2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * This file is released under the GPL.
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/crypto.h>
17 #include <linux/workqueue.h>
18 #include <asm/atomic.h>
19 #include <linux/scatterlist.h>
24 #define DM_MSG_PREFIX "crypt"
27 * per bio private data
30 struct dm_target
*target
;
32 struct bio
*first_clone
;
33 struct work_struct work
;
39 * context holding the current state of a multi-part conversion
41 struct convert_context
{
44 unsigned int offset_in
;
45 unsigned int offset_out
;
54 struct crypt_iv_operations
{
55 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
57 void (*dtr
)(struct crypt_config
*cc
);
58 const char *(*status
)(struct crypt_config
*cc
);
59 int (*generator
)(struct crypt_config
*cc
, u8
*iv
, sector_t sector
);
63 * Crypt: maps a linear range of a block device
64 * and encrypts / decrypts at the same time.
71 * pool for per bio private data and
72 * for encryption buffer pages
80 struct crypt_iv_operations
*iv_gen_ops
;
82 struct crypto_cipher
*iv_gen_private
;
86 char cipher
[CRYPTO_MAX_ALG_NAME
];
87 char chainmode
[CRYPTO_MAX_ALG_NAME
];
88 struct crypto_blkcipher
*tfm
;
89 unsigned int key_size
;
94 #define MIN_POOL_PAGES 32
95 #define MIN_BIO_PAGES 8
97 static kmem_cache_t
*_crypt_io_pool
;
100 * Different IV generation algorithms:
102 * plain: the initial vector is the 32-bit little-endian version of the sector
103 * number, padded with zeros if neccessary.
105 * essiv: "encrypted sector|salt initial vector", the sector number is
106 * encrypted with the bulk cipher using a salt as key. The salt
107 * should be derived from the bulk cipher's key via hashing.
109 * plumb: unimplemented, see:
110 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
113 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
, sector_t sector
)
115 memset(iv
, 0, cc
->iv_size
);
116 *(u32
*)iv
= cpu_to_le32(sector
& 0xffffffff);
121 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
124 struct crypto_cipher
*essiv_tfm
;
125 struct crypto_hash
*hash_tfm
;
126 struct hash_desc desc
;
127 struct scatterlist sg
;
128 unsigned int saltsize
;
133 ti
->error
= "Digest algorithm missing for ESSIV mode";
137 /* Hash the cipher key with the given hash algorithm */
138 hash_tfm
= crypto_alloc_hash(opts
, 0, CRYPTO_ALG_ASYNC
);
139 if (IS_ERR(hash_tfm
)) {
140 ti
->error
= "Error initializing ESSIV hash";
141 return PTR_ERR(hash_tfm
);
144 saltsize
= crypto_hash_digestsize(hash_tfm
);
145 salt
= kmalloc(saltsize
, GFP_KERNEL
);
147 ti
->error
= "Error kmallocing salt storage in ESSIV";
148 crypto_free_hash(hash_tfm
);
152 sg_set_buf(&sg
, cc
->key
, cc
->key_size
);
154 desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
155 err
= crypto_hash_digest(&desc
, &sg
, cc
->key_size
, salt
);
156 crypto_free_hash(hash_tfm
);
159 ti
->error
= "Error calculating hash in ESSIV";
163 /* Setup the essiv_tfm with the given salt */
164 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
165 if (IS_ERR(essiv_tfm
)) {
166 ti
->error
= "Error allocating crypto tfm for ESSIV";
168 return PTR_ERR(essiv_tfm
);
170 if (crypto_cipher_blocksize(essiv_tfm
) !=
171 crypto_blkcipher_ivsize(cc
->tfm
)) {
172 ti
->error
= "Block size of ESSIV cipher does "
173 "not match IV size of block cipher";
174 crypto_free_cipher(essiv_tfm
);
178 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
180 ti
->error
= "Failed to set key for ESSIV cipher";
181 crypto_free_cipher(essiv_tfm
);
187 cc
->iv_gen_private
= essiv_tfm
;
191 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
193 crypto_free_cipher(cc
->iv_gen_private
);
194 cc
->iv_gen_private
= NULL
;
197 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
, sector_t sector
)
199 memset(iv
, 0, cc
->iv_size
);
200 *(u64
*)iv
= cpu_to_le64(sector
);
201 crypto_cipher_encrypt_one(cc
->iv_gen_private
, iv
, iv
);
205 static struct crypt_iv_operations crypt_iv_plain_ops
= {
206 .generator
= crypt_iv_plain_gen
209 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
210 .ctr
= crypt_iv_essiv_ctr
,
211 .dtr
= crypt_iv_essiv_dtr
,
212 .generator
= crypt_iv_essiv_gen
217 crypt_convert_scatterlist(struct crypt_config
*cc
, struct scatterlist
*out
,
218 struct scatterlist
*in
, unsigned int length
,
219 int write
, sector_t sector
)
222 struct blkcipher_desc desc
= {
225 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
,
229 if (cc
->iv_gen_ops
) {
230 r
= cc
->iv_gen_ops
->generator(cc
, iv
, sector
);
235 r
= crypto_blkcipher_encrypt_iv(&desc
, out
, in
, length
);
237 r
= crypto_blkcipher_decrypt_iv(&desc
, out
, in
, length
);
240 r
= crypto_blkcipher_encrypt(&desc
, out
, in
, length
);
242 r
= crypto_blkcipher_decrypt(&desc
, out
, in
, length
);
249 crypt_convert_init(struct crypt_config
*cc
, struct convert_context
*ctx
,
250 struct bio
*bio_out
, struct bio
*bio_in
,
251 sector_t sector
, int write
)
253 ctx
->bio_in
= bio_in
;
254 ctx
->bio_out
= bio_out
;
257 ctx
->idx_in
= bio_in
? bio_in
->bi_idx
: 0;
258 ctx
->idx_out
= bio_out
? bio_out
->bi_idx
: 0;
259 ctx
->sector
= sector
+ cc
->iv_offset
;
264 * Encrypt / decrypt data from one bio to another one (can be the same one)
266 static int crypt_convert(struct crypt_config
*cc
,
267 struct convert_context
*ctx
)
271 while(ctx
->idx_in
< ctx
->bio_in
->bi_vcnt
&&
272 ctx
->idx_out
< ctx
->bio_out
->bi_vcnt
) {
273 struct bio_vec
*bv_in
= bio_iovec_idx(ctx
->bio_in
, ctx
->idx_in
);
274 struct bio_vec
*bv_out
= bio_iovec_idx(ctx
->bio_out
, ctx
->idx_out
);
275 struct scatterlist sg_in
= {
276 .page
= bv_in
->bv_page
,
277 .offset
= bv_in
->bv_offset
+ ctx
->offset_in
,
278 .length
= 1 << SECTOR_SHIFT
280 struct scatterlist sg_out
= {
281 .page
= bv_out
->bv_page
,
282 .offset
= bv_out
->bv_offset
+ ctx
->offset_out
,
283 .length
= 1 << SECTOR_SHIFT
286 ctx
->offset_in
+= sg_in
.length
;
287 if (ctx
->offset_in
>= bv_in
->bv_len
) {
292 ctx
->offset_out
+= sg_out
.length
;
293 if (ctx
->offset_out
>= bv_out
->bv_len
) {
298 r
= crypt_convert_scatterlist(cc
, &sg_out
, &sg_in
, sg_in
.length
,
299 ctx
->write
, ctx
->sector
);
310 * Generate a new unfragmented bio with the given size
311 * This should never violate the device limitations
312 * May return a smaller bio when running out of pages
315 crypt_alloc_buffer(struct crypt_config
*cc
, unsigned int size
,
316 struct bio
*base_bio
, unsigned int *bio_vec_idx
)
319 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
320 gfp_t gfp_mask
= GFP_NOIO
| __GFP_HIGHMEM
;
324 * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and
325 * to fail earlier. This is not necessary but increases throughput.
326 * FIXME: Is this really intelligent?
329 bio
= bio_clone(base_bio
, GFP_NOIO
|__GFP_NOMEMALLOC
);
331 bio
= bio_alloc(GFP_NOIO
|__GFP_NOMEMALLOC
, nr_iovecs
);
335 /* if the last bio was not complete, continue where that one ended */
336 bio
->bi_idx
= *bio_vec_idx
;
337 bio
->bi_vcnt
= *bio_vec_idx
;
339 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
341 /* bio->bi_idx pages have already been allocated */
342 size
-= bio
->bi_idx
* PAGE_SIZE
;
344 for(i
= bio
->bi_idx
; i
< nr_iovecs
; i
++) {
345 struct bio_vec
*bv
= bio_iovec_idx(bio
, i
);
347 bv
->bv_page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
352 * if additional pages cannot be allocated without waiting,
353 * return a partially allocated bio, the caller will then try
354 * to allocate additional bios while submitting this partial bio
356 if ((i
- bio
->bi_idx
) == (MIN_BIO_PAGES
- 1))
357 gfp_mask
= (gfp_mask
| __GFP_NOWARN
) & ~__GFP_WAIT
;
360 if (size
> PAGE_SIZE
)
361 bv
->bv_len
= PAGE_SIZE
;
365 bio
->bi_size
+= bv
->bv_len
;
376 * Remember the last bio_vec allocated to be able
377 * to correctly continue after the splitting.
379 *bio_vec_idx
= bio
->bi_vcnt
;
384 static void crypt_free_buffer_pages(struct crypt_config
*cc
,
385 struct bio
*bio
, unsigned int bytes
)
387 unsigned int i
, start
, end
;
391 * This is ugly, but Jens Axboe thinks that using bi_idx in the
392 * endio function is too dangerous at the moment, so I calculate the
393 * correct position using bi_vcnt and bi_size.
394 * The bv_offset and bv_len fields might already be modified but we
395 * know that we always allocated whole pages.
396 * A fix to the bi_idx issue in the kernel is in the works, so
397 * we will hopefully be able to revert to the cleaner solution soon.
399 i
= bio
->bi_vcnt
- 1;
400 bv
= bio_iovec_idx(bio
, i
);
401 end
= (i
<< PAGE_SHIFT
) + (bv
->bv_offset
+ bv
->bv_len
) - bio
->bi_size
;
404 start
>>= PAGE_SHIFT
;
410 for(i
= start
; i
< end
; i
++) {
411 bv
= bio_iovec_idx(bio
, i
);
412 BUG_ON(!bv
->bv_page
);
413 mempool_free(bv
->bv_page
, cc
->page_pool
);
419 * One of the bios was finished. Check for completion of
420 * the whole request and correctly clean up the buffer.
422 static void dec_pending(struct crypt_io
*io
, int error
)
424 struct crypt_config
*cc
= (struct crypt_config
*) io
->target
->private;
429 if (!atomic_dec_and_test(&io
->pending
))
433 bio_put(io
->first_clone
);
435 bio_endio(io
->bio
, io
->bio
->bi_size
, io
->error
);
437 mempool_free(io
, cc
->io_pool
);
443 * Needed because it would be very unwise to do decryption in an
444 * interrupt context, so bios returning from read requests get
447 static struct workqueue_struct
*_kcryptd_workqueue
;
449 static void kcryptd_do_work(void *data
)
451 struct crypt_io
*io
= (struct crypt_io
*) data
;
452 struct crypt_config
*cc
= (struct crypt_config
*) io
->target
->private;
453 struct convert_context ctx
;
456 crypt_convert_init(cc
, &ctx
, io
->bio
, io
->bio
,
457 io
->bio
->bi_sector
- io
->target
->begin
, 0);
458 r
= crypt_convert(cc
, &ctx
);
463 static void kcryptd_queue_io(struct crypt_io
*io
)
465 INIT_WORK(&io
->work
, kcryptd_do_work
, io
);
466 queue_work(_kcryptd_workqueue
, &io
->work
);
470 * Decode key from its hex representation
472 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
480 for(i
= 0; i
< size
; i
++) {
484 key
[i
] = (u8
)simple_strtoul(buffer
, &endp
, 16);
486 if (endp
!= &buffer
[2])
497 * Encode key into its hex representation
499 static void crypt_encode_key(char *hex
, u8
*key
, unsigned int size
)
503 for(i
= 0; i
< size
; i
++) {
504 sprintf(hex
, "%02x", *key
);
511 * Construct an encryption mapping:
512 * <cipher> <key> <iv_offset> <dev_path> <start>
514 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
516 struct crypt_config
*cc
;
517 struct crypto_blkcipher
*tfm
;
523 unsigned int key_size
;
524 unsigned long long tmpll
;
527 ti
->error
= "Not enough arguments";
532 cipher
= strsep(&tmp
, "-");
533 chainmode
= strsep(&tmp
, "-");
534 ivopts
= strsep(&tmp
, "-");
535 ivmode
= strsep(&ivopts
, ":");
538 DMWARN("Unexpected additional cipher options");
540 key_size
= strlen(argv
[1]) >> 1;
542 cc
= kmalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
545 "Cannot allocate transparent encryption context";
549 cc
->key_size
= key_size
;
550 if ((!key_size
&& strcmp(argv
[1], "-") != 0) ||
551 (key_size
&& crypt_decode_key(cc
->key
, argv
[1], key_size
) < 0)) {
552 ti
->error
= "Error decoding key";
556 /* Compatiblity mode for old dm-crypt cipher strings */
557 if (!chainmode
|| (strcmp(chainmode
, "plain") == 0 && !ivmode
)) {
562 if (strcmp(chainmode
, "ecb") && !ivmode
) {
563 ti
->error
= "This chaining mode requires an IV mechanism";
567 if (snprintf(cc
->cipher
, CRYPTO_MAX_ALG_NAME
, "%s(%s)", chainmode
,
568 cipher
) >= CRYPTO_MAX_ALG_NAME
) {
569 ti
->error
= "Chain mode + cipher name is too long";
573 tfm
= crypto_alloc_blkcipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
575 ti
->error
= "Error allocating crypto tfm";
579 strcpy(cc
->cipher
, cipher
);
580 strcpy(cc
->chainmode
, chainmode
);
584 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
585 * See comments at iv code
589 cc
->iv_gen_ops
= NULL
;
590 else if (strcmp(ivmode
, "plain") == 0)
591 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
592 else if (strcmp(ivmode
, "essiv") == 0)
593 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
595 ti
->error
= "Invalid IV mode";
599 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
&&
600 cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
) < 0)
603 cc
->iv_size
= crypto_blkcipher_ivsize(tfm
);
605 /* at least a 64 bit sector number should fit in our buffer */
606 cc
->iv_size
= max(cc
->iv_size
,
607 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
609 if (cc
->iv_gen_ops
) {
610 DMWARN("Selected cipher does not support IVs");
611 if (cc
->iv_gen_ops
->dtr
)
612 cc
->iv_gen_ops
->dtr(cc
);
613 cc
->iv_gen_ops
= NULL
;
617 cc
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _crypt_io_pool
);
619 ti
->error
= "Cannot allocate crypt io mempool";
623 cc
->page_pool
= mempool_create_page_pool(MIN_POOL_PAGES
, 0);
624 if (!cc
->page_pool
) {
625 ti
->error
= "Cannot allocate page mempool";
629 if (crypto_blkcipher_setkey(tfm
, cc
->key
, key_size
) < 0) {
630 ti
->error
= "Error setting key";
634 if (sscanf(argv
[2], "%llu", &tmpll
) != 1) {
635 ti
->error
= "Invalid iv_offset sector";
638 cc
->iv_offset
= tmpll
;
640 if (sscanf(argv
[4], "%llu", &tmpll
) != 1) {
641 ti
->error
= "Invalid device sector";
646 if (dm_get_device(ti
, argv
[3], cc
->start
, ti
->len
,
647 dm_table_get_mode(ti
->table
), &cc
->dev
)) {
648 ti
->error
= "Device lookup failed";
652 if (ivmode
&& cc
->iv_gen_ops
) {
655 cc
->iv_mode
= kmalloc(strlen(ivmode
) + 1, GFP_KERNEL
);
657 ti
->error
= "Error kmallocing iv_mode string";
660 strcpy(cc
->iv_mode
, ivmode
);
668 mempool_destroy(cc
->page_pool
);
670 mempool_destroy(cc
->io_pool
);
672 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
673 cc
->iv_gen_ops
->dtr(cc
);
675 crypto_free_blkcipher(tfm
);
677 /* Must zero key material before freeing */
678 memset(cc
, 0, sizeof(*cc
) + cc
->key_size
* sizeof(u8
));
683 static void crypt_dtr(struct dm_target
*ti
)
685 struct crypt_config
*cc
= (struct crypt_config
*) ti
->private;
687 mempool_destroy(cc
->page_pool
);
688 mempool_destroy(cc
->io_pool
);
691 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
692 cc
->iv_gen_ops
->dtr(cc
);
693 crypto_free_blkcipher(cc
->tfm
);
694 dm_put_device(ti
, cc
->dev
);
696 /* Must zero key material before freeing */
697 memset(cc
, 0, sizeof(*cc
) + cc
->key_size
* sizeof(u8
));
701 static int crypt_endio(struct bio
*bio
, unsigned int done
, int error
)
703 struct crypt_io
*io
= (struct crypt_io
*) bio
->bi_private
;
704 struct crypt_config
*cc
= (struct crypt_config
*) io
->target
->private;
706 if (bio_data_dir(bio
) == WRITE
) {
708 * free the processed pages, even if
709 * it's only a partially completed write
711 crypt_free_buffer_pages(cc
, bio
, done
);
720 * successful reads are decrypted by the worker thread
722 if ((bio_data_dir(bio
) == READ
)
723 && bio_flagged(bio
, BIO_UPTODATE
)) {
724 kcryptd_queue_io(io
);
728 dec_pending(io
, error
);
732 static inline struct bio
*
733 crypt_clone(struct crypt_config
*cc
, struct crypt_io
*io
, struct bio
*bio
,
734 sector_t sector
, unsigned int *bvec_idx
,
735 struct convert_context
*ctx
)
739 if (bio_data_dir(bio
) == WRITE
) {
740 clone
= crypt_alloc_buffer(cc
, bio
->bi_size
,
741 io
->first_clone
, bvec_idx
);
743 ctx
->bio_out
= clone
;
744 if (crypt_convert(cc
, ctx
) < 0) {
745 crypt_free_buffer_pages(cc
, clone
,
753 * The block layer might modify the bvec array, so always
754 * copy the required bvecs because we need the original
755 * one in order to decrypt the whole bio data *afterwards*.
757 clone
= bio_alloc(GFP_NOIO
, bio_segments(bio
));
760 clone
->bi_vcnt
= bio_segments(bio
);
761 clone
->bi_size
= bio
->bi_size
;
762 memcpy(clone
->bi_io_vec
, bio_iovec(bio
),
763 sizeof(struct bio_vec
) * clone
->bi_vcnt
);
770 clone
->bi_private
= io
;
771 clone
->bi_end_io
= crypt_endio
;
772 clone
->bi_bdev
= cc
->dev
->bdev
;
773 clone
->bi_sector
= cc
->start
+ sector
;
774 clone
->bi_rw
= bio
->bi_rw
;
779 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
,
780 union map_info
*map_context
)
782 struct crypt_config
*cc
= (struct crypt_config
*) ti
->private;
783 struct crypt_io
*io
= mempool_alloc(cc
->io_pool
, GFP_NOIO
);
784 struct convert_context ctx
;
786 unsigned int remaining
= bio
->bi_size
;
787 sector_t sector
= bio
->bi_sector
- ti
->begin
;
788 unsigned int bvec_idx
= 0;
792 io
->first_clone
= NULL
;
794 atomic_set(&io
->pending
, 1); /* hold a reference */
796 if (bio_data_dir(bio
) == WRITE
)
797 crypt_convert_init(cc
, &ctx
, NULL
, bio
, sector
, 1);
800 * The allocated buffers can be smaller than the whole bio,
801 * so repeat the whole process until all the data can be handled.
804 clone
= crypt_clone(cc
, io
, bio
, sector
, &bvec_idx
, &ctx
);
808 if (!io
->first_clone
) {
810 * hold a reference to the first clone, because it
811 * holds the bio_vec array and that can't be freed
812 * before all other clones are released
815 io
->first_clone
= clone
;
817 atomic_inc(&io
->pending
);
819 remaining
-= clone
->bi_size
;
820 sector
+= bio_sectors(clone
);
822 generic_make_request(clone
);
824 /* out of memory -> run queues */
826 blk_congestion_wait(bio_data_dir(clone
), HZ
/100);
829 /* drop reference, clones could have returned before we reach this */
834 if (io
->first_clone
) {
835 dec_pending(io
, -ENOMEM
);
839 /* if no bio has been dispatched yet, we can directly return the error */
840 mempool_free(io
, cc
->io_pool
);
844 static int crypt_status(struct dm_target
*ti
, status_type_t type
,
845 char *result
, unsigned int maxlen
)
847 struct crypt_config
*cc
= (struct crypt_config
*) ti
->private;
849 const char *chainmode
= NULL
;
853 case STATUSTYPE_INFO
:
857 case STATUSTYPE_TABLE
:
858 cipher
= crypto_blkcipher_name(cc
->tfm
);
860 chainmode
= cc
->chainmode
;
863 DMEMIT("%s-%s-%s ", cipher
, chainmode
, cc
->iv_mode
);
865 DMEMIT("%s-%s ", cipher
, chainmode
);
867 if (cc
->key_size
> 0) {
868 if ((maxlen
- sz
) < ((cc
->key_size
<< 1) + 1))
871 crypt_encode_key(result
+ sz
, cc
->key
, cc
->key_size
);
872 sz
+= cc
->key_size
<< 1;
879 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
880 cc
->dev
->name
, (unsigned long long)cc
->start
);
886 static struct target_type crypt_target
= {
889 .module
= THIS_MODULE
,
893 .status
= crypt_status
,
896 static int __init
dm_crypt_init(void)
900 _crypt_io_pool
= kmem_cache_create("dm-crypt_io",
901 sizeof(struct crypt_io
),
906 _kcryptd_workqueue
= create_workqueue("kcryptd");
907 if (!_kcryptd_workqueue
) {
909 DMERR("couldn't create kcryptd");
913 r
= dm_register_target(&crypt_target
);
915 DMERR("register failed %d", r
);
922 destroy_workqueue(_kcryptd_workqueue
);
924 kmem_cache_destroy(_crypt_io_pool
);
928 static void __exit
dm_crypt_exit(void)
930 int r
= dm_unregister_target(&crypt_target
);
933 DMERR("unregister failed %d", r
);
935 destroy_workqueue(_kcryptd_workqueue
);
936 kmem_cache_destroy(_crypt_io_pool
);
939 module_init(dm_crypt_init
);
940 module_exit(dm_crypt_exit
);
942 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
943 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
944 MODULE_LICENSE("GPL");