272 init_timer(&new->safemode_timer);
273 atomic_set(&new->active, 1);
274 spin_lock_init(&new->write_lock);
275 init_waitqueue_head(&new->sb_wait);
277 new->queue = blk_alloc_queue(GFP_KERNEL);
278 if (!new->queue) {
279 kfree(new);
280 return NULL;
282 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
284 blk_queue_make_request(new->queue, md_fail_request);
286 goto retry;
289 static inline int mddev_lock(mddev_t * mddev)
291 return mutex_lock_interruptible(&mddev->reconfig_mutex);
294 static inline int mddev_trylock(mddev_t * mddev)
296 return mutex_trylock(&mddev->reconfig_mutex);
299 static inline void mddev_unlock(mddev_t * mddev)
301 mutex_unlock(&mddev->reconfig_mutex);
303 md_wakeup_thread(mddev->thread);
306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
308 mdk_rdev_t * rdev;
309 struct list_head *tmp;
311 ITERATE_RDEV(mddev,rdev,tmp) {
312 if (rdev->desc_nr == nr)
313 return rdev;
315 return NULL;
318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
320 struct list_head *tmp;
321 mdk_rdev_t *rdev;
323 ITERATE_RDEV(mddev,rdev,tmp) {
324 if (rdev->bdev->bd_dev == dev)
325 return rdev;
327 return NULL;
330 static struct mdk_personality *find_pers(int level, char *clevel)
332 struct mdk_personality *pers;
333 list_for_each_entry(pers, &pers_list, list) {
334 if (level != LEVEL_NONE && pers->level == level)
335 return pers;
336 if (strcmp(pers->name, clevel)==0)
337 return pers;
339 return NULL;
342 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
344 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
345 return MD_NEW_SIZE_BLOCKS(size);
348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
350 sector_t size;
352 size = rdev->sb_offset;
354 if (chunk_size)
355 size &= ~((sector_t)chunk_size/1024 - 1);
356 return size;
359 static int alloc_disk_sb(mdk_rdev_t * rdev)
361 if (rdev->sb_page)
362 MD_BUG();
364 rdev->sb_page = alloc_page(GFP_KERNEL);
365 if (!rdev->sb_page) {
366 printk(KERN_ALERT "md: out of memory.\n");
367 return -EINVAL;
370 return 0;
373 static void free_disk_sb(mdk_rdev_t * rdev)
375 if (rdev->sb_page) {
376 put_page(rdev->sb_page);
377 rdev->sb_loaded = 0;
378 rdev->sb_page = NULL;
379 rdev->sb_offset = 0;
380 rdev->size = 0;
385 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
387 mdk_rdev_t *rdev = bio->bi_private;
388 mddev_t *mddev = rdev->mddev;
389 if (bio->bi_size)
390 return 1;
392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
393 md_error(mddev, rdev);
395 if (atomic_dec_and_test(&mddev->pending_writes))
396 wake_up(&mddev->sb_wait);
397 bio_put(bio);
398 return 0;
401 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
403 struct bio *bio2 = bio->bi_private;
404 mdk_rdev_t *rdev = bio2->bi_private;
405 mddev_t *mddev = rdev->mddev;
406 if (bio->bi_size)
407 return 1;
409 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
410 error == -EOPNOTSUPP) {
411 unsigned long flags;
412 /* barriers don't appear to be supported :-( */
413 set_bit(BarriersNotsupp, &rdev->flags);
414 mddev->barriers_work = 0;
415 spin_lock_irqsave(&mddev->write_lock, flags);
416 bio2->bi_next = mddev->biolist;
417 mddev->biolist = bio2;
418 spin_unlock_irqrestore(&mddev->write_lock, flags);
419 wake_up(&mddev->sb_wait);
420 bio_put(bio);
421 return 0;
423 bio_put(bio2);
424 bio->bi_private = rdev;
425 return super_written(bio, bytes_done, error);
428 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
429 sector_t sector, int size, struct page *page)
431 /* write first size bytes of page to sector of rdev
432 * Increment mddev->pending_writes before returning
433 * and decrement it on completion, waking up sb_wait
434 * if zero is reached.
435 * If an error occurred, call md_error
437 * As we might need to resubmit the request if BIO_RW_BARRIER
438 * causes ENOTSUPP, we allocate a spare bio...
440 struct bio *bio = bio_alloc(GFP_NOIO, 1);
441 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
443 bio->bi_bdev = rdev->bdev;
444 bio->bi_sector = sector;
445 bio_add_page(bio, page, size, 0);
446 bio->bi_private = rdev;
447 bio->bi_end_io = super_written;
448 bio->bi_rw = rw;
450 atomic_inc(&mddev->pending_writes);
451 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
452 struct bio *rbio;
453 rw |= (1<<BIO_RW_BARRIER);
454 rbio = bio_clone(bio, GFP_NOIO);
455 rbio->bi_private = bio;
456 rbio->bi_end_io = super_written_barrier;
457 submit_bio(rw, rbio);
458 } else
459 submit_bio(rw, bio);
462 void md_super_wait(mddev_t *mddev)
464 /* wait for all superblock writes that were scheduled to complete.
465 * if any had to be retried (due to BARRIER problems), retry them
467 DEFINE_WAIT(wq);
468 for(;;) {
469 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
470 if (atomic_read(&mddev->pending_writes)==0)
471 break;
472 while (mddev->biolist) {
473 struct bio *bio;
474 spin_lock_irq(&mddev->write_lock);
475 bio = mddev->biolist;
476 mddev->biolist = bio->bi_next ;
477 bio->bi_next = NULL;
478 spin_unlock_irq(&mddev->write_lock);
479 submit_bio(bio->bi_rw, bio);
481 schedule();
483 finish_wait(&mddev->sb_wait, &wq);
486 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
488 if (bio->bi_size)
489 return 1;
491 complete((struct completion*)bio->bi_private);
492 return 0;
495 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
496 struct page *page, int rw)
498 struct bio *bio = bio_alloc(GFP_NOIO, 1);
499 struct completion event;
500 int ret;
502 rw |= (1 << BIO_RW_SYNC);
504 bio->bi_bdev = bdev;
505 bio->bi_sector = sector;
506 bio_add_page(bio, page, size, 0);
507 init_completion(&event);
508 bio->bi_private = &event;
509 bio->bi_end_io = bi_complete;
510 submit_bio(rw, bio);
511 wait_for_completion(&event);
513 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
514 bio_put(bio);
515 return ret;
517 EXPORT_SYMBOL_GPL(sync_page_io);
519 static int read_disk_sb(mdk_rdev_t * rdev, int size)
521 char b[BDEVNAME_SIZE];
522 if (!rdev->sb_page) {
523 MD_BUG();
524 return -EINVAL;
526 if (rdev->sb_loaded)
527 return 0;
530 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
531 goto fail;
532 rdev->sb_loaded = 1;
533 return 0;
535 fail:
536 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
537 bdevname(rdev->bdev,b));
538 return -EINVAL;
541 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
543 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
544 (sb1->set_uuid1 == sb2->set_uuid1) &&
545 (sb1->set_uuid2 == sb2->set_uuid2) &&
546 (sb1->set_uuid3 == sb2->set_uuid3))
548 return 1;
550 return 0;
554 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
556 int ret;
557 mdp_super_t *tmp1, *tmp2;
559 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
560 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
562 if (!tmp1 || !tmp2) {
563 ret = 0;
564 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
565 goto abort;
568 *tmp1 = *sb1;
569 *tmp2 = *sb2;
572 * nr_disks is not constant
574 tmp1->nr_disks = 0;
575 tmp2->nr_disks = 0;
577 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
578 ret = 0;
579 else
580 ret = 1;
582 abort:
583 kfree(tmp1);
584 kfree(tmp2);
585 return ret;
588 static unsigned int calc_sb_csum(mdp_super_t * sb)
590 unsigned int disk_csum, csum;
592 disk_csum = sb->sb_csum;
593 sb->sb_csum = 0;
594 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
595 sb->sb_csum = disk_csum;
596 return csum;
601 * Handle superblock details.
602 * We want to be able to handle multiple superblock formats
603 * so we have a common interface to them all, and an array of
604 * different handlers.
605 * We rely on user-space to write the initial superblock, and support
606 * reading and updating of superblocks.
607 * Interface methods are:
608 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
609 * loads and validates a superblock on dev.
610 * if refdev != NULL, compare superblocks on both devices
611 * Return:
612 * 0 - dev has a superblock that is compatible with refdev
613 * 1 - dev has a superblock that is compatible and newer than refdev
614 * so dev should be used as the refdev in future
615 * -EINVAL superblock incompatible or invalid
616 * -othererror e.g. -EIO
618 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
619 * Verify that dev is acceptable into mddev.
620 * The first time, mddev->raid_disks will be 0, and data from
621 * dev should be merged in. Subsequent calls check that dev
622 * is new enough. Return 0 or -EINVAL
624 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
625 * Update the superblock for rdev with data in mddev
626 * This does not write to disc.
630 struct super_type {
631 char *name;
632 struct module *owner;
633 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
634 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
635 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
639 * load_super for 0.90.0
641 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
643 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
644 mdp_super_t *sb;
645 int ret;
646 sector_t sb_offset;
649 * Calculate the position of the superblock,
650 * it's at the end of the disk.
652 * It also happens to be a multiple of 4Kb.
654 sb_offset = calc_dev_sboffset(rdev->bdev);
655 rdev->sb_offset = sb_offset;
657 ret = read_disk_sb(rdev, MD_SB_BYTES);
658 if (ret) return ret;
660 ret = -EINVAL;
662 bdevname(rdev->bdev, b);
663 sb = (mdp_super_t*)page_address(rdev->sb_page);
665 if (sb->md_magic != MD_SB_MAGIC) {
666 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
668 goto abort;
671 if (sb->major_version != 0 ||
672 sb->minor_version < 90 ||
673 sb->minor_version > 91) {
674 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
675 sb->major_version, sb->minor_version,
677 goto abort;
680 if (sb->raid_disks <= 0)
681 goto abort;
683 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
684 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
686 goto abort;
689 rdev->preferred_minor = sb->md_minor;
690 rdev->data_offset = 0;
691 rdev->sb_size = MD_SB_BYTES;
693 if (sb->level == LEVEL_MULTIPATH)
694 rdev->desc_nr = -1;
695 else
696 rdev->desc_nr = sb->this_disk.number;
698 if (refdev == 0)
699 ret = 1;
700 else {
701 __u64 ev1, ev2;
702 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
703 if (!uuid_equal(refsb, sb)) {
704 printk(KERN_WARNING "md: %s has different UUID to %s\n",
705 b, bdevname(refdev->bdev,b2));
706 goto abort;
708 if (!sb_equal(refsb, sb)) {
709 printk(KERN_WARNING "md: %s has same UUID"
710 " but different superblock to %s\n",
711 b, bdevname(refdev->bdev, b2));
712 goto abort;
714 ev1 = md_event(sb);
715 ev2 = md_event(refsb);
716 if (ev1 > ev2)
717 ret = 1;
718 else
719 ret = 0;
721 rdev->size = calc_dev_size(rdev, sb->chunk_size);
723 if (rdev->size < sb->size && sb->level > 1)
724 /* "this cannot possibly happen" ... */
725 ret = -EINVAL;
727 abort:
728 return ret;
732 * validate_super for 0.90.0
734 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
736 mdp_disk_t *desc;
737 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
738 __u64 ev1 = md_event(sb);
740 rdev->raid_disk = -1;
741 rdev->flags = 0;
742 if (mddev->raid_disks == 0) {
743 mddev->major_version = 0;
744 mddev->minor_version = sb->minor_version;
745 mddev->patch_version = sb->patch_version;
746 mddev->persistent = ! sb->not_persistent;
747 mddev->chunk_size = sb->chunk_size;
748 mddev->ctime = sb->ctime;
749 mddev->utime = sb->utime;
750 mddev->level = sb->level;
751 mddev->clevel[0] = 0;
752 mddev->layout = sb->layout;
753 mddev->raid_disks = sb->raid_disks;
754 mddev->size = sb->size;
755 mddev->events = ev1;
756 mddev->bitmap_offset = 0;
757 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
759 if (mddev->minor_version >= 91) {
760 mddev->reshape_position = sb->reshape_position;
761 mddev->delta_disks = sb->delta_disks;
762 mddev->new_level = sb->new_level;
763 mddev->new_layout = sb->new_layout;
764 mddev->new_chunk = sb->new_chunk;
765 } else {
766 mddev->reshape_position = MaxSector;
767 mddev->delta_disks = 0;
768 mddev->new_level = mddev->level;
769 mddev->new_layout = mddev->layout;
770 mddev->new_chunk = mddev->chunk_size;
773 if (sb->state & (1<<MD_SB_CLEAN))
774 mddev->recovery_cp = MaxSector;
775 else {
776 if (sb->events_hi == sb->cp_events_hi &&
777 sb->events_lo == sb->cp_events_lo) {
778 mddev->recovery_cp = sb->recovery_cp;
779 } else
780 mddev->recovery_cp = 0;
783 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
784 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
785 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
786 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
788 mddev->max_disks = MD_SB_DISKS;
790 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
791 mddev->bitmap_file == NULL) {
792 if (mddev->level != 1 && mddev->level != 4
793 && mddev->level != 5 && mddev->level != 6
794 && mddev->level != 10) {
795 /* FIXME use a better test */
796 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
797 return -EINVAL;
799 mddev->bitmap_offset = mddev->default_bitmap_offset;
802 } else if (mddev->pers == NULL) {
803 /* Insist on good event counter while assembling */
804 ++ev1;
805 if (ev1 < mddev->events)
806 return -EINVAL;
807 } else if (mddev->bitmap) {
808 /* if adding to array with a bitmap, then we can accept an
809 * older device ... but not too old.
811 if (ev1 < mddev->bitmap->events_cleared)
812 return 0;
813 } else {
814 if (ev1 < mddev->events)
815 /* just a hot-add of a new device, leave raid_disk at -1 */
816 return 0;
819 if (mddev->level != LEVEL_MULTIPATH) {
820 desc = sb->disks + rdev->desc_nr;
822 if (desc->state & (1<<MD_DISK_FAULTY))
823 set_bit(Faulty, &rdev->flags);
824 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
825 desc->raid_disk < mddev->raid_disks */) {
826 set_bit(In_sync, &rdev->flags);
827 rdev->raid_disk = desc->raid_disk;
829 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
830 set_bit(WriteMostly, &rdev->flags);
831 } else /* MULTIPATH are always insync */
832 set_bit(In_sync, &rdev->flags);
833 return 0;
837 * sync_super for 0.90.0
839 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
841 mdp_super_t *sb;
842 struct list_head *tmp;
843 mdk_rdev_t *rdev2;
844 int next_spare = mddev->raid_disks;
847 /* make rdev->sb match mddev data..
849 * 1/ zero out disks
850 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
851 * 3/ any empty disks < next_spare become removed
853 * disks[0] gets initialised to REMOVED because
854 * we cannot be sure from other fields if it has
855 * been initialised or not.
857 int i;
858 int active=0, working=0,failed=0,spare=0,nr_disks=0;
860 rdev->sb_size = MD_SB_BYTES;
862 sb = (mdp_super_t*)page_address(rdev->sb_page);
864 memset(sb, 0, sizeof(*sb));
866 sb->md_magic = MD_SB_MAGIC;
867 sb->major_version = mddev->major_version;
868 sb->patch_version = mddev->patch_version;
869 sb->gvalid_words = 0; /* ignored */
870 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
871 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
872 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
873 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
875 sb->ctime = mddev->ctime;
876 sb->level = mddev->level;
877 sb->size = mddev->size;
878 sb->raid_disks = mddev->raid_disks;
879 sb->md_minor = mddev->md_minor;
880 sb->not_persistent = !mddev->persistent;
881 sb->utime = mddev->utime;
882 sb->state = 0;
883 sb->events_hi = (mddev->events>>32);
884 sb->events_lo = (u32)mddev->events;
886 if (mddev->reshape_position == MaxSector)
887 sb->minor_version = 90;
888 else {
889 sb->minor_version = 91;
890 sb->reshape_position = mddev->reshape_position;
891 sb->new_level = mddev->new_level;
892 sb->delta_disks = mddev->delta_disks;
893 sb->new_layout = mddev->new_layout;
894 sb->new_chunk = mddev->new_chunk;
896 mddev->minor_version = sb->minor_version;
897 if (mddev->in_sync)
899 sb->recovery_cp = mddev->recovery_cp;
900 sb->cp_events_hi = (mddev->events>>32);
901 sb->cp_events_lo = (u32)mddev->events;
902 if (mddev->recovery_cp == MaxSector)
903 sb->state = (1<< MD_SB_CLEAN);
904 } else
905 sb->recovery_cp = 0;
907 sb->layout = mddev->layout;
908 sb->chunk_size = mddev->chunk_size;
910 if (mddev->bitmap && mddev->bitmap_file == NULL)
911 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
913 sb->disks[0].state = (1<<MD_DISK_REMOVED);
914 ITERATE_RDEV(mddev,rdev2,tmp) {
915 mdp_disk_t *d;
916 int desc_nr;
917 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
918 && !test_bit(Faulty, &rdev2->flags))
919 desc_nr = rdev2->raid_disk;
920 else
921 desc_nr = next_spare++;
922 rdev2->desc_nr = desc_nr;
923 d = &sb->disks[rdev2->desc_nr];
924 nr_disks++;
925 d->number = rdev2->desc_nr;
926 d->major = MAJOR(rdev2->bdev->bd_dev);
927 d->minor = MINOR(rdev2->bdev->bd_dev);
928 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
929 && !test_bit(Faulty, &rdev2->flags))
930 d->raid_disk = rdev2->raid_disk;
931 else
932 d->raid_disk = rdev2->desc_nr; /* compatibility */
933 if (test_bit(Faulty, &rdev2->flags))
934 d->state = (1<<MD_DISK_FAULTY);
935 else if (test_bit(In_sync, &rdev2->flags)) {
936 d->state = (1<<MD_DISK_ACTIVE);
937 d->state |= (1<<MD_DISK_SYNC);
938 active++;
939 working++;
940 } else {
941 d->state = 0;
942 spare++;
943 working++;
945 if (test_bit(WriteMostly, &rdev2->flags))
946 d->state |= (1<<MD_DISK_WRITEMOSTLY);
948 /* now set the "removed" and "faulty" bits on any missing devices */
949 for (i=0 ; i < mddev->raid_disks ; i++) {
950 mdp_disk_t *d = &sb->disks[i];
951 if (d->state == 0 && d->number == 0) {
952 d->number = i;
953 d->raid_disk = i;
954 d->state = (1<<MD_DISK_REMOVED);
955 d->state |= (1<<MD_DISK_FAULTY);
956 failed++;
959 sb->nr_disks = nr_disks;
960 sb->active_disks = active;
961 sb->working_disks = working;
962 sb->failed_disks = failed;
963 sb->spare_disks = spare;
965 sb->this_disk = sb->disks[rdev->desc_nr];
966 sb->sb_csum = calc_sb_csum(sb);
970 * version 1 superblock
973 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
975 unsigned int disk_csum, csum;
976 unsigned long long newcsum;
977 int size = 256 + le32_to_cpu(sb->max_dev)*2;
978 unsigned int *isuper = (unsigned int*)sb;
979 int i;
981 disk_csum = sb->sb_csum;
982 sb->sb_csum = 0;
983 newcsum = 0;
984 for (i=0; size>=4; size -= 4 )
985 newcsum += le32_to_cpu(*isuper++);
987 if (size == 2)
988 newcsum += le16_to_cpu(*(unsigned short*) isuper);
990 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
991 sb->sb_csum = disk_csum;
992 return cpu_to_le32(csum);
995 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
997 struct mdp_superblock_1 *sb;
998 int ret;
999 sector_t sb_offset;
1000 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1001 int bmask;
1004 * Calculate the position of the superblock.
1005 * It is always aligned to a 4K boundary and
1006 * depeding on minor_version, it can be:
1007 * 0: At least 8K, but less than 12K, from end of device
1008 * 1: At start of device
1009 * 2: 4K from start of device.
1011 switch(minor_version) {
1012 case 0:
1013 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1014 sb_offset -= 8*2;
1015 sb_offset &= ~(sector_t)(4*2-1);
1016 /* convert from sectors to K */
1017 sb_offset /= 2;
1018 break;
1019 case 1:
1020 sb_offset = 0;
1021 break;
1022 case 2:
1023 sb_offset = 4;
1024 break;
1025 default:
1026 return -EINVAL;
1028 rdev->sb_offset = sb_offset;
1030 /* superblock is rarely larger than 1K, but it can be larger,
1031 * and it is safe to read 4k, so we do that
1033 ret = read_disk_sb(rdev, 4096);
1034 if (ret) return ret;
1037 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1039 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1040 sb->major_version != cpu_to_le32(1) ||
1041 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1042 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1043 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1044 return -EINVAL;
1046 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1047 printk("md: invalid superblock checksum on %s\n",
1048 bdevname(rdev->bdev,b));
1049 return -EINVAL;
1051 if (le64_to_cpu(sb->data_size) < 10) {
1052 printk("md: data_size too small on %s\n",
1053 bdevname(rdev->bdev,b));
1054 return -EINVAL;
1056 rdev->preferred_minor = 0xffff;
1057 rdev->data_offset = le64_to_cpu(sb->data_offset);
1058 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1060 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1061 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1062 if (rdev->sb_size & bmask)
1063 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1065 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1066 rdev->desc_nr = -1;
1067 else
1068 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1070 if (refdev == 0)
1071 ret = 1;
1072 else {
1073 __u64 ev1, ev2;
1074 struct mdp_superblock_1 *refsb =
1075 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1077 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1078 sb->level != refsb->level ||
1079 sb->layout != refsb->layout ||
1080 sb->chunksize != refsb->chunksize) {
1081 printk(KERN_WARNING "md: %s has strangely different"
1082 " superblock to %s\n",
1083 bdevname(rdev->bdev,b),
1084 bdevname(refdev->bdev,b2));
1085 return -EINVAL;
1087 ev1 = le64_to_cpu(sb->events);
1088 ev2 = le64_to_cpu(refsb->events);
1090 if (ev1 > ev2)
1091 ret = 1;
1092 else
1093 ret = 0;
1095 if (minor_version)
1096 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1097 else
1098 rdev->size = rdev->sb_offset;
1099 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1100 return -EINVAL;
1101 rdev->size = le64_to_cpu(sb->data_size)/2;
1102 if (le32_to_cpu(sb->chunksize))
1103 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1105 if (le32_to_cpu(sb->size) > rdev->size*2)
1106 return -EINVAL;
1107 return ret;
1110 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1112 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1113 __u64 ev1 = le64_to_cpu(sb->events);
1115 rdev->raid_disk = -1;
1116 rdev->flags = 0;
1117 if (mddev->raid_disks == 0) {
1118 mddev->major_version = 1;
1119 mddev->patch_version = 0;
1120 mddev->persistent = 1;
1121 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1122 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1123 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1124 mddev->level = le32_to_cpu(sb->level);
1125 mddev->clevel[0] = 0;
1126 mddev->layout = le32_to_cpu(sb->layout);
1127 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1128 mddev->size = le64_to_cpu(sb->size)/2;
1129 mddev->events = ev1;
1130 mddev->bitmap_offset = 0;
1131 mddev->default_bitmap_offset = 1024 >> 9;
1133 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1134 memcpy(mddev->uuid, sb->set_uuid, 16);
1136 mddev->max_disks = (4096-256)/2;
1138 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1139 mddev->bitmap_file == NULL ) {
1140 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1141 && mddev->level != 10) {
1142 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1143 return -EINVAL;
1145 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1147 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1148 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1149 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1150 mddev->new_level = le32_to_cpu(sb->new_level);
1151 mddev->new_layout = le32_to_cpu(sb->new_layout);
1152 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1153 } else {
1154 mddev->reshape_position = MaxSector;
1155 mddev->delta_disks = 0;
1156 mddev->new_level = mddev->level;
1157 mddev->new_layout = mddev->layout;
1158 mddev->new_chunk = mddev->chunk_size;
1161 } else if (mddev->pers == NULL) {
1162 /* Insist of good event counter while assembling */
1163 ++ev1;
1164 if (ev1 < mddev->events)
1165 return -EINVAL;
1166 } else if (mddev->bitmap) {
1167 /* If adding to array with a bitmap, then we can accept an
1168 * older device, but not too old.
1170 if (ev1 < mddev->bitmap->events_cleared)
1171 return 0;
1172 } else {
1173 if (ev1 < mddev->events)
1174 /* just a hot-add of a new device, leave raid_disk at -1 */
1175 return 0;
1177 if (mddev->level != LEVEL_MULTIPATH) {
1178 int role;
1179 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1180 switch(role) {
1181 case 0xffff: /* spare */
1182 break;
1183 case 0xfffe: /* faulty */
1184 set_bit(Faulty, &rdev->flags);
1185 break;
1186 default:
1187 if ((le32_to_cpu(sb->feature_map) &
1188 MD_FEATURE_RECOVERY_OFFSET))
1189 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1190 else
1191 set_bit(In_sync, &rdev->flags);
1192 rdev->raid_disk = role;
1193 break;
1195 if (sb->devflags & WriteMostly1)
1196 set_bit(WriteMostly, &rdev->flags);
1197 } else /* MULTIPATH are always insync */
1198 set_bit(In_sync, &rdev->flags);
1200 return 0;
1203 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1205 struct mdp_superblock_1 *sb;
1206 struct list_head *tmp;
1207 mdk_rdev_t *rdev2;
1208 int max_dev, i;
1209 /* make rdev->sb match mddev and rdev data. */
1211 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1213 sb->feature_map = 0;
1214 sb->pad0 = 0;
1215 sb->recovery_offset = cpu_to_le64(0);
1216 memset(sb->pad1, 0, sizeof(sb->pad1));
1217 memset(sb->pad2, 0, sizeof(sb->pad2));
1218 memset(sb->pad3, 0, sizeof(sb->pad3));
1220 sb->utime = cpu_to_le64((__u64)mddev->utime);
1221 sb->events = cpu_to_le64(mddev->events);
1222 if (mddev->in_sync)
1223 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1224 else
1225 sb->resync_offset = cpu_to_le64(0);
1227 sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1229 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1230 sb->size = cpu_to_le64(mddev->size<<1);
1232 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1233 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1234 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1237 if (rdev->raid_disk >= 0 &&
1238 !test_bit(In_sync, &rdev->flags) &&
1239 rdev->recovery_offset > 0) {
1240 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1241 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1244 if (mddev->reshape_position != MaxSector) {
1245 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1246 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1247 sb->new_layout = cpu_to_le32(mddev->new_layout);
1248 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1249 sb->new_level = cpu_to_le32(mddev->new_level);
1250 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1253 max_dev = 0;
1254 ITERATE_RDEV(mddev,rdev2,tmp)
1255 if (rdev2->desc_nr+1 > max_dev)
1256 max_dev = rdev2->desc_nr+1;
1258 sb->max_dev = cpu_to_le32(max_dev);
1259 for (i=0; i<max_dev;i++)
1260 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1262 ITERATE_RDEV(mddev,rdev2,tmp) {
1263 i = rdev2->desc_nr;
1264 if (test_bit(Faulty, &rdev2->flags))
1265 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1266 else if (test_bit(In_sync, &rdev2->flags))
1267 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1268 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1269 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1270 else
1271 sb->dev_roles[i] = cpu_to_le16(0xffff);
1274 sb->sb_csum = calc_sb_1_csum(sb);
1278 static struct super_type super_types[] = {
1279 [0] = {
1280 .name = "0.90.0",
1281 .owner = THIS_MODULE,
1282 .load_super = super_90_load,
1283 .validate_super = super_90_validate,
1284 .sync_super = super_90_sync,
1286 [1] = {
1287 .name = "md-1",
1288 .owner = THIS_MODULE,
1289 .load_super = super_1_load,
1290 .validate_super = super_1_validate,
1291 .sync_super = super_1_sync,
1295 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1297 struct list_head *tmp;
1298 mdk_rdev_t *rdev;
1300 ITERATE_RDEV(mddev,rdev,tmp)
1301 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1302 return rdev;
1304 return NULL;
1307 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1309 struct list_head *tmp;
1310 mdk_rdev_t *rdev;
1312 ITERATE_RDEV(mddev1,rdev,tmp)
1313 if (match_dev_unit(mddev2, rdev))
1314 return 1;
1316 return 0;
1319 static LIST_HEAD(pending_raid_disks);
1321 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1323 mdk_rdev_t *same_pdev;
1324 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1325 struct kobject *ko;
1326 char *s;
1328 if (rdev->mddev) {
1329 MD_BUG();
1330 return -EINVAL;
1332 /* make sure rdev->size exceeds mddev->size */
1333 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1334 if (mddev->pers)
1335 /* Cannot change size, so fail */
1336 return -ENOSPC;
1337 else
1338 mddev->size = rdev->size;
1340 same_pdev = match_dev_unit(mddev, rdev);
1341 if (same_pdev)
1342 printk(KERN_WARNING
1343 "%s: WARNING: %s appears to be on the same physical"
1344 " disk as %s. True\n protection against single-disk"
1345 " failure might be compromised.\n",
1346 mdname(mddev), bdevname(rdev->bdev,b),
1347 bdevname(same_pdev->bdev,b2));
1349 /* Verify rdev->desc_nr is unique.
1350 * If it is -1, assign a free number, else
1351 * check number is not in use
1353 if (rdev->desc_nr < 0) {
1354 int choice = 0;
1355 if (mddev->pers) choice = mddev->raid_disks;
1356 while (find_rdev_nr(mddev, choice))
1357 choice++;
1358 rdev->desc_nr = choice;
1359 } else {
1360 if (find_rdev_nr(mddev, rdev->desc_nr))
1361 return -EBUSY;
1363 bdevname(rdev->bdev,b);
1364 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1365 return -ENOMEM;
1366 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1367 *s = '!';
1369 list_add(&rdev->same_set, &mddev->disks);
1370 rdev->mddev = mddev;
1371 printk(KERN_INFO "md: bind<%s>\n", b);
1373 rdev->kobj.parent = &mddev->kobj;
1374 kobject_add(&rdev->kobj);
1376 if (rdev->bdev->bd_part)
1377 ko = &rdev->bdev->bd_part->kobj;
1378 else
1379 ko = &rdev->bdev->bd_disk->kobj;
1380 sysfs_create_link(&rdev->kobj, ko, "block");
1381 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1382 return 0;
1385 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1387 char b[BDEVNAME_SIZE];
1388 if (!rdev->mddev) {
1389 MD_BUG();
1390 return;
1392 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1393 list_del_init(&rdev->same_set);
1394 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1395 rdev->mddev = NULL;
1396 sysfs_remove_link(&rdev->kobj, "block");
1397 kobject_del(&rdev->kobj);
1401 * prevent the device from being mounted, repartitioned or
1402 * otherwise reused by a RAID array (or any other kernel
1403 * subsystem), by bd_claiming the device.
1405 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1407 int err = 0;
1408 struct block_device *bdev;
1409 char b[BDEVNAME_SIZE];
1411 bdev = open_partition_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1412 if (IS_ERR(bdev)) {
1413 printk(KERN_ERR "md: could not open %s.\n",
1414 __bdevname(dev, b));
1415 return PTR_ERR(bdev);
1417 err = bd_claim(bdev, rdev);
1418 if (err) {
1419 printk(KERN_ERR "md: could not bd_claim %s.\n",
1420 bdevname(bdev, b));
1421 blkdev_put_partition(bdev);
1422 return err;
1424 rdev->bdev = bdev;
1425 return err;
1428 static void unlock_rdev(mdk_rdev_t *rdev)
1430 struct block_device *bdev = rdev->bdev;
1431 rdev->bdev = NULL;
1432 if (!bdev)
1433 MD_BUG();
1434 bd_release(bdev);
1435 blkdev_put_partition(bdev);
1438 void md_autodetect_dev(dev_t dev);
1440 static void export_rdev(mdk_rdev_t * rdev)
1442 char b[BDEVNAME_SIZE];
1443 printk(KERN_INFO "md: export_rdev(%s)\n",
1444 bdevname(rdev->bdev,b));
1445 if (rdev->mddev)
1446 MD_BUG();
1447 free_disk_sb(rdev);
1448 list_del_init(&rdev->same_set);
1449 #ifndef MODULE
1450 md_autodetect_dev(rdev->bdev->bd_dev);
1451 #endif
1452 unlock_rdev(rdev);
1453 kobject_put(&rdev->kobj);
1456 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1458 unbind_rdev_from_array(rdev);
1459 export_rdev(rdev);
1462 static void export_array(mddev_t *mddev)
1464 struct list_head *tmp;
1465 mdk_rdev_t *rdev;
1467 ITERATE_RDEV(mddev,rdev,tmp) {
1468 if (!rdev->mddev) {
1469 MD_BUG();
1470 continue;
1472 kick_rdev_from_array(rdev);
1474 if (!list_empty(&mddev->disks))
1475 MD_BUG();
1476 mddev->raid_disks = 0;
1477 mddev->major_version = 0;
1480 static void print_desc(mdp_disk_t *desc)
1482 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1483 desc->major,desc->minor,desc->raid_disk,desc->state);
1486 static void print_sb(mdp_super_t *sb)
1488 int i;
1490 printk(KERN_INFO
1491 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1492 sb->major_version, sb->minor_version, sb->patch_version,
1493 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1494 sb->ctime);
1495 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1496 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1497 sb->md_minor, sb->layout, sb->chunk_size);
1498 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1499 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1500 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1501 sb->failed_disks, sb->spare_disks,
1502 sb->sb_csum, (unsigned long)sb->events_lo);
1504 printk(KERN_INFO);
1505 for (i = 0; i < MD_SB_DISKS; i++) {
1506 mdp_disk_t *desc;
1508 desc = sb->disks + i;
1509 if (desc->number || desc->major || desc->minor ||
1510 desc->raid_disk || (desc->state && (desc->state != 4))) {
1511 printk(" D %2d: ", i);
1512 print_desc(desc);
1515 printk(KERN_INFO "md: THIS: ");
1516 print_desc(&sb->this_disk);
1520 static void print_rdev(mdk_rdev_t *rdev)
1522 char b[BDEVNAME_SIZE];
1523 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1524 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1525 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1526 rdev->desc_nr);
1527 if (rdev->sb_loaded) {
1528 printk(KERN_INFO "md: rdev superblock:\n");
1529 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1530 } else
1531 printk(KERN_INFO "md: no rdev superblock!\n");
1534 static void md_print_devices(void)
1536 struct list_head *tmp, *tmp2;
1537 mdk_rdev_t *rdev;
1538 mddev_t *mddev;
1539 char b[BDEVNAME_SIZE];
1541 printk("\n");
1542 printk("md: **********************************\n");
1543 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1544 printk("md: **********************************\n");
1545 ITERATE_MDDEV(mddev,tmp) {
1547 if (mddev->bitmap)
1548 bitmap_print_sb(mddev->bitmap);
1549 else
1550 printk("%s: ", mdname(mddev));
1551 ITERATE_RDEV(mddev,rdev,tmp2)
1552 printk("<%s>", bdevname(rdev->bdev,b));
1553 printk("\n");
1555 ITERATE_RDEV(mddev,rdev,tmp2)
1556 print_rdev(rdev);
1558 printk("md: **********************************\n");
1559 printk("\n");
1563 static void sync_sbs(mddev_t * mddev, int nospares)
1565 /* Update each superblock (in-memory image), but
1566 * if we are allowed to, skip spares which already
1567 * have the right event counter, or have one earlier
1568 * (which would mean they aren't being marked as dirty
1569 * with the rest of the array)
1571 mdk_rdev_t *rdev;
1572 struct list_head *tmp;
1574 ITERATE_RDEV(mddev,rdev,tmp) {
1575 if (rdev->sb_events == mddev->events ||
1576 (nospares &&
1577 rdev->raid_disk < 0 &&
1578 (rdev->sb_events&1)==0 &&
1579 rdev->sb_events+1 == mddev->events)) {
1580 /* Don't update this superblock */
1581 rdev->sb_loaded = 2;
1582 } else {
1583 super_types[mddev->major_version].
1584 sync_super(mddev, rdev);
1585 rdev->sb_loaded = 1;
1590 void md_update_sb(mddev_t * mddev)
1592 int err;
1593 struct list_head *tmp;
1594 mdk_rdev_t *rdev;
1595 int sync_req;
1596 int nospares = 0;
1598 repeat:
1599 spin_lock_irq(&mddev->write_lock);
1601 if (mddev->degraded && mddev->sb_dirty == 3)
1602 /* If the array is degraded, then skipping spares is both
1603 * dangerous and fairly pointless.
1604 * Dangerous because a device that was removed from the array
1605 * might have a event_count that still looks up-to-date,
1606 * so it can be re-added without a resync.
1607 * Pointless because if there are any spares to skip,
1608 * then a recovery will happen and soon that array won't
1609 * be degraded any more and the spare can go back to sleep then.
1611 mddev->sb_dirty = 1;
1613 sync_req = mddev->in_sync;
1614 mddev->utime = get_seconds();
1615 if (mddev->sb_dirty == 3)
1616 /* just a clean<-> dirty transition, possibly leave spares alone,
1617 * though if events isn't the right even/odd, we will have to do
1618 * spares after all
1620 nospares = 1;
1622 /* If this is just a dirty<->clean transition, and the array is clean
1623 * and 'events' is odd, we can roll back to the previous clean state */
1624 if (mddev->sb_dirty == 3
1625 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1626 && (mddev->events & 1))
1627 mddev->events--;
1628 else {
1629 /* otherwise we have to go forward and ... */
1630 mddev->events ++;
1631 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1632 /* .. if the array isn't clean, insist on an odd 'events' */
1633 if ((mddev->events&1)==0) {
1634 mddev->events++;
1635 nospares = 0;
1637 } else {
1638 /* otherwise insist on an even 'events' (for clean states) */
1639 if ((mddev->events&1)) {
1640 mddev->events++;
1641 nospares = 0;
1646 if (!mddev->events) {
1648 * oops, this 64-bit counter should never wrap.
1649 * Either we are in around ~1 trillion A.C., assuming
1650 * 1 reboot per second, or we have a bug:
1652 MD_BUG();
1653 mddev->events --;
1655 mddev->sb_dirty = 2;
1656 sync_sbs(mddev, nospares);
1659 * do not write anything to disk if using
1660 * nonpersistent superblocks
1662 if (!mddev->persistent) {
1663 mddev->sb_dirty = 0;
1664 spin_unlock_irq(&mddev->write_lock);
1665 wake_up(&mddev->sb_wait);
1666 return;
1668 spin_unlock_irq(&mddev->write_lock);
1670 dprintk(KERN_INFO
1671 "md: updating %s RAID superblock on device (in sync %d)\n",
1672 mdname(mddev),mddev->in_sync);
1674 err = bitmap_update_sb(mddev->bitmap);
1675 ITERATE_RDEV(mddev,rdev,tmp) {
1676 char b[BDEVNAME_SIZE];
1677 dprintk(KERN_INFO "md: ");
1678 if (rdev->sb_loaded != 1)
1679 continue; /* no noise on spare devices */
1680 if (test_bit(Faulty, &rdev->flags))
1681 dprintk("(skipping faulty ");
1683 dprintk("%s ", bdevname(rdev->bdev,b));
1684 if (!test_bit(Faulty, &rdev->flags)) {
1685 md_super_write(mddev,rdev,
1686 rdev->sb_offset<<1, rdev->sb_size,
1687 rdev->sb_page);
1688 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1689 bdevname(rdev->bdev,b),
1690 (unsigned long long)rdev->sb_offset);
1691 rdev->sb_events = mddev->events;
1693 } else
1694 dprintk(")\n");
1695 if (mddev->level == LEVEL_MULTIPATH)
1696 /* only need to write one superblock... */
1697 break;
1699 md_super_wait(mddev);
1700 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1702 spin_lock_irq(&mddev->write_lock);
1703 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1704 /* have to write it out again */
1705 spin_unlock_irq(&mddev->write_lock);
1706 goto repeat;
1708 mddev->sb_dirty = 0;
1709 spin_unlock_irq(&mddev->write_lock);
1710 wake_up(&mddev->sb_wait);
1713 EXPORT_SYMBOL_GPL(md_update_sb);
1715 /* words written to sysfs files may, or my not, be \n terminated.
1716 * We want to accept with case. For this we use cmd_match.
1718 static int cmd_match(const char *cmd, const char *str)
1720 /* See if cmd, written into a sysfs file, matches
1721 * str. They must either be the same, or cmd can
1722 * have a trailing newline
1724 while (*cmd && *str && *cmd == *str) {
1725 cmd++;
1726 str++;
1728 if (*cmd == '\n')
1729 cmd++;
1730 if (*str || *cmd)
1731 return 0;
1732 return 1;
1735 struct rdev_sysfs_entry {
1736 struct attribute attr;
1737 ssize_t (*show)(mdk_rdev_t *, char *);
1738 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1741 static ssize_t
1742 state_show(mdk_rdev_t *rdev, char *page)
1744 char *sep = "";
1745 int len=0;
1747 if (test_bit(Faulty, &rdev->flags)) {
1748 len+= sprintf(page+len, "%sfaulty",sep);
1749 sep = ",";
1751 if (test_bit(In_sync, &rdev->flags)) {
1752 len += sprintf(page+len, "%sin_sync",sep);
1753 sep = ",";
1755 if (test_bit(WriteMostly, &rdev->flags)) {
1756 len += sprintf(page+len, "%swrite_mostly",sep);
1757 sep = ",";
1759 if (!test_bit(Faulty, &rdev->flags) &&
1760 !test_bit(In_sync, &rdev->flags)) {
1761 len += sprintf(page+len, "%sspare", sep);
1762 sep = ",";
1764 return len+sprintf(page+len, "\n");
1767 static ssize_t
1768 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1770 /* can write
1771 * faulty - simulates and error
1772 * remove - disconnects the device
1773 * writemostly - sets write_mostly
1774 * -writemostly - clears write_mostly
1776 int err = -EINVAL;
1777 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1778 md_error(rdev->mddev, rdev);
1779 err = 0;
1780 } else if (cmd_match(buf, "remove")) {
1781 if (rdev->raid_disk >= 0)
1782 err = -EBUSY;
1783 else {
1784 mddev_t *mddev = rdev->mddev;
1785 kick_rdev_from_array(rdev);
1786 md_update_sb(mddev);
1787 md_new_event(mddev);
1788 err = 0;
1790 } else if (cmd_match(buf, "writemostly")) {
1791 set_bit(WriteMostly, &rdev->flags);
1792 err = 0;
1793 } else if (cmd_match(buf, "-writemostly")) {
1794 clear_bit(WriteMostly, &rdev->flags);
1795 err = 0;
1797 return err ? err : len;
1799 static struct rdev_sysfs_entry rdev_state =
1800 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1802 static ssize_t
1803 super_show(mdk_rdev_t *rdev, char *page)
1805 if (rdev->sb_loaded && rdev->sb_size) {
1806 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1807 return rdev->sb_size;
1808 } else
1809 return 0;
1811 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1813 static ssize_t
1814 errors_show(mdk_rdev_t *rdev, char *page)
1816 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1819 static ssize_t
1820 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1822 char *e;
1823 unsigned long n = simple_strtoul(buf, &e, 10);
1824 if (*buf && (*e == 0 || *e == '\n')) {
1825 atomic_set(&rdev->corrected_errors, n);
1826 return len;
1828 return -EINVAL;
1830 static struct rdev_sysfs_entry rdev_errors =
1831 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1833 static ssize_t
1834 slot_show(mdk_rdev_t *rdev, char *page)
1836 if (rdev->raid_disk < 0)
1837 return sprintf(page, "none\n");
1838 else
1839 return sprintf(page, "%d\n", rdev->raid_disk);
1842 static ssize_t
1843 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1845 char *e;
1846 int slot = simple_strtoul(buf, &e, 10);
1847 if (strncmp(buf, "none", 4)==0)
1848 slot = -1;
1849 else if (e==buf || (*e && *e!= '\n'))
1850 return -EINVAL;
1851 if (rdev->mddev->pers)
1852 /* Cannot set slot in active array (yet) */
1853 return -EBUSY;
1854 if (slot >= rdev->mddev->raid_disks)
1855 return -ENOSPC;
1856 rdev->raid_disk = slot;
1857 /* assume it is working */
1858 rdev->flags = 0;
1859 set_bit(In_sync, &rdev->flags);
1860 return len;
1864 static struct rdev_sysfs_entry rdev_slot =
1865 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1867 static ssize_t
1868 offset_show(mdk_rdev_t *rdev, char *page)
1870 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1873 static ssize_t
1874 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1876 char *e;
1877 unsigned long long offset = simple_strtoull(buf, &e, 10);
1878 if (e==buf || (*e && *e != '\n'))
1879 return -EINVAL;
1880 if (rdev->mddev->pers)
1881 return -EBUSY;
1882 rdev->data_offset = offset;
1883 return len;
1886 static struct rdev_sysfs_entry rdev_offset =
1887 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1889 static ssize_t
1890 rdev_size_show(mdk_rdev_t *rdev, char *page)
1892 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1895 static ssize_t
1896 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1898 char *e;
1899 unsigned long long size = simple_strtoull(buf, &e, 10);
1900 if (e==buf || (*e && *e != '\n'))
1901 return -EINVAL;
1902 if (rdev->mddev->pers)
1903 return -EBUSY;
1904 rdev->size = size;
1905 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1906 rdev->mddev->size = size;
1907 return len;
1910 static struct rdev_sysfs_entry rdev_size =
1911 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1913 static struct attribute *rdev_default_attrs[] = {
1914 &rdev_state.attr,
1915 &rdev_super.attr,
1916 &rdev_errors.attr,
1917 &rdev_slot.attr,
1918 &rdev_offset.attr,
1919 &rdev_size.attr,
1920 NULL,
1922 static ssize_t
1923 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1925 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1926 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1928 if (!entry->show)
1929 return -EIO;
1930 return entry->show(rdev, page);
1933 static ssize_t
1934 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1935 const char *page, size_t length)
1937 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1938 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1940 if (!entry->store)
1941 return -EIO;
1942 if (!capable(CAP_SYS_ADMIN))
1943 return -EACCES;
1944 return entry->store(rdev, page, length);
1947 static void rdev_free(struct kobject *ko)
1949 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1950 kfree(rdev);
1952 static struct sysfs_ops rdev_sysfs_ops = {
1953 .show = rdev_attr_show,
1954 .store = rdev_attr_store,
1956 static struct kobj_type rdev_ktype = {
1957 .release = rdev_free,
1958 .sysfs_ops = &rdev_sysfs_ops,
1959 .default_attrs = rdev_default_attrs,
1963 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1965 * mark the device faulty if:
1967 * - the device is nonexistent (zero size)
1968 * - the device has no valid superblock
1970 * a faulty rdev _never_ has rdev->sb set.
1972 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1974 char b[BDEVNAME_SIZE];
1975 int err;
1976 mdk_rdev_t *rdev;
1977 sector_t size;
1979 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1980 if (!rdev) {
1981 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1982 return ERR_PTR(-ENOMEM);
1985 if ((err = alloc_disk_sb(rdev)))
1986 goto abort_free;
1988 err = lock_rdev(rdev, newdev);
1989 if (err)
1990 goto abort_free;
1992 rdev->kobj.parent = NULL;
1993 rdev->kobj.ktype = &rdev_ktype;
1994 kobject_init(&rdev->kobj);
1996 rdev->desc_nr = -1;
1997 rdev->flags = 0;
1998 rdev->data_offset = 0;
1999 rdev->sb_events = 0;
2000 atomic_set(&rdev->nr_pending, 0);
2001 atomic_set(&rdev->read_errors, 0);
2002 atomic_set(&rdev->corrected_errors, 0);
2004 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2005 if (!size) {
2006 printk(KERN_WARNING
2007 "md: %s has zero or unknown size, marking faulty!\n",
2008 bdevname(rdev->bdev,b));
2009 err = -EINVAL;
2010 goto abort_free;
2013 if (super_format >= 0) {
2014 err = super_types[super_format].
2015 load_super(rdev, NULL, super_minor);
2016 if (err == -EINVAL) {
2017 printk(KERN_WARNING
2018 "md: %s has invalid sb, not importing!\n",
2019 bdevname(rdev->bdev,b));
2020 goto abort_free;
2022 if (err < 0) {
2023 printk(KERN_WARNING
2024 "md: could not read %s's sb, not importing!\n",
2025 bdevname(rdev->bdev,b));
2026 goto abort_free;
2029 INIT_LIST_HEAD(&rdev->same_set);
2031 return rdev;
2033 abort_free:
2034 if (rdev->sb_page) {
2035 if (rdev->bdev)
2036 unlock_rdev(rdev);
2037 free_disk_sb(rdev);
2039 kfree(rdev);
2040 return ERR_PTR(err);
2044 * Check a full RAID array for plausibility
2048 static void analyze_sbs(mddev_t * mddev)
2050 int i;
2051 struct list_head *tmp;
2052 mdk_rdev_t *rdev, *freshest;
2053 char b[BDEVNAME_SIZE];
2055 freshest = NULL;
2056 ITERATE_RDEV(mddev,rdev,tmp)
2057 switch (super_types[mddev->major_version].
2058 load_super(rdev, freshest, mddev->minor_version)) {
2059 case 1:
2060 freshest = rdev;
2061 break;
2062 case 0:
2063 break;
2064 default:
2065 printk( KERN_ERR \
2066 "md: fatal superblock inconsistency in %s"
2067 " -- removing from array\n",
2068 bdevname(rdev->bdev,b));
2069 kick_rdev_from_array(rdev);
2073 super_types[mddev->major_version].
2074 validate_super(mddev, freshest);
2076 i = 0;
2077 ITERATE_RDEV(mddev,rdev,tmp) {
2078 if (rdev != freshest)
2079 if (super_types[mddev->major_version].
2080 validate_super(mddev, rdev)) {
2081 printk(KERN_WARNING "md: kicking non-fresh %s"
2082 " from array!\n",
2083 bdevname(rdev->bdev,b));
2084 kick_rdev_from_array(rdev);
2085 continue;
2087 if (mddev->level == LEVEL_MULTIPATH) {
2088 rdev->desc_nr = i++;
2089 rdev->raid_disk = rdev->desc_nr;
2090 set_bit(In_sync, &rdev->flags);
2096 if (mddev->recovery_cp != MaxSector &&
2097 mddev->level >= 1)
2098 printk(KERN_ERR "md: %s: raid array is not clean"
2099 " -- starting background reconstruction\n",
2100 mdname(mddev));
2104 static ssize_t
2105 safe_delay_show(mddev_t *mddev, char *page)
2107 int msec = (mddev->safemode_delay*1000)/HZ;
2108 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2110 static ssize_t
2111 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2113 int scale=1;
2114 int dot=0;
2115 int i;
2116 unsigned long msec;
2117 char buf[30];
2118 char *e;
2119 /* remove a period, and count digits after it */
2120 if (len >= sizeof(buf))
2121 return -EINVAL;
2122 strlcpy(buf, cbuf, len);
2123 buf[len] = 0;
2124 for (i=0; i<len; i++) {
2125 if (dot) {
2126 if (isdigit(buf[i])) {
2127 buf[i-1] = buf[i];
2128 scale *= 10;
2130 buf[i] = 0;
2131 } else if (buf[i] == '.') {
2132 dot=1;
2133 buf[i] = 0;
2136 msec = simple_strtoul(buf, &e, 10);
2137 if (e == buf || (*e && *e != '\n'))
2138 return -EINVAL;
2139 msec = (msec * 1000) / scale;
2140 if (msec == 0)
2141 mddev->safemode_delay = 0;
2142 else {
2143 mddev->safemode_delay = (msec*HZ)/1000;
2144 if (mddev->safemode_delay == 0)
2145 mddev->safemode_delay = 1;
2147 return len;
2149 static struct md_sysfs_entry md_safe_delay =
2150 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2152 static ssize_t
2153 level_show(mddev_t *mddev, char *page)
2155 struct mdk_personality *p = mddev->pers;
2156 if (p)
2157 return sprintf(page, "%s\n", p->name);
2158 else if (mddev->clevel[0])
2159 return sprintf(page, "%s\n", mddev->clevel);
2160 else if (mddev->level != LEVEL_NONE)
2161 return sprintf(page, "%d\n", mddev->level);
2162 else
2163 return 0;
2166 static ssize_t
2167 level_store(mddev_t *mddev, const char *buf, size_t len)
2169 int rv = len;
2170 if (mddev->pers)
2171 return -EBUSY;
2172 if (len == 0)
2173 return 0;
2174 if (len >= sizeof(mddev->clevel))
2175 return -ENOSPC;
2176 strncpy(mddev->clevel, buf, len);
2177 if (mddev->clevel[len-1] == '\n')
2178 len--;
2179 mddev->clevel[len] = 0;
2180 mddev->level = LEVEL_NONE;
2181 return rv;
2184 static struct md_sysfs_entry md_level =
2185 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2188 static ssize_t
2189 layout_show(mddev_t *mddev, char *page)
2191 /* just a number, not meaningful for all levels */
2192 return sprintf(page, "%d\n", mddev->layout);
2195 static ssize_t
2196 layout_store(mddev_t *mddev, const char *buf, size_t len)
2198 char *e;
2199 unsigned long n = simple_strtoul(buf, &e, 10);
2200 if (mddev->pers)
2201 return -EBUSY;
2203 if (!*buf || (*e && *e != '\n'))
2204 return -EINVAL;
2206 mddev->layout = n;
2207 return len;
2209 static struct md_sysfs_entry md_layout =
2210 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2213 static ssize_t
2214 raid_disks_show(mddev_t *mddev, char *page)
2216 if (mddev->raid_disks == 0)
2217 return 0;
2218 return sprintf(page, "%d\n", mddev->raid_disks);
2221 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2223 static ssize_t
2224 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2226 /* can only set raid_disks if array is not yet active */
2227 char *e;
2228 int rv = 0;
2229 unsigned long n = simple_strtoul(buf, &e, 10);
2231 if (!*buf || (*e && *e != '\n'))
2232 return -EINVAL;
2234 if (mddev->pers)
2235 rv = update_raid_disks(mddev, n);
2236 else
2237 mddev->raid_disks = n;
2238 return rv ? rv : len;
2240 static struct md_sysfs_entry md_raid_disks =
2241 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2243 static ssize_t
2244 chunk_size_show(mddev_t *mddev, char *page)
2246 return sprintf(page, "%d\n", mddev->chunk_size);
2249 static ssize_t
2250 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2252 /* can only set chunk_size if array is not yet active */
2253 char *e;
2254 unsigned long n = simple_strtoul(buf, &e, 10);
2256 if (mddev->pers)
2257 return -EBUSY;
2258 if (!*buf || (*e && *e != '\n'))
2259 return -EINVAL;
2261 mddev->chunk_size = n;
2262 return len;
2264 static struct md_sysfs_entry md_chunk_size =
2265 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2267 static ssize_t
2268 resync_start_show(mddev_t *mddev, char *page)
2270 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2273 static ssize_t
2274 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2276 /* can only set chunk_size if array is not yet active */
2277 char *e;
2278 unsigned long long n = simple_strtoull(buf, &e, 10);
2280 if (mddev->pers)
2281 return -EBUSY;
2282 if (!*buf || (*e && *e != '\n'))
2283 return -EINVAL;
2285 mddev->recovery_cp = n;
2286 return len;
2288 static struct md_sysfs_entry md_resync_start =
2289 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2292 * The array state can be:
2294 * clear
2295 * No devices, no size, no level
2296 * Equivalent to STOP_ARRAY ioctl
2297 * inactive
2298 * May have some settings, but array is not active
2299 * all IO results in error
2300 * When written, doesn't tear down array, but just stops it
2301 * suspended (not supported yet)
2302 * All IO requests will block. The array can be reconfigured.
2303 * Writing this, if accepted, will block until array is quiessent
2304 * readonly
2305 * no resync can happen. no superblocks get written.
2306 * write requests fail
2307 * read-auto
2308 * like readonly, but behaves like 'clean' on a write request.
2310 * clean - no pending writes, but otherwise active.
2311 * When written to inactive array, starts without resync
2312 * If a write request arrives then
2313 * if metadata is known, mark 'dirty' and switch to 'active'.
2314 * if not known, block and switch to write-pending
2315 * If written to an active array that has pending writes, then fails.
2316 * active
2317 * fully active: IO and resync can be happening.
2318 * When written to inactive array, starts with resync
2320 * write-pending
2321 * clean, but writes are blocked waiting for 'active' to be written.
2323 * active-idle
2324 * like active, but no writes have been seen for a while (100msec).
2327 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2328 write_pending, active_idle, bad_word};
2329 static char *array_states[] = {
2330 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2331 "write-pending", "active-idle", NULL };
2333 static int match_word(const char *word, char **list)
2335 int n;
2336 for (n=0; list[n]; n++)
2337 if (cmd_match(word, list[n]))
2338 break;
2339 return n;
2342 static ssize_t
2343 array_state_show(mddev_t *mddev, char *page)
2345 enum array_state st = inactive;
2347 if (mddev->pers)
2348 switch(mddev->ro) {
2349 case 1:
2350 st = readonly;
2351 break;
2352 case 2:
2353 st = read_auto;
2354 break;
2355 case 0:
2356 if (mddev->in_sync)
2357 st = clean;
2358 else if (mddev->safemode)
2359 st = active_idle;
2360 else
2361 st = active;
2363 else {
2364 if (list_empty(&mddev->disks) &&
2365 mddev->raid_disks == 0 &&
2366 mddev->size == 0)
2367 st = clear;
2368 else
2369 st = inactive;
2371 return sprintf(page, "%s\n", array_states[st]);
2374 static int do_md_stop(mddev_t * mddev, int ro);
2375 static int do_md_run(mddev_t * mddev);
2376 static int restart_array(mddev_t *mddev);
2378 static ssize_t
2379 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2381 int err = -EINVAL;
2382 enum array_state st = match_word(buf, array_states);
2383 switch(st) {
2384 case bad_word:
2385 break;
2386 case clear:
2387 /* stopping an active array */
2388 if (mddev->pers) {
2389 if (atomic_read(&mddev->active) > 1)
2390 return -EBUSY;
2391 err = do_md_stop(mddev, 0);
2393 break;
2394 case inactive:
2395 /* stopping an active array */
2396 if (mddev->pers) {
2397 if (atomic_read(&mddev->active) > 1)
2398 return -EBUSY;
2399 err = do_md_stop(mddev, 2);
2401 break;
2402 case suspended:
2403 break; /* not supported yet */
2404 case readonly:
2405 if (mddev->pers)
2406 err = do_md_stop(mddev, 1);
2407 else {
2408 mddev->ro = 1;
2409 err = do_md_run(mddev);
2411 break;
2412 case read_auto:
2413 /* stopping an active array */
2414 if (mddev->pers) {
2415 err = do_md_stop(mddev, 1);
2416 if (err == 0)
2417 mddev->ro = 2; /* FIXME mark devices writable */
2418 } else {
2419 mddev->ro = 2;
2420 err = do_md_run(mddev);
2422 break;
2423 case clean:
2424 if (mddev->pers) {
2425 restart_array(mddev);
2426 spin_lock_irq(&mddev->write_lock);
2427 if (atomic_read(&mddev->writes_pending) == 0) {
2428 mddev->in_sync = 1;
2429 mddev->sb_dirty = 1;
2431 spin_unlock_irq(&mddev->write_lock);
2432 } else {
2433 mddev->ro = 0;
2434 mddev->recovery_cp = MaxSector;
2435 err = do_md_run(mddev);
2437 break;
2438 case active:
2439 if (mddev->pers) {
2440 restart_array(mddev);
2441 mddev->sb_dirty = 0;
2442 wake_up(&mddev->sb_wait);
2443 err = 0;
2444 } else {
2445 mddev->ro = 0;
2446 err = do_md_run(mddev);
2448 break;
2449 case write_pending:
2450 case active_idle:
2451 /* these cannot be set */
2452 break;
2454 if (err)
2455 return err;
2456 else
2457 return len;
2459 static struct md_sysfs_entry md_array_state =
2460 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2462 static ssize_t
2463 null_show(mddev_t *mddev, char *page)
2465 return -EINVAL;
2468 static ssize_t
2469 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2471 /* buf must be %d:%d\n? giving major and minor numbers */
2472 /* The new device is added to the array.
2473 * If the array has a persistent superblock, we read the
2474 * superblock to initialise info and check validity.
2475 * Otherwise, only checking done is that in bind_rdev_to_array,
2476 * which mainly checks size.
2478 char *e;
2479 int major = simple_strtoul(buf, &e, 10);
2480 int minor;
2481 dev_t dev;
2482 mdk_rdev_t *rdev;
2483 int err;
2485 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2486 return -EINVAL;
2487 minor = simple_strtoul(e+1, &e, 10);
2488 if (*e && *e != '\n')
2489 return -EINVAL;
2490 dev = MKDEV(major, minor);
2491 if (major != MAJOR(dev) ||
2492 minor != MINOR(dev))
2493 return -EOVERFLOW;
2496 if (mddev->persistent) {
2497 rdev = md_import_device(dev, mddev->major_version,
2498 mddev->minor_version);
2499 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2500 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2501 mdk_rdev_t, same_set);
2502 err = super_types[mddev->major_version]
2503 .load_super(rdev, rdev0, mddev->minor_version);
2504 if (err < 0)
2505 goto out;
2507 } else
2508 rdev = md_import_device(dev, -1, -1);
2510 if (IS_ERR(rdev))
2511 return PTR_ERR(rdev);
2512 err = bind_rdev_to_array(rdev, mddev);
2513 out:
2514 if (err)
2515 export_rdev(rdev);
2516 return err ? err : len;
2519 static struct md_sysfs_entry md_new_device =
2520 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2522 static ssize_t
2523 size_show(mddev_t *mddev, char *page)
2525 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2528 static int update_size(mddev_t *mddev, unsigned long size);
2530 static ssize_t
2531 size_store(mddev_t *mddev, const char *buf, size_t len)
2533 /* If array is inactive, we can reduce the component size, but
2534 * not increase it (except from 0).
2535 * If array is active, we can try an on-line resize
2537 char *e;
2538 int err = 0;
2539 unsigned long long size = simple_strtoull(buf, &e, 10);
2540 if (!*buf || *buf == '\n' ||
2541 (*e && *e != '\n'))
2542 return -EINVAL;
2544 if (mddev->pers) {
2545 err = update_size(mddev, size);
2546 md_update_sb(mddev);
2547 } else {
2548 if (mddev->size == 0 ||
2549 mddev->size > size)
2550 mddev->size = size;
2551 else
2552 err = -ENOSPC;
2554 return err ? err : len;
2557 static struct md_sysfs_entry md_size =
2558 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2561 /* Metdata version.
2562 * This is either 'none' for arrays with externally managed metadata,
2563 * or N.M for internally known formats
2565 static ssize_t
2566 metadata_show(mddev_t *mddev, char *page)
2568 if (mddev->persistent)
2569 return sprintf(page, "%d.%d\n",
2570 mddev->major_version, mddev->minor_version);
2571 else
2572 return sprintf(page, "none\n");
2575 static ssize_t
2576 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2578 int major, minor;
2579 char *e;
2580 if (!list_empty(&mddev->disks))
2581 return -EBUSY;
2583 if (cmd_match(buf, "none")) {
2584 mddev->persistent = 0;
2585 mddev->major_version = 0;
2586 mddev->minor_version = 90;
2587 return len;
2589 major = simple_strtoul(buf, &e, 10);
2590 if (e==buf || *e != '.')
2591 return -EINVAL;
2592 buf = e+1;
2593 minor = simple_strtoul(buf, &e, 10);
2594 if (e==buf || *e != '\n')
2595 return -EINVAL;
2596 if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2597 super_types[major].name == NULL)
2598 return -ENOENT;
2599 mddev->major_version = major;
2600 mddev->minor_version = minor;
2601 mddev->persistent = 1;
2602 return len;
2605 static struct md_sysfs_entry md_metadata =
2606 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2608 static ssize_t
2609 action_show(mddev_t *mddev, char *page)
2611 char *type = "idle";
2612 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2613 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2614 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2615 type = "reshape";
2616 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2617 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2618 type = "resync";
2619 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2620 type = "check";
2621 else
2622 type = "repair";
2623 } else
2624 type = "recover";
2626 return sprintf(page, "%s\n", type);
2629 static ssize_t
2630 action_store(mddev_t *mddev, const char *page, size_t len)
2632 if (!mddev->pers || !mddev->pers->sync_request)
2633 return -EINVAL;
2635 if (cmd_match(page, "idle")) {
2636 if (mddev->sync_thread) {
2637 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2638 md_unregister_thread(mddev->sync_thread);
2639 mddev->sync_thread = NULL;
2640 mddev->recovery = 0;
2642 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2643 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2644 return -EBUSY;
2645 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2646 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2647 else if (cmd_match(page, "reshape")) {
2648 int err;
2649 if (mddev->pers->start_reshape == NULL)
2650 return -EINVAL;
2651 err = mddev->pers->start_reshape(mddev);
2652 if (err)
2653 return err;
2654 } else {
2655 if (cmd_match(page, "check"))
2656 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2657 else if (!cmd_match(page, "repair"))
2658 return -EINVAL;
2659 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2660 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2662 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2663 md_wakeup_thread(mddev->thread);
2664 return len;
2667 static ssize_t
2668 mismatch_cnt_show(mddev_t *mddev, char *page)
2670 return sprintf(page, "%llu\n",
2671 (unsigned long long) mddev->resync_mismatches);
2674 static struct md_sysfs_entry md_scan_mode =
2675 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2678 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2680 static ssize_t
2681 sync_min_show(mddev_t *mddev, char *page)
2683 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2684 mddev->sync_speed_min ? "local": "system");
2687 static ssize_t
2688 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2690 int min;
2691 char *e;
2692 if (strncmp(buf, "system", 6)==0) {
2693 mddev->sync_speed_min = 0;
2694 return len;
2696 min = simple_strtoul(buf, &e, 10);
2697 if (buf == e || (*e && *e != '\n') || min <= 0)
2698 return -EINVAL;
2699 mddev->sync_speed_min = min;
2700 return len;
2703 static struct md_sysfs_entry md_sync_min =
2704 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2706 static ssize_t
2707 sync_max_show(mddev_t *mddev, char *page)
2709 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2710 mddev->sync_speed_max ? "local": "system");
2713 static ssize_t
2714 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2716 int max;
2717 char *e;
2718 if (strncmp(buf, "system", 6)==0) {
2719 mddev->sync_speed_max = 0;
2720 return len;
2722 max = simple_strtoul(buf, &e, 10);
2723 if (buf == e || (*e && *e != '\n') || max <= 0)
2724 return -EINVAL;
2725 mddev->sync_speed_max = max;
2726 return len;
2729 static struct md_sysfs_entry md_sync_max =
2730 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2733 static ssize_t
2734 sync_speed_show(mddev_t *mddev, char *page)
2736 unsigned long resync, dt, db;
2737 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2738 dt = ((jiffies - mddev->resync_mark) / HZ);
2739 if (!dt) dt++;
2740 db = resync - (mddev->resync_mark_cnt);
2741 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2744 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2746 static ssize_t
2747 sync_completed_show(mddev_t *mddev, char *page)
2749 unsigned long max_blocks, resync;
2751 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2752 max_blocks = mddev->resync_max_sectors;
2753 else
2754 max_blocks = mddev->size << 1;
2756 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2757 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2760 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2762 static ssize_t
2763 suspend_lo_show(mddev_t *mddev, char *page)
2765 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2768 static ssize_t
2769 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2771 char *e;
2772 unsigned long long new = simple_strtoull(buf, &e, 10);
2774 if (mddev->pers->quiesce == NULL)
2775 return -EINVAL;
2776 if (buf == e || (*e && *e != '\n'))
2777 return -EINVAL;
2778 if (new >= mddev->suspend_hi ||
2779 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2780 mddev->suspend_lo = new;
2781 mddev->pers->quiesce(mddev, 2);
2782 return len;
2783 } else
2784 return -EINVAL;
2786 static struct md_sysfs_entry md_suspend_lo =
2787 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2790 static ssize_t
2791 suspend_hi_show(mddev_t *mddev, char *page)
2793 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2796 static ssize_t
2797 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2799 char *e;
2800 unsigned long long new = simple_strtoull(buf, &e, 10);
2802 if (mddev->pers->quiesce == NULL)
2803 return -EINVAL;
2804 if (buf == e || (*e && *e != '\n'))
2805 return -EINVAL;
2806 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2807 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2808 mddev->suspend_hi = new;
2809 mddev->pers->quiesce(mddev, 1);
2810 mddev->pers->quiesce(mddev, 0);
2811 return len;
2812 } else
2813 return -EINVAL;
2815 static struct md_sysfs_entry md_suspend_hi =
2816 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2819 static struct attribute *md_default_attrs[] = {
2820 &md_level.attr,
2821 &md_layout.attr,
2822 &md_raid_disks.attr,
2823 &md_chunk_size.attr,
2824 &md_size.attr,
2825 &md_resync_start.attr,
2826 &md_metadata.attr,
2827 &md_new_device.attr,
2828 &md_safe_delay.attr,
2829 &md_array_state.attr,
2830 NULL,
2833 static struct attribute *md_redundancy_attrs[] = {
2834 &md_scan_mode.attr,
2835 &md_mismatches.attr,
2836 &md_sync_min.attr,
2837 &md_sync_max.attr,
2838 &md_sync_speed.attr,
2839 &md_sync_completed.attr,
2840 &md_suspend_lo.attr,
2841 &md_suspend_hi.attr,
2842 NULL,
2844 static struct attribute_group md_redundancy_group = {
2845 .name = NULL,
2846 .attrs = md_redundancy_attrs,
2850 static ssize_t
2851 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2853 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2854 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2855 ssize_t rv;
2857 if (!entry->show)
2858 return -EIO;
2859 rv = mddev_lock(mddev);
2860 if (!rv) {
2861 rv = entry->show(mddev, page);
2862 mddev_unlock(mddev);
2864 return rv;
2867 static ssize_t
2868 md_attr_store(struct kobject *kobj, struct attribute *attr,
2869 const char *page, size_t length)
2871 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2872 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2873 ssize_t rv;
2875 if (!entry->store)
2876 return -EIO;
2877 if (!capable(CAP_SYS_ADMIN))
2878 return -EACCES;
2879 rv = mddev_lock(mddev);
2880 if (!rv) {
2881 rv = entry->store(mddev, page, length);
2882 mddev_unlock(mddev);
2884 return rv;
2887 static void md_free(struct kobject *ko)
2889 mddev_t *mddev = container_of(ko, mddev_t, kobj);
2890 kfree(mddev);
2893 static struct sysfs_ops md_sysfs_ops = {
2894 .show = md_attr_show,
2895 .store = md_attr_store,
2897 static struct kobj_type md_ktype = {
2898 .release = md_free,
2899 .sysfs_ops = &md_sysfs_ops,
2900 .default_attrs = md_default_attrs,
2903 int mdp_major = 0;
2905 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2907 static DEFINE_MUTEX(disks_mutex);
2908 mddev_t *mddev = mddev_find(dev);
2909 struct gendisk *disk;
2910 int partitioned = (MAJOR(dev) != MD_MAJOR);
2911 int shift = partitioned ? MdpMinorShift : 0;
2912 int unit = MINOR(dev) >> shift;
2914 if (!mddev)
2915 return NULL;
2917 mutex_lock(&disks_mutex);
2918 if (mddev->gendisk) {
2919 mutex_unlock(&disks_mutex);
2920 mddev_put(mddev);
2921 return NULL;
2923 disk = alloc_disk(1 << shift);
2924 if (!disk) {
2925 mutex_unlock(&disks_mutex);
2926 mddev_put(mddev);
2927 return NULL;
2929 disk->major = MAJOR(dev);
2930 disk->first_minor = unit << shift;
2931 if (partitioned)
2932 sprintf(disk->disk_name, "md_d%d", unit);
2933 else
2934 sprintf(disk->disk_name, "md%d", unit);
2935 disk->fops = &md_fops;
2936 disk->private_data = mddev;
2937 disk->queue = mddev->queue;
2938 add_disk(disk);
2939 mddev->gendisk = disk;
2940 mutex_unlock(&disks_mutex);
2941 mddev->kobj.parent = &disk->kobj;
2942 mddev->kobj.k_name = NULL;
2943 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2944 mddev->kobj.ktype = &md_ktype;
2945 kobject_register(&mddev->kobj);
2946 return NULL;
2949 static void md_safemode_timeout(unsigned long data)
2951 mddev_t *mddev = (mddev_t *) data;
2953 mddev->safemode = 1;
2954 md_wakeup_thread(mddev->thread);
2957 static int start_dirty_degraded;
2959 static int do_md_run(mddev_t * mddev)
2961 int err;
2962 int chunk_size;
2963 struct list_head *tmp;
2964 mdk_rdev_t *rdev;
2965 struct gendisk *disk;
2966 struct mdk_personality *pers;
2967 char b[BDEVNAME_SIZE];
2969 if (list_empty(&mddev->disks))
2970 /* cannot run an array with no devices.. */
2971 return -EINVAL;
2973 if (mddev->pers)
2974 return -EBUSY;
2977 * Analyze all RAID superblock(s)
2979 if (!mddev->raid_disks)
2980 analyze_sbs(mddev);
2982 chunk_size = mddev->chunk_size;
2984 if (chunk_size) {
2985 if (chunk_size > MAX_CHUNK_SIZE) {
2986 printk(KERN_ERR "too big chunk_size: %d > %d\n",
2987 chunk_size, MAX_CHUNK_SIZE);
2988 return -EINVAL;
2991 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2993 if ( (1 << ffz(~chunk_size)) != chunk_size) {
2994 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2995 return -EINVAL;
2997 if (chunk_size < PAGE_SIZE) {
2998 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2999 chunk_size, PAGE_SIZE);
3000 return -EINVAL;
3003 /* devices must have minimum size of one chunk */
3004 ITERATE_RDEV(mddev,rdev,tmp) {
3005 if (test_bit(Faulty, &rdev->flags))
3006 continue;
3007 if (rdev->size < chunk_size / 1024) {
3008 printk(KERN_WARNING
3009 "md: Dev %s smaller than chunk_size:"
3010 " %lluk < %dk\n",
3011 bdevname(rdev->bdev,b),
3012 (unsigned long long)rdev->size,
3013 chunk_size / 1024);
3014 return -EINVAL;
3019 #ifdef CONFIG_KMOD
3020 if (mddev->level != LEVEL_NONE)
3021 request_module("md-level-%d", mddev->level);
3022 else if (mddev->clevel[0])
3023 request_module("md-%s", mddev->clevel);
3024 #endif
3027 * Drop all container device buffers, from now on
3028 * the only valid external interface is through the md
3029 * device.
3030 * Also find largest hardsector size
3032 ITERATE_RDEV(mddev,rdev,tmp) {
3033 if (test_bit(Faulty, &rdev->flags))
3034 continue;
3035 sync_blockdev(rdev->bdev);
3036 invalidate_bdev(rdev->bdev, 0);
3039 md_probe(mddev->unit, NULL, NULL);
3040 disk = mddev->gendisk;
3041 if (!disk)
3042 return -ENOMEM;
3044 spin_lock(&pers_lock);
3045 pers = find_pers(mddev->level, mddev->clevel);
3046 if (!pers || !try_module_get(pers->owner)) {
3047 spin_unlock(&pers_lock);
3048 if (mddev->level != LEVEL_NONE)
3049 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3050 mddev->level);
3051 else
3052 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3053 mddev->clevel);
3054 return -EINVAL;
3056 mddev->pers = pers;
3057 spin_unlock(&pers_lock);
3058 mddev->level = pers->level;
3059 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3061 if (mddev->reshape_position != MaxSector &&
3062 pers->start_reshape == NULL) {
3063 /* This personality cannot handle reshaping... */
3064 mddev->pers = NULL;
3065 module_put(pers->owner);
3066 return -EINVAL;
3069 mddev->recovery = 0;
3070 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3071 mddev->barriers_work = 1;
3072 mddev->ok_start_degraded = start_dirty_degraded;
3074 if (start_readonly)
3075 mddev->ro = 2; /* read-only, but switch on first write */
3077 err = mddev->pers->run(mddev);
3078 if (!err && mddev->pers->sync_request) {
3079 err = bitmap_create(mddev);
3080 if (err) {
3081 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3082 mdname(mddev), err);
3083 mddev->pers->stop(mddev);
3086 if (err) {
3087 printk(KERN_ERR "md: pers->run() failed ...\n");
3088 module_put(mddev->pers->owner);
3089 mddev->pers = NULL;
3090 bitmap_destroy(mddev);
3091 return err;
3093 if (mddev->pers->sync_request)
3094 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3095 else if (mddev->ro == 2) /* auto-readonly not meaningful */
3096 mddev->ro = 0;
3098 atomic_set(&mddev->writes_pending,0);
3099 mddev->safemode = 0;
3100 mddev->safemode_timer.function = md_safemode_timeout;
3101 mddev->safemode_timer.data = (unsigned long) mddev;
3102 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3103 mddev->in_sync = 1;
3105 ITERATE_RDEV(mddev,rdev,tmp)
3106 if (rdev->raid_disk >= 0) {
3107 char nm[20];
3108 sprintf(nm, "rd%d", rdev->raid_disk);
3109 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3112 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3114 if (mddev->sb_dirty)
3115 md_update_sb(mddev);
3117 set_capacity(disk, mddev->array_size<<1);
3119 /* If we call blk_queue_make_request here, it will
3120 * re-initialise max_sectors etc which may have been
3121 * refined inside -> run. So just set the bits we need to set.
3122 * Most initialisation happended when we called
3123 * blk_queue_make_request(..., md_fail_request)
3124 * earlier.
3126 mddev->queue->queuedata = mddev;
3127 mddev->queue->make_request_fn = mddev->pers->make_request;
3129 /* If there is a partially-recovered drive we need to
3130 * start recovery here. If we leave it to md_check_recovery,
3131 * it will remove the drives and not do the right thing
3133 if (mddev->degraded && !mddev->sync_thread) {
3134 struct list_head *rtmp;
3135 int spares = 0;
3136 ITERATE_RDEV(mddev,rdev,rtmp)
3137 if (rdev->raid_disk >= 0 &&
3138 !test_bit(In_sync, &rdev->flags) &&
3139 !test_bit(Faulty, &rdev->flags))
3140 /* complete an interrupted recovery */
3141 spares++;
3142 if (spares && mddev->pers->sync_request) {
3143 mddev->recovery = 0;
3144 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3145 mddev->sync_thread = md_register_thread(md_do_sync,
3146 mddev,
3147 "%s_resync");
3148 if (!mddev->sync_thread) {
3149 printk(KERN_ERR "%s: could not start resync"
3150 " thread...\n",
3151 mdname(mddev));
3152 /* leave the spares where they are, it shouldn't hurt */
3153 mddev->recovery = 0;
3157 md_wakeup_thread(mddev->thread);
3158 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3160 mddev->changed = 1;
3161 md_new_event(mddev);
3162 return 0;
3165 static int restart_array(mddev_t *mddev)
3167 struct gendisk *disk = mddev->gendisk;
3168 int err;
3171 * Complain if it has no devices
3173 err = -ENXIO;
3174 if (list_empty(&mddev->disks))
3175 goto out;
3177 if (mddev->pers) {
3178 err = -EBUSY;
3179 if (!mddev->ro)
3180 goto out;
3182 mddev->safemode = 0;
3183 mddev->ro = 0;
3184 set_disk_ro(disk, 0);
3186 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3187 mdname(mddev));
3189 * Kick recovery or resync if necessary
3191 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3192 md_wakeup_thread(mddev->thread);
3193 md_wakeup_thread(mddev->sync_thread);
3194 err = 0;
3195 } else
3196 err = -EINVAL;
3198 out:
3199 return err;
3202 /* similar to deny_write_access, but accounts for our holding a reference
3203 * to the file ourselves */
3204 static int deny_bitmap_write_access(struct file * file)
3206 struct inode *inode = file->f_mapping->host;
3208 spin_lock(&inode->i_lock);
3209 if (atomic_read(&inode->i_writecount) > 1) {
3210 spin_unlock(&inode->i_lock);
3211 return -ETXTBSY;
3213 atomic_set(&inode->i_writecount, -1);
3214 spin_unlock(&inode->i_lock);
3216 return 0;
3219 static void restore_bitmap_write_access(struct file *file)
3221 struct inode *inode = file->f_mapping->host;
3223 spin_lock(&inode->i_lock);
3224 atomic_set(&inode->i_writecount, 1);
3225 spin_unlock(&inode->i_lock);
3228 /* mode:
3229 * 0 - completely stop and dis-assemble array
3230 * 1 - switch to readonly
3231 * 2 - stop but do not disassemble array
3233 static int do_md_stop(mddev_t * mddev, int mode)
3235 int err = 0;
3236 struct gendisk *disk = mddev->gendisk;
3238 if (mddev->pers) {
3239 if (atomic_read(&mddev->active)>2) {
3240 printk("md: %s still in use.\n",mdname(mddev));
3241 return -EBUSY;
3244 if (mddev->sync_thread) {
3245 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3246 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3247 md_unregister_thread(mddev->sync_thread);
3248 mddev->sync_thread = NULL;
3251 del_timer_sync(&mddev->safemode_timer);
3253 invalidate_partition(disk, 0);
3255 switch(mode) {
3256 case 1: /* readonly */
3257 err = -ENXIO;
3258 if (mddev->ro==1)
3259 goto out;
3260 mddev->ro = 1;
3261 break;
3262 case 0: /* disassemble */
3263 case 2: /* stop */
3264 bitmap_flush(mddev);
3265 md_super_wait(mddev);
3266 if (mddev->ro)
3267 set_disk_ro(disk, 0);
3268 blk_queue_make_request(mddev->queue, md_fail_request);
3269 mddev->pers->stop(mddev);
3270 if (mddev->pers->sync_request)
3271 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3273 module_put(mddev->pers->owner);
3274 mddev->pers = NULL;
3275 if (mddev->ro)
3276 mddev->ro = 0;
3278 if (!mddev->in_sync || mddev->sb_dirty) {
3279 /* mark array as shutdown cleanly */
3280 mddev->in_sync = 1;
3281 md_update_sb(mddev);
3283 if (mode == 1)
3284 set_disk_ro(disk, 1);
3285 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3289 * Free resources if final stop
3291 if (mode == 0) {
3292 mdk_rdev_t *rdev;
3293 struct list_head *tmp;
3294 struct gendisk *disk;
3295 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3297 bitmap_destroy(mddev);
3298 if (mddev->bitmap_file) {
3299 restore_bitmap_write_access(mddev->bitmap_file);
3300 fput(mddev->bitmap_file);
3301 mddev->bitmap_file = NULL;
3303 mddev->bitmap_offset = 0;
3305 ITERATE_RDEV(mddev,rdev,tmp)
3306 if (rdev->raid_disk >= 0) {
3307 char nm[20];
3308 sprintf(nm, "rd%d", rdev->raid_disk);
3309 sysfs_remove_link(&mddev->kobj, nm);
3312 export_array(mddev);
3314 mddev->array_size = 0;
3315 mddev->size = 0;
3316 mddev->raid_disks = 0;
3317 mddev->recovery_cp = 0;
3319 disk = mddev->gendisk;
3320 if (disk)
3321 set_capacity(disk, 0);
3322 mddev->changed = 1;
3323 } else if (mddev->pers)
3324 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3325 mdname(mddev));
3326 err = 0;
3327 md_new_event(mddev);
3328 out:
3329 return err;
3332 static void autorun_array(mddev_t *mddev)
3334 mdk_rdev_t *rdev;
3335 struct list_head *tmp;
3336 int err;
3338 if (list_empty(&mddev->disks))
3339 return;
3341 printk(KERN_INFO "md: running: ");
3343 ITERATE_RDEV(mddev,rdev,tmp) {
3344 char b[BDEVNAME_SIZE];
3345 printk("<%s>", bdevname(rdev->bdev,b));
3347 printk("\n");
3349 err = do_md_run (mddev);
3350 if (err) {
3351 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3352 do_md_stop (mddev, 0);
3357 * lets try to run arrays based on all disks that have arrived
3358 * until now. (those are in pending_raid_disks)
3360 * the method: pick the first pending disk, collect all disks with
3361 * the same UUID, remove all from the pending list and put them into
3362 * the 'same_array' list. Then order this list based on superblock
3363 * update time (freshest comes first), kick out 'old' disks and
3364 * compare superblocks. If everything's fine then run it.
3366 * If "unit" is allocated, then bump its reference count
3368 static void autorun_devices(int part)
3370 struct list_head *tmp;
3371 mdk_rdev_t *rdev0, *rdev;
3372 mddev_t *mddev;
3373 char b[BDEVNAME_SIZE];
3375 printk(KERN_INFO "md: autorun ...\n");
3376 while (!list_empty(&pending_raid_disks)) {
3377 dev_t dev;
3378 LIST_HEAD(candidates);
3379 rdev0 = list_entry(pending_raid_disks.next,
3380 mdk_rdev_t, same_set);
3382 printk(KERN_INFO "md: considering %s ...\n",
3383 bdevname(rdev0->bdev,b));
3384 INIT_LIST_HEAD(&candidates);
3385 ITERATE_RDEV_PENDING(rdev,tmp)
3386 if (super_90_load(rdev, rdev0, 0) >= 0) {
3387 printk(KERN_INFO "md: adding %s ...\n",
3388 bdevname(rdev->bdev,b));
3389 list_move(&rdev->same_set, &candidates);
3392 * now we have a set of devices, with all of them having
3393 * mostly sane superblocks. It's time to allocate the
3394 * mddev.
3396 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
3397 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3398 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3399 break;
3401 if (part)
3402 dev = MKDEV(mdp_major,
3403 rdev0->preferred_minor << MdpMinorShift);
3404 else
3405 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3407 md_probe(dev, NULL, NULL);
3408 mddev = mddev_find(dev);
3409 if (!mddev) {
3410 printk(KERN_ERR
3411 "md: cannot allocate memory for md drive.\n");
3412 break;
3414 if (mddev_lock(mddev))
3415 printk(KERN_WARNING "md: %s locked, cannot run\n",
3416 mdname(mddev));
3417 else if (mddev->raid_disks || mddev->major_version
3418 || !list_empty(&mddev->disks)) {
3419 printk(KERN_WARNING
3420 "md: %s already running, cannot run %s\n",
3421 mdname(mddev), bdevname(rdev0->bdev,b));
3422 mddev_unlock(mddev);
3423 } else {
3424 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3425 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3426 list_del_init(&rdev->same_set);
3427 if (bind_rdev_to_array(rdev, mddev))
3428 export_rdev(rdev);
3430 autorun_array(mddev);
3431 mddev_unlock(mddev);
3433 /* on success, candidates will be empty, on error
3434 * it won't...
3436 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3437 export_rdev(rdev);
3438 mddev_put(mddev);
3440 printk(KERN_INFO "md: ... autorun DONE.\n");
3444 * import RAID devices based on one partition
3445 * if possible, the array gets run as well.
3448 static int autostart_array(dev_t startdev)
3450 char b[BDEVNAME_SIZE];
3451 int err = -EINVAL, i;
3452 mdp_super_t *sb = NULL;
3453 mdk_rdev_t *start_rdev = NULL, *rdev;
3455 start_rdev = md_import_device(startdev, 0, 0);
3456 if (IS_ERR(start_rdev))
3457 return err;
3460 /* NOTE: this can only work for 0.90.0 superblocks */
3461 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
3462 if (sb->major_version != 0 ||
3463 sb->minor_version != 90 ) {
3464 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
3465 export_rdev(start_rdev);
3466 return err;
3469 if (test_bit(Faulty, &start_rdev->flags)) {
3470 printk(KERN_WARNING
3471 "md: can not autostart based on faulty %s!\n",
3472 bdevname(start_rdev->bdev,b));
3473 export_rdev(start_rdev);
3474 return err;
3476 list_add(&start_rdev->same_set, &pending_raid_disks);
3478 for (i = 0; i < MD_SB_DISKS; i++) {
3479 mdp_disk_t *desc = sb->disks + i;
3480 dev_t dev = MKDEV(desc->major, desc->minor);
3482 if (!dev)
3483 continue;
3484 if (dev == startdev)
3485 continue;
3486 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
3487 continue;
3488 rdev = md_import_device(dev, 0, 0);
3489 if (IS_ERR(rdev))
3490 continue;
3492 list_add(&rdev->same_set, &pending_raid_disks);
3496 * possibly return codes
3498 autorun_devices(0);
3499 return 0;
3504 static int get_version(void __user * arg)
3506 mdu_version_t ver;
3508 ver.major = MD_MAJOR_VERSION;
3509 ver.minor = MD_MINOR_VERSION;
3510 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3512 if (copy_to_user(arg, &ver, sizeof(ver)))
3513 return -EFAULT;
3515 return 0;
3518 static int get_array_info(mddev_t * mddev, void __user * arg)
3520 mdu_array_info_t info;
3521 int nr,working,active,failed,spare;
3522 mdk_rdev_t *rdev;
3523 struct list_head *tmp;
3525 nr=working=active=failed=spare=0;
3526 ITERATE_RDEV(mddev,rdev,tmp) {
3527 nr++;
3528 if (test_bit(Faulty, &rdev->flags))
3529 failed++;
3530 else {
3531 working++;
3532 if (test_bit(In_sync, &rdev->flags))
3533 active++;
3534 else
3535 spare++;
3539 info.major_version = mddev->major_version;
3540 info.minor_version = mddev->minor_version;
3541 info.patch_version = MD_PATCHLEVEL_VERSION;
3542 info.ctime = mddev->ctime;
3543 info.level = mddev->level;
3544 info.size = mddev->size;
3545 if (info.size != mddev->size) /* overflow */
3546 info.size = -1;
3547 info.nr_disks = nr;
3548 info.raid_disks = mddev->raid_disks;
3549 info.md_minor = mddev->md_minor;
3550 info.not_persistent= !mddev->persistent;
3552 info.utime = mddev->utime;
3553 info.state = 0;
3554 if (mddev->in_sync)
3555 info.state = (1<<MD_SB_CLEAN);
3556 if (mddev->bitmap && mddev->bitmap_offset)
3557 info.state = (1<<MD_SB_BITMAP_PRESENT);
3558 info.active_disks = active;
3559 info.working_disks = working;
3560 info.failed_disks = failed;
3561 info.spare_disks = spare;
3563 info.layout = mddev->layout;
3564 info.chunk_size = mddev->chunk_size;
3566 if (copy_to_user(arg, &info, sizeof(info)))
3567 return -EFAULT;
3569 return 0;
3572 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3574 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3575 char *ptr, *buf = NULL;
3576 int err = -ENOMEM;
3578 file = kmalloc(sizeof(*file), GFP_KERNEL);
3579 if (!file)
3580 goto out;
3582 /* bitmap disabled, zero the first byte and copy out */
3583 if (!mddev->bitmap || !mddev->bitmap->file) {
3584 file->pathname[0] = '\0';
3585 goto copy_out;
3588 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3589 if (!buf)
3590 goto out;
3592 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3593 if (!ptr)
3594 goto out;
3596 strcpy(file->pathname, ptr);
3598 copy_out:
3599 err = 0;
3600 if (copy_to_user(arg, file, sizeof(*file)))
3601 err = -EFAULT;
3602 out:
3603 kfree(buf);
3604 kfree(file);
3605 return err;
3608 static int get_disk_info(mddev_t * mddev, void __user * arg)
3610 mdu_disk_info_t info;
3611 unsigned int nr;
3612 mdk_rdev_t *rdev;
3614 if (copy_from_user(&info, arg, sizeof(info)))
3615 return -EFAULT;
3617 nr = info.number;
3619 rdev = find_rdev_nr(mddev, nr);
3620 if (rdev) {
3621 info.major = MAJOR(rdev->bdev->bd_dev);
3622 info.minor = MINOR(rdev->bdev->bd_dev);
3623 info.raid_disk = rdev->raid_disk;
3624 info.state = 0;
3625 if (test_bit(Faulty, &rdev->flags))
3626 info.state |= (1<<MD_DISK_FAULTY);
3627 else if (test_bit(In_sync, &rdev->flags)) {
3628 info.state |= (1<<MD_DISK_ACTIVE);
3629 info.state |= (1<<MD_DISK_SYNC);
3631 if (test_bit(WriteMostly, &rdev->flags))
3632 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3633 } else {
3634 info.major = info.minor = 0;
3635 info.raid_disk = -1;
3636 info.state = (1<<MD_DISK_REMOVED);
3639 if (copy_to_user(arg, &info, sizeof(info)))
3640 return -EFAULT;
3642 return 0;
3645 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3647 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3648 mdk_rdev_t *rdev;
3649 dev_t dev = MKDEV(info->major,info->minor);
3651 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3652 return -EOVERFLOW;
3654 if (!mddev->raid_disks) {
3655 int err;
3656 /* expecting a device which has a superblock */
3657 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3658 if (IS_ERR(rdev)) {
3659 printk(KERN_WARNING
3660 "md: md_import_device returned %ld\n",
3661 PTR_ERR(rdev));
3662 return PTR_ERR(rdev);
3664 if (!list_empty(&mddev->disks)) {
3665 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3666 mdk_rdev_t, same_set);
3667 int err = super_types[mddev->major_version]
3668 .load_super(rdev, rdev0, mddev->minor_version);
3669 if (err < 0) {
3670 printk(KERN_WARNING
3671 "md: %s has different UUID to %s\n",
3672 bdevname(rdev->bdev,b),
3673 bdevname(rdev0->bdev,b2));
3674 export_rdev(rdev);
3675 return -EINVAL;
3678 err = bind_rdev_to_array(rdev, mddev);
3679 if (err)
3680 export_rdev(rdev);
3681 return err;
3685 * add_new_disk can be used once the array is assembled
3686 * to add "hot spares". They must already have a superblock
3687 * written
3689 if (mddev->pers) {
3690 int err;
3691 if (!mddev->pers->hot_add_disk) {
3692 printk(KERN_WARNING
3693 "%s: personality does not support diskops!\n",
3694 mdname(mddev));
3695 return -EINVAL;
3697 if (mddev->persistent)
3698 rdev = md_import_device(dev, mddev->major_version,
3699 mddev->minor_version);
3700 else
3701 rdev = md_import_device(dev, -1, -1);
3702 if (IS_ERR(rdev)) {
3703 printk(KERN_WARNING
3704 "md: md_import_device returned %ld\n",
3705 PTR_ERR(rdev));
3706 return PTR_ERR(rdev);
3708 /* set save_raid_disk if appropriate */
3709 if (!mddev->persistent) {
3710 if (info->state & (1<<MD_DISK_SYNC) &&
3711 info->raid_disk < mddev->raid_disks)
3712 rdev->raid_disk = info->raid_disk;
3713 else
3714 rdev->raid_disk = -1;
3715 } else
3716 super_types[mddev->major_version].
3717 validate_super(mddev, rdev);
3718 rdev->saved_raid_disk = rdev->raid_disk;
3720 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3721 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3722 set_bit(WriteMostly, &rdev->flags);
3724 rdev->raid_disk = -1;
3725 err = bind_rdev_to_array(rdev, mddev);
3726 if (!err && !mddev->pers->hot_remove_disk) {
3727 /* If there is hot_add_disk but no hot_remove_disk
3728 * then added disks for geometry changes,
3729 * and should be added immediately.
3731 super_types[mddev->major_version].
3732 validate_super(mddev, rdev);
3733 err = mddev->pers->hot_add_disk(mddev, rdev);
3734 if (err)
3735 unbind_rdev_from_array(rdev);
3737 if (err)
3738 export_rdev(rdev);
3740 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3741 md_wakeup_thread(mddev->thread);
3742 return err;
3745 /* otherwise, add_new_disk is only allowed
3746 * for major_version==0 superblocks
3748 if (mddev->major_version != 0) {
3749 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3750 mdname(mddev));
3751 return -EINVAL;
3754 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3755 int err;
3756 rdev = md_import_device (dev, -1, 0);
3757 if (IS_ERR(rdev)) {
3758 printk(KERN_WARNING
3759 "md: error, md_import_device() returned %ld\n",
3760 PTR_ERR(rdev));
3761 return PTR_ERR(rdev);
3763 rdev->desc_nr = info->number;
3764 if (info->raid_disk < mddev->raid_disks)
3765 rdev->raid_disk = info->raid_disk;
3766 else
3767 rdev->raid_disk = -1;
3769 rdev->flags = 0;
3771 if (rdev->raid_disk < mddev->raid_disks)
3772 if (info->state & (1<<MD_DISK_SYNC))
3773 set_bit(In_sync, &rdev->flags);
3775 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3776 set_bit(WriteMostly, &rdev->flags);
3778 if (!mddev->persistent) {
3779 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3780 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3781 } else
3782 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3783 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3785 err = bind_rdev_to_array(rdev, mddev);
3786 if (err) {
3787 export_rdev(rdev);
3788 return err;
3792 return 0;
3795 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3797 char b[BDEVNAME_SIZE];
3798 mdk_rdev_t *rdev;
3800 if (!mddev->pers)
3801 return -ENODEV;
3803 rdev = find_rdev(mddev, dev);
3804 if (!rdev)
3805 return -ENXIO;
3807 if (rdev->raid_disk >= 0)
3808 goto busy;
3810 kick_rdev_from_array(rdev);
3811 md_update_sb(mddev);
3812 md_new_event(mddev);
3814 return 0;
3815 busy:
3816 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3817 bdevname(rdev->bdev,b), mdname(mddev));
3818 return -EBUSY;
3821 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3823 char b[BDEVNAME_SIZE];
3824 int err;
3825 unsigned int size;
3826 mdk_rdev_t *rdev;
3828 if (!mddev->pers)
3829 return -ENODEV;
3831 if (mddev->major_version != 0) {
3832 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3833 " version-0 superblocks.\n",
3834 mdname(mddev));
3835 return -EINVAL;
3837 if (!mddev->pers->hot_add_disk) {
3838 printk(KERN_WARNING
3839 "%s: personality does not support diskops!\n",
3840 mdname(mddev));
3841 return -EINVAL;
3844 rdev = md_import_device (dev, -1, 0);
3845 if (IS_ERR(rdev)) {
3846 printk(KERN_WARNING
3847 "md: error, md_import_device() returned %ld\n",
3848 PTR_ERR(rdev));
3849 return -EINVAL;
3852 if (mddev->persistent)
3853 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3854 else
3855 rdev->sb_offset =
3856 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3858 size = calc_dev_size(rdev, mddev->chunk_size);
3859 rdev->size = size;
3861 if (test_bit(Faulty, &rdev->flags)) {
3862 printk(KERN_WARNING
3863 "md: can not hot-add faulty %s disk to %s!\n",
3864 bdevname(rdev->bdev,b), mdname(mddev));
3865 err = -EINVAL;
3866 goto abort_export;
3868 clear_bit(In_sync, &rdev->flags);
3869 rdev->desc_nr = -1;
3870 err = bind_rdev_to_array(rdev, mddev);
3871 if (err)
3872 goto abort_export;
3875 * The rest should better be atomic, we can have disk failures
3876 * noticed in interrupt contexts ...
3879 if (rdev->desc_nr == mddev->max_disks) {
3880 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3881 mdname(mddev));
3882 err = -EBUSY;
3883 goto abort_unbind_export;
3886 rdev->raid_disk = -1;
3888 md_update_sb(mddev);
3891 * Kick recovery, maybe this spare has to be added to the
3892 * array immediately.
3894 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3895 md_wakeup_thread(mddev->thread);
3896 md_new_event(mddev);
3897 return 0;
3899 abort_unbind_export:
3900 unbind_rdev_from_array(rdev);
3902 abort_export:
3903 export_rdev(rdev);
3904 return err;
3907 static int set_bitmap_file(mddev_t *mddev, int fd)
3909 int err;
3911 if (mddev->pers) {
3912 if (!mddev->pers->quiesce)
3913 return -EBUSY;
3914 if (mddev->recovery || mddev->sync_thread)
3915 return -EBUSY;
3916 /* we should be able to change the bitmap.. */
3920 if (fd >= 0) {
3921 if (mddev->bitmap)
3922 return -EEXIST; /* cannot add when bitmap is present */
3923 mddev->bitmap_file = fget(fd);
3925 if (mddev->bitmap_file == NULL) {
3926 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3927 mdname(mddev));
3928 return -EBADF;
3931 err = deny_bitmap_write_access(mddev->bitmap_file);
3932 if (err) {
3933 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3934 mdname(mddev));
3935 fput(mddev->bitmap_file);
3936 mddev->bitmap_file = NULL;
3937 return err;
3939 mddev->bitmap_offset = 0; /* file overrides offset */
3940 } else if (mddev->bitmap == NULL)
3941 return -ENOENT; /* cannot remove what isn't there */
3942 err = 0;
3943 if (mddev->pers) {
3944 mddev->pers->quiesce(mddev, 1);
3945 if (fd >= 0)
3946 err = bitmap_create(mddev);
3947 if (fd < 0 || err) {
3948 bitmap_destroy(mddev);
3949 fd = -1; /* make sure to put the file */
3951 mddev->pers->quiesce(mddev, 0);
3953 if (fd < 0) {
3954 if (mddev->bitmap_file) {
3955 restore_bitmap_write_access(mddev->bitmap_file);
3956 fput(mddev->bitmap_file);
3958 mddev->bitmap_file = NULL;
3961 return err;
3965 * set_array_info is used two different ways
3966 * The original usage is when creating a new array.
3967 * In this usage, raid_disks is > 0 and it together with
3968 * level, size, not_persistent,layout,chunksize determine the
3969 * shape of the array.
3970 * This will always create an array with a type-0.90.0 superblock.
3971 * The newer usage is when assembling an array.
3972 * In this case raid_disks will be 0, and the major_version field is
3973 * use to determine which style super-blocks are to be found on the devices.
3974 * The minor and patch _version numbers are also kept incase the
3975 * super_block handler wishes to interpret them.
3977 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3980 if (info->raid_disks == 0) {
3981 /* just setting version number for superblock loading */
3982 if (info->major_version < 0 ||
3983 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3984 super_types[info->major_version].name == NULL) {
3985 /* maybe try to auto-load a module? */
3986 printk(KERN_INFO
3987 "md: superblock version %d not known\n",
3988 info->major_version);
3989 return -EINVAL;
3991 mddev->major_version = info->major_version;
3992 mddev->minor_version = info->minor_version;
3993 mddev->patch_version = info->patch_version;
3994 return 0;
3996 mddev->major_version = MD_MAJOR_VERSION;
3997 mddev->minor_version = MD_MINOR_VERSION;
3998 mddev->patch_version = MD_PATCHLEVEL_VERSION;
3999 mddev->ctime = get_seconds();
4001 mddev->level = info->level;
4002 mddev->clevel[0] = 0;
4003 mddev->size = info->size;
4004 mddev->raid_disks = info->raid_disks;
4005 /* don't set md_minor, it is determined by which /dev/md* was
4006 * openned
4008 if (info->state & (1<<MD_SB_CLEAN))
4009 mddev->recovery_cp = MaxSector;
4010 else
4011 mddev->recovery_cp = 0;
4012 mddev->persistent = ! info->not_persistent;
4014 mddev->layout = info->layout;
4015 mddev->chunk_size = info->chunk_size;
4017 mddev->max_disks = MD_SB_DISKS;
4019 mddev->sb_dirty = 1;
4021 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4022 mddev->bitmap_offset = 0;
4024 mddev->reshape_position = MaxSector;
4027 * Generate a 128 bit UUID
4029 get_random_bytes(mddev->uuid, 16);
4031 mddev->new_level = mddev->level;
4032 mddev->new_chunk = mddev->chunk_size;
4033 mddev->new_layout = mddev->layout;
4034 mddev->delta_disks = 0;
4036 return 0;
4039 static int update_size(mddev_t *mddev, unsigned long size)
4041 mdk_rdev_t * rdev;
4042 int rv;
4043 struct list_head *tmp;
4044 int fit = (size == 0);
4046 if (mddev->pers->resize == NULL)
4047 return -EINVAL;
4048 /* The "size" is the amount of each device that is used.
4049 * This can only make sense for arrays with redundancy.
4050 * linear and raid0 always use whatever space is available
4051 * We can only consider changing the size if no resync
4052 * or reconstruction is happening, and if the new size
4053 * is acceptable. It must fit before the sb_offset or,
4054 * if that is <data_offset, it must fit before the
4055 * size of each device.
4056 * If size is zero, we find the largest size that fits.
4058 if (mddev->sync_thread)
4059 return -EBUSY;
4060 ITERATE_RDEV(mddev,rdev,tmp) {
4061 sector_t avail;
4062 if (rdev->sb_offset > rdev->data_offset)
4063 avail = (rdev->sb_offset*2) - rdev->data_offset;
4064 else
4065 avail = get_capacity(rdev->bdev->bd_disk)
4066 - rdev->data_offset;
4067 if (fit && (size == 0 || size > avail/2))
4068 size = avail/2;
4069 if (avail < ((sector_t)size << 1))
4070 return -ENOSPC;
4072 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4073 if (!rv) {
4074 struct block_device *bdev;
4076 bdev = bdget_disk(mddev->gendisk, 0);
4077 if (bdev) {
4078 mutex_lock(&bdev->bd_inode->i_mutex);
4079 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4080 mutex_unlock(&bdev->bd_inode->i_mutex);
4081 bdput(bdev);
4084 return rv;
4087 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4089 int rv;
4090 /* change the number of raid disks */
4091 if (mddev->pers->check_reshape == NULL)
4092 return -EINVAL;
4093 if (raid_disks <= 0 ||
4094 raid_disks >= mddev->max_disks)
4095 return -EINVAL;
4096 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4097 return -EBUSY;
4098 mddev->delta_disks = raid_disks - mddev->raid_disks;
4100 rv = mddev->pers->check_reshape(mddev);
4101 return rv;
4106 * update_array_info is used to change the configuration of an
4107 * on-line array.
4108 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4109 * fields in the info are checked against the array.
4110 * Any differences that cannot be handled will cause an error.
4111 * Normally, only one change can be managed at a time.
4113 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4115 int rv = 0;
4116 int cnt = 0;
4117 int state = 0;
4119 /* calculate expected state,ignoring low bits */
4120 if (mddev->bitmap && mddev->bitmap_offset)
4121 state |= (1 << MD_SB_BITMAP_PRESENT);
4123 if (mddev->major_version != info->major_version ||
4124 mddev->minor_version != info->minor_version ||
4125 /* mddev->patch_version != info->patch_version || */
4126 mddev->ctime != info->ctime ||
4127 mddev->level != info->level ||
4128 /* mddev->layout != info->layout || */
4129 !mddev->persistent != info->not_persistent||
4130 mddev->chunk_size != info->chunk_size ||
4131 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4132 ((state^info->state) & 0xfffffe00)
4134 return -EINVAL;
4135 /* Check there is only one change */
4136 if (info->size >= 0 && mddev->size != info->size) cnt++;
4137 if (mddev->raid_disks != info->raid_disks) cnt++;
4138 if (mddev->layout != info->layout) cnt++;
4139 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4140 if (cnt == 0) return 0;
4141 if (cnt > 1) return -EINVAL;
4143 if (mddev->layout != info->layout) {
4144 /* Change layout
4145 * we don't need to do anything at the md level, the
4146 * personality will take care of it all.
4148 if (mddev->pers->reconfig == NULL)
4149 return -EINVAL;
4150 else
4151 return mddev->pers->reconfig(mddev, info->layout, -1);
4153 if (info->size >= 0 && mddev->size != info->size)
4154 rv = update_size(mddev, info->size);
4156 if (mddev->raid_disks != info->raid_disks)
4157 rv = update_raid_disks(mddev, info->raid_disks);
4159 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4160 if (mddev->pers->quiesce == NULL)
4161 return -EINVAL;
4162 if (mddev->recovery || mddev->sync_thread)
4163 return -EBUSY;
4164 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4165 /* add the bitmap */
4166 if (mddev->bitmap)
4167 return -EEXIST;
4168 if (mddev->default_bitmap_offset == 0)
4169 return -EINVAL;
4170 mddev->bitmap_offset = mddev->default_bitmap_offset;
4171 mddev->pers->quiesce(mddev, 1);
4172 rv = bitmap_create(mddev);
4173 if (rv)
4174 bitmap_destroy(mddev);
4175 mddev->pers->quiesce(mddev, 0);
4176 } else {
4177 /* remove the bitmap */
4178 if (!mddev->bitmap)
4179 return -ENOENT;
4180 if (mddev->bitmap->file)
4181 return -EINVAL;
4182 mddev->pers->quiesce(mddev, 1);
4183 bitmap_destroy(mddev);
4184 mddev->pers->quiesce(mddev, 0);
4185 mddev->bitmap_offset = 0;
4188 md_update_sb(mddev);
4189 return rv;
4192 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4194 mdk_rdev_t *rdev;
4196 if (mddev->pers == NULL)
4197 return -ENODEV;
4199 rdev = find_rdev(mddev, dev);
4200 if (!rdev)
4201 return -ENODEV;
4203 md_error(mddev, rdev);
4204 return 0;
4207 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4209 mddev_t *mddev = bdev->bd_disk->private_data;
4211 geo->heads = 2;
4212 geo->sectors = 4;
4213 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4214 return 0;
4217 static int md_ioctl(struct inode *inode, struct file *file,
4218 unsigned int cmd, unsigned long arg)
4220 int err = 0;
4221 void __user *argp = (void __user *)arg;
4222 mddev_t *mddev = NULL;
4224 if (!capable(CAP_SYS_ADMIN))
4225 return -EACCES;
4228 * Commands dealing with the RAID driver but not any
4229 * particular array:
4231 switch (cmd)
4233 case RAID_VERSION:
4234 err = get_version(argp);
4235 goto done;
4237 case PRINT_RAID_DEBUG:
4238 err = 0;
4239 md_print_devices();
4240 goto done;
4242 #ifndef MODULE
4243 case RAID_AUTORUN:
4244 err = 0;
4245 autostart_arrays(arg);
4246 goto done;
4247 #endif
4248 default:;
4252 * Commands creating/starting a new array:
4255 mddev = inode->i_bdev->bd_disk->private_data;
4257 if (!mddev) {
4258 BUG();
4259 goto abort;
4263 if (cmd == START_ARRAY) {
4264 /* START_ARRAY doesn't need to lock the array as autostart_array
4265 * does the locking, and it could even be a different array
4267 static int cnt = 3;
4268 if (cnt > 0 ) {
4269 printk(KERN_WARNING
4270 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
4271 "This will not be supported beyond July 2006\n",
4272 current->comm, current->pid);
4273 cnt--;
4275 err = autostart_array(new_decode_dev(arg));
4276 if (err) {
4277 printk(KERN_WARNING "md: autostart failed!\n");
4278 goto abort;
4280 goto done;
4283 err = mddev_lock(mddev);
4284 if (err) {
4285 printk(KERN_INFO
4286 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4287 err, cmd);
4288 goto abort;
4291 switch (cmd)
4293 case SET_ARRAY_INFO:
4295 mdu_array_info_t info;
4296 if (!arg)
4297 memset(&info, 0, sizeof(info));
4298 else if (copy_from_user(&info, argp, sizeof(info))) {
4299 err = -EFAULT;
4300 goto abort_unlock;
4302 if (mddev->pers) {
4303 err = update_array_info(mddev, &info);
4304 if (err) {
4305 printk(KERN_WARNING "md: couldn't update"
4306 " array info. %d\n", err);
4307 goto abort_unlock;
4309 goto done_unlock;
4311 if (!list_empty(&mddev->disks)) {
4312 printk(KERN_WARNING
4313 "md: array %s already has disks!\n",
4314 mdname(mddev));
4315 err = -EBUSY;
4316 goto abort_unlock;
4318 if (mddev->raid_disks) {
4319 printk(KERN_WARNING
4320 "md: array %s already initialised!\n",
4321 mdname(mddev));
4322 err = -EBUSY;
4323 goto abort_unlock;
4325 err = set_array_info(mddev, &info);
4326 if (err) {
4327 printk(KERN_WARNING "md: couldn't set"
4328 " array info. %d\n", err);
4329 goto abort_unlock;
4332 goto done_unlock;
4334 default:;
4338 * Commands querying/configuring an existing array:
4340 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4341 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
4342 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4343 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
4344 err = -ENODEV;
4345 goto abort_unlock;
4349 * Commands even a read-only array can execute:
4351 switch (cmd)
4353 case GET_ARRAY_INFO:
4354 err = get_array_info(mddev, argp);
4355 goto done_unlock;
4357 case GET_BITMAP_FILE:
4358 err = get_bitmap_file(mddev, argp);
4359 goto done_unlock;
4361 case GET_DISK_INFO:
4362 err = get_disk_info(mddev, argp);
4363 goto done_unlock;
4365 case RESTART_ARRAY_RW:
4366 err = restart_array(mddev);
4367 goto done_unlock;
4369 case STOP_ARRAY:
4370 err = do_md_stop (mddev, 0);
4371 goto done_unlock;
4373 case STOP_ARRAY_RO:
4374 err = do_md_stop (mddev, 1);
4375 goto done_unlock;
4378 * We have a problem here : there is no easy way to give a CHS
4379 * virtual geometry. We currently pretend that we have a 2 heads
4380 * 4 sectors (with a BIG number of cylinders...). This drives
4381 * dosfs just mad... ;-)
4386 * The remaining ioctls are changing the state of the
4387 * superblock, so we do not allow them on read-only arrays.
4388 * However non-MD ioctls (e.g. get-size) will still come through
4389 * here and hit the 'default' below, so only disallow
4390 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4392 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4393 mddev->ro && mddev->pers) {
4394 if (mddev->ro == 2) {
4395 mddev->ro = 0;
4396 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4397 md_wakeup_thread(mddev->thread);
4399 } else {
4400 err = -EROFS;
4401 goto abort_unlock;
4405 switch (cmd)
4407 case ADD_NEW_DISK:
4409 mdu_disk_info_t info;
4410 if (copy_from_user(&info, argp, sizeof(info)))
4411 err = -EFAULT;
4412 else
4413 err = add_new_disk(mddev, &info);
4414 goto done_unlock;
4417 case HOT_REMOVE_DISK:
4418 err = hot_remove_disk(mddev, new_decode_dev(arg));
4419 goto done_unlock;
4421 case HOT_ADD_DISK:
4422 err = hot_add_disk(mddev, new_decode_dev(arg));
4423 goto done_unlock;
4425 case SET_DISK_FAULTY:
4426 err = set_disk_faulty(mddev, new_decode_dev(arg));
4427 goto done_unlock;
4429 case RUN_ARRAY:
4430 err = do_md_run (mddev);
4431 goto done_unlock;
4433 case SET_BITMAP_FILE:
4434 err = set_bitmap_file(mddev, (int)arg);
4435 goto done_unlock;
4437 default:
4438 err = -EINVAL;
4439 goto abort_unlock;
4442 done_unlock:
4443 abort_unlock:
4444 mddev_unlock(mddev);
4446 return err;
4447 done:
4448 if (err)
4449 MD_BUG();
4450 abort:
4451 return err;
4454 static int md_open(struct inode *inode, struct file *file)
4457 * Succeed if we can lock the mddev, which confirms that
4458 * it isn't being stopped right now.
4460 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4461 int err;
4463 if ((err = mddev_lock(mddev)))
4464 goto out;
4466 err = 0;
4467 mddev_get(mddev);
4468 mddev_unlock(mddev);
4470 check_disk_change(inode->i_bdev);
4471 out:
4472 return err;
4475 static int md_release(struct inode *inode, struct file * file)
4477 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4479 if (!mddev)
4480 BUG();
4481 mddev_put(mddev);
4483 return 0;
4486 static int md_media_changed(struct gendisk *disk)
4488 mddev_t *mddev = disk->private_data;
4490 return mddev->changed;
4493 static int md_revalidate(struct gendisk *disk)
4495 mddev_t *mddev = disk->private_data;
4497 mddev->changed = 0;
4498 return 0;
4500 static struct block_device_operations md_fops =
4502 .owner = THIS_MODULE,
4503 .open = md_open,
4504 .release = md_release,
4505 .ioctl = md_ioctl,
4506 .getgeo = md_getgeo,
4507 .media_changed = md_media_changed,
4508 .revalidate_disk= md_revalidate,
4511 static int md_thread(void * arg)
4513 mdk_thread_t *thread = arg;
4516 * md_thread is a 'system-thread', it's priority should be very
4517 * high. We avoid resource deadlocks individually in each
4518 * raid personality. (RAID5 does preallocation) We also use RR and
4519 * the very same RT priority as kswapd, thus we will never get
4520 * into a priority inversion deadlock.
4522 * we definitely have to have equal or higher priority than
4523 * bdflush, otherwise bdflush will deadlock if there are too
4524 * many dirty RAID5 blocks.
4527 allow_signal(SIGKILL);
4528 while (!kthread_should_stop()) {
4530 /* We need to wait INTERRUPTIBLE so that
4531 * we don't add to the load-average.
4532 * That means we need to be sure no signals are
4533 * pending
4535 if (signal_pending(current))
4536 flush_signals(current);
4538 wait_event_interruptible_timeout
4539 (thread->wqueue,
4540 test_bit(THREAD_WAKEUP, &thread->flags)
4541 || kthread_should_stop(),
4542 thread->timeout);
4543 try_to_freeze();
4545 clear_bit(THREAD_WAKEUP, &thread->flags);
4547 thread->run(thread->mddev);
4550 return 0;
4553 void md_wakeup_thread(mdk_thread_t *thread)
4555 if (thread) {
4556 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4557 set_bit(THREAD_WAKEUP, &thread->flags);
4558 wake_up(&thread->wqueue);
4562 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4563 const char *name)
4565 mdk_thread_t *thread;
4567 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4568 if (!thread)
4569 return NULL;
4571 init_waitqueue_head(&thread->wqueue);
4573 thread->run = run;
4574 thread->mddev = mddev;
4575 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4576 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4577 if (IS_ERR(thread->tsk)) {
4578 kfree(thread);
4579 return NULL;
4581 return thread;
4584 void md_unregister_thread(mdk_thread_t *thread)
4586 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4588 kthread_stop(thread->tsk);
4589 kfree(thread);
4592 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4594 if (!mddev) {
4595 MD_BUG();
4596 return;
4599 if (!rdev || test_bit(Faulty, &rdev->flags))
4600 return;
4602 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4603 mdname(mddev),
4604 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4605 __builtin_return_address(0),__builtin_return_address(1),
4606 __builtin_return_address(2),__builtin_return_address(3));
4608 if (!mddev->pers)
4609 return;
4610 if (!mddev->pers->error_handler)
4611 return;
4612 mddev->pers->error_handler(mddev,rdev);
4613 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4614 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4615 md_wakeup_thread(mddev->thread);
4616 md_new_event_inintr(mddev);
4619 /* seq_file implementation /proc/mdstat */
4621 static void status_unused(struct seq_file *seq)
4623 int i = 0;
4624 mdk_rdev_t *rdev;
4625 struct list_head *tmp;
4627 seq_printf(seq, "unused devices: ");
4629 ITERATE_RDEV_PENDING(rdev,tmp) {
4630 char b[BDEVNAME_SIZE];
4631 i++;
4632 seq_printf(seq, "%s ",
4633 bdevname(rdev->bdev,b));
4635 if (!i)
4636 seq_printf(seq, "<none>");
4638 seq_printf(seq, "\n");
4642 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4644 sector_t max_blocks, resync, res;
4645 unsigned long dt, db, rt;
4646 int scale;
4647 unsigned int per_milli;
4649 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4651 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4652 max_blocks = mddev->resync_max_sectors >> 1;
4653 else
4654 max_blocks = mddev->size;
4657 * Should not happen.
4659 if (!max_blocks) {
4660 MD_BUG();
4661 return;
4663 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4664 * in a sector_t, and (max_blocks>>scale) will fit in a
4665 * u32, as those are the requirements for sector_div.
4666 * Thus 'scale' must be at least 10
4668 scale = 10;
4669 if (sizeof(sector_t) > sizeof(unsigned long)) {
4670 while ( max_blocks/2 > (1ULL<<(scale+32)))
4671 scale++;
4673 res = (resync>>scale)*1000;
4674 sector_div(res, (u32)((max_blocks>>scale)+1));
4676 per_milli = res;
4678 int i, x = per_milli/50, y = 20-x;
4679 seq_printf(seq, "[");
4680 for (i = 0; i < x; i++)
4681 seq_printf(seq, "=");
4682 seq_printf(seq, ">");
4683 for (i = 0; i < y; i++)
4684 seq_printf(seq, ".");
4685 seq_printf(seq, "] ");
4687 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4688 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4689 "reshape" :
4690 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4691 "resync" : "recovery")),
4692 per_milli/10, per_milli % 10,
4693 (unsigned long long) resync,
4694 (unsigned long long) max_blocks);
4697 * We do not want to overflow, so the order of operands and
4698 * the * 100 / 100 trick are important. We do a +1 to be
4699 * safe against division by zero. We only estimate anyway.
4701 * dt: time from mark until now
4702 * db: blocks written from mark until now
4703 * rt: remaining time
4705 dt = ((jiffies - mddev->resync_mark) / HZ);
4706 if (!dt) dt++;
4707 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4708 - mddev->resync_mark_cnt;
4709 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4711 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4713 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4716 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4718 struct list_head *tmp;
4719 loff_t l = *pos;
4720 mddev_t *mddev;
4722 if (l >= 0x10000)
4723 return NULL;
4724 if (!l--)
4725 /* header */
4726 return (void*)1;
4728 spin_lock(&all_mddevs_lock);
4729 list_for_each(tmp,&all_mddevs)
4730 if (!l--) {
4731 mddev = list_entry(tmp, mddev_t, all_mddevs);
4732 mddev_get(mddev);
4733 spin_unlock(&all_mddevs_lock);
4734 return mddev;
4736 spin_unlock(&all_mddevs_lock);
4737 if (!l--)
4738 return (void*)2;/* tail */
4739 return NULL;
4742 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4744 struct list_head *tmp;
4745 mddev_t *next_mddev, *mddev = v;
4747 ++*pos;
4748 if (v == (void*)2)
4749 return NULL;
4751 spin_lock(&all_mddevs_lock);
4752 if (v == (void*)1)
4753 tmp = all_mddevs.next;
4754 else
4755 tmp = mddev->all_mddevs.next;
4756 if (tmp != &all_mddevs)
4757 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4758 else {
4759 next_mddev = (void*)2;
4760 *pos = 0x10000;
4762 spin_unlock(&all_mddevs_lock);
4764 if (v != (void*)1)
4765 mddev_put(mddev);
4766 return next_mddev;
4770 static void md_seq_stop(struct seq_file *seq, void *v)
4772 mddev_t *mddev = v;
4774 if (mddev && v != (void*)1 && v != (void*)2)
4775 mddev_put(mddev);
4778 struct mdstat_info {
4779 int event;
4782 static int md_seq_show(struct seq_file *seq, void *v)
4784 mddev_t *mddev = v;
4785 sector_t size;
4786 struct list_head *tmp2;
4787 mdk_rdev_t *rdev;
4788 struct mdstat_info *mi = seq->private;
4789 struct bitmap *bitmap;
4791 if (v == (void*)1) {
4792 struct mdk_personality *pers;
4793 seq_printf(seq, "Personalities : ");
4794 spin_lock(&pers_lock);
4795 list_for_each_entry(pers, &pers_list, list)
4796 seq_printf(seq, "[%s] ", pers->name);
4798 spin_unlock(&pers_lock);
4799 seq_printf(seq, "\n");
4800 mi->event = atomic_read(&md_event_count);
4801 return 0;
4803 if (v == (void*)2) {
4804 status_unused(seq);
4805 return 0;
4808 if (mddev_lock(mddev) < 0)
4809 return -EINTR;
4811 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4812 seq_printf(seq, "%s : %sactive", mdname(mddev),
4813 mddev->pers ? "" : "in");
4814 if (mddev->pers) {
4815 if (mddev->ro==1)
4816 seq_printf(seq, " (read-only)");
4817 if (mddev->ro==2)
4818 seq_printf(seq, "(auto-read-only)");
4819 seq_printf(seq, " %s", mddev->pers->name);
4822 size = 0;
4823 ITERATE_RDEV(mddev,rdev,tmp2) {
4824 char b[BDEVNAME_SIZE];
4825 seq_printf(seq, " %s[%d]",
4826 bdevname(rdev->bdev,b), rdev->desc_nr);
4827 if (test_bit(WriteMostly, &rdev->flags))
4828 seq_printf(seq, "(W)");
4829 if (test_bit(Faulty, &rdev->flags)) {
4830 seq_printf(seq, "(F)");
4831 continue;
4832 } else if (rdev->raid_disk < 0)
4833 seq_printf(seq, "(S)"); /* spare */
4834 size += rdev->size;
4837 if (!list_empty(&mddev->disks)) {
4838 if (mddev->pers)
4839 seq_printf(seq, "\n %llu blocks",
4840 (unsigned long long)mddev->array_size);
4841 else
4842 seq_printf(seq, "\n %llu blocks",
4843 (unsigned long long)size);
4845 if (mddev->persistent) {
4846 if (mddev->major_version != 0 ||
4847 mddev->minor_version != 90) {
4848 seq_printf(seq," super %d.%d",
4849 mddev->major_version,
4850 mddev->minor_version);
4852 } else
4853 seq_printf(seq, " super non-persistent");
4855 if (mddev->pers) {
4856 mddev->pers->status (seq, mddev);
4857 seq_printf(seq, "\n ");
4858 if (mddev->pers->sync_request) {
4859 if (mddev->curr_resync > 2) {
4860 status_resync (seq, mddev);
4861 seq_printf(seq, "\n ");
4862 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4863 seq_printf(seq, "\tresync=DELAYED\n ");
4864 else if (mddev->recovery_cp < MaxSector)
4865 seq_printf(seq, "\tresync=PENDING\n ");
4867 } else
4868 seq_printf(seq, "\n ");
4870 if ((bitmap = mddev->bitmap)) {
4871 unsigned long chunk_kb;
4872 unsigned long flags;
4873 spin_lock_irqsave(&bitmap->lock, flags);
4874 chunk_kb = bitmap->chunksize >> 10;
4875 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4876 "%lu%s chunk",
4877 bitmap->pages - bitmap->missing_pages,
4878 bitmap->pages,
4879 (bitmap->pages - bitmap->missing_pages)
4880 << (PAGE_SHIFT - 10),
4881 chunk_kb ? chunk_kb : bitmap->chunksize,
4882 chunk_kb ? "KB" : "B");
4883 if (bitmap->file) {
4884 seq_printf(seq, ", file: ");
4885 seq_path(seq, bitmap->file->f_vfsmnt,
4886 bitmap->file->f_dentry," \t\n");
4889 seq_printf(seq, "\n");
4890 spin_unlock_irqrestore(&bitmap->lock, flags);
4893 seq_printf(seq, "\n");
4895 mddev_unlock(mddev);
4897 return 0;
4900 static struct seq_operations md_seq_ops = {
4901 .start = md_seq_start,
4902 .next = md_seq_next,
4903 .stop = md_seq_stop,
4904 .show = md_seq_show,
4907 static int md_seq_open(struct inode *inode, struct file *file)
4909 int error;
4910 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4911 if (mi == NULL)
4912 return -ENOMEM;
4914 error = seq_open(file, &md_seq_ops);
4915 if (error)
4916 kfree(mi);
4917 else {
4918 struct seq_file *p = file->private_data;
4919 p->private = mi;
4920 mi->event = atomic_read(&md_event_count);
4922 return error;
4925 static int md_seq_release(struct inode *inode, struct file *file)
4927 struct seq_file *m = file->private_data;
4928 struct mdstat_info *mi = m->private;
4929 m->private = NULL;
4930 kfree(mi);
4931 return seq_release(inode, file);
4934 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4936 struct seq_file *m = filp->private_data;
4937 struct mdstat_info *mi = m->private;
4938 int mask;
4940 poll_wait(filp, &md_event_waiters, wait);
4942 /* always allow read */
4943 mask = POLLIN | POLLRDNORM;
4945 if (mi->event != atomic_read(&md_event_count))
4946 mask |= POLLERR | POLLPRI;
4947 return mask;
4950 static struct file_operations md_seq_fops = {
4951 .open = md_seq_open,
4952 .read = seq_read,
4953 .llseek = seq_lseek,
4954 .release = md_seq_release,
4955 .poll = mdstat_poll,
4958 int register_md_personality(struct mdk_personality *p)
4960 spin_lock(&pers_lock);
4961 list_add_tail(&p->list, &pers_list);
4962 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4963 spin_unlock(&pers_lock);
4964 return 0;
4967 int unregister_md_personality(struct mdk_personality *p)
4969 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4970 spin_lock(&pers_lock);
4971 list_del_init(&p->list);
4972 spin_unlock(&pers_lock);
4973 return 0;
4976 static int is_mddev_idle(mddev_t *mddev)
4978 mdk_rdev_t * rdev;
4979 struct list_head *tmp;
4980 int idle;
4981 unsigned long curr_events;
4983 idle = 1;
4984 ITERATE_RDEV(mddev,rdev,tmp) {
4985 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4986 curr_events = disk_stat_read(disk, sectors[0]) +
4987 disk_stat_read(disk, sectors[1]) -
4988 atomic_read(&disk->sync_io);
4989 /* The difference between curr_events and last_events
4990 * will be affected by any new non-sync IO (making
4991 * curr_events bigger) and any difference in the amount of
4992 * in-flight syncio (making current_events bigger or smaller)
4993 * The amount in-flight is currently limited to
4994 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4995 * which is at most 4096 sectors.
4996 * These numbers are fairly fragile and should be made
4997 * more robust, probably by enforcing the
4998 * 'window size' that md_do_sync sort-of uses.
5000 * Note: the following is an unsigned comparison.
5002 if ((curr_events - rdev->last_events + 4096) > 8192) {
5003 rdev->last_events = curr_events;
5004 idle = 0;
5007 return idle;
5010 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5012 /* another "blocks" (512byte) blocks have been synced */
5013 atomic_sub(blocks, &mddev->recovery_active);
5014 wake_up(&mddev->recovery_wait);
5015 if (!ok) {
5016 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5017 md_wakeup_thread(mddev->thread);
5018 // stop recovery, signal do_sync ....
5023 /* md_write_start(mddev, bi)
5024 * If we need to update some array metadata (e.g. 'active' flag
5025 * in superblock) before writing, schedule a superblock update
5026 * and wait for it to complete.
5028 void md_write_start(mddev_t *mddev, struct bio *bi)
5030 if (bio_data_dir(bi) != WRITE)
5031 return;
5033 BUG_ON(mddev->ro == 1);
5034 if (mddev->ro == 2) {
5035 /* need to switch to read/write */
5036 mddev->ro = 0;
5037 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5038 md_wakeup_thread(mddev->thread);
5040 atomic_inc(&mddev->writes_pending);
5041 if (mddev->in_sync) {
5042 spin_lock_irq(&mddev->write_lock);
5043 if (mddev->in_sync) {
5044 mddev->in_sync = 0;
5045 mddev->sb_dirty = 3;
5046 md_wakeup_thread(mddev->thread);
5048 spin_unlock_irq(&mddev->write_lock);
5050 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
5053 void md_write_end(mddev_t *mddev)
5055 if (atomic_dec_and_test(&mddev->writes_pending)) {
5056 if (mddev->safemode == 2)
5057 md_wakeup_thread(mddev->thread);
5058 else if (mddev->safemode_delay)
5059 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5063 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5065 #define SYNC_MARKS 10
5066 #define SYNC_MARK_STEP (3*HZ)
5067 void md_do_sync(mddev_t *mddev)
5069 mddev_t *mddev2;
5070 unsigned int currspeed = 0,
5071 window;
5072 sector_t max_sectors,j, io_sectors;
5073 unsigned long mark[SYNC_MARKS];
5074 sector_t mark_cnt[SYNC_MARKS];
5075 int last_mark,m;
5076 struct list_head *tmp;
5077 sector_t last_check;
5078 int skipped = 0;
5079 struct list_head *rtmp;
5080 mdk_rdev_t *rdev;
5082 /* just incase thread restarts... */
5083 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5084 return;
5085 if (mddev->ro) /* never try to sync a read-only array */
5086 return;
5088 /* we overload curr_resync somewhat here.
5089 * 0 == not engaged in resync at all
5090 * 2 == checking that there is no conflict with another sync
5091 * 1 == like 2, but have yielded to allow conflicting resync to
5092 * commense
5093 * other == active in resync - this many blocks
5095 * Before starting a resync we must have set curr_resync to
5096 * 2, and then checked that every "conflicting" array has curr_resync
5097 * less than ours. When we find one that is the same or higher
5098 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5099 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5100 * This will mean we have to start checking from the beginning again.
5104 do {
5105 mddev->curr_resync = 2;
5107 try_again:
5108 if (kthread_should_stop()) {
5109 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5110 goto skip;
5112 ITERATE_MDDEV(mddev2,tmp) {
5113 if (mddev2 == mddev)
5114 continue;
5115 if (mddev2->curr_resync &&
5116 match_mddev_units(mddev,mddev2)) {
5117 DEFINE_WAIT(wq);
5118 if (mddev < mddev2 && mddev->curr_resync == 2) {
5119 /* arbitrarily yield */
5120 mddev->curr_resync = 1;
5121 wake_up(&resync_wait);
5123 if (mddev > mddev2 && mddev->curr_resync == 1)
5124 /* no need to wait here, we can wait the next
5125 * time 'round when curr_resync == 2
5127 continue;
5128 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5129 if (!kthread_should_stop() &&
5130 mddev2->curr_resync >= mddev->curr_resync) {
5131 printk(KERN_INFO "md: delaying resync of %s"
5132 " until %s has finished resync (they"
5133 " share one or more physical units)\n",
5134 mdname(mddev), mdname(mddev2));
5135 mddev_put(mddev2);
5136 schedule();
5137 finish_wait(&resync_wait, &wq);
5138 goto try_again;
5140 finish_wait(&resync_wait, &wq);
5143 } while (mddev->curr_resync < 2);
5145 j = 0;
5146 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5147 /* resync follows the size requested by the personality,
5148 * which defaults to physical size, but can be virtual size
5150 max_sectors = mddev->resync_max_sectors;
5151 mddev->resync_mismatches = 0;
5152 /* we don't use the checkpoint if there's a bitmap */
5153 if (!mddev->bitmap &&
5154 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5155 j = mddev->recovery_cp;
5156 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5157 max_sectors = mddev->size << 1;
5158 else {
5159 /* recovery follows the physical size of devices */
5160 max_sectors = mddev->size << 1;
5161 j = MaxSector;
5162 ITERATE_RDEV(mddev,rdev,rtmp)
5163 if (rdev->raid_disk >= 0 &&
5164 !test_bit(Faulty, &rdev->flags) &&
5165 !test_bit(In_sync, &rdev->flags) &&
5166 rdev->recovery_offset < j)
5167 j = rdev->recovery_offset;
5170 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
5171 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
5172 " %d KB/sec/disc.\n", speed_min(mddev));
5173 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5174 "(but not more than %d KB/sec) for reconstruction.\n",
5175 speed_max(mddev));
5177 is_mddev_idle(mddev); /* this also initializes IO event counters */
5179 io_sectors = 0;
5180 for (m = 0; m < SYNC_MARKS; m++) {
5181 mark[m] = jiffies;
5182 mark_cnt[m] = io_sectors;
5184 last_mark = 0;
5185 mddev->resync_mark = mark[last_mark];
5186 mddev->resync_mark_cnt = mark_cnt[last_mark];
5189 * Tune reconstruction:
5191 window = 32*(PAGE_SIZE/512);
5192 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5193 window/2,(unsigned long long) max_sectors/2);
5195 atomic_set(&mddev->recovery_active, 0);
5196 init_waitqueue_head(&mddev->recovery_wait);
5197 last_check = 0;
5199 if (j>2) {
5200 printk(KERN_INFO
5201 "md: resuming recovery of %s from checkpoint.\n",
5202 mdname(mddev));
5203 mddev->curr_resync = j;
5206 while (j < max_sectors) {
5207 sector_t sectors;
5209 skipped = 0;
5210 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5211 currspeed < speed_min(mddev));
5212 if (sectors == 0) {
5213 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5214 goto out;
5217 if (!skipped) { /* actual IO requested */
5218 io_sectors += sectors;
5219 atomic_add(sectors, &mddev->recovery_active);
5222 j += sectors;
5223 if (j>1) mddev->curr_resync = j;
5224 mddev->curr_mark_cnt = io_sectors;
5225 if (last_check == 0)
5226 /* this is the earliers that rebuilt will be
5227 * visible in /proc/mdstat
5229 md_new_event(mddev);
5231 if (last_check + window > io_sectors || j == max_sectors)
5232 continue;
5234 last_check = io_sectors;
5236 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5237 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5238 break;
5240 repeat:
5241 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5242 /* step marks */
5243 int next = (last_mark+1) % SYNC_MARKS;
5245 mddev->resync_mark = mark[next];
5246 mddev->resync_mark_cnt = mark_cnt[next];
5247 mark[next] = jiffies;
5248 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5249 last_mark = next;
5253 if (kthread_should_stop()) {
5255 * got a signal, exit.
5257 printk(KERN_INFO
5258 "md: md_do_sync() got signal ... exiting\n");
5259 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5260 goto out;
5264 * this loop exits only if either when we are slower than
5265 * the 'hard' speed limit, or the system was IO-idle for
5266 * a jiffy.
5267 * the system might be non-idle CPU-wise, but we only care
5268 * about not overloading the IO subsystem. (things like an
5269 * e2fsck being done on the RAID array should execute fast)
5271 mddev->queue->unplug_fn(mddev->queue);
5272 cond_resched();
5274 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5275 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5277 if (currspeed > speed_min(mddev)) {
5278 if ((currspeed > speed_max(mddev)) ||
5279 !is_mddev_idle(mddev)) {
5280 msleep(500);
5281 goto repeat;
5285 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
5287 * this also signals 'finished resyncing' to md_stop
5289 out:
5290 mddev->queue->unplug_fn(mddev->queue);
5292 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5294 /* tell personality that we are finished */
5295 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5297 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5298 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
5299 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5300 mddev->curr_resync > 2) {
5301 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5302 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5303 if (mddev->curr_resync >= mddev->recovery_cp) {
5304 printk(KERN_INFO
5305 "md: checkpointing recovery of %s.\n",
5306 mdname(mddev));
5307 mddev->recovery_cp = mddev->curr_resync;
5309 } else
5310 mddev->recovery_cp = MaxSector;
5311 } else {
5312 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5313 mddev->curr_resync = MaxSector;
5314 ITERATE_RDEV(mddev,rdev,rtmp)
5315 if (rdev->raid_disk >= 0 &&
5316 !test_bit(Faulty, &rdev->flags) &&
5317 !test_bit(In_sync, &rdev->flags) &&
5318 rdev->recovery_offset < mddev->curr_resync)
5319 rdev->recovery_offset = mddev->curr_resync;
5320 mddev->sb_dirty = 1;
5324 skip:
5325 mddev->curr_resync = 0;
5326 wake_up(&resync_wait);
5327 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5328 md_wakeup_thread(mddev->thread);
5330 EXPORT_SYMBOL_GPL(md_do_sync);
5334 * This routine is regularly called by all per-raid-array threads to
5335 * deal with generic issues like resync and super-block update.
5336 * Raid personalities that don't have a thread (linear/raid0) do not
5337 * need this as they never do any recovery or update the superblock.
5339 * It does not do any resync itself, but rather "forks" off other threads
5340 * to do that as needed.
5341 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5342 * "->recovery" and create a thread at ->sync_thread.
5343 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5344 * and wakeups up this thread which will reap the thread and finish up.
5345 * This thread also removes any faulty devices (with nr_pending == 0).
5347 * The overall approach is:
5348 * 1/ if the superblock needs updating, update it.
5349 * 2/ If a recovery thread is running, don't do anything else.
5350 * 3/ If recovery has finished, clean up, possibly marking spares active.
5351 * 4/ If there are any faulty devices, remove them.
5352 * 5/ If array is degraded, try to add spares devices
5353 * 6/ If array has spares or is not in-sync, start a resync thread.
5355 void md_check_recovery(mddev_t *mddev)
5357 mdk_rdev_t *rdev;
5358 struct list_head *rtmp;
5361 if (mddev->bitmap)
5362 bitmap_daemon_work(mddev->bitmap);
5364 if (mddev->ro)
5365 return;
5367 if (signal_pending(current)) {
5368 if (mddev->pers->sync_request) {
5369 printk(KERN_INFO "md: %s in immediate safe mode\n",
5370 mdname(mddev));
5371 mddev->safemode = 2;
5373 flush_signals(current);
5376 if ( ! (
5377 mddev->sb_dirty ||
5378 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5379 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5380 (mddev->safemode == 1) ||
5381 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5382 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5384 return;
5386 if (mddev_trylock(mddev)) {
5387 int spares =0;
5389 spin_lock_irq(&mddev->write_lock);
5390 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5391 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5392 mddev->in_sync = 1;
5393 mddev->sb_dirty = 3;
5395 if (mddev->safemode == 1)
5396 mddev->safemode = 0;
5397 spin_unlock_irq(&mddev->write_lock);
5399 if (mddev->sb_dirty)
5400 md_update_sb(mddev);
5403 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5404 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5405 /* resync/recovery still happening */
5406 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5407 goto unlock;
5409 if (mddev->sync_thread) {
5410 /* resync has finished, collect result */
5411 md_unregister_thread(mddev->sync_thread);
5412 mddev->sync_thread = NULL;
5413 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5414 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5415 /* success...*/
5416 /* activate any spares */
5417 mddev->pers->spare_active(mddev);
5419 md_update_sb(mddev);
5421 /* if array is no-longer degraded, then any saved_raid_disk
5422 * information must be scrapped
5424 if (!mddev->degraded)
5425 ITERATE_RDEV(mddev,rdev,rtmp)
5426 rdev->saved_raid_disk = -1;
5428 mddev->recovery = 0;
5429 /* flag recovery needed just to double check */
5430 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5431 md_new_event(mddev);
5432 goto unlock;
5434 /* Clear some bits that don't mean anything, but
5435 * might be left set
5437 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5438 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5439 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5440 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5442 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5443 goto unlock;
5444 /* no recovery is running.
5445 * remove any failed drives, then
5446 * add spares if possible.
5447 * Spare are also removed and re-added, to allow
5448 * the personality to fail the re-add.
5450 ITERATE_RDEV(mddev,rdev,rtmp)
5451 if (rdev->raid_disk >= 0 &&
5452 (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
5453 atomic_read(&rdev->nr_pending)==0) {
5454 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
5455 char nm[20];
5456 sprintf(nm,"rd%d", rdev->raid_disk);
5457 sysfs_remove_link(&mddev->kobj, nm);
5458 rdev->raid_disk = -1;
5462 if (mddev->degraded) {
5463 ITERATE_RDEV(mddev,rdev,rtmp)
5464 if (rdev->raid_disk < 0
5465 && !test_bit(Faulty, &rdev->flags)) {
5466 rdev->recovery_offset = 0;
5467 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5468 char nm[20];
5469 sprintf(nm, "rd%d", rdev->raid_disk);
5470 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
5471 spares++;
5472 md_new_event(mddev);
5473 } else
5474 break;
5478 if (spares) {
5479 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5480 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5481 } else if (mddev->recovery_cp < MaxSector) {
5482 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5483 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5484 /* nothing to be done ... */
5485 goto unlock;
5487 if (mddev->pers->sync_request) {
5488 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5489 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5490 /* We are adding a device or devices to an array
5491 * which has the bitmap stored on all devices.
5492 * So make sure all bitmap pages get written
5494 bitmap_write_all(mddev->bitmap);
5496 mddev->sync_thread = md_register_thread(md_do_sync,
5497 mddev,
5498 "%s_resync");
5499 if (!mddev->sync_thread) {
5500 printk(KERN_ERR "%s: could not start resync"
5501 " thread...\n",
5502 mdname(mddev));
5503 /* leave the spares where they are, it shouldn't hurt */
5504 mddev->recovery = 0;
5505 } else
5506 md_wakeup_thread(mddev->sync_thread);
5507 md_new_event(mddev);
5509 unlock:
5510 mddev_unlock(mddev);
5514 static int md_notify_reboot(struct notifier_block *this,
5515 unsigned long code, void *x)
5517 struct list_head *tmp;
5518 mddev_t *mddev;
5520 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5522 printk(KERN_INFO "md: stopping all md devices.\n");
5524 ITERATE_MDDEV(mddev,tmp)
5525 if (mddev_trylock(mddev)) {
5526 do_md_stop (mddev, 1);
5527 mddev_unlock(mddev);
5530 * certain more exotic SCSI devices are known to be
5531 * volatile wrt too early system reboots. While the
5532 * right place to handle this issue is the given
5533 * driver, we do want to have a safe RAID driver ...
5535 mdelay(1000*1);
5537 return NOTIFY_DONE;
5540 static struct notifier_block md_notifier = {
5541 .notifier_call = md_notify_reboot,
5542 .next = NULL,
5543 .priority = INT_MAX, /* before any real devices */
5546 static void md_geninit(void)
5548 struct proc_dir_entry *p;
5550 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5552 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5553 if (p)
5554 p->proc_fops = &md_seq_fops;
5557 static int __init md_init(void)
5559 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
5560 " MD_SB_DISKS=%d\n",
5561 MD_MAJOR_VERSION, MD_MINOR_VERSION,
5562 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
5563 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
5564 BITMAP_MINOR);
5566 if (register_blkdev(MAJOR_NR, "md"))
5567 return -1;
5568 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5569 unregister_blkdev(MAJOR_NR, "md");
5570 return -1;
5572 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
5573 md_probe, NULL, NULL);
5574 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
5575 md_probe, NULL, NULL);
5577 register_reboot_notifier(&md_notifier);
5578 raid_table_header = register_sysctl_table(raid_root_table, 1);
5580 md_geninit();
5581 return (0);
5585 #ifndef MODULE
5588 * Searches all registered partitions for autorun RAID arrays
5589 * at boot time.
5591 static dev_t detected_devices[128];
5592 static int dev_cnt;
5594 void md_autodetect_dev(dev_t dev)
5596 if (dev_cnt >= 0 && dev_cnt < 127)
5597 detected_devices[dev_cnt++] = dev;
5601 static void autostart_arrays(int part)
5603 mdk_rdev_t *rdev;
5604 int i;
5606 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5608 for (i = 0; i < dev_cnt; i++) {
5609 dev_t dev = detected_devices[i];
5611 rdev = md_import_device(dev,0, 0);
5612 if (IS_ERR(rdev))
5613 continue;
5615 if (test_bit(Faulty, &rdev->flags)) {
5616 MD_BUG();
5617 continue;
5619 list_add(&rdev->same_set, &pending_raid_disks);
5621 dev_cnt = 0;
5623 autorun_devices(part);
5626 #endif
5628 static __exit void md_exit(void)
5630 mddev_t *mddev;
5631 struct list_head *tmp;
5633 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
5634 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
5636 unregister_blkdev(MAJOR_NR,"md");
5637 unregister_blkdev(mdp_major, "mdp");
5638 unregister_reboot_notifier(&md_notifier);
5639 unregister_sysctl_table(raid_table_header);
5640 remove_proc_entry("mdstat", NULL);
5641 ITERATE_MDDEV(mddev,tmp) {
5642 struct gendisk *disk = mddev->gendisk;
5643 if (!disk)
5644 continue;
5645 export_array(mddev);
5646 del_gendisk(disk);
5647 put_disk(disk);
5648 mddev->gendisk = NULL;
5649 mddev_put(mddev);
5653 module_init(md_init)
5654 module_exit(md_exit)
5656 static int get_ro(char *buffer, struct kernel_param *kp)
5658 return sprintf(buffer, "%d", start_readonly);
5660 static int set_ro(const char *val, struct kernel_param *kp)
5662 char *e;
5663 int num = simple_strtoul(val, &e, 10);
5664 if (*val && (*e == '\0' || *e == '\n')) {
5665 start_readonly = num;
5666 return 0;
5668 return -EINVAL;
5671 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5672 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5675 EXPORT_SYMBOL(register_md_personality);
5676 EXPORT_SYMBOL(unregister_md_personality);
5677 EXPORT_SYMBOL(md_error);
5678 EXPORT_SYMBOL(md_done_sync);
5679 EXPORT_SYMBOL(md_write_start);
5680 EXPORT_SYMBOL(md_write_end);
5681 EXPORT_SYMBOL(md_register_thread);
5682 EXPORT_SYMBOL(md_unregister_thread);
5683 EXPORT_SYMBOL(md_wakeup_thread);
5684 EXPORT_SYMBOL(md_check_recovery);
5685 MODULE_LICENSE("GPL");
5686 MODULE_ALIAS("md");
5687 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);