4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t
*p
)
171 if (p
->static_prio
< NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE
*4, p
->static_prio
);
174 return SCALE_PRIO(DEF_TIMESLICE
, p
->static_prio
);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
180 * These are the runqueue data structures:
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
185 typedef struct runqueue runqueue_t
;
188 unsigned int nr_active
;
189 unsigned long bitmap
[BITMAP_SIZE
];
190 struct list_head queue
[MAX_PRIO
];
194 * This is the main, per-CPU runqueue data structure.
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
207 unsigned long nr_running
;
209 unsigned long prio_bias
;
210 unsigned long cpu_load
[3];
212 unsigned long long nr_switches
;
215 * This is part of a global counter where only the total sum
216 * over all CPUs matters. A task can increase this counter on
217 * one CPU and if it got migrated afterwards it may decrease
218 * it on another CPU. Always updated under the runqueue lock:
220 unsigned long nr_uninterruptible
;
222 unsigned long expired_timestamp
;
223 unsigned long long timestamp_last_tick
;
225 struct mm_struct
*prev_mm
;
226 prio_array_t
*active
, *expired
, arrays
[2];
227 int best_expired_prio
;
231 struct sched_domain
*sd
;
233 /* For active balancing */
237 task_t
*migration_thread
;
238 struct list_head migration_queue
;
241 #ifdef CONFIG_SCHEDSTATS
243 struct sched_info rq_sched_info
;
245 /* sys_sched_yield() stats */
246 unsigned long yld_exp_empty
;
247 unsigned long yld_act_empty
;
248 unsigned long yld_both_empty
;
249 unsigned long yld_cnt
;
251 /* schedule() stats */
252 unsigned long sched_switch
;
253 unsigned long sched_cnt
;
254 unsigned long sched_goidle
;
256 /* try_to_wake_up() stats */
257 unsigned long ttwu_cnt
;
258 unsigned long ttwu_local
;
262 static DEFINE_PER_CPU(struct runqueue
, runqueues
);
265 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266 * See detach_destroy_domains: synchronize_sched for details.
268 * The domain tree of any CPU may only be accessed from within
269 * preempt-disabled sections.
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
274 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
275 #define this_rq() (&__get_cpu_var(runqueues))
276 #define task_rq(p) cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next) do { } while (0)
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev) do { } while (0)
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
289 return rq
->curr
== p
;
292 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
296 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
298 #ifdef CONFIG_DEBUG_SPINLOCK
299 /* this is a valid case when another task releases the spinlock */
300 rq
->lock
.owner
= current
;
302 spin_unlock_irq(&rq
->lock
);
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
311 return rq
->curr
== p
;
315 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
319 * We can optimise this out completely for !SMP, because the
320 * SMP rebalancing from interrupt is the only thing that cares
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326 spin_unlock_irq(&rq
->lock
);
328 spin_unlock(&rq
->lock
);
332 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
336 * After ->oncpu is cleared, the task can be moved to a different CPU.
337 * We must ensure this doesn't happen until the switch is completely
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
350 * task_rq_lock - lock the runqueue a given task resides on and disable
351 * interrupts. Note the ordering: we can safely lookup the task_rq without
352 * explicitly disabling preemption.
354 static inline runqueue_t
*task_rq_lock(task_t
*p
, unsigned long *flags
)
360 local_irq_save(*flags
);
362 spin_lock(&rq
->lock
);
363 if (unlikely(rq
!= task_rq(p
))) {
364 spin_unlock_irqrestore(&rq
->lock
, *flags
);
365 goto repeat_lock_task
;
370 static inline void task_rq_unlock(runqueue_t
*rq
, unsigned long *flags
)
373 spin_unlock_irqrestore(&rq
->lock
, *flags
);
376 #ifdef CONFIG_SCHEDSTATS
378 * bump this up when changing the output format or the meaning of an existing
379 * format, so that tools can adapt (or abort)
381 #define SCHEDSTAT_VERSION 12
383 static int show_schedstat(struct seq_file
*seq
, void *v
)
387 seq_printf(seq
, "version %d\n", SCHEDSTAT_VERSION
);
388 seq_printf(seq
, "timestamp %lu\n", jiffies
);
389 for_each_online_cpu(cpu
) {
390 runqueue_t
*rq
= cpu_rq(cpu
);
392 struct sched_domain
*sd
;
396 /* runqueue-specific stats */
398 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399 cpu
, rq
->yld_both_empty
,
400 rq
->yld_act_empty
, rq
->yld_exp_empty
, rq
->yld_cnt
,
401 rq
->sched_switch
, rq
->sched_cnt
, rq
->sched_goidle
,
402 rq
->ttwu_cnt
, rq
->ttwu_local
,
403 rq
->rq_sched_info
.cpu_time
,
404 rq
->rq_sched_info
.run_delay
, rq
->rq_sched_info
.pcnt
);
406 seq_printf(seq
, "\n");
409 /* domain-specific stats */
411 for_each_domain(cpu
, sd
) {
412 enum idle_type itype
;
413 char mask_str
[NR_CPUS
];
415 cpumask_scnprintf(mask_str
, NR_CPUS
, sd
->span
);
416 seq_printf(seq
, "domain%d %s", dcnt
++, mask_str
);
417 for (itype
= SCHED_IDLE
; itype
< MAX_IDLE_TYPES
;
419 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu",
421 sd
->lb_balanced
[itype
],
422 sd
->lb_failed
[itype
],
423 sd
->lb_imbalance
[itype
],
424 sd
->lb_gained
[itype
],
425 sd
->lb_hot_gained
[itype
],
426 sd
->lb_nobusyq
[itype
],
427 sd
->lb_nobusyg
[itype
]);
429 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430 sd
->alb_cnt
, sd
->alb_failed
, sd
->alb_pushed
,
431 sd
->sbe_cnt
, sd
->sbe_balanced
, sd
->sbe_pushed
,
432 sd
->sbf_cnt
, sd
->sbf_balanced
, sd
->sbf_pushed
,
433 sd
->ttwu_wake_remote
, sd
->ttwu_move_affine
, sd
->ttwu_move_balance
);
441 static int schedstat_open(struct inode
*inode
, struct file
*file
)
443 unsigned int size
= PAGE_SIZE
* (1 + num_online_cpus() / 32);
444 char *buf
= kmalloc(size
, GFP_KERNEL
);
450 res
= single_open(file
, show_schedstat
, NULL
);
452 m
= file
->private_data
;
460 struct file_operations proc_schedstat_operations
= {
461 .open
= schedstat_open
,
464 .release
= single_release
,
467 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field) do { } while (0)
471 # define schedstat_add(rq, field, amt) do { } while (0)
475 * rq_lock - lock a given runqueue and disable interrupts.
477 static inline runqueue_t
*this_rq_lock(void)
484 spin_lock(&rq
->lock
);
489 #ifdef CONFIG_SCHEDSTATS
491 * Called when a process is dequeued from the active array and given
492 * the cpu. We should note that with the exception of interactive
493 * tasks, the expired queue will become the active queue after the active
494 * queue is empty, without explicitly dequeuing and requeuing tasks in the
495 * expired queue. (Interactive tasks may be requeued directly to the
496 * active queue, thus delaying tasks in the expired queue from running;
497 * see scheduler_tick()).
499 * This function is only called from sched_info_arrive(), rather than
500 * dequeue_task(). Even though a task may be queued and dequeued multiple
501 * times as it is shuffled about, we're really interested in knowing how
502 * long it was from the *first* time it was queued to the time that it
505 static inline void sched_info_dequeued(task_t
*t
)
507 t
->sched_info
.last_queued
= 0;
511 * Called when a task finally hits the cpu. We can now calculate how
512 * long it was waiting to run. We also note when it began so that we
513 * can keep stats on how long its timeslice is.
515 static inline void sched_info_arrive(task_t
*t
)
517 unsigned long now
= jiffies
, diff
= 0;
518 struct runqueue
*rq
= task_rq(t
);
520 if (t
->sched_info
.last_queued
)
521 diff
= now
- t
->sched_info
.last_queued
;
522 sched_info_dequeued(t
);
523 t
->sched_info
.run_delay
+= diff
;
524 t
->sched_info
.last_arrival
= now
;
525 t
->sched_info
.pcnt
++;
530 rq
->rq_sched_info
.run_delay
+= diff
;
531 rq
->rq_sched_info
.pcnt
++;
535 * Called when a process is queued into either the active or expired
536 * array. The time is noted and later used to determine how long we
537 * had to wait for us to reach the cpu. Since the expired queue will
538 * become the active queue after active queue is empty, without dequeuing
539 * and requeuing any tasks, we are interested in queuing to either. It
540 * is unusual but not impossible for tasks to be dequeued and immediately
541 * requeued in the same or another array: this can happen in sched_yield(),
542 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
545 * This function is only called from enqueue_task(), but also only updates
546 * the timestamp if it is already not set. It's assumed that
547 * sched_info_dequeued() will clear that stamp when appropriate.
549 static inline void sched_info_queued(task_t
*t
)
551 if (!t
->sched_info
.last_queued
)
552 t
->sched_info
.last_queued
= jiffies
;
556 * Called when a process ceases being the active-running process, either
557 * voluntarily or involuntarily. Now we can calculate how long we ran.
559 static inline void sched_info_depart(task_t
*t
)
561 struct runqueue
*rq
= task_rq(t
);
562 unsigned long diff
= jiffies
- t
->sched_info
.last_arrival
;
564 t
->sched_info
.cpu_time
+= diff
;
567 rq
->rq_sched_info
.cpu_time
+= diff
;
571 * Called when tasks are switched involuntarily due, typically, to expiring
572 * their time slice. (This may also be called when switching to or from
573 * the idle task.) We are only called when prev != next.
575 static inline void sched_info_switch(task_t
*prev
, task_t
*next
)
577 struct runqueue
*rq
= task_rq(prev
);
580 * prev now departs the cpu. It's not interesting to record
581 * stats about how efficient we were at scheduling the idle
584 if (prev
!= rq
->idle
)
585 sched_info_depart(prev
);
587 if (next
!= rq
->idle
)
588 sched_info_arrive(next
);
591 #define sched_info_queued(t) do { } while (0)
592 #define sched_info_switch(t, next) do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
596 * Adding/removing a task to/from a priority array:
598 static void dequeue_task(struct task_struct
*p
, prio_array_t
*array
)
601 list_del(&p
->run_list
);
602 if (list_empty(array
->queue
+ p
->prio
))
603 __clear_bit(p
->prio
, array
->bitmap
);
606 static void enqueue_task(struct task_struct
*p
, prio_array_t
*array
)
608 sched_info_queued(p
);
609 list_add_tail(&p
->run_list
, array
->queue
+ p
->prio
);
610 __set_bit(p
->prio
, array
->bitmap
);
616 * Put task to the end of the run list without the overhead of dequeue
617 * followed by enqueue.
619 static void requeue_task(struct task_struct
*p
, prio_array_t
*array
)
621 list_move_tail(&p
->run_list
, array
->queue
+ p
->prio
);
624 static inline void enqueue_task_head(struct task_struct
*p
, prio_array_t
*array
)
626 list_add(&p
->run_list
, array
->queue
+ p
->prio
);
627 __set_bit(p
->prio
, array
->bitmap
);
633 * effective_prio - return the priority that is based on the static
634 * priority but is modified by bonuses/penalties.
636 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637 * into the -5 ... 0 ... +5 bonus/penalty range.
639 * We use 25% of the full 0...39 priority range so that:
641 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
644 * Both properties are important to certain workloads.
646 static int effective_prio(task_t
*p
)
653 bonus
= CURRENT_BONUS(p
) - MAX_BONUS
/ 2;
655 prio
= p
->static_prio
- bonus
;
656 if (prio
< MAX_RT_PRIO
)
658 if (prio
> MAX_PRIO
-1)
664 static inline void inc_prio_bias(runqueue_t
*rq
, int prio
)
666 rq
->prio_bias
+= MAX_PRIO
- prio
;
669 static inline void dec_prio_bias(runqueue_t
*rq
, int prio
)
671 rq
->prio_bias
-= MAX_PRIO
- prio
;
674 static inline void inc_nr_running(task_t
*p
, runqueue_t
*rq
)
678 if (p
!= rq
->migration_thread
)
680 * The migration thread does the actual balancing. Do
681 * not bias by its priority as the ultra high priority
682 * will skew balancing adversely.
684 inc_prio_bias(rq
, p
->prio
);
686 inc_prio_bias(rq
, p
->static_prio
);
689 static inline void dec_nr_running(task_t
*p
, runqueue_t
*rq
)
693 if (p
!= rq
->migration_thread
)
694 dec_prio_bias(rq
, p
->prio
);
696 dec_prio_bias(rq
, p
->static_prio
);
699 static inline void inc_prio_bias(runqueue_t
*rq
, int prio
)
703 static inline void dec_prio_bias(runqueue_t
*rq
, int prio
)
707 static inline void inc_nr_running(task_t
*p
, runqueue_t
*rq
)
712 static inline void dec_nr_running(task_t
*p
, runqueue_t
*rq
)
719 * __activate_task - move a task to the runqueue.
721 static inline void __activate_task(task_t
*p
, runqueue_t
*rq
)
723 enqueue_task(p
, rq
->active
);
724 inc_nr_running(p
, rq
);
728 * __activate_idle_task - move idle task to the _front_ of runqueue.
730 static inline void __activate_idle_task(task_t
*p
, runqueue_t
*rq
)
732 enqueue_task_head(p
, rq
->active
);
733 inc_nr_running(p
, rq
);
736 static int recalc_task_prio(task_t
*p
, unsigned long long now
)
738 /* Caller must always ensure 'now >= p->timestamp' */
739 unsigned long long __sleep_time
= now
- p
->timestamp
;
740 unsigned long sleep_time
;
742 if (__sleep_time
> NS_MAX_SLEEP_AVG
)
743 sleep_time
= NS_MAX_SLEEP_AVG
;
745 sleep_time
= (unsigned long)__sleep_time
;
747 if (likely(sleep_time
> 0)) {
749 * User tasks that sleep a long time are categorised as
750 * idle and will get just interactive status to stay active &
751 * prevent them suddenly becoming cpu hogs and starving
754 if (p
->mm
&& p
->activated
!= -1 &&
755 sleep_time
> INTERACTIVE_SLEEP(p
)) {
756 p
->sleep_avg
= JIFFIES_TO_NS(MAX_SLEEP_AVG
-
760 * The lower the sleep avg a task has the more
761 * rapidly it will rise with sleep time.
763 sleep_time
*= (MAX_BONUS
- CURRENT_BONUS(p
)) ? : 1;
766 * Tasks waking from uninterruptible sleep are
767 * limited in their sleep_avg rise as they
768 * are likely to be waiting on I/O
770 if (p
->activated
== -1 && p
->mm
) {
771 if (p
->sleep_avg
>= INTERACTIVE_SLEEP(p
))
773 else if (p
->sleep_avg
+ sleep_time
>=
774 INTERACTIVE_SLEEP(p
)) {
775 p
->sleep_avg
= INTERACTIVE_SLEEP(p
);
781 * This code gives a bonus to interactive tasks.
783 * The boost works by updating the 'average sleep time'
784 * value here, based on ->timestamp. The more time a
785 * task spends sleeping, the higher the average gets -
786 * and the higher the priority boost gets as well.
788 p
->sleep_avg
+= sleep_time
;
790 if (p
->sleep_avg
> NS_MAX_SLEEP_AVG
)
791 p
->sleep_avg
= NS_MAX_SLEEP_AVG
;
795 return effective_prio(p
);
799 * activate_task - move a task to the runqueue and do priority recalculation
801 * Update all the scheduling statistics stuff. (sleep average
802 * calculation, priority modifiers, etc.)
804 static void activate_task(task_t
*p
, runqueue_t
*rq
, int local
)
806 unsigned long long now
;
811 /* Compensate for drifting sched_clock */
812 runqueue_t
*this_rq
= this_rq();
813 now
= (now
- this_rq
->timestamp_last_tick
)
814 + rq
->timestamp_last_tick
;
819 p
->prio
= recalc_task_prio(p
, now
);
822 * This checks to make sure it's not an uninterruptible task
823 * that is now waking up.
827 * Tasks which were woken up by interrupts (ie. hw events)
828 * are most likely of interactive nature. So we give them
829 * the credit of extending their sleep time to the period
830 * of time they spend on the runqueue, waiting for execution
831 * on a CPU, first time around:
837 * Normal first-time wakeups get a credit too for
838 * on-runqueue time, but it will be weighted down:
845 __activate_task(p
, rq
);
849 * deactivate_task - remove a task from the runqueue.
851 static void deactivate_task(struct task_struct
*p
, runqueue_t
*rq
)
853 dec_nr_running(p
, rq
);
854 dequeue_task(p
, p
->array
);
859 * resched_task - mark a task 'to be rescheduled now'.
861 * On UP this means the setting of the need_resched flag, on SMP it
862 * might also involve a cross-CPU call to trigger the scheduler on
866 static void resched_task(task_t
*p
)
870 assert_spin_locked(&task_rq(p
)->lock
);
872 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
875 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
878 if (cpu
== smp_processor_id())
881 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
883 if (!test_tsk_thread_flag(p
, TIF_POLLING_NRFLAG
))
884 smp_send_reschedule(cpu
);
887 static inline void resched_task(task_t
*p
)
889 assert_spin_locked(&task_rq(p
)->lock
);
890 set_tsk_need_resched(p
);
895 * task_curr - is this task currently executing on a CPU?
896 * @p: the task in question.
898 inline int task_curr(const task_t
*p
)
900 return cpu_curr(task_cpu(p
)) == p
;
905 struct list_head list
;
910 struct completion done
;
914 * The task's runqueue lock must be held.
915 * Returns true if you have to wait for migration thread.
917 static int migrate_task(task_t
*p
, int dest_cpu
, migration_req_t
*req
)
919 runqueue_t
*rq
= task_rq(p
);
922 * If the task is not on a runqueue (and not running), then
923 * it is sufficient to simply update the task's cpu field.
925 if (!p
->array
&& !task_running(rq
, p
)) {
926 set_task_cpu(p
, dest_cpu
);
930 init_completion(&req
->done
);
932 req
->dest_cpu
= dest_cpu
;
933 list_add(&req
->list
, &rq
->migration_queue
);
938 * wait_task_inactive - wait for a thread to unschedule.
940 * The caller must ensure that the task *will* unschedule sometime soon,
941 * else this function might spin for a *long* time. This function can't
942 * be called with interrupts off, or it may introduce deadlock with
943 * smp_call_function() if an IPI is sent by the same process we are
944 * waiting to become inactive.
946 void wait_task_inactive(task_t
*p
)
953 rq
= task_rq_lock(p
, &flags
);
954 /* Must be off runqueue entirely, not preempted. */
955 if (unlikely(p
->array
|| task_running(rq
, p
))) {
956 /* If it's preempted, we yield. It could be a while. */
957 preempted
= !task_running(rq
, p
);
958 task_rq_unlock(rq
, &flags
);
964 task_rq_unlock(rq
, &flags
);
968 * kick_process - kick a running thread to enter/exit the kernel
969 * @p: the to-be-kicked thread
971 * Cause a process which is running on another CPU to enter
972 * kernel-mode, without any delay. (to get signals handled.)
974 * NOTE: this function doesnt have to take the runqueue lock,
975 * because all it wants to ensure is that the remote task enters
976 * the kernel. If the IPI races and the task has been migrated
977 * to another CPU then no harm is done and the purpose has been
980 void kick_process(task_t
*p
)
986 if ((cpu
!= smp_processor_id()) && task_curr(p
))
987 smp_send_reschedule(cpu
);
992 * Return a low guess at the load of a migration-source cpu.
994 * We want to under-estimate the load of migration sources, to
995 * balance conservatively.
997 static inline unsigned long __source_load(int cpu
, int type
, enum idle_type idle
)
999 runqueue_t
*rq
= cpu_rq(cpu
);
1000 unsigned long running
= rq
->nr_running
;
1001 unsigned long source_load
, cpu_load
= rq
->cpu_load
[type
-1],
1002 load_now
= running
* SCHED_LOAD_SCALE
;
1005 source_load
= load_now
;
1007 source_load
= min(cpu_load
, load_now
);
1009 if (running
> 1 || (idle
== NOT_IDLE
&& running
))
1011 * If we are busy rebalancing the load is biased by
1012 * priority to create 'nice' support across cpus. When
1013 * idle rebalancing we should only bias the source_load if
1014 * there is more than one task running on that queue to
1015 * prevent idle rebalance from trying to pull tasks from a
1016 * queue with only one running task.
1018 source_load
= source_load
* rq
->prio_bias
/ running
;
1023 static inline unsigned long source_load(int cpu
, int type
)
1025 return __source_load(cpu
, type
, NOT_IDLE
);
1029 * Return a high guess at the load of a migration-target cpu
1031 static inline unsigned long __target_load(int cpu
, int type
, enum idle_type idle
)
1033 runqueue_t
*rq
= cpu_rq(cpu
);
1034 unsigned long running
= rq
->nr_running
;
1035 unsigned long target_load
, cpu_load
= rq
->cpu_load
[type
-1],
1036 load_now
= running
* SCHED_LOAD_SCALE
;
1039 target_load
= load_now
;
1041 target_load
= max(cpu_load
, load_now
);
1043 if (running
> 1 || (idle
== NOT_IDLE
&& running
))
1044 target_load
= target_load
* rq
->prio_bias
/ running
;
1049 static inline unsigned long target_load(int cpu
, int type
)
1051 return __target_load(cpu
, type
, NOT_IDLE
);
1055 * find_idlest_group finds and returns the least busy CPU group within the
1058 static struct sched_group
*
1059 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1061 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1062 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1063 int load_idx
= sd
->forkexec_idx
;
1064 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1067 unsigned long load
, avg_load
;
1071 /* Skip over this group if it has no CPUs allowed */
1072 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1075 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1077 /* Tally up the load of all CPUs in the group */
1080 for_each_cpu_mask(i
, group
->cpumask
) {
1081 /* Bias balancing toward cpus of our domain */
1083 load
= source_load(i
, load_idx
);
1085 load
= target_load(i
, load_idx
);
1090 /* Adjust by relative CPU power of the group */
1091 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1094 this_load
= avg_load
;
1096 } else if (avg_load
< min_load
) {
1097 min_load
= avg_load
;
1101 group
= group
->next
;
1102 } while (group
!= sd
->groups
);
1104 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1110 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1113 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1116 unsigned long load
, min_load
= ULONG_MAX
;
1120 /* Traverse only the allowed CPUs */
1121 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1123 for_each_cpu_mask(i
, tmp
) {
1124 load
= source_load(i
, 0);
1126 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1136 * sched_balance_self: balance the current task (running on cpu) in domains
1137 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1140 * Balance, ie. select the least loaded group.
1142 * Returns the target CPU number, or the same CPU if no balancing is needed.
1144 * preempt must be disabled.
1146 static int sched_balance_self(int cpu
, int flag
)
1148 struct task_struct
*t
= current
;
1149 struct sched_domain
*tmp
, *sd
= NULL
;
1151 for_each_domain(cpu
, tmp
)
1152 if (tmp
->flags
& flag
)
1157 struct sched_group
*group
;
1162 group
= find_idlest_group(sd
, t
, cpu
);
1166 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1167 if (new_cpu
== -1 || new_cpu
== cpu
)
1170 /* Now try balancing at a lower domain level */
1174 weight
= cpus_weight(span
);
1175 for_each_domain(cpu
, tmp
) {
1176 if (weight
<= cpus_weight(tmp
->span
))
1178 if (tmp
->flags
& flag
)
1181 /* while loop will break here if sd == NULL */
1187 #endif /* CONFIG_SMP */
1190 * wake_idle() will wake a task on an idle cpu if task->cpu is
1191 * not idle and an idle cpu is available. The span of cpus to
1192 * search starts with cpus closest then further out as needed,
1193 * so we always favor a closer, idle cpu.
1195 * Returns the CPU we should wake onto.
1197 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1198 static int wake_idle(int cpu
, task_t
*p
)
1201 struct sched_domain
*sd
;
1207 for_each_domain(cpu
, sd
) {
1208 if (sd
->flags
& SD_WAKE_IDLE
) {
1209 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1210 for_each_cpu_mask(i
, tmp
) {
1221 static inline int wake_idle(int cpu
, task_t
*p
)
1228 * try_to_wake_up - wake up a thread
1229 * @p: the to-be-woken-up thread
1230 * @state: the mask of task states that can be woken
1231 * @sync: do a synchronous wakeup?
1233 * Put it on the run-queue if it's not already there. The "current"
1234 * thread is always on the run-queue (except when the actual
1235 * re-schedule is in progress), and as such you're allowed to do
1236 * the simpler "current->state = TASK_RUNNING" to mark yourself
1237 * runnable without the overhead of this.
1239 * returns failure only if the task is already active.
1241 static int try_to_wake_up(task_t
*p
, unsigned int state
, int sync
)
1243 int cpu
, this_cpu
, success
= 0;
1244 unsigned long flags
;
1248 unsigned long load
, this_load
;
1249 struct sched_domain
*sd
, *this_sd
= NULL
;
1253 rq
= task_rq_lock(p
, &flags
);
1254 old_state
= p
->state
;
1255 if (!(old_state
& state
))
1262 this_cpu
= smp_processor_id();
1265 if (unlikely(task_running(rq
, p
)))
1270 schedstat_inc(rq
, ttwu_cnt
);
1271 if (cpu
== this_cpu
) {
1272 schedstat_inc(rq
, ttwu_local
);
1276 for_each_domain(this_cpu
, sd
) {
1277 if (cpu_isset(cpu
, sd
->span
)) {
1278 schedstat_inc(sd
, ttwu_wake_remote
);
1284 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1288 * Check for affine wakeup and passive balancing possibilities.
1291 int idx
= this_sd
->wake_idx
;
1292 unsigned int imbalance
;
1294 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1296 load
= source_load(cpu
, idx
);
1297 this_load
= target_load(this_cpu
, idx
);
1299 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1301 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1302 unsigned long tl
= this_load
;
1304 * If sync wakeup then subtract the (maximum possible)
1305 * effect of the currently running task from the load
1306 * of the current CPU:
1309 tl
-= SCHED_LOAD_SCALE
;
1312 tl
+ target_load(cpu
, idx
) <= SCHED_LOAD_SCALE
) ||
1313 100*(tl
+ SCHED_LOAD_SCALE
) <= imbalance
*load
) {
1315 * This domain has SD_WAKE_AFFINE and
1316 * p is cache cold in this domain, and
1317 * there is no bad imbalance.
1319 schedstat_inc(this_sd
, ttwu_move_affine
);
1325 * Start passive balancing when half the imbalance_pct
1328 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1329 if (imbalance
*this_load
<= 100*load
) {
1330 schedstat_inc(this_sd
, ttwu_move_balance
);
1336 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1338 new_cpu
= wake_idle(new_cpu
, p
);
1339 if (new_cpu
!= cpu
) {
1340 set_task_cpu(p
, new_cpu
);
1341 task_rq_unlock(rq
, &flags
);
1342 /* might preempt at this point */
1343 rq
= task_rq_lock(p
, &flags
);
1344 old_state
= p
->state
;
1345 if (!(old_state
& state
))
1350 this_cpu
= smp_processor_id();
1355 #endif /* CONFIG_SMP */
1356 if (old_state
== TASK_UNINTERRUPTIBLE
) {
1357 rq
->nr_uninterruptible
--;
1359 * Tasks on involuntary sleep don't earn
1360 * sleep_avg beyond just interactive state.
1366 * Tasks that have marked their sleep as noninteractive get
1367 * woken up without updating their sleep average. (i.e. their
1368 * sleep is handled in a priority-neutral manner, no priority
1369 * boost and no penalty.)
1371 if (old_state
& TASK_NONINTERACTIVE
)
1372 __activate_task(p
, rq
);
1374 activate_task(p
, rq
, cpu
== this_cpu
);
1376 * Sync wakeups (i.e. those types of wakeups where the waker
1377 * has indicated that it will leave the CPU in short order)
1378 * don't trigger a preemption, if the woken up task will run on
1379 * this cpu. (in this case the 'I will reschedule' promise of
1380 * the waker guarantees that the freshly woken up task is going
1381 * to be considered on this CPU.)
1383 if (!sync
|| cpu
!= this_cpu
) {
1384 if (TASK_PREEMPTS_CURR(p
, rq
))
1385 resched_task(rq
->curr
);
1390 p
->state
= TASK_RUNNING
;
1392 task_rq_unlock(rq
, &flags
);
1397 int fastcall
wake_up_process(task_t
*p
)
1399 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1400 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1403 EXPORT_SYMBOL(wake_up_process
);
1405 int fastcall
wake_up_state(task_t
*p
, unsigned int state
)
1407 return try_to_wake_up(p
, state
, 0);
1411 * Perform scheduler related setup for a newly forked process p.
1412 * p is forked by current.
1414 void fastcall
sched_fork(task_t
*p
, int clone_flags
)
1416 int cpu
= get_cpu();
1419 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1421 set_task_cpu(p
, cpu
);
1424 * We mark the process as running here, but have not actually
1425 * inserted it onto the runqueue yet. This guarantees that
1426 * nobody will actually run it, and a signal or other external
1427 * event cannot wake it up and insert it on the runqueue either.
1429 p
->state
= TASK_RUNNING
;
1430 INIT_LIST_HEAD(&p
->run_list
);
1432 #ifdef CONFIG_SCHEDSTATS
1433 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1435 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1438 #ifdef CONFIG_PREEMPT
1439 /* Want to start with kernel preemption disabled. */
1440 task_thread_info(p
)->preempt_count
= 1;
1443 * Share the timeslice between parent and child, thus the
1444 * total amount of pending timeslices in the system doesn't change,
1445 * resulting in more scheduling fairness.
1447 local_irq_disable();
1448 p
->time_slice
= (current
->time_slice
+ 1) >> 1;
1450 * The remainder of the first timeslice might be recovered by
1451 * the parent if the child exits early enough.
1453 p
->first_time_slice
= 1;
1454 current
->time_slice
>>= 1;
1455 p
->timestamp
= sched_clock();
1456 if (unlikely(!current
->time_slice
)) {
1458 * This case is rare, it happens when the parent has only
1459 * a single jiffy left from its timeslice. Taking the
1460 * runqueue lock is not a problem.
1462 current
->time_slice
= 1;
1470 * wake_up_new_task - wake up a newly created task for the first time.
1472 * This function will do some initial scheduler statistics housekeeping
1473 * that must be done for every newly created context, then puts the task
1474 * on the runqueue and wakes it.
1476 void fastcall
wake_up_new_task(task_t
*p
, unsigned long clone_flags
)
1478 unsigned long flags
;
1480 runqueue_t
*rq
, *this_rq
;
1482 rq
= task_rq_lock(p
, &flags
);
1483 BUG_ON(p
->state
!= TASK_RUNNING
);
1484 this_cpu
= smp_processor_id();
1488 * We decrease the sleep average of forking parents
1489 * and children as well, to keep max-interactive tasks
1490 * from forking tasks that are max-interactive. The parent
1491 * (current) is done further down, under its lock.
1493 p
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(p
) *
1494 CHILD_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1496 p
->prio
= effective_prio(p
);
1498 if (likely(cpu
== this_cpu
)) {
1499 if (!(clone_flags
& CLONE_VM
)) {
1501 * The VM isn't cloned, so we're in a good position to
1502 * do child-runs-first in anticipation of an exec. This
1503 * usually avoids a lot of COW overhead.
1505 if (unlikely(!current
->array
))
1506 __activate_task(p
, rq
);
1508 p
->prio
= current
->prio
;
1509 list_add_tail(&p
->run_list
, ¤t
->run_list
);
1510 p
->array
= current
->array
;
1511 p
->array
->nr_active
++;
1512 inc_nr_running(p
, rq
);
1516 /* Run child last */
1517 __activate_task(p
, rq
);
1519 * We skip the following code due to cpu == this_cpu
1521 * task_rq_unlock(rq, &flags);
1522 * this_rq = task_rq_lock(current, &flags);
1526 this_rq
= cpu_rq(this_cpu
);
1529 * Not the local CPU - must adjust timestamp. This should
1530 * get optimised away in the !CONFIG_SMP case.
1532 p
->timestamp
= (p
->timestamp
- this_rq
->timestamp_last_tick
)
1533 + rq
->timestamp_last_tick
;
1534 __activate_task(p
, rq
);
1535 if (TASK_PREEMPTS_CURR(p
, rq
))
1536 resched_task(rq
->curr
);
1539 * Parent and child are on different CPUs, now get the
1540 * parent runqueue to update the parent's ->sleep_avg:
1542 task_rq_unlock(rq
, &flags
);
1543 this_rq
= task_rq_lock(current
, &flags
);
1545 current
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(current
) *
1546 PARENT_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1547 task_rq_unlock(this_rq
, &flags
);
1551 * Potentially available exiting-child timeslices are
1552 * retrieved here - this way the parent does not get
1553 * penalized for creating too many threads.
1555 * (this cannot be used to 'generate' timeslices
1556 * artificially, because any timeslice recovered here
1557 * was given away by the parent in the first place.)
1559 void fastcall
sched_exit(task_t
*p
)
1561 unsigned long flags
;
1565 * If the child was a (relative-) CPU hog then decrease
1566 * the sleep_avg of the parent as well.
1568 rq
= task_rq_lock(p
->parent
, &flags
);
1569 if (p
->first_time_slice
&& task_cpu(p
) == task_cpu(p
->parent
)) {
1570 p
->parent
->time_slice
+= p
->time_slice
;
1571 if (unlikely(p
->parent
->time_slice
> task_timeslice(p
)))
1572 p
->parent
->time_slice
= task_timeslice(p
);
1574 if (p
->sleep_avg
< p
->parent
->sleep_avg
)
1575 p
->parent
->sleep_avg
= p
->parent
->sleep_avg
/
1576 (EXIT_WEIGHT
+ 1) * EXIT_WEIGHT
+ p
->sleep_avg
/
1578 task_rq_unlock(rq
, &flags
);
1582 * prepare_task_switch - prepare to switch tasks
1583 * @rq: the runqueue preparing to switch
1584 * @next: the task we are going to switch to.
1586 * This is called with the rq lock held and interrupts off. It must
1587 * be paired with a subsequent finish_task_switch after the context
1590 * prepare_task_switch sets up locking and calls architecture specific
1593 static inline void prepare_task_switch(runqueue_t
*rq
, task_t
*next
)
1595 prepare_lock_switch(rq
, next
);
1596 prepare_arch_switch(next
);
1600 * finish_task_switch - clean up after a task-switch
1601 * @rq: runqueue associated with task-switch
1602 * @prev: the thread we just switched away from.
1604 * finish_task_switch must be called after the context switch, paired
1605 * with a prepare_task_switch call before the context switch.
1606 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1607 * and do any other architecture-specific cleanup actions.
1609 * Note that we may have delayed dropping an mm in context_switch(). If
1610 * so, we finish that here outside of the runqueue lock. (Doing it
1611 * with the lock held can cause deadlocks; see schedule() for
1614 static inline void finish_task_switch(runqueue_t
*rq
, task_t
*prev
)
1615 __releases(rq
->lock
)
1617 struct mm_struct
*mm
= rq
->prev_mm
;
1618 unsigned long prev_task_flags
;
1623 * A task struct has one reference for the use as "current".
1624 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1625 * calls schedule one last time. The schedule call will never return,
1626 * and the scheduled task must drop that reference.
1627 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1628 * still held, otherwise prev could be scheduled on another cpu, die
1629 * there before we look at prev->state, and then the reference would
1631 * Manfred Spraul <manfred@colorfullife.com>
1633 prev_task_flags
= prev
->flags
;
1634 finish_arch_switch(prev
);
1635 finish_lock_switch(rq
, prev
);
1638 if (unlikely(prev_task_flags
& PF_DEAD
))
1639 put_task_struct(prev
);
1643 * schedule_tail - first thing a freshly forked thread must call.
1644 * @prev: the thread we just switched away from.
1646 asmlinkage
void schedule_tail(task_t
*prev
)
1647 __releases(rq
->lock
)
1649 runqueue_t
*rq
= this_rq();
1650 finish_task_switch(rq
, prev
);
1651 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1652 /* In this case, finish_task_switch does not reenable preemption */
1655 if (current
->set_child_tid
)
1656 put_user(current
->pid
, current
->set_child_tid
);
1660 * context_switch - switch to the new MM and the new
1661 * thread's register state.
1664 task_t
* context_switch(runqueue_t
*rq
, task_t
*prev
, task_t
*next
)
1666 struct mm_struct
*mm
= next
->mm
;
1667 struct mm_struct
*oldmm
= prev
->active_mm
;
1669 if (unlikely(!mm
)) {
1670 next
->active_mm
= oldmm
;
1671 atomic_inc(&oldmm
->mm_count
);
1672 enter_lazy_tlb(oldmm
, next
);
1674 switch_mm(oldmm
, mm
, next
);
1676 if (unlikely(!prev
->mm
)) {
1677 prev
->active_mm
= NULL
;
1678 WARN_ON(rq
->prev_mm
);
1679 rq
->prev_mm
= oldmm
;
1682 /* Here we just switch the register state and the stack. */
1683 switch_to(prev
, next
, prev
);
1689 * nr_running, nr_uninterruptible and nr_context_switches:
1691 * externally visible scheduler statistics: current number of runnable
1692 * threads, current number of uninterruptible-sleeping threads, total
1693 * number of context switches performed since bootup.
1695 unsigned long nr_running(void)
1697 unsigned long i
, sum
= 0;
1699 for_each_online_cpu(i
)
1700 sum
+= cpu_rq(i
)->nr_running
;
1705 unsigned long nr_uninterruptible(void)
1707 unsigned long i
, sum
= 0;
1710 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1713 * Since we read the counters lockless, it might be slightly
1714 * inaccurate. Do not allow it to go below zero though:
1716 if (unlikely((long)sum
< 0))
1722 unsigned long long nr_context_switches(void)
1724 unsigned long long i
, sum
= 0;
1727 sum
+= cpu_rq(i
)->nr_switches
;
1732 unsigned long nr_iowait(void)
1734 unsigned long i
, sum
= 0;
1737 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1745 * double_rq_lock - safely lock two runqueues
1747 * Note this does not disable interrupts like task_rq_lock,
1748 * you need to do so manually before calling.
1750 static void double_rq_lock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1751 __acquires(rq1
->lock
)
1752 __acquires(rq2
->lock
)
1755 spin_lock(&rq1
->lock
);
1756 __acquire(rq2
->lock
); /* Fake it out ;) */
1759 spin_lock(&rq1
->lock
);
1760 spin_lock(&rq2
->lock
);
1762 spin_lock(&rq2
->lock
);
1763 spin_lock(&rq1
->lock
);
1769 * double_rq_unlock - safely unlock two runqueues
1771 * Note this does not restore interrupts like task_rq_unlock,
1772 * you need to do so manually after calling.
1774 static void double_rq_unlock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1775 __releases(rq1
->lock
)
1776 __releases(rq2
->lock
)
1778 spin_unlock(&rq1
->lock
);
1780 spin_unlock(&rq2
->lock
);
1782 __release(rq2
->lock
);
1786 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1788 static void double_lock_balance(runqueue_t
*this_rq
, runqueue_t
*busiest
)
1789 __releases(this_rq
->lock
)
1790 __acquires(busiest
->lock
)
1791 __acquires(this_rq
->lock
)
1793 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1794 if (busiest
< this_rq
) {
1795 spin_unlock(&this_rq
->lock
);
1796 spin_lock(&busiest
->lock
);
1797 spin_lock(&this_rq
->lock
);
1799 spin_lock(&busiest
->lock
);
1804 * If dest_cpu is allowed for this process, migrate the task to it.
1805 * This is accomplished by forcing the cpu_allowed mask to only
1806 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1807 * the cpu_allowed mask is restored.
1809 static void sched_migrate_task(task_t
*p
, int dest_cpu
)
1811 migration_req_t req
;
1813 unsigned long flags
;
1815 rq
= task_rq_lock(p
, &flags
);
1816 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
1817 || unlikely(cpu_is_offline(dest_cpu
)))
1820 /* force the process onto the specified CPU */
1821 if (migrate_task(p
, dest_cpu
, &req
)) {
1822 /* Need to wait for migration thread (might exit: take ref). */
1823 struct task_struct
*mt
= rq
->migration_thread
;
1824 get_task_struct(mt
);
1825 task_rq_unlock(rq
, &flags
);
1826 wake_up_process(mt
);
1827 put_task_struct(mt
);
1828 wait_for_completion(&req
.done
);
1832 task_rq_unlock(rq
, &flags
);
1836 * sched_exec - execve() is a valuable balancing opportunity, because at
1837 * this point the task has the smallest effective memory and cache footprint.
1839 void sched_exec(void)
1841 int new_cpu
, this_cpu
= get_cpu();
1842 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
1844 if (new_cpu
!= this_cpu
)
1845 sched_migrate_task(current
, new_cpu
);
1849 * pull_task - move a task from a remote runqueue to the local runqueue.
1850 * Both runqueues must be locked.
1853 void pull_task(runqueue_t
*src_rq
, prio_array_t
*src_array
, task_t
*p
,
1854 runqueue_t
*this_rq
, prio_array_t
*this_array
, int this_cpu
)
1856 dequeue_task(p
, src_array
);
1857 dec_nr_running(p
, src_rq
);
1858 set_task_cpu(p
, this_cpu
);
1859 inc_nr_running(p
, this_rq
);
1860 enqueue_task(p
, this_array
);
1861 p
->timestamp
= (p
->timestamp
- src_rq
->timestamp_last_tick
)
1862 + this_rq
->timestamp_last_tick
;
1864 * Note that idle threads have a prio of MAX_PRIO, for this test
1865 * to be always true for them.
1867 if (TASK_PREEMPTS_CURR(p
, this_rq
))
1868 resched_task(this_rq
->curr
);
1872 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1875 int can_migrate_task(task_t
*p
, runqueue_t
*rq
, int this_cpu
,
1876 struct sched_domain
*sd
, enum idle_type idle
,
1880 * We do not migrate tasks that are:
1881 * 1) running (obviously), or
1882 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1883 * 3) are cache-hot on their current CPU.
1885 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
1889 if (task_running(rq
, p
))
1893 * Aggressive migration if:
1894 * 1) task is cache cold, or
1895 * 2) too many balance attempts have failed.
1898 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
1901 if (task_hot(p
, rq
->timestamp_last_tick
, sd
))
1907 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1908 * as part of a balancing operation within "domain". Returns the number of
1911 * Called with both runqueues locked.
1913 static int move_tasks(runqueue_t
*this_rq
, int this_cpu
, runqueue_t
*busiest
,
1914 unsigned long max_nr_move
, struct sched_domain
*sd
,
1915 enum idle_type idle
, int *all_pinned
)
1917 prio_array_t
*array
, *dst_array
;
1918 struct list_head
*head
, *curr
;
1919 int idx
, pulled
= 0, pinned
= 0;
1922 if (max_nr_move
== 0)
1928 * We first consider expired tasks. Those will likely not be
1929 * executed in the near future, and they are most likely to
1930 * be cache-cold, thus switching CPUs has the least effect
1933 if (busiest
->expired
->nr_active
) {
1934 array
= busiest
->expired
;
1935 dst_array
= this_rq
->expired
;
1937 array
= busiest
->active
;
1938 dst_array
= this_rq
->active
;
1942 /* Start searching at priority 0: */
1946 idx
= sched_find_first_bit(array
->bitmap
);
1948 idx
= find_next_bit(array
->bitmap
, MAX_PRIO
, idx
);
1949 if (idx
>= MAX_PRIO
) {
1950 if (array
== busiest
->expired
&& busiest
->active
->nr_active
) {
1951 array
= busiest
->active
;
1952 dst_array
= this_rq
->active
;
1958 head
= array
->queue
+ idx
;
1961 tmp
= list_entry(curr
, task_t
, run_list
);
1965 if (!can_migrate_task(tmp
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
1972 #ifdef CONFIG_SCHEDSTATS
1973 if (task_hot(tmp
, busiest
->timestamp_last_tick
, sd
))
1974 schedstat_inc(sd
, lb_hot_gained
[idle
]);
1977 pull_task(busiest
, array
, tmp
, this_rq
, dst_array
, this_cpu
);
1980 /* We only want to steal up to the prescribed number of tasks. */
1981 if (pulled
< max_nr_move
) {
1989 * Right now, this is the only place pull_task() is called,
1990 * so we can safely collect pull_task() stats here rather than
1991 * inside pull_task().
1993 schedstat_add(sd
, lb_gained
[idle
], pulled
);
1996 *all_pinned
= pinned
;
2001 * find_busiest_group finds and returns the busiest CPU group within the
2002 * domain. It calculates and returns the number of tasks which should be
2003 * moved to restore balance via the imbalance parameter.
2005 static struct sched_group
*
2006 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2007 unsigned long *imbalance
, enum idle_type idle
, int *sd_idle
)
2009 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2010 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2011 unsigned long max_pull
;
2014 max_load
= this_load
= total_load
= total_pwr
= 0;
2015 if (idle
== NOT_IDLE
)
2016 load_idx
= sd
->busy_idx
;
2017 else if (idle
== NEWLY_IDLE
)
2018 load_idx
= sd
->newidle_idx
;
2020 load_idx
= sd
->idle_idx
;
2027 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2029 /* Tally up the load of all CPUs in the group */
2032 for_each_cpu_mask(i
, group
->cpumask
) {
2033 if (*sd_idle
&& !idle_cpu(i
))
2036 /* Bias balancing toward cpus of our domain */
2038 load
= __target_load(i
, load_idx
, idle
);
2040 load
= __source_load(i
, load_idx
, idle
);
2045 total_load
+= avg_load
;
2046 total_pwr
+= group
->cpu_power
;
2048 /* Adjust by relative CPU power of the group */
2049 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
2052 this_load
= avg_load
;
2054 } else if (avg_load
> max_load
) {
2055 max_load
= avg_load
;
2058 group
= group
->next
;
2059 } while (group
!= sd
->groups
);
2061 if (!busiest
|| this_load
>= max_load
|| max_load
<= SCHED_LOAD_SCALE
)
2064 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2066 if (this_load
>= avg_load
||
2067 100*max_load
<= sd
->imbalance_pct
*this_load
)
2071 * We're trying to get all the cpus to the average_load, so we don't
2072 * want to push ourselves above the average load, nor do we wish to
2073 * reduce the max loaded cpu below the average load, as either of these
2074 * actions would just result in more rebalancing later, and ping-pong
2075 * tasks around. Thus we look for the minimum possible imbalance.
2076 * Negative imbalances (*we* are more loaded than anyone else) will
2077 * be counted as no imbalance for these purposes -- we can't fix that
2078 * by pulling tasks to us. Be careful of negative numbers as they'll
2079 * appear as very large values with unsigned longs.
2082 /* Don't want to pull so many tasks that a group would go idle */
2083 max_pull
= min(max_load
- avg_load
, max_load
- SCHED_LOAD_SCALE
);
2085 /* How much load to actually move to equalise the imbalance */
2086 *imbalance
= min(max_pull
* busiest
->cpu_power
,
2087 (avg_load
- this_load
) * this->cpu_power
)
2090 if (*imbalance
< SCHED_LOAD_SCALE
) {
2091 unsigned long pwr_now
= 0, pwr_move
= 0;
2094 if (max_load
- this_load
>= SCHED_LOAD_SCALE
*2) {
2100 * OK, we don't have enough imbalance to justify moving tasks,
2101 * however we may be able to increase total CPU power used by
2105 pwr_now
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
, max_load
);
2106 pwr_now
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
);
2107 pwr_now
/= SCHED_LOAD_SCALE
;
2109 /* Amount of load we'd subtract */
2110 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/busiest
->cpu_power
;
2112 pwr_move
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
,
2115 /* Amount of load we'd add */
2116 if (max_load
*busiest
->cpu_power
<
2117 SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
)
2118 tmp
= max_load
*busiest
->cpu_power
/this->cpu_power
;
2120 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/this->cpu_power
;
2121 pwr_move
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
+ tmp
);
2122 pwr_move
/= SCHED_LOAD_SCALE
;
2124 /* Move if we gain throughput */
2125 if (pwr_move
<= pwr_now
)
2132 /* Get rid of the scaling factor, rounding down as we divide */
2133 *imbalance
= *imbalance
/ SCHED_LOAD_SCALE
;
2143 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2145 static runqueue_t
*find_busiest_queue(struct sched_group
*group
,
2146 enum idle_type idle
)
2148 unsigned long load
, max_load
= 0;
2149 runqueue_t
*busiest
= NULL
;
2152 for_each_cpu_mask(i
, group
->cpumask
) {
2153 load
= __source_load(i
, 0, idle
);
2155 if (load
> max_load
) {
2157 busiest
= cpu_rq(i
);
2165 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2166 * so long as it is large enough.
2168 #define MAX_PINNED_INTERVAL 512
2171 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2172 * tasks if there is an imbalance.
2174 * Called with this_rq unlocked.
2176 static int load_balance(int this_cpu
, runqueue_t
*this_rq
,
2177 struct sched_domain
*sd
, enum idle_type idle
)
2179 struct sched_group
*group
;
2180 runqueue_t
*busiest
;
2181 unsigned long imbalance
;
2182 int nr_moved
, all_pinned
= 0;
2183 int active_balance
= 0;
2186 if (idle
!= NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2189 schedstat_inc(sd
, lb_cnt
[idle
]);
2191 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
);
2193 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2197 busiest
= find_busiest_queue(group
, idle
);
2199 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2203 BUG_ON(busiest
== this_rq
);
2205 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2208 if (busiest
->nr_running
> 1) {
2210 * Attempt to move tasks. If find_busiest_group has found
2211 * an imbalance but busiest->nr_running <= 1, the group is
2212 * still unbalanced. nr_moved simply stays zero, so it is
2213 * correctly treated as an imbalance.
2215 double_rq_lock(this_rq
, busiest
);
2216 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2217 imbalance
, sd
, idle
, &all_pinned
);
2218 double_rq_unlock(this_rq
, busiest
);
2220 /* All tasks on this runqueue were pinned by CPU affinity */
2221 if (unlikely(all_pinned
))
2226 schedstat_inc(sd
, lb_failed
[idle
]);
2227 sd
->nr_balance_failed
++;
2229 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2231 spin_lock(&busiest
->lock
);
2233 /* don't kick the migration_thread, if the curr
2234 * task on busiest cpu can't be moved to this_cpu
2236 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2237 spin_unlock(&busiest
->lock
);
2239 goto out_one_pinned
;
2242 if (!busiest
->active_balance
) {
2243 busiest
->active_balance
= 1;
2244 busiest
->push_cpu
= this_cpu
;
2247 spin_unlock(&busiest
->lock
);
2249 wake_up_process(busiest
->migration_thread
);
2252 * We've kicked active balancing, reset the failure
2255 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2258 sd
->nr_balance_failed
= 0;
2260 if (likely(!active_balance
)) {
2261 /* We were unbalanced, so reset the balancing interval */
2262 sd
->balance_interval
= sd
->min_interval
;
2265 * If we've begun active balancing, start to back off. This
2266 * case may not be covered by the all_pinned logic if there
2267 * is only 1 task on the busy runqueue (because we don't call
2270 if (sd
->balance_interval
< sd
->max_interval
)
2271 sd
->balance_interval
*= 2;
2274 if (!nr_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2279 schedstat_inc(sd
, lb_balanced
[idle
]);
2281 sd
->nr_balance_failed
= 0;
2284 /* tune up the balancing interval */
2285 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2286 (sd
->balance_interval
< sd
->max_interval
))
2287 sd
->balance_interval
*= 2;
2289 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2295 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2296 * tasks if there is an imbalance.
2298 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2299 * this_rq is locked.
2301 static int load_balance_newidle(int this_cpu
, runqueue_t
*this_rq
,
2302 struct sched_domain
*sd
)
2304 struct sched_group
*group
;
2305 runqueue_t
*busiest
= NULL
;
2306 unsigned long imbalance
;
2310 if (sd
->flags
& SD_SHARE_CPUPOWER
)
2313 schedstat_inc(sd
, lb_cnt
[NEWLY_IDLE
]);
2314 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, NEWLY_IDLE
, &sd_idle
);
2316 schedstat_inc(sd
, lb_nobusyg
[NEWLY_IDLE
]);
2320 busiest
= find_busiest_queue(group
, NEWLY_IDLE
);
2322 schedstat_inc(sd
, lb_nobusyq
[NEWLY_IDLE
]);
2326 BUG_ON(busiest
== this_rq
);
2328 schedstat_add(sd
, lb_imbalance
[NEWLY_IDLE
], imbalance
);
2331 if (busiest
->nr_running
> 1) {
2332 /* Attempt to move tasks */
2333 double_lock_balance(this_rq
, busiest
);
2334 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2335 imbalance
, sd
, NEWLY_IDLE
, NULL
);
2336 spin_unlock(&busiest
->lock
);
2340 schedstat_inc(sd
, lb_failed
[NEWLY_IDLE
]);
2341 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2344 sd
->nr_balance_failed
= 0;
2349 schedstat_inc(sd
, lb_balanced
[NEWLY_IDLE
]);
2350 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2352 sd
->nr_balance_failed
= 0;
2357 * idle_balance is called by schedule() if this_cpu is about to become
2358 * idle. Attempts to pull tasks from other CPUs.
2360 static inline void idle_balance(int this_cpu
, runqueue_t
*this_rq
)
2362 struct sched_domain
*sd
;
2364 for_each_domain(this_cpu
, sd
) {
2365 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
2366 if (load_balance_newidle(this_cpu
, this_rq
, sd
)) {
2367 /* We've pulled tasks over so stop searching */
2375 * active_load_balance is run by migration threads. It pushes running tasks
2376 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2377 * running on each physical CPU where possible, and avoids physical /
2378 * logical imbalances.
2380 * Called with busiest_rq locked.
2382 static void active_load_balance(runqueue_t
*busiest_rq
, int busiest_cpu
)
2384 struct sched_domain
*sd
;
2385 runqueue_t
*target_rq
;
2386 int target_cpu
= busiest_rq
->push_cpu
;
2388 if (busiest_rq
->nr_running
<= 1)
2389 /* no task to move */
2392 target_rq
= cpu_rq(target_cpu
);
2395 * This condition is "impossible", if it occurs
2396 * we need to fix it. Originally reported by
2397 * Bjorn Helgaas on a 128-cpu setup.
2399 BUG_ON(busiest_rq
== target_rq
);
2401 /* move a task from busiest_rq to target_rq */
2402 double_lock_balance(busiest_rq
, target_rq
);
2404 /* Search for an sd spanning us and the target CPU. */
2405 for_each_domain(target_cpu
, sd
)
2406 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2407 cpu_isset(busiest_cpu
, sd
->span
))
2410 if (unlikely(sd
== NULL
))
2413 schedstat_inc(sd
, alb_cnt
);
2415 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1, sd
, SCHED_IDLE
, NULL
))
2416 schedstat_inc(sd
, alb_pushed
);
2418 schedstat_inc(sd
, alb_failed
);
2420 spin_unlock(&target_rq
->lock
);
2424 * rebalance_tick will get called every timer tick, on every CPU.
2426 * It checks each scheduling domain to see if it is due to be balanced,
2427 * and initiates a balancing operation if so.
2429 * Balancing parameters are set up in arch_init_sched_domains.
2432 /* Don't have all balancing operations going off at once */
2433 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2435 static void rebalance_tick(int this_cpu
, runqueue_t
*this_rq
,
2436 enum idle_type idle
)
2438 unsigned long old_load
, this_load
;
2439 unsigned long j
= jiffies
+ CPU_OFFSET(this_cpu
);
2440 struct sched_domain
*sd
;
2443 this_load
= this_rq
->nr_running
* SCHED_LOAD_SCALE
;
2444 /* Update our load */
2445 for (i
= 0; i
< 3; i
++) {
2446 unsigned long new_load
= this_load
;
2448 old_load
= this_rq
->cpu_load
[i
];
2450 * Round up the averaging division if load is increasing. This
2451 * prevents us from getting stuck on 9 if the load is 10, for
2454 if (new_load
> old_load
)
2455 new_load
+= scale
-1;
2456 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) / scale
;
2459 for_each_domain(this_cpu
, sd
) {
2460 unsigned long interval
;
2462 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2465 interval
= sd
->balance_interval
;
2466 if (idle
!= SCHED_IDLE
)
2467 interval
*= sd
->busy_factor
;
2469 /* scale ms to jiffies */
2470 interval
= msecs_to_jiffies(interval
);
2471 if (unlikely(!interval
))
2474 if (j
- sd
->last_balance
>= interval
) {
2475 if (load_balance(this_cpu
, this_rq
, sd
, idle
)) {
2477 * We've pulled tasks over so either we're no
2478 * longer idle, or one of our SMT siblings is
2483 sd
->last_balance
+= interval
;
2489 * on UP we do not need to balance between CPUs:
2491 static inline void rebalance_tick(int cpu
, runqueue_t
*rq
, enum idle_type idle
)
2494 static inline void idle_balance(int cpu
, runqueue_t
*rq
)
2499 static inline int wake_priority_sleeper(runqueue_t
*rq
)
2502 #ifdef CONFIG_SCHED_SMT
2503 spin_lock(&rq
->lock
);
2505 * If an SMT sibling task has been put to sleep for priority
2506 * reasons reschedule the idle task to see if it can now run.
2508 if (rq
->nr_running
) {
2509 resched_task(rq
->idle
);
2512 spin_unlock(&rq
->lock
);
2517 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2519 EXPORT_PER_CPU_SYMBOL(kstat
);
2522 * This is called on clock ticks and on context switches.
2523 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2525 static inline void update_cpu_clock(task_t
*p
, runqueue_t
*rq
,
2526 unsigned long long now
)
2528 unsigned long long last
= max(p
->timestamp
, rq
->timestamp_last_tick
);
2529 p
->sched_time
+= now
- last
;
2533 * Return current->sched_time plus any more ns on the sched_clock
2534 * that have not yet been banked.
2536 unsigned long long current_sched_time(const task_t
*tsk
)
2538 unsigned long long ns
;
2539 unsigned long flags
;
2540 local_irq_save(flags
);
2541 ns
= max(tsk
->timestamp
, task_rq(tsk
)->timestamp_last_tick
);
2542 ns
= tsk
->sched_time
+ (sched_clock() - ns
);
2543 local_irq_restore(flags
);
2548 * We place interactive tasks back into the active array, if possible.
2550 * To guarantee that this does not starve expired tasks we ignore the
2551 * interactivity of a task if the first expired task had to wait more
2552 * than a 'reasonable' amount of time. This deadline timeout is
2553 * load-dependent, as the frequency of array switched decreases with
2554 * increasing number of running tasks. We also ignore the interactivity
2555 * if a better static_prio task has expired:
2557 #define EXPIRED_STARVING(rq) \
2558 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2559 (jiffies - (rq)->expired_timestamp >= \
2560 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2561 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2564 * Account user cpu time to a process.
2565 * @p: the process that the cpu time gets accounted to
2566 * @hardirq_offset: the offset to subtract from hardirq_count()
2567 * @cputime: the cpu time spent in user space since the last update
2569 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
2571 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2574 p
->utime
= cputime_add(p
->utime
, cputime
);
2576 /* Add user time to cpustat. */
2577 tmp
= cputime_to_cputime64(cputime
);
2578 if (TASK_NICE(p
) > 0)
2579 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
2581 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
2585 * Account system cpu time to a process.
2586 * @p: the process that the cpu time gets accounted to
2587 * @hardirq_offset: the offset to subtract from hardirq_count()
2588 * @cputime: the cpu time spent in kernel space since the last update
2590 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
2593 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2594 runqueue_t
*rq
= this_rq();
2597 p
->stime
= cputime_add(p
->stime
, cputime
);
2599 /* Add system time to cpustat. */
2600 tmp
= cputime_to_cputime64(cputime
);
2601 if (hardirq_count() - hardirq_offset
)
2602 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
2603 else if (softirq_count())
2604 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
2605 else if (p
!= rq
->idle
)
2606 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
2607 else if (atomic_read(&rq
->nr_iowait
) > 0)
2608 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2610 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2611 /* Account for system time used */
2612 acct_update_integrals(p
);
2616 * Account for involuntary wait time.
2617 * @p: the process from which the cpu time has been stolen
2618 * @steal: the cpu time spent in involuntary wait
2620 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
2622 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2623 cputime64_t tmp
= cputime_to_cputime64(steal
);
2624 runqueue_t
*rq
= this_rq();
2626 if (p
== rq
->idle
) {
2627 p
->stime
= cputime_add(p
->stime
, steal
);
2628 if (atomic_read(&rq
->nr_iowait
) > 0)
2629 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2631 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2633 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
2637 * This function gets called by the timer code, with HZ frequency.
2638 * We call it with interrupts disabled.
2640 * It also gets called by the fork code, when changing the parent's
2643 void scheduler_tick(void)
2645 int cpu
= smp_processor_id();
2646 runqueue_t
*rq
= this_rq();
2647 task_t
*p
= current
;
2648 unsigned long long now
= sched_clock();
2650 update_cpu_clock(p
, rq
, now
);
2652 rq
->timestamp_last_tick
= now
;
2654 if (p
== rq
->idle
) {
2655 if (wake_priority_sleeper(rq
))
2657 rebalance_tick(cpu
, rq
, SCHED_IDLE
);
2661 /* Task might have expired already, but not scheduled off yet */
2662 if (p
->array
!= rq
->active
) {
2663 set_tsk_need_resched(p
);
2666 spin_lock(&rq
->lock
);
2668 * The task was running during this tick - update the
2669 * time slice counter. Note: we do not update a thread's
2670 * priority until it either goes to sleep or uses up its
2671 * timeslice. This makes it possible for interactive tasks
2672 * to use up their timeslices at their highest priority levels.
2676 * RR tasks need a special form of timeslice management.
2677 * FIFO tasks have no timeslices.
2679 if ((p
->policy
== SCHED_RR
) && !--p
->time_slice
) {
2680 p
->time_slice
= task_timeslice(p
);
2681 p
->first_time_slice
= 0;
2682 set_tsk_need_resched(p
);
2684 /* put it at the end of the queue: */
2685 requeue_task(p
, rq
->active
);
2689 if (!--p
->time_slice
) {
2690 dequeue_task(p
, rq
->active
);
2691 set_tsk_need_resched(p
);
2692 p
->prio
= effective_prio(p
);
2693 p
->time_slice
= task_timeslice(p
);
2694 p
->first_time_slice
= 0;
2696 if (!rq
->expired_timestamp
)
2697 rq
->expired_timestamp
= jiffies
;
2698 if (!TASK_INTERACTIVE(p
) || EXPIRED_STARVING(rq
)) {
2699 enqueue_task(p
, rq
->expired
);
2700 if (p
->static_prio
< rq
->best_expired_prio
)
2701 rq
->best_expired_prio
= p
->static_prio
;
2703 enqueue_task(p
, rq
->active
);
2706 * Prevent a too long timeslice allowing a task to monopolize
2707 * the CPU. We do this by splitting up the timeslice into
2710 * Note: this does not mean the task's timeslices expire or
2711 * get lost in any way, they just might be preempted by
2712 * another task of equal priority. (one with higher
2713 * priority would have preempted this task already.) We
2714 * requeue this task to the end of the list on this priority
2715 * level, which is in essence a round-robin of tasks with
2718 * This only applies to tasks in the interactive
2719 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2721 if (TASK_INTERACTIVE(p
) && !((task_timeslice(p
) -
2722 p
->time_slice
) % TIMESLICE_GRANULARITY(p
)) &&
2723 (p
->time_slice
>= TIMESLICE_GRANULARITY(p
)) &&
2724 (p
->array
== rq
->active
)) {
2726 requeue_task(p
, rq
->active
);
2727 set_tsk_need_resched(p
);
2731 spin_unlock(&rq
->lock
);
2733 rebalance_tick(cpu
, rq
, NOT_IDLE
);
2736 #ifdef CONFIG_SCHED_SMT
2737 static inline void wakeup_busy_runqueue(runqueue_t
*rq
)
2739 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2740 if (rq
->curr
== rq
->idle
&& rq
->nr_running
)
2741 resched_task(rq
->idle
);
2744 static inline void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2746 struct sched_domain
*tmp
, *sd
= NULL
;
2747 cpumask_t sibling_map
;
2750 for_each_domain(this_cpu
, tmp
)
2751 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2758 * Unlock the current runqueue because we have to lock in
2759 * CPU order to avoid deadlocks. Caller knows that we might
2760 * unlock. We keep IRQs disabled.
2762 spin_unlock(&this_rq
->lock
);
2764 sibling_map
= sd
->span
;
2766 for_each_cpu_mask(i
, sibling_map
)
2767 spin_lock(&cpu_rq(i
)->lock
);
2769 * We clear this CPU from the mask. This both simplifies the
2770 * inner loop and keps this_rq locked when we exit:
2772 cpu_clear(this_cpu
, sibling_map
);
2774 for_each_cpu_mask(i
, sibling_map
) {
2775 runqueue_t
*smt_rq
= cpu_rq(i
);
2777 wakeup_busy_runqueue(smt_rq
);
2780 for_each_cpu_mask(i
, sibling_map
)
2781 spin_unlock(&cpu_rq(i
)->lock
);
2783 * We exit with this_cpu's rq still held and IRQs
2789 * number of 'lost' timeslices this task wont be able to fully
2790 * utilize, if another task runs on a sibling. This models the
2791 * slowdown effect of other tasks running on siblings:
2793 static inline unsigned long smt_slice(task_t
*p
, struct sched_domain
*sd
)
2795 return p
->time_slice
* (100 - sd
->per_cpu_gain
) / 100;
2798 static inline int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2800 struct sched_domain
*tmp
, *sd
= NULL
;
2801 cpumask_t sibling_map
;
2802 prio_array_t
*array
;
2806 for_each_domain(this_cpu
, tmp
)
2807 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2814 * The same locking rules and details apply as for
2815 * wake_sleeping_dependent():
2817 spin_unlock(&this_rq
->lock
);
2818 sibling_map
= sd
->span
;
2819 for_each_cpu_mask(i
, sibling_map
)
2820 spin_lock(&cpu_rq(i
)->lock
);
2821 cpu_clear(this_cpu
, sibling_map
);
2824 * Establish next task to be run - it might have gone away because
2825 * we released the runqueue lock above:
2827 if (!this_rq
->nr_running
)
2829 array
= this_rq
->active
;
2830 if (!array
->nr_active
)
2831 array
= this_rq
->expired
;
2832 BUG_ON(!array
->nr_active
);
2834 p
= list_entry(array
->queue
[sched_find_first_bit(array
->bitmap
)].next
,
2837 for_each_cpu_mask(i
, sibling_map
) {
2838 runqueue_t
*smt_rq
= cpu_rq(i
);
2839 task_t
*smt_curr
= smt_rq
->curr
;
2841 /* Kernel threads do not participate in dependent sleeping */
2842 if (!p
->mm
|| !smt_curr
->mm
|| rt_task(p
))
2843 goto check_smt_task
;
2846 * If a user task with lower static priority than the
2847 * running task on the SMT sibling is trying to schedule,
2848 * delay it till there is proportionately less timeslice
2849 * left of the sibling task to prevent a lower priority
2850 * task from using an unfair proportion of the
2851 * physical cpu's resources. -ck
2853 if (rt_task(smt_curr
)) {
2855 * With real time tasks we run non-rt tasks only
2856 * per_cpu_gain% of the time.
2858 if ((jiffies
% DEF_TIMESLICE
) >
2859 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2862 if (smt_curr
->static_prio
< p
->static_prio
&&
2863 !TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2864 smt_slice(smt_curr
, sd
) > task_timeslice(p
))
2868 if ((!smt_curr
->mm
&& smt_curr
!= smt_rq
->idle
) ||
2872 wakeup_busy_runqueue(smt_rq
);
2877 * Reschedule a lower priority task on the SMT sibling for
2878 * it to be put to sleep, or wake it up if it has been put to
2879 * sleep for priority reasons to see if it should run now.
2882 if ((jiffies
% DEF_TIMESLICE
) >
2883 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2884 resched_task(smt_curr
);
2886 if (TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2887 smt_slice(p
, sd
) > task_timeslice(smt_curr
))
2888 resched_task(smt_curr
);
2890 wakeup_busy_runqueue(smt_rq
);
2894 for_each_cpu_mask(i
, sibling_map
)
2895 spin_unlock(&cpu_rq(i
)->lock
);
2899 static inline void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2903 static inline int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2909 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2911 void fastcall
add_preempt_count(int val
)
2916 BUG_ON((preempt_count() < 0));
2917 preempt_count() += val
;
2919 * Spinlock count overflowing soon?
2921 BUG_ON((preempt_count() & PREEMPT_MASK
) >= PREEMPT_MASK
-10);
2923 EXPORT_SYMBOL(add_preempt_count
);
2925 void fastcall
sub_preempt_count(int val
)
2930 BUG_ON(val
> preempt_count());
2932 * Is the spinlock portion underflowing?
2934 BUG_ON((val
< PREEMPT_MASK
) && !(preempt_count() & PREEMPT_MASK
));
2935 preempt_count() -= val
;
2937 EXPORT_SYMBOL(sub_preempt_count
);
2942 * schedule() is the main scheduler function.
2944 asmlinkage
void __sched
schedule(void)
2947 task_t
*prev
, *next
;
2949 prio_array_t
*array
;
2950 struct list_head
*queue
;
2951 unsigned long long now
;
2952 unsigned long run_time
;
2953 int cpu
, idx
, new_prio
;
2956 * Test if we are atomic. Since do_exit() needs to call into
2957 * schedule() atomically, we ignore that path for now.
2958 * Otherwise, whine if we are scheduling when we should not be.
2960 if (likely(!current
->exit_state
)) {
2961 if (unlikely(in_atomic())) {
2962 printk(KERN_ERR
"scheduling while atomic: "
2964 current
->comm
, preempt_count(), current
->pid
);
2968 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2973 release_kernel_lock(prev
);
2974 need_resched_nonpreemptible
:
2978 * The idle thread is not allowed to schedule!
2979 * Remove this check after it has been exercised a bit.
2981 if (unlikely(prev
== rq
->idle
) && prev
->state
!= TASK_RUNNING
) {
2982 printk(KERN_ERR
"bad: scheduling from the idle thread!\n");
2986 schedstat_inc(rq
, sched_cnt
);
2987 now
= sched_clock();
2988 if (likely((long long)(now
- prev
->timestamp
) < NS_MAX_SLEEP_AVG
)) {
2989 run_time
= now
- prev
->timestamp
;
2990 if (unlikely((long long)(now
- prev
->timestamp
) < 0))
2993 run_time
= NS_MAX_SLEEP_AVG
;
2996 * Tasks charged proportionately less run_time at high sleep_avg to
2997 * delay them losing their interactive status
2999 run_time
/= (CURRENT_BONUS(prev
) ? : 1);
3001 spin_lock_irq(&rq
->lock
);
3003 if (unlikely(prev
->flags
& PF_DEAD
))
3004 prev
->state
= EXIT_DEAD
;
3006 switch_count
= &prev
->nivcsw
;
3007 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3008 switch_count
= &prev
->nvcsw
;
3009 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3010 unlikely(signal_pending(prev
))))
3011 prev
->state
= TASK_RUNNING
;
3013 if (prev
->state
== TASK_UNINTERRUPTIBLE
)
3014 rq
->nr_uninterruptible
++;
3015 deactivate_task(prev
, rq
);
3019 cpu
= smp_processor_id();
3020 if (unlikely(!rq
->nr_running
)) {
3022 idle_balance(cpu
, rq
);
3023 if (!rq
->nr_running
) {
3025 rq
->expired_timestamp
= 0;
3026 wake_sleeping_dependent(cpu
, rq
);
3028 * wake_sleeping_dependent() might have released
3029 * the runqueue, so break out if we got new
3032 if (!rq
->nr_running
)
3036 if (dependent_sleeper(cpu
, rq
)) {
3041 * dependent_sleeper() releases and reacquires the runqueue
3042 * lock, hence go into the idle loop if the rq went
3045 if (unlikely(!rq
->nr_running
))
3050 if (unlikely(!array
->nr_active
)) {
3052 * Switch the active and expired arrays.
3054 schedstat_inc(rq
, sched_switch
);
3055 rq
->active
= rq
->expired
;
3056 rq
->expired
= array
;
3058 rq
->expired_timestamp
= 0;
3059 rq
->best_expired_prio
= MAX_PRIO
;
3062 idx
= sched_find_first_bit(array
->bitmap
);
3063 queue
= array
->queue
+ idx
;
3064 next
= list_entry(queue
->next
, task_t
, run_list
);
3066 if (!rt_task(next
) && next
->activated
> 0) {
3067 unsigned long long delta
= now
- next
->timestamp
;
3068 if (unlikely((long long)(now
- next
->timestamp
) < 0))
3071 if (next
->activated
== 1)
3072 delta
= delta
* (ON_RUNQUEUE_WEIGHT
* 128 / 100) / 128;
3074 array
= next
->array
;
3075 new_prio
= recalc_task_prio(next
, next
->timestamp
+ delta
);
3077 if (unlikely(next
->prio
!= new_prio
)) {
3078 dequeue_task(next
, array
);
3079 next
->prio
= new_prio
;
3080 enqueue_task(next
, array
);
3082 requeue_task(next
, array
);
3084 next
->activated
= 0;
3086 if (next
== rq
->idle
)
3087 schedstat_inc(rq
, sched_goidle
);
3089 prefetch_stack(next
);
3090 clear_tsk_need_resched(prev
);
3091 rcu_qsctr_inc(task_cpu(prev
));
3093 update_cpu_clock(prev
, rq
, now
);
3095 prev
->sleep_avg
-= run_time
;
3096 if ((long)prev
->sleep_avg
<= 0)
3097 prev
->sleep_avg
= 0;
3098 prev
->timestamp
= prev
->last_ran
= now
;
3100 sched_info_switch(prev
, next
);
3101 if (likely(prev
!= next
)) {
3102 next
->timestamp
= now
;
3107 prepare_task_switch(rq
, next
);
3108 prev
= context_switch(rq
, prev
, next
);
3111 * this_rq must be evaluated again because prev may have moved
3112 * CPUs since it called schedule(), thus the 'rq' on its stack
3113 * frame will be invalid.
3115 finish_task_switch(this_rq(), prev
);
3117 spin_unlock_irq(&rq
->lock
);
3120 if (unlikely(reacquire_kernel_lock(prev
) < 0))
3121 goto need_resched_nonpreemptible
;
3122 preempt_enable_no_resched();
3123 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3127 EXPORT_SYMBOL(schedule
);
3129 #ifdef CONFIG_PREEMPT
3131 * this is is the entry point to schedule() from in-kernel preemption
3132 * off of preempt_enable. Kernel preemptions off return from interrupt
3133 * occur there and call schedule directly.
3135 asmlinkage
void __sched
preempt_schedule(void)
3137 struct thread_info
*ti
= current_thread_info();
3138 #ifdef CONFIG_PREEMPT_BKL
3139 struct task_struct
*task
= current
;
3140 int saved_lock_depth
;
3143 * If there is a non-zero preempt_count or interrupts are disabled,
3144 * we do not want to preempt the current task. Just return..
3146 if (unlikely(ti
->preempt_count
|| irqs_disabled()))
3150 add_preempt_count(PREEMPT_ACTIVE
);
3152 * We keep the big kernel semaphore locked, but we
3153 * clear ->lock_depth so that schedule() doesnt
3154 * auto-release the semaphore:
3156 #ifdef CONFIG_PREEMPT_BKL
3157 saved_lock_depth
= task
->lock_depth
;
3158 task
->lock_depth
= -1;
3161 #ifdef CONFIG_PREEMPT_BKL
3162 task
->lock_depth
= saved_lock_depth
;
3164 sub_preempt_count(PREEMPT_ACTIVE
);
3166 /* we could miss a preemption opportunity between schedule and now */
3168 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3172 EXPORT_SYMBOL(preempt_schedule
);
3175 * this is is the entry point to schedule() from kernel preemption
3176 * off of irq context.
3177 * Note, that this is called and return with irqs disabled. This will
3178 * protect us against recursive calling from irq.
3180 asmlinkage
void __sched
preempt_schedule_irq(void)
3182 struct thread_info
*ti
= current_thread_info();
3183 #ifdef CONFIG_PREEMPT_BKL
3184 struct task_struct
*task
= current
;
3185 int saved_lock_depth
;
3187 /* Catch callers which need to be fixed*/
3188 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3191 add_preempt_count(PREEMPT_ACTIVE
);
3193 * We keep the big kernel semaphore locked, but we
3194 * clear ->lock_depth so that schedule() doesnt
3195 * auto-release the semaphore:
3197 #ifdef CONFIG_PREEMPT_BKL
3198 saved_lock_depth
= task
->lock_depth
;
3199 task
->lock_depth
= -1;
3203 local_irq_disable();
3204 #ifdef CONFIG_PREEMPT_BKL
3205 task
->lock_depth
= saved_lock_depth
;
3207 sub_preempt_count(PREEMPT_ACTIVE
);
3209 /* we could miss a preemption opportunity between schedule and now */
3211 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3215 #endif /* CONFIG_PREEMPT */
3217 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3220 task_t
*p
= curr
->private;
3221 return try_to_wake_up(p
, mode
, sync
);
3224 EXPORT_SYMBOL(default_wake_function
);
3227 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3228 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3229 * number) then we wake all the non-exclusive tasks and one exclusive task.
3231 * There are circumstances in which we can try to wake a task which has already
3232 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3233 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3235 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3236 int nr_exclusive
, int sync
, void *key
)
3238 struct list_head
*tmp
, *next
;
3240 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3243 curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3244 flags
= curr
->flags
;
3245 if (curr
->func(curr
, mode
, sync
, key
) &&
3246 (flags
& WQ_FLAG_EXCLUSIVE
) &&
3253 * __wake_up - wake up threads blocked on a waitqueue.
3255 * @mode: which threads
3256 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3257 * @key: is directly passed to the wakeup function
3259 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3260 int nr_exclusive
, void *key
)
3262 unsigned long flags
;
3264 spin_lock_irqsave(&q
->lock
, flags
);
3265 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3266 spin_unlock_irqrestore(&q
->lock
, flags
);
3269 EXPORT_SYMBOL(__wake_up
);
3272 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3274 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3276 __wake_up_common(q
, mode
, 1, 0, NULL
);
3280 * __wake_up_sync - wake up threads blocked on a waitqueue.
3282 * @mode: which threads
3283 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3285 * The sync wakeup differs that the waker knows that it will schedule
3286 * away soon, so while the target thread will be woken up, it will not
3287 * be migrated to another CPU - ie. the two threads are 'synchronized'
3288 * with each other. This can prevent needless bouncing between CPUs.
3290 * On UP it can prevent extra preemption.
3293 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3295 unsigned long flags
;
3301 if (unlikely(!nr_exclusive
))
3304 spin_lock_irqsave(&q
->lock
, flags
);
3305 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3306 spin_unlock_irqrestore(&q
->lock
, flags
);
3308 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3310 void fastcall
complete(struct completion
*x
)
3312 unsigned long flags
;
3314 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3316 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3318 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3320 EXPORT_SYMBOL(complete
);
3322 void fastcall
complete_all(struct completion
*x
)
3324 unsigned long flags
;
3326 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3327 x
->done
+= UINT_MAX
/2;
3328 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3330 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3332 EXPORT_SYMBOL(complete_all
);
3334 void fastcall __sched
wait_for_completion(struct completion
*x
)
3337 spin_lock_irq(&x
->wait
.lock
);
3339 DECLARE_WAITQUEUE(wait
, current
);
3341 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3342 __add_wait_queue_tail(&x
->wait
, &wait
);
3344 __set_current_state(TASK_UNINTERRUPTIBLE
);
3345 spin_unlock_irq(&x
->wait
.lock
);
3347 spin_lock_irq(&x
->wait
.lock
);
3349 __remove_wait_queue(&x
->wait
, &wait
);
3352 spin_unlock_irq(&x
->wait
.lock
);
3354 EXPORT_SYMBOL(wait_for_completion
);
3356 unsigned long fastcall __sched
3357 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3361 spin_lock_irq(&x
->wait
.lock
);
3363 DECLARE_WAITQUEUE(wait
, current
);
3365 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3366 __add_wait_queue_tail(&x
->wait
, &wait
);
3368 __set_current_state(TASK_UNINTERRUPTIBLE
);
3369 spin_unlock_irq(&x
->wait
.lock
);
3370 timeout
= schedule_timeout(timeout
);
3371 spin_lock_irq(&x
->wait
.lock
);
3373 __remove_wait_queue(&x
->wait
, &wait
);
3377 __remove_wait_queue(&x
->wait
, &wait
);
3381 spin_unlock_irq(&x
->wait
.lock
);
3384 EXPORT_SYMBOL(wait_for_completion_timeout
);
3386 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3392 spin_lock_irq(&x
->wait
.lock
);
3394 DECLARE_WAITQUEUE(wait
, current
);
3396 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3397 __add_wait_queue_tail(&x
->wait
, &wait
);
3399 if (signal_pending(current
)) {
3401 __remove_wait_queue(&x
->wait
, &wait
);
3404 __set_current_state(TASK_INTERRUPTIBLE
);
3405 spin_unlock_irq(&x
->wait
.lock
);
3407 spin_lock_irq(&x
->wait
.lock
);
3409 __remove_wait_queue(&x
->wait
, &wait
);
3413 spin_unlock_irq(&x
->wait
.lock
);
3417 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3419 unsigned long fastcall __sched
3420 wait_for_completion_interruptible_timeout(struct completion
*x
,
3421 unsigned long timeout
)
3425 spin_lock_irq(&x
->wait
.lock
);
3427 DECLARE_WAITQUEUE(wait
, current
);
3429 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3430 __add_wait_queue_tail(&x
->wait
, &wait
);
3432 if (signal_pending(current
)) {
3433 timeout
= -ERESTARTSYS
;
3434 __remove_wait_queue(&x
->wait
, &wait
);
3437 __set_current_state(TASK_INTERRUPTIBLE
);
3438 spin_unlock_irq(&x
->wait
.lock
);
3439 timeout
= schedule_timeout(timeout
);
3440 spin_lock_irq(&x
->wait
.lock
);
3442 __remove_wait_queue(&x
->wait
, &wait
);
3446 __remove_wait_queue(&x
->wait
, &wait
);
3450 spin_unlock_irq(&x
->wait
.lock
);
3453 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3456 #define SLEEP_ON_VAR \
3457 unsigned long flags; \
3458 wait_queue_t wait; \
3459 init_waitqueue_entry(&wait, current);
3461 #define SLEEP_ON_HEAD \
3462 spin_lock_irqsave(&q->lock,flags); \
3463 __add_wait_queue(q, &wait); \
3464 spin_unlock(&q->lock);
3466 #define SLEEP_ON_TAIL \
3467 spin_lock_irq(&q->lock); \
3468 __remove_wait_queue(q, &wait); \
3469 spin_unlock_irqrestore(&q->lock, flags);
3471 void fastcall __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3475 current
->state
= TASK_INTERRUPTIBLE
;
3482 EXPORT_SYMBOL(interruptible_sleep_on
);
3484 long fastcall __sched
3485 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3489 current
->state
= TASK_INTERRUPTIBLE
;
3492 timeout
= schedule_timeout(timeout
);
3498 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3500 void fastcall __sched
sleep_on(wait_queue_head_t
*q
)
3504 current
->state
= TASK_UNINTERRUPTIBLE
;
3511 EXPORT_SYMBOL(sleep_on
);
3513 long fastcall __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3517 current
->state
= TASK_UNINTERRUPTIBLE
;
3520 timeout
= schedule_timeout(timeout
);
3526 EXPORT_SYMBOL(sleep_on_timeout
);
3528 void set_user_nice(task_t
*p
, long nice
)
3530 unsigned long flags
;
3531 prio_array_t
*array
;
3533 int old_prio
, new_prio
, delta
;
3535 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3538 * We have to be careful, if called from sys_setpriority(),
3539 * the task might be in the middle of scheduling on another CPU.
3541 rq
= task_rq_lock(p
, &flags
);
3543 * The RT priorities are set via sched_setscheduler(), but we still
3544 * allow the 'normal' nice value to be set - but as expected
3545 * it wont have any effect on scheduling until the task is
3549 p
->static_prio
= NICE_TO_PRIO(nice
);
3554 dequeue_task(p
, array
);
3555 dec_prio_bias(rq
, p
->static_prio
);
3559 new_prio
= NICE_TO_PRIO(nice
);
3560 delta
= new_prio
- old_prio
;
3561 p
->static_prio
= NICE_TO_PRIO(nice
);
3565 enqueue_task(p
, array
);
3566 inc_prio_bias(rq
, p
->static_prio
);
3568 * If the task increased its priority or is running and
3569 * lowered its priority, then reschedule its CPU:
3571 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3572 resched_task(rq
->curr
);
3575 task_rq_unlock(rq
, &flags
);
3578 EXPORT_SYMBOL(set_user_nice
);
3581 * can_nice - check if a task can reduce its nice value
3585 int can_nice(const task_t
*p
, const int nice
)
3587 /* convert nice value [19,-20] to rlimit style value [1,40] */
3588 int nice_rlim
= 20 - nice
;
3589 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
3590 capable(CAP_SYS_NICE
));
3593 #ifdef __ARCH_WANT_SYS_NICE
3596 * sys_nice - change the priority of the current process.
3597 * @increment: priority increment
3599 * sys_setpriority is a more generic, but much slower function that
3600 * does similar things.
3602 asmlinkage
long sys_nice(int increment
)
3608 * Setpriority might change our priority at the same moment.
3609 * We don't have to worry. Conceptually one call occurs first
3610 * and we have a single winner.
3612 if (increment
< -40)
3617 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
3623 if (increment
< 0 && !can_nice(current
, nice
))
3626 retval
= security_task_setnice(current
, nice
);
3630 set_user_nice(current
, nice
);
3637 * task_prio - return the priority value of a given task.
3638 * @p: the task in question.
3640 * This is the priority value as seen by users in /proc.
3641 * RT tasks are offset by -200. Normal tasks are centered
3642 * around 0, value goes from -16 to +15.
3644 int task_prio(const task_t
*p
)
3646 return p
->prio
- MAX_RT_PRIO
;
3650 * task_nice - return the nice value of a given task.
3651 * @p: the task in question.
3653 int task_nice(const task_t
*p
)
3655 return TASK_NICE(p
);
3657 EXPORT_SYMBOL_GPL(task_nice
);
3660 * idle_cpu - is a given cpu idle currently?
3661 * @cpu: the processor in question.
3663 int idle_cpu(int cpu
)
3665 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
3669 * idle_task - return the idle task for a given cpu.
3670 * @cpu: the processor in question.
3672 task_t
*idle_task(int cpu
)
3674 return cpu_rq(cpu
)->idle
;
3678 * find_process_by_pid - find a process with a matching PID value.
3679 * @pid: the pid in question.
3681 static inline task_t
*find_process_by_pid(pid_t pid
)
3683 return pid
? find_task_by_pid(pid
) : current
;
3686 /* Actually do priority change: must hold rq lock. */
3687 static void __setscheduler(struct task_struct
*p
, int policy
, int prio
)
3691 p
->rt_priority
= prio
;
3692 if (policy
!= SCHED_NORMAL
)
3693 p
->prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
3695 p
->prio
= p
->static_prio
;
3699 * sched_setscheduler - change the scheduling policy and/or RT priority of
3701 * @p: the task in question.
3702 * @policy: new policy.
3703 * @param: structure containing the new RT priority.
3705 int sched_setscheduler(struct task_struct
*p
, int policy
,
3706 struct sched_param
*param
)
3709 int oldprio
, oldpolicy
= -1;
3710 prio_array_t
*array
;
3711 unsigned long flags
;
3715 /* double check policy once rq lock held */
3717 policy
= oldpolicy
= p
->policy
;
3718 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3719 policy
!= SCHED_NORMAL
)
3722 * Valid priorities for SCHED_FIFO and SCHED_RR are
3723 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3725 if (param
->sched_priority
< 0 ||
3726 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3727 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
3729 if ((policy
== SCHED_NORMAL
) != (param
->sched_priority
== 0))
3733 * Allow unprivileged RT tasks to decrease priority:
3735 if (!capable(CAP_SYS_NICE
)) {
3736 /* can't change policy */
3737 if (policy
!= p
->policy
&&
3738 !p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3740 /* can't increase priority */
3741 if (policy
!= SCHED_NORMAL
&&
3742 param
->sched_priority
> p
->rt_priority
&&
3743 param
->sched_priority
>
3744 p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3746 /* can't change other user's priorities */
3747 if ((current
->euid
!= p
->euid
) &&
3748 (current
->euid
!= p
->uid
))
3752 retval
= security_task_setscheduler(p
, policy
, param
);
3756 * To be able to change p->policy safely, the apropriate
3757 * runqueue lock must be held.
3759 rq
= task_rq_lock(p
, &flags
);
3760 /* recheck policy now with rq lock held */
3761 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3762 policy
= oldpolicy
= -1;
3763 task_rq_unlock(rq
, &flags
);
3768 deactivate_task(p
, rq
);
3770 __setscheduler(p
, policy
, param
->sched_priority
);
3772 __activate_task(p
, rq
);
3774 * Reschedule if we are currently running on this runqueue and
3775 * our priority decreased, or if we are not currently running on
3776 * this runqueue and our priority is higher than the current's
3778 if (task_running(rq
, p
)) {
3779 if (p
->prio
> oldprio
)
3780 resched_task(rq
->curr
);
3781 } else if (TASK_PREEMPTS_CURR(p
, rq
))
3782 resched_task(rq
->curr
);
3784 task_rq_unlock(rq
, &flags
);
3787 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3790 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3793 struct sched_param lparam
;
3794 struct task_struct
*p
;
3796 if (!param
|| pid
< 0)
3798 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3800 read_lock_irq(&tasklist_lock
);
3801 p
= find_process_by_pid(pid
);
3803 read_unlock_irq(&tasklist_lock
);
3806 retval
= sched_setscheduler(p
, policy
, &lparam
);
3807 read_unlock_irq(&tasklist_lock
);
3812 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3813 * @pid: the pid in question.
3814 * @policy: new policy.
3815 * @param: structure containing the new RT priority.
3817 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
3818 struct sched_param __user
*param
)
3820 return do_sched_setscheduler(pid
, policy
, param
);
3824 * sys_sched_setparam - set/change the RT priority of a thread
3825 * @pid: the pid in question.
3826 * @param: structure containing the new RT priority.
3828 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
3830 return do_sched_setscheduler(pid
, -1, param
);
3834 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3835 * @pid: the pid in question.
3837 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
3839 int retval
= -EINVAL
;
3846 read_lock(&tasklist_lock
);
3847 p
= find_process_by_pid(pid
);
3849 retval
= security_task_getscheduler(p
);
3853 read_unlock(&tasklist_lock
);
3860 * sys_sched_getscheduler - get the RT priority of a thread
3861 * @pid: the pid in question.
3862 * @param: structure containing the RT priority.
3864 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
3866 struct sched_param lp
;
3867 int retval
= -EINVAL
;
3870 if (!param
|| pid
< 0)
3873 read_lock(&tasklist_lock
);
3874 p
= find_process_by_pid(pid
);
3879 retval
= security_task_getscheduler(p
);
3883 lp
.sched_priority
= p
->rt_priority
;
3884 read_unlock(&tasklist_lock
);
3887 * This one might sleep, we cannot do it with a spinlock held ...
3889 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3895 read_unlock(&tasklist_lock
);
3899 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
3903 cpumask_t cpus_allowed
;
3906 read_lock(&tasklist_lock
);
3908 p
= find_process_by_pid(pid
);
3910 read_unlock(&tasklist_lock
);
3911 unlock_cpu_hotplug();
3916 * It is not safe to call set_cpus_allowed with the
3917 * tasklist_lock held. We will bump the task_struct's
3918 * usage count and then drop tasklist_lock.
3921 read_unlock(&tasklist_lock
);
3924 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
3925 !capable(CAP_SYS_NICE
))
3928 cpus_allowed
= cpuset_cpus_allowed(p
);
3929 cpus_and(new_mask
, new_mask
, cpus_allowed
);
3930 retval
= set_cpus_allowed(p
, new_mask
);
3934 unlock_cpu_hotplug();
3938 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
3939 cpumask_t
*new_mask
)
3941 if (len
< sizeof(cpumask_t
)) {
3942 memset(new_mask
, 0, sizeof(cpumask_t
));
3943 } else if (len
> sizeof(cpumask_t
)) {
3944 len
= sizeof(cpumask_t
);
3946 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
3950 * sys_sched_setaffinity - set the cpu affinity of a process
3951 * @pid: pid of the process
3952 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3953 * @user_mask_ptr: user-space pointer to the new cpu mask
3955 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
3956 unsigned long __user
*user_mask_ptr
)
3961 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
3965 return sched_setaffinity(pid
, new_mask
);
3969 * Represents all cpu's present in the system
3970 * In systems capable of hotplug, this map could dynamically grow
3971 * as new cpu's are detected in the system via any platform specific
3972 * method, such as ACPI for e.g.
3975 cpumask_t cpu_present_map
;
3976 EXPORT_SYMBOL(cpu_present_map
);
3979 cpumask_t cpu_online_map
= CPU_MASK_ALL
;
3980 cpumask_t cpu_possible_map
= CPU_MASK_ALL
;
3983 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
3989 read_lock(&tasklist_lock
);
3992 p
= find_process_by_pid(pid
);
3997 cpus_and(*mask
, p
->cpus_allowed
, cpu_possible_map
);
4000 read_unlock(&tasklist_lock
);
4001 unlock_cpu_hotplug();
4009 * sys_sched_getaffinity - get the cpu affinity of a process
4010 * @pid: pid of the process
4011 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4012 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4014 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4015 unsigned long __user
*user_mask_ptr
)
4020 if (len
< sizeof(cpumask_t
))
4023 ret
= sched_getaffinity(pid
, &mask
);
4027 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4030 return sizeof(cpumask_t
);
4034 * sys_sched_yield - yield the current processor to other threads.
4036 * this function yields the current CPU by moving the calling thread
4037 * to the expired array. If there are no other threads running on this
4038 * CPU then this function will return.
4040 asmlinkage
long sys_sched_yield(void)
4042 runqueue_t
*rq
= this_rq_lock();
4043 prio_array_t
*array
= current
->array
;
4044 prio_array_t
*target
= rq
->expired
;
4046 schedstat_inc(rq
, yld_cnt
);
4048 * We implement yielding by moving the task into the expired
4051 * (special rule: RT tasks will just roundrobin in the active
4054 if (rt_task(current
))
4055 target
= rq
->active
;
4057 if (array
->nr_active
== 1) {
4058 schedstat_inc(rq
, yld_act_empty
);
4059 if (!rq
->expired
->nr_active
)
4060 schedstat_inc(rq
, yld_both_empty
);
4061 } else if (!rq
->expired
->nr_active
)
4062 schedstat_inc(rq
, yld_exp_empty
);
4064 if (array
!= target
) {
4065 dequeue_task(current
, array
);
4066 enqueue_task(current
, target
);
4069 * requeue_task is cheaper so perform that if possible.
4071 requeue_task(current
, array
);
4074 * Since we are going to call schedule() anyway, there's
4075 * no need to preempt or enable interrupts:
4077 __release(rq
->lock
);
4078 _raw_spin_unlock(&rq
->lock
);
4079 preempt_enable_no_resched();
4086 static inline void __cond_resched(void)
4089 * The BKS might be reacquired before we have dropped
4090 * PREEMPT_ACTIVE, which could trigger a second
4091 * cond_resched() call.
4093 if (unlikely(preempt_count()))
4096 add_preempt_count(PREEMPT_ACTIVE
);
4098 sub_preempt_count(PREEMPT_ACTIVE
);
4099 } while (need_resched());
4102 int __sched
cond_resched(void)
4104 if (need_resched()) {
4111 EXPORT_SYMBOL(cond_resched
);
4114 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4115 * call schedule, and on return reacquire the lock.
4117 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4118 * operations here to prevent schedule() from being called twice (once via
4119 * spin_unlock(), once by hand).
4121 int cond_resched_lock(spinlock_t
*lock
)
4125 if (need_lockbreak(lock
)) {
4131 if (need_resched()) {
4132 _raw_spin_unlock(lock
);
4133 preempt_enable_no_resched();
4141 EXPORT_SYMBOL(cond_resched_lock
);
4143 int __sched
cond_resched_softirq(void)
4145 BUG_ON(!in_softirq());
4147 if (need_resched()) {
4148 __local_bh_enable();
4156 EXPORT_SYMBOL(cond_resched_softirq
);
4160 * yield - yield the current processor to other threads.
4162 * this is a shortcut for kernel-space yielding - it marks the
4163 * thread runnable and calls sys_sched_yield().
4165 void __sched
yield(void)
4167 set_current_state(TASK_RUNNING
);
4171 EXPORT_SYMBOL(yield
);
4174 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4175 * that process accounting knows that this is a task in IO wait state.
4177 * But don't do that if it is a deliberate, throttling IO wait (this task
4178 * has set its backing_dev_info: the queue against which it should throttle)
4180 void __sched
io_schedule(void)
4182 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
4184 atomic_inc(&rq
->nr_iowait
);
4186 atomic_dec(&rq
->nr_iowait
);
4189 EXPORT_SYMBOL(io_schedule
);
4191 long __sched
io_schedule_timeout(long timeout
)
4193 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
4196 atomic_inc(&rq
->nr_iowait
);
4197 ret
= schedule_timeout(timeout
);
4198 atomic_dec(&rq
->nr_iowait
);
4203 * sys_sched_get_priority_max - return maximum RT priority.
4204 * @policy: scheduling class.
4206 * this syscall returns the maximum rt_priority that can be used
4207 * by a given scheduling class.
4209 asmlinkage
long sys_sched_get_priority_max(int policy
)
4216 ret
= MAX_USER_RT_PRIO
-1;
4226 * sys_sched_get_priority_min - return minimum RT priority.
4227 * @policy: scheduling class.
4229 * this syscall returns the minimum rt_priority that can be used
4230 * by a given scheduling class.
4232 asmlinkage
long sys_sched_get_priority_min(int policy
)
4248 * sys_sched_rr_get_interval - return the default timeslice of a process.
4249 * @pid: pid of the process.
4250 * @interval: userspace pointer to the timeslice value.
4252 * this syscall writes the default timeslice value of a given process
4253 * into the user-space timespec buffer. A value of '0' means infinity.
4256 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4258 int retval
= -EINVAL
;
4266 read_lock(&tasklist_lock
);
4267 p
= find_process_by_pid(pid
);
4271 retval
= security_task_getscheduler(p
);
4275 jiffies_to_timespec(p
->policy
& SCHED_FIFO
?
4276 0 : task_timeslice(p
), &t
);
4277 read_unlock(&tasklist_lock
);
4278 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4282 read_unlock(&tasklist_lock
);
4286 static inline struct task_struct
*eldest_child(struct task_struct
*p
)
4288 if (list_empty(&p
->children
)) return NULL
;
4289 return list_entry(p
->children
.next
,struct task_struct
,sibling
);
4292 static inline struct task_struct
*older_sibling(struct task_struct
*p
)
4294 if (p
->sibling
.prev
==&p
->parent
->children
) return NULL
;
4295 return list_entry(p
->sibling
.prev
,struct task_struct
,sibling
);
4298 static inline struct task_struct
*younger_sibling(struct task_struct
*p
)
4300 if (p
->sibling
.next
==&p
->parent
->children
) return NULL
;
4301 return list_entry(p
->sibling
.next
,struct task_struct
,sibling
);
4304 static void show_task(task_t
*p
)
4308 unsigned long free
= 0;
4309 static const char *stat_nam
[] = { "R", "S", "D", "T", "t", "Z", "X" };
4311 printk("%-13.13s ", p
->comm
);
4312 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4313 if (state
< ARRAY_SIZE(stat_nam
))
4314 printk(stat_nam
[state
]);
4317 #if (BITS_PER_LONG == 32)
4318 if (state
== TASK_RUNNING
)
4319 printk(" running ");
4321 printk(" %08lX ", thread_saved_pc(p
));
4323 if (state
== TASK_RUNNING
)
4324 printk(" running task ");
4326 printk(" %016lx ", thread_saved_pc(p
));
4328 #ifdef CONFIG_DEBUG_STACK_USAGE
4330 unsigned long *n
= end_of_stack(p
);
4333 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4336 printk("%5lu %5d %6d ", free
, p
->pid
, p
->parent
->pid
);
4337 if ((relative
= eldest_child(p
)))
4338 printk("%5d ", relative
->pid
);
4341 if ((relative
= younger_sibling(p
)))
4342 printk("%7d", relative
->pid
);
4345 if ((relative
= older_sibling(p
)))
4346 printk(" %5d", relative
->pid
);
4350 printk(" (L-TLB)\n");
4352 printk(" (NOTLB)\n");
4354 if (state
!= TASK_RUNNING
)
4355 show_stack(p
, NULL
);
4358 void show_state(void)
4362 #if (BITS_PER_LONG == 32)
4365 printk(" task PC pid father child younger older\n");
4369 printk(" task PC pid father child younger older\n");
4371 read_lock(&tasklist_lock
);
4372 do_each_thread(g
, p
) {
4374 * reset the NMI-timeout, listing all files on a slow
4375 * console might take alot of time:
4377 touch_nmi_watchdog();
4379 } while_each_thread(g
, p
);
4381 read_unlock(&tasklist_lock
);
4385 * init_idle - set up an idle thread for a given CPU
4386 * @idle: task in question
4387 * @cpu: cpu the idle task belongs to
4389 * NOTE: this function does not set the idle thread's NEED_RESCHED
4390 * flag, to make booting more robust.
4392 void __devinit
init_idle(task_t
*idle
, int cpu
)
4394 runqueue_t
*rq
= cpu_rq(cpu
);
4395 unsigned long flags
;
4397 idle
->sleep_avg
= 0;
4399 idle
->prio
= MAX_PRIO
;
4400 idle
->state
= TASK_RUNNING
;
4401 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4402 set_task_cpu(idle
, cpu
);
4404 spin_lock_irqsave(&rq
->lock
, flags
);
4405 rq
->curr
= rq
->idle
= idle
;
4406 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4409 spin_unlock_irqrestore(&rq
->lock
, flags
);
4411 /* Set the preempt count _outside_ the spinlocks! */
4412 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4413 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4415 task_thread_info(idle
)->preempt_count
= 0;
4420 * In a system that switches off the HZ timer nohz_cpu_mask
4421 * indicates which cpus entered this state. This is used
4422 * in the rcu update to wait only for active cpus. For system
4423 * which do not switch off the HZ timer nohz_cpu_mask should
4424 * always be CPU_MASK_NONE.
4426 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4430 * This is how migration works:
4432 * 1) we queue a migration_req_t structure in the source CPU's
4433 * runqueue and wake up that CPU's migration thread.
4434 * 2) we down() the locked semaphore => thread blocks.
4435 * 3) migration thread wakes up (implicitly it forces the migrated
4436 * thread off the CPU)
4437 * 4) it gets the migration request and checks whether the migrated
4438 * task is still in the wrong runqueue.
4439 * 5) if it's in the wrong runqueue then the migration thread removes
4440 * it and puts it into the right queue.
4441 * 6) migration thread up()s the semaphore.
4442 * 7) we wake up and the migration is done.
4446 * Change a given task's CPU affinity. Migrate the thread to a
4447 * proper CPU and schedule it away if the CPU it's executing on
4448 * is removed from the allowed bitmask.
4450 * NOTE: the caller must have a valid reference to the task, the
4451 * task must not exit() & deallocate itself prematurely. The
4452 * call is not atomic; no spinlocks may be held.
4454 int set_cpus_allowed(task_t
*p
, cpumask_t new_mask
)
4456 unsigned long flags
;
4458 migration_req_t req
;
4461 rq
= task_rq_lock(p
, &flags
);
4462 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4467 p
->cpus_allowed
= new_mask
;
4468 /* Can the task run on the task's current CPU? If so, we're done */
4469 if (cpu_isset(task_cpu(p
), new_mask
))
4472 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4473 /* Need help from migration thread: drop lock and wait. */
4474 task_rq_unlock(rq
, &flags
);
4475 wake_up_process(rq
->migration_thread
);
4476 wait_for_completion(&req
.done
);
4477 tlb_migrate_finish(p
->mm
);
4481 task_rq_unlock(rq
, &flags
);
4485 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4488 * Move (not current) task off this cpu, onto dest cpu. We're doing
4489 * this because either it can't run here any more (set_cpus_allowed()
4490 * away from this CPU, or CPU going down), or because we're
4491 * attempting to rebalance this task on exec (sched_exec).
4493 * So we race with normal scheduler movements, but that's OK, as long
4494 * as the task is no longer on this CPU.
4496 static void __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4498 runqueue_t
*rq_dest
, *rq_src
;
4500 if (unlikely(cpu_is_offline(dest_cpu
)))
4503 rq_src
= cpu_rq(src_cpu
);
4504 rq_dest
= cpu_rq(dest_cpu
);
4506 double_rq_lock(rq_src
, rq_dest
);
4507 /* Already moved. */
4508 if (task_cpu(p
) != src_cpu
)
4510 /* Affinity changed (again). */
4511 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4514 set_task_cpu(p
, dest_cpu
);
4517 * Sync timestamp with rq_dest's before activating.
4518 * The same thing could be achieved by doing this step
4519 * afterwards, and pretending it was a local activate.
4520 * This way is cleaner and logically correct.
4522 p
->timestamp
= p
->timestamp
- rq_src
->timestamp_last_tick
4523 + rq_dest
->timestamp_last_tick
;
4524 deactivate_task(p
, rq_src
);
4525 activate_task(p
, rq_dest
, 0);
4526 if (TASK_PREEMPTS_CURR(p
, rq_dest
))
4527 resched_task(rq_dest
->curr
);
4531 double_rq_unlock(rq_src
, rq_dest
);
4535 * migration_thread - this is a highprio system thread that performs
4536 * thread migration by bumping thread off CPU then 'pushing' onto
4539 static int migration_thread(void *data
)
4542 int cpu
= (long)data
;
4545 BUG_ON(rq
->migration_thread
!= current
);
4547 set_current_state(TASK_INTERRUPTIBLE
);
4548 while (!kthread_should_stop()) {
4549 struct list_head
*head
;
4550 migration_req_t
*req
;
4554 spin_lock_irq(&rq
->lock
);
4556 if (cpu_is_offline(cpu
)) {
4557 spin_unlock_irq(&rq
->lock
);
4561 if (rq
->active_balance
) {
4562 active_load_balance(rq
, cpu
);
4563 rq
->active_balance
= 0;
4566 head
= &rq
->migration_queue
;
4568 if (list_empty(head
)) {
4569 spin_unlock_irq(&rq
->lock
);
4571 set_current_state(TASK_INTERRUPTIBLE
);
4574 req
= list_entry(head
->next
, migration_req_t
, list
);
4575 list_del_init(head
->next
);
4577 spin_unlock(&rq
->lock
);
4578 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
4581 complete(&req
->done
);
4583 __set_current_state(TASK_RUNNING
);
4587 /* Wait for kthread_stop */
4588 set_current_state(TASK_INTERRUPTIBLE
);
4589 while (!kthread_should_stop()) {
4591 set_current_state(TASK_INTERRUPTIBLE
);
4593 __set_current_state(TASK_RUNNING
);
4597 #ifdef CONFIG_HOTPLUG_CPU
4598 /* Figure out where task on dead CPU should go, use force if neccessary. */
4599 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*tsk
)
4605 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
4606 cpus_and(mask
, mask
, tsk
->cpus_allowed
);
4607 dest_cpu
= any_online_cpu(mask
);
4609 /* On any allowed CPU? */
4610 if (dest_cpu
== NR_CPUS
)
4611 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4613 /* No more Mr. Nice Guy. */
4614 if (dest_cpu
== NR_CPUS
) {
4615 cpus_setall(tsk
->cpus_allowed
);
4616 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4619 * Don't tell them about moving exiting tasks or
4620 * kernel threads (both mm NULL), since they never
4623 if (tsk
->mm
&& printk_ratelimit())
4624 printk(KERN_INFO
"process %d (%s) no "
4625 "longer affine to cpu%d\n",
4626 tsk
->pid
, tsk
->comm
, dead_cpu
);
4628 __migrate_task(tsk
, dead_cpu
, dest_cpu
);
4632 * While a dead CPU has no uninterruptible tasks queued at this point,
4633 * it might still have a nonzero ->nr_uninterruptible counter, because
4634 * for performance reasons the counter is not stricly tracking tasks to
4635 * their home CPUs. So we just add the counter to another CPU's counter,
4636 * to keep the global sum constant after CPU-down:
4638 static void migrate_nr_uninterruptible(runqueue_t
*rq_src
)
4640 runqueue_t
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
4641 unsigned long flags
;
4643 local_irq_save(flags
);
4644 double_rq_lock(rq_src
, rq_dest
);
4645 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
4646 rq_src
->nr_uninterruptible
= 0;
4647 double_rq_unlock(rq_src
, rq_dest
);
4648 local_irq_restore(flags
);
4651 /* Run through task list and migrate tasks from the dead cpu. */
4652 static void migrate_live_tasks(int src_cpu
)
4654 struct task_struct
*tsk
, *t
;
4656 write_lock_irq(&tasklist_lock
);
4658 do_each_thread(t
, tsk
) {
4662 if (task_cpu(tsk
) == src_cpu
)
4663 move_task_off_dead_cpu(src_cpu
, tsk
);
4664 } while_each_thread(t
, tsk
);
4666 write_unlock_irq(&tasklist_lock
);
4669 /* Schedules idle task to be the next runnable task on current CPU.
4670 * It does so by boosting its priority to highest possible and adding it to
4671 * the _front_ of runqueue. Used by CPU offline code.
4673 void sched_idle_next(void)
4675 int cpu
= smp_processor_id();
4676 runqueue_t
*rq
= this_rq();
4677 struct task_struct
*p
= rq
->idle
;
4678 unsigned long flags
;
4680 /* cpu has to be offline */
4681 BUG_ON(cpu_online(cpu
));
4683 /* Strictly not necessary since rest of the CPUs are stopped by now
4684 * and interrupts disabled on current cpu.
4686 spin_lock_irqsave(&rq
->lock
, flags
);
4688 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4689 /* Add idle task to _front_ of it's priority queue */
4690 __activate_idle_task(p
, rq
);
4692 spin_unlock_irqrestore(&rq
->lock
, flags
);
4695 /* Ensures that the idle task is using init_mm right before its cpu goes
4698 void idle_task_exit(void)
4700 struct mm_struct
*mm
= current
->active_mm
;
4702 BUG_ON(cpu_online(smp_processor_id()));
4705 switch_mm(mm
, &init_mm
, current
);
4709 static void migrate_dead(unsigned int dead_cpu
, task_t
*tsk
)
4711 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4713 /* Must be exiting, otherwise would be on tasklist. */
4714 BUG_ON(tsk
->exit_state
!= EXIT_ZOMBIE
&& tsk
->exit_state
!= EXIT_DEAD
);
4716 /* Cannot have done final schedule yet: would have vanished. */
4717 BUG_ON(tsk
->flags
& PF_DEAD
);
4719 get_task_struct(tsk
);
4722 * Drop lock around migration; if someone else moves it,
4723 * that's OK. No task can be added to this CPU, so iteration is
4726 spin_unlock_irq(&rq
->lock
);
4727 move_task_off_dead_cpu(dead_cpu
, tsk
);
4728 spin_lock_irq(&rq
->lock
);
4730 put_task_struct(tsk
);
4733 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4734 static void migrate_dead_tasks(unsigned int dead_cpu
)
4737 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4739 for (arr
= 0; arr
< 2; arr
++) {
4740 for (i
= 0; i
< MAX_PRIO
; i
++) {
4741 struct list_head
*list
= &rq
->arrays
[arr
].queue
[i
];
4742 while (!list_empty(list
))
4743 migrate_dead(dead_cpu
,
4744 list_entry(list
->next
, task_t
,
4749 #endif /* CONFIG_HOTPLUG_CPU */
4752 * migration_call - callback that gets triggered when a CPU is added.
4753 * Here we can start up the necessary migration thread for the new CPU.
4755 static int migration_call(struct notifier_block
*nfb
, unsigned long action
,
4758 int cpu
= (long)hcpu
;
4759 struct task_struct
*p
;
4760 struct runqueue
*rq
;
4761 unsigned long flags
;
4764 case CPU_UP_PREPARE
:
4765 p
= kthread_create(migration_thread
, hcpu
, "migration/%d",cpu
);
4768 p
->flags
|= PF_NOFREEZE
;
4769 kthread_bind(p
, cpu
);
4770 /* Must be high prio: stop_machine expects to yield to it. */
4771 rq
= task_rq_lock(p
, &flags
);
4772 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4773 task_rq_unlock(rq
, &flags
);
4774 cpu_rq(cpu
)->migration_thread
= p
;
4777 /* Strictly unneccessary, as first user will wake it. */
4778 wake_up_process(cpu_rq(cpu
)->migration_thread
);
4780 #ifdef CONFIG_HOTPLUG_CPU
4781 case CPU_UP_CANCELED
:
4782 /* Unbind it from offline cpu so it can run. Fall thru. */
4783 kthread_bind(cpu_rq(cpu
)->migration_thread
,
4784 any_online_cpu(cpu_online_map
));
4785 kthread_stop(cpu_rq(cpu
)->migration_thread
);
4786 cpu_rq(cpu
)->migration_thread
= NULL
;
4789 migrate_live_tasks(cpu
);
4791 kthread_stop(rq
->migration_thread
);
4792 rq
->migration_thread
= NULL
;
4793 /* Idle task back to normal (off runqueue, low prio) */
4794 rq
= task_rq_lock(rq
->idle
, &flags
);
4795 deactivate_task(rq
->idle
, rq
);
4796 rq
->idle
->static_prio
= MAX_PRIO
;
4797 __setscheduler(rq
->idle
, SCHED_NORMAL
, 0);
4798 migrate_dead_tasks(cpu
);
4799 task_rq_unlock(rq
, &flags
);
4800 migrate_nr_uninterruptible(rq
);
4801 BUG_ON(rq
->nr_running
!= 0);
4803 /* No need to migrate the tasks: it was best-effort if
4804 * they didn't do lock_cpu_hotplug(). Just wake up
4805 * the requestors. */
4806 spin_lock_irq(&rq
->lock
);
4807 while (!list_empty(&rq
->migration_queue
)) {
4808 migration_req_t
*req
;
4809 req
= list_entry(rq
->migration_queue
.next
,
4810 migration_req_t
, list
);
4811 list_del_init(&req
->list
);
4812 complete(&req
->done
);
4814 spin_unlock_irq(&rq
->lock
);
4821 /* Register at highest priority so that task migration (migrate_all_tasks)
4822 * happens before everything else.
4824 static struct notifier_block __devinitdata migration_notifier
= {
4825 .notifier_call
= migration_call
,
4829 int __init
migration_init(void)
4831 void *cpu
= (void *)(long)smp_processor_id();
4832 /* Start one for boot CPU. */
4833 migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
4834 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
4835 register_cpu_notifier(&migration_notifier
);
4841 #undef SCHED_DOMAIN_DEBUG
4842 #ifdef SCHED_DOMAIN_DEBUG
4843 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
4848 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
4852 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
4857 struct sched_group
*group
= sd
->groups
;
4858 cpumask_t groupmask
;
4860 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
4861 cpus_clear(groupmask
);
4864 for (i
= 0; i
< level
+ 1; i
++)
4866 printk("domain %d: ", level
);
4868 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
4869 printk("does not load-balance\n");
4871 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
4875 printk("span %s\n", str
);
4877 if (!cpu_isset(cpu
, sd
->span
))
4878 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
4879 if (!cpu_isset(cpu
, group
->cpumask
))
4880 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
4883 for (i
= 0; i
< level
+ 2; i
++)
4889 printk(KERN_ERR
"ERROR: group is NULL\n");
4893 if (!group
->cpu_power
) {
4895 printk(KERN_ERR
"ERROR: domain->cpu_power not set\n");
4898 if (!cpus_weight(group
->cpumask
)) {
4900 printk(KERN_ERR
"ERROR: empty group\n");
4903 if (cpus_intersects(groupmask
, group
->cpumask
)) {
4905 printk(KERN_ERR
"ERROR: repeated CPUs\n");
4908 cpus_or(groupmask
, groupmask
, group
->cpumask
);
4910 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
4913 group
= group
->next
;
4914 } while (group
!= sd
->groups
);
4917 if (!cpus_equal(sd
->span
, groupmask
))
4918 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
4924 if (!cpus_subset(groupmask
, sd
->span
))
4925 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
4931 #define sched_domain_debug(sd, cpu) {}
4934 static int sd_degenerate(struct sched_domain
*sd
)
4936 if (cpus_weight(sd
->span
) == 1)
4939 /* Following flags need at least 2 groups */
4940 if (sd
->flags
& (SD_LOAD_BALANCE
|
4941 SD_BALANCE_NEWIDLE
|
4944 if (sd
->groups
!= sd
->groups
->next
)
4948 /* Following flags don't use groups */
4949 if (sd
->flags
& (SD_WAKE_IDLE
|
4957 static int sd_parent_degenerate(struct sched_domain
*sd
,
4958 struct sched_domain
*parent
)
4960 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
4962 if (sd_degenerate(parent
))
4965 if (!cpus_equal(sd
->span
, parent
->span
))
4968 /* Does parent contain flags not in child? */
4969 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4970 if (cflags
& SD_WAKE_AFFINE
)
4971 pflags
&= ~SD_WAKE_BALANCE
;
4972 /* Flags needing groups don't count if only 1 group in parent */
4973 if (parent
->groups
== parent
->groups
->next
) {
4974 pflags
&= ~(SD_LOAD_BALANCE
|
4975 SD_BALANCE_NEWIDLE
|
4979 if (~cflags
& pflags
)
4986 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4987 * hold the hotplug lock.
4989 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
4991 runqueue_t
*rq
= cpu_rq(cpu
);
4992 struct sched_domain
*tmp
;
4994 /* Remove the sched domains which do not contribute to scheduling. */
4995 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
4996 struct sched_domain
*parent
= tmp
->parent
;
4999 if (sd_parent_degenerate(tmp
, parent
))
5000 tmp
->parent
= parent
->parent
;
5003 if (sd
&& sd_degenerate(sd
))
5006 sched_domain_debug(sd
, cpu
);
5008 rcu_assign_pointer(rq
->sd
, sd
);
5011 /* cpus with isolated domains */
5012 static cpumask_t __devinitdata cpu_isolated_map
= CPU_MASK_NONE
;
5014 /* Setup the mask of cpus configured for isolated domains */
5015 static int __init
isolated_cpu_setup(char *str
)
5017 int ints
[NR_CPUS
], i
;
5019 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5020 cpus_clear(cpu_isolated_map
);
5021 for (i
= 1; i
<= ints
[0]; i
++)
5022 if (ints
[i
] < NR_CPUS
)
5023 cpu_set(ints
[i
], cpu_isolated_map
);
5027 __setup ("isolcpus=", isolated_cpu_setup
);
5030 * init_sched_build_groups takes an array of groups, the cpumask we wish
5031 * to span, and a pointer to a function which identifies what group a CPU
5032 * belongs to. The return value of group_fn must be a valid index into the
5033 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5034 * keep track of groups covered with a cpumask_t).
5036 * init_sched_build_groups will build a circular linked list of the groups
5037 * covered by the given span, and will set each group's ->cpumask correctly,
5038 * and ->cpu_power to 0.
5040 static void init_sched_build_groups(struct sched_group groups
[], cpumask_t span
,
5041 int (*group_fn
)(int cpu
))
5043 struct sched_group
*first
= NULL
, *last
= NULL
;
5044 cpumask_t covered
= CPU_MASK_NONE
;
5047 for_each_cpu_mask(i
, span
) {
5048 int group
= group_fn(i
);
5049 struct sched_group
*sg
= &groups
[group
];
5052 if (cpu_isset(i
, covered
))
5055 sg
->cpumask
= CPU_MASK_NONE
;
5058 for_each_cpu_mask(j
, span
) {
5059 if (group_fn(j
) != group
)
5062 cpu_set(j
, covered
);
5063 cpu_set(j
, sg
->cpumask
);
5074 #define SD_NODES_PER_DOMAIN 16
5078 * find_next_best_node - find the next node to include in a sched_domain
5079 * @node: node whose sched_domain we're building
5080 * @used_nodes: nodes already in the sched_domain
5082 * Find the next node to include in a given scheduling domain. Simply
5083 * finds the closest node not already in the @used_nodes map.
5085 * Should use nodemask_t.
5087 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5089 int i
, n
, val
, min_val
, best_node
= 0;
5093 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5094 /* Start at @node */
5095 n
= (node
+ i
) % MAX_NUMNODES
;
5097 if (!nr_cpus_node(n
))
5100 /* Skip already used nodes */
5101 if (test_bit(n
, used_nodes
))
5104 /* Simple min distance search */
5105 val
= node_distance(node
, n
);
5107 if (val
< min_val
) {
5113 set_bit(best_node
, used_nodes
);
5118 * sched_domain_node_span - get a cpumask for a node's sched_domain
5119 * @node: node whose cpumask we're constructing
5120 * @size: number of nodes to include in this span
5122 * Given a node, construct a good cpumask for its sched_domain to span. It
5123 * should be one that prevents unnecessary balancing, but also spreads tasks
5126 static cpumask_t
sched_domain_node_span(int node
)
5129 cpumask_t span
, nodemask
;
5130 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5133 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5135 nodemask
= node_to_cpumask(node
);
5136 cpus_or(span
, span
, nodemask
);
5137 set_bit(node
, used_nodes
);
5139 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5140 int next_node
= find_next_best_node(node
, used_nodes
);
5141 nodemask
= node_to_cpumask(next_node
);
5142 cpus_or(span
, span
, nodemask
);
5150 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5151 * can switch it on easily if needed.
5153 #ifdef CONFIG_SCHED_SMT
5154 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5155 static struct sched_group sched_group_cpus
[NR_CPUS
];
5156 static int cpu_to_cpu_group(int cpu
)
5162 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5163 static struct sched_group sched_group_phys
[NR_CPUS
];
5164 static int cpu_to_phys_group(int cpu
)
5166 #ifdef CONFIG_SCHED_SMT
5167 return first_cpu(cpu_sibling_map
[cpu
]);
5175 * The init_sched_build_groups can't handle what we want to do with node
5176 * groups, so roll our own. Now each node has its own list of groups which
5177 * gets dynamically allocated.
5179 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5180 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5182 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5183 static struct sched_group
*sched_group_allnodes_bycpu
[NR_CPUS
];
5185 static int cpu_to_allnodes_group(int cpu
)
5187 return cpu_to_node(cpu
);
5192 * Build sched domains for a given set of cpus and attach the sched domains
5193 * to the individual cpus
5195 void build_sched_domains(const cpumask_t
*cpu_map
)
5199 struct sched_group
**sched_group_nodes
= NULL
;
5200 struct sched_group
*sched_group_allnodes
= NULL
;
5203 * Allocate the per-node list of sched groups
5205 sched_group_nodes
= kmalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
5207 if (!sched_group_nodes
) {
5208 printk(KERN_WARNING
"Can not alloc sched group node list\n");
5211 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
5215 * Set up domains for cpus specified by the cpu_map.
5217 for_each_cpu_mask(i
, *cpu_map
) {
5219 struct sched_domain
*sd
= NULL
, *p
;
5220 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
5222 cpus_and(nodemask
, nodemask
, *cpu_map
);
5225 if (cpus_weight(*cpu_map
)
5226 > SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
5227 if (!sched_group_allnodes
) {
5228 sched_group_allnodes
5229 = kmalloc(sizeof(struct sched_group
)
5232 if (!sched_group_allnodes
) {
5234 "Can not alloc allnodes sched group\n");
5237 sched_group_allnodes_bycpu
[i
]
5238 = sched_group_allnodes
;
5240 sd
= &per_cpu(allnodes_domains
, i
);
5241 *sd
= SD_ALLNODES_INIT
;
5242 sd
->span
= *cpu_map
;
5243 group
= cpu_to_allnodes_group(i
);
5244 sd
->groups
= &sched_group_allnodes
[group
];
5249 sd
= &per_cpu(node_domains
, i
);
5251 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
5253 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5257 sd
= &per_cpu(phys_domains
, i
);
5258 group
= cpu_to_phys_group(i
);
5260 sd
->span
= nodemask
;
5262 sd
->groups
= &sched_group_phys
[group
];
5264 #ifdef CONFIG_SCHED_SMT
5266 sd
= &per_cpu(cpu_domains
, i
);
5267 group
= cpu_to_cpu_group(i
);
5268 *sd
= SD_SIBLING_INIT
;
5269 sd
->span
= cpu_sibling_map
[i
];
5270 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5272 sd
->groups
= &sched_group_cpus
[group
];
5276 #ifdef CONFIG_SCHED_SMT
5277 /* Set up CPU (sibling) groups */
5278 for_each_cpu_mask(i
, *cpu_map
) {
5279 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
5280 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
5281 if (i
!= first_cpu(this_sibling_map
))
5284 init_sched_build_groups(sched_group_cpus
, this_sibling_map
,
5289 /* Set up physical groups */
5290 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5291 cpumask_t nodemask
= node_to_cpumask(i
);
5293 cpus_and(nodemask
, nodemask
, *cpu_map
);
5294 if (cpus_empty(nodemask
))
5297 init_sched_build_groups(sched_group_phys
, nodemask
,
5298 &cpu_to_phys_group
);
5302 /* Set up node groups */
5303 if (sched_group_allnodes
)
5304 init_sched_build_groups(sched_group_allnodes
, *cpu_map
,
5305 &cpu_to_allnodes_group
);
5307 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5308 /* Set up node groups */
5309 struct sched_group
*sg
, *prev
;
5310 cpumask_t nodemask
= node_to_cpumask(i
);
5311 cpumask_t domainspan
;
5312 cpumask_t covered
= CPU_MASK_NONE
;
5315 cpus_and(nodemask
, nodemask
, *cpu_map
);
5316 if (cpus_empty(nodemask
)) {
5317 sched_group_nodes
[i
] = NULL
;
5321 domainspan
= sched_domain_node_span(i
);
5322 cpus_and(domainspan
, domainspan
, *cpu_map
);
5324 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5325 sched_group_nodes
[i
] = sg
;
5326 for_each_cpu_mask(j
, nodemask
) {
5327 struct sched_domain
*sd
;
5328 sd
= &per_cpu(node_domains
, j
);
5330 if (sd
->groups
== NULL
) {
5331 /* Turn off balancing if we have no groups */
5337 "Can not alloc domain group for node %d\n", i
);
5341 sg
->cpumask
= nodemask
;
5342 cpus_or(covered
, covered
, nodemask
);
5345 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
5346 cpumask_t tmp
, notcovered
;
5347 int n
= (i
+ j
) % MAX_NUMNODES
;
5349 cpus_complement(notcovered
, covered
);
5350 cpus_and(tmp
, notcovered
, *cpu_map
);
5351 cpus_and(tmp
, tmp
, domainspan
);
5352 if (cpus_empty(tmp
))
5355 nodemask
= node_to_cpumask(n
);
5356 cpus_and(tmp
, tmp
, nodemask
);
5357 if (cpus_empty(tmp
))
5360 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5363 "Can not alloc domain group for node %d\n", j
);
5368 cpus_or(covered
, covered
, tmp
);
5372 prev
->next
= sched_group_nodes
[i
];
5376 /* Calculate CPU power for physical packages and nodes */
5377 for_each_cpu_mask(i
, *cpu_map
) {
5379 struct sched_domain
*sd
;
5380 #ifdef CONFIG_SCHED_SMT
5381 sd
= &per_cpu(cpu_domains
, i
);
5382 power
= SCHED_LOAD_SCALE
;
5383 sd
->groups
->cpu_power
= power
;
5386 sd
= &per_cpu(phys_domains
, i
);
5387 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5388 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5389 sd
->groups
->cpu_power
= power
;
5392 sd
= &per_cpu(allnodes_domains
, i
);
5394 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5395 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5396 sd
->groups
->cpu_power
= power
;
5402 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5403 struct sched_group
*sg
= sched_group_nodes
[i
];
5409 for_each_cpu_mask(j
, sg
->cpumask
) {
5410 struct sched_domain
*sd
;
5413 sd
= &per_cpu(phys_domains
, j
);
5414 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5416 * Only add "power" once for each
5421 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5422 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5424 sg
->cpu_power
+= power
;
5427 if (sg
!= sched_group_nodes
[i
])
5432 /* Attach the domains */
5433 for_each_cpu_mask(i
, *cpu_map
) {
5434 struct sched_domain
*sd
;
5435 #ifdef CONFIG_SCHED_SMT
5436 sd
= &per_cpu(cpu_domains
, i
);
5438 sd
= &per_cpu(phys_domains
, i
);
5440 cpu_attach_domain(sd
, i
);
5444 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5446 static void arch_init_sched_domains(const cpumask_t
*cpu_map
)
5448 cpumask_t cpu_default_map
;
5451 * Setup mask for cpus without special case scheduling requirements.
5452 * For now this just excludes isolated cpus, but could be used to
5453 * exclude other special cases in the future.
5455 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
5457 build_sched_domains(&cpu_default_map
);
5460 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
5466 for_each_cpu_mask(cpu
, *cpu_map
) {
5467 struct sched_group
*sched_group_allnodes
5468 = sched_group_allnodes_bycpu
[cpu
];
5469 struct sched_group
**sched_group_nodes
5470 = sched_group_nodes_bycpu
[cpu
];
5472 if (sched_group_allnodes
) {
5473 kfree(sched_group_allnodes
);
5474 sched_group_allnodes_bycpu
[cpu
] = NULL
;
5477 if (!sched_group_nodes
)
5480 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5481 cpumask_t nodemask
= node_to_cpumask(i
);
5482 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5484 cpus_and(nodemask
, nodemask
, *cpu_map
);
5485 if (cpus_empty(nodemask
))
5495 if (oldsg
!= sched_group_nodes
[i
])
5498 kfree(sched_group_nodes
);
5499 sched_group_nodes_bycpu
[cpu
] = NULL
;
5505 * Detach sched domains from a group of cpus specified in cpu_map
5506 * These cpus will now be attached to the NULL domain
5508 static inline void detach_destroy_domains(const cpumask_t
*cpu_map
)
5512 for_each_cpu_mask(i
, *cpu_map
)
5513 cpu_attach_domain(NULL
, i
);
5514 synchronize_sched();
5515 arch_destroy_sched_domains(cpu_map
);
5519 * Partition sched domains as specified by the cpumasks below.
5520 * This attaches all cpus from the cpumasks to the NULL domain,
5521 * waits for a RCU quiescent period, recalculates sched
5522 * domain information and then attaches them back to the
5523 * correct sched domains
5524 * Call with hotplug lock held
5526 void partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
5528 cpumask_t change_map
;
5530 cpus_and(*partition1
, *partition1
, cpu_online_map
);
5531 cpus_and(*partition2
, *partition2
, cpu_online_map
);
5532 cpus_or(change_map
, *partition1
, *partition2
);
5534 /* Detach sched domains from all of the affected cpus */
5535 detach_destroy_domains(&change_map
);
5536 if (!cpus_empty(*partition1
))
5537 build_sched_domains(partition1
);
5538 if (!cpus_empty(*partition2
))
5539 build_sched_domains(partition2
);
5542 #ifdef CONFIG_HOTPLUG_CPU
5544 * Force a reinitialization of the sched domains hierarchy. The domains
5545 * and groups cannot be updated in place without racing with the balancing
5546 * code, so we temporarily attach all running cpus to the NULL domain
5547 * which will prevent rebalancing while the sched domains are recalculated.
5549 static int update_sched_domains(struct notifier_block
*nfb
,
5550 unsigned long action
, void *hcpu
)
5553 case CPU_UP_PREPARE
:
5554 case CPU_DOWN_PREPARE
:
5555 detach_destroy_domains(&cpu_online_map
);
5558 case CPU_UP_CANCELED
:
5559 case CPU_DOWN_FAILED
:
5563 * Fall through and re-initialise the domains.
5570 /* The hotplug lock is already held by cpu_up/cpu_down */
5571 arch_init_sched_domains(&cpu_online_map
);
5577 void __init
sched_init_smp(void)
5580 arch_init_sched_domains(&cpu_online_map
);
5581 unlock_cpu_hotplug();
5582 /* XXX: Theoretical race here - CPU may be hotplugged now */
5583 hotcpu_notifier(update_sched_domains
, 0);
5586 void __init
sched_init_smp(void)
5589 #endif /* CONFIG_SMP */
5591 int in_sched_functions(unsigned long addr
)
5593 /* Linker adds these: start and end of __sched functions */
5594 extern char __sched_text_start
[], __sched_text_end
[];
5595 return in_lock_functions(addr
) ||
5596 (addr
>= (unsigned long)__sched_text_start
5597 && addr
< (unsigned long)__sched_text_end
);
5600 void __init
sched_init(void)
5605 for (i
= 0; i
< NR_CPUS
; i
++) {
5606 prio_array_t
*array
;
5609 spin_lock_init(&rq
->lock
);
5611 rq
->active
= rq
->arrays
;
5612 rq
->expired
= rq
->arrays
+ 1;
5613 rq
->best_expired_prio
= MAX_PRIO
;
5617 for (j
= 1; j
< 3; j
++)
5618 rq
->cpu_load
[j
] = 0;
5619 rq
->active_balance
= 0;
5621 rq
->migration_thread
= NULL
;
5622 INIT_LIST_HEAD(&rq
->migration_queue
);
5624 atomic_set(&rq
->nr_iowait
, 0);
5626 for (j
= 0; j
< 2; j
++) {
5627 array
= rq
->arrays
+ j
;
5628 for (k
= 0; k
< MAX_PRIO
; k
++) {
5629 INIT_LIST_HEAD(array
->queue
+ k
);
5630 __clear_bit(k
, array
->bitmap
);
5632 // delimiter for bitsearch
5633 __set_bit(MAX_PRIO
, array
->bitmap
);
5638 * The boot idle thread does lazy MMU switching as well:
5640 atomic_inc(&init_mm
.mm_count
);
5641 enter_lazy_tlb(&init_mm
, current
);
5644 * Make us the idle thread. Technically, schedule() should not be
5645 * called from this thread, however somewhere below it might be,
5646 * but because we are the idle thread, we just pick up running again
5647 * when this runqueue becomes "idle".
5649 init_idle(current
, smp_processor_id());
5652 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5653 void __might_sleep(char *file
, int line
)
5655 #if defined(in_atomic)
5656 static unsigned long prev_jiffy
; /* ratelimiting */
5658 if ((in_atomic() || irqs_disabled()) &&
5659 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
5660 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
5662 prev_jiffy
= jiffies
;
5663 printk(KERN_ERR
"Debug: sleeping function called from invalid"
5664 " context at %s:%d\n", file
, line
);
5665 printk("in_atomic():%d, irqs_disabled():%d\n",
5666 in_atomic(), irqs_disabled());
5671 EXPORT_SYMBOL(__might_sleep
);
5674 #ifdef CONFIG_MAGIC_SYSRQ
5675 void normalize_rt_tasks(void)
5677 struct task_struct
*p
;
5678 prio_array_t
*array
;
5679 unsigned long flags
;
5682 read_lock_irq(&tasklist_lock
);
5683 for_each_process (p
) {
5687 rq
= task_rq_lock(p
, &flags
);
5691 deactivate_task(p
, task_rq(p
));
5692 __setscheduler(p
, SCHED_NORMAL
, 0);
5694 __activate_task(p
, task_rq(p
));
5695 resched_task(rq
->curr
);
5698 task_rq_unlock(rq
, &flags
);
5700 read_unlock_irq(&tasklist_lock
);
5703 #endif /* CONFIG_MAGIC_SYSRQ */
5707 * These functions are only useful for the IA64 MCA handling.
5709 * They can only be called when the whole system has been
5710 * stopped - every CPU needs to be quiescent, and no scheduling
5711 * activity can take place. Using them for anything else would
5712 * be a serious bug, and as a result, they aren't even visible
5713 * under any other configuration.
5717 * curr_task - return the current task for a given cpu.
5718 * @cpu: the processor in question.
5720 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5722 task_t
*curr_task(int cpu
)
5724 return cpu_curr(cpu
);
5728 * set_curr_task - set the current task for a given cpu.
5729 * @cpu: the processor in question.
5730 * @p: the task pointer to set.
5732 * Description: This function must only be used when non-maskable interrupts
5733 * are serviced on a separate stack. It allows the architecture to switch the
5734 * notion of the current task on a cpu in a non-blocking manner. This function
5735 * must be called with all CPU's synchronized, and interrupts disabled, the
5736 * and caller must save the original value of the current task (see
5737 * curr_task() above) and restore that value before reenabling interrupts and
5738 * re-starting the system.
5740 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5742 void set_curr_task(int cpu
, task_t
*p
)