atmel_serial: fix broken RX buffer allocation
[linux-2.6/pdupreez.git] / fs / binfmt_elf.c
bloba93b1170551b547b41a5ed2d779a5c44f1884dcd
1 /*
2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/a.out.h>
20 #include <linux/errno.h>
21 #include <linux/signal.h>
22 #include <linux/binfmts.h>
23 #include <linux/string.h>
24 #include <linux/file.h>
25 #include <linux/fcntl.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/shm.h>
29 #include <linux/personality.h>
30 #include <linux/elfcore.h>
31 #include <linux/init.h>
32 #include <linux/highuid.h>
33 #include <linux/smp.h>
34 #include <linux/compiler.h>
35 #include <linux/highmem.h>
36 #include <linux/pagemap.h>
37 #include <linux/security.h>
38 #include <linux/syscalls.h>
39 #include <linux/random.h>
40 #include <linux/elf.h>
41 #include <linux/utsname.h>
42 #include <asm/uaccess.h>
43 #include <asm/param.h>
44 #include <asm/page.h>
46 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
47 static int load_elf_library(struct file *);
48 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
49 int, int, unsigned long);
52 * If we don't support core dumping, then supply a NULL so we
53 * don't even try.
55 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
56 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
57 #else
58 #define elf_core_dump NULL
59 #endif
61 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
62 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
63 #else
64 #define ELF_MIN_ALIGN PAGE_SIZE
65 #endif
67 #ifndef ELF_CORE_EFLAGS
68 #define ELF_CORE_EFLAGS 0
69 #endif
71 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
72 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
73 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
75 static struct linux_binfmt elf_format = {
76 .module = THIS_MODULE,
77 .load_binary = load_elf_binary,
78 .load_shlib = load_elf_library,
79 .core_dump = elf_core_dump,
80 .min_coredump = ELF_EXEC_PAGESIZE,
81 .hasvdso = 1
84 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
86 static int set_brk(unsigned long start, unsigned long end)
88 start = ELF_PAGEALIGN(start);
89 end = ELF_PAGEALIGN(end);
90 if (end > start) {
91 unsigned long addr;
92 down_write(&current->mm->mmap_sem);
93 addr = do_brk(start, end - start);
94 up_write(&current->mm->mmap_sem);
95 if (BAD_ADDR(addr))
96 return addr;
98 current->mm->start_brk = current->mm->brk = end;
99 return 0;
102 /* We need to explicitly zero any fractional pages
103 after the data section (i.e. bss). This would
104 contain the junk from the file that should not
105 be in memory
107 static int padzero(unsigned long elf_bss)
109 unsigned long nbyte;
111 nbyte = ELF_PAGEOFFSET(elf_bss);
112 if (nbyte) {
113 nbyte = ELF_MIN_ALIGN - nbyte;
114 if (clear_user((void __user *) elf_bss, nbyte))
115 return -EFAULT;
117 return 0;
120 /* Let's use some macros to make this stack manipulation a little clearer */
121 #ifdef CONFIG_STACK_GROWSUP
122 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
123 #define STACK_ROUND(sp, items) \
124 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
125 #define STACK_ALLOC(sp, len) ({ \
126 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
127 old_sp; })
128 #else
129 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
130 #define STACK_ROUND(sp, items) \
131 (((unsigned long) (sp - items)) &~ 15UL)
132 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
133 #endif
135 static int
136 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
137 int interp_aout, unsigned long load_addr,
138 unsigned long interp_load_addr)
140 unsigned long p = bprm->p;
141 int argc = bprm->argc;
142 int envc = bprm->envc;
143 elf_addr_t __user *argv;
144 elf_addr_t __user *envp;
145 elf_addr_t __user *sp;
146 elf_addr_t __user *u_platform;
147 const char *k_platform = ELF_PLATFORM;
148 int items;
149 elf_addr_t *elf_info;
150 int ei_index = 0;
151 struct task_struct *tsk = current;
152 struct vm_area_struct *vma;
155 * In some cases (e.g. Hyper-Threading), we want to avoid L1
156 * evictions by the processes running on the same package. One
157 * thing we can do is to shuffle the initial stack for them.
160 p = arch_align_stack(p);
163 * If this architecture has a platform capability string, copy it
164 * to userspace. In some cases (Sparc), this info is impossible
165 * for userspace to get any other way, in others (i386) it is
166 * merely difficult.
168 u_platform = NULL;
169 if (k_platform) {
170 size_t len = strlen(k_platform) + 1;
172 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
173 if (__copy_to_user(u_platform, k_platform, len))
174 return -EFAULT;
177 /* Create the ELF interpreter info */
178 elf_info = (elf_addr_t *)current->mm->saved_auxv;
179 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
180 #define NEW_AUX_ENT(id, val) \
181 do { \
182 elf_info[ei_index++] = id; \
183 elf_info[ei_index++] = val; \
184 } while (0)
186 #ifdef ARCH_DLINFO
188 * ARCH_DLINFO must come first so PPC can do its special alignment of
189 * AUXV.
190 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
191 * ARCH_DLINFO changes
193 ARCH_DLINFO;
194 #endif
195 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
196 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
197 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
198 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
199 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
200 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
201 NEW_AUX_ENT(AT_BASE, interp_load_addr);
202 NEW_AUX_ENT(AT_FLAGS, 0);
203 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
204 NEW_AUX_ENT(AT_UID, tsk->uid);
205 NEW_AUX_ENT(AT_EUID, tsk->euid);
206 NEW_AUX_ENT(AT_GID, tsk->gid);
207 NEW_AUX_ENT(AT_EGID, tsk->egid);
208 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
209 if (k_platform) {
210 NEW_AUX_ENT(AT_PLATFORM,
211 (elf_addr_t)(unsigned long)u_platform);
213 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
214 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
216 #undef NEW_AUX_ENT
217 /* AT_NULL is zero; clear the rest too */
218 memset(&elf_info[ei_index], 0,
219 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
221 /* And advance past the AT_NULL entry. */
222 ei_index += 2;
224 sp = STACK_ADD(p, ei_index);
226 items = (argc + 1) + (envc + 1);
227 if (interp_aout) {
228 items += 3; /* a.out interpreters require argv & envp too */
229 } else {
230 items += 1; /* ELF interpreters only put argc on the stack */
232 bprm->p = STACK_ROUND(sp, items);
234 /* Point sp at the lowest address on the stack */
235 #ifdef CONFIG_STACK_GROWSUP
236 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
237 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
238 #else
239 sp = (elf_addr_t __user *)bprm->p;
240 #endif
244 * Grow the stack manually; some architectures have a limit on how
245 * far ahead a user-space access may be in order to grow the stack.
247 vma = find_extend_vma(current->mm, bprm->p);
248 if (!vma)
249 return -EFAULT;
251 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
252 if (__put_user(argc, sp++))
253 return -EFAULT;
254 if (interp_aout) {
255 argv = sp + 2;
256 envp = argv + argc + 1;
257 if (__put_user((elf_addr_t)(unsigned long)argv, sp++) ||
258 __put_user((elf_addr_t)(unsigned long)envp, sp++))
259 return -EFAULT;
260 } else {
261 argv = sp;
262 envp = argv + argc + 1;
265 /* Populate argv and envp */
266 p = current->mm->arg_end = current->mm->arg_start;
267 while (argc-- > 0) {
268 size_t len;
269 if (__put_user((elf_addr_t)p, argv++))
270 return -EFAULT;
271 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
272 if (!len || len > MAX_ARG_STRLEN)
273 return 0;
274 p += len;
276 if (__put_user(0, argv))
277 return -EFAULT;
278 current->mm->arg_end = current->mm->env_start = p;
279 while (envc-- > 0) {
280 size_t len;
281 if (__put_user((elf_addr_t)p, envp++))
282 return -EFAULT;
283 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
284 if (!len || len > MAX_ARG_STRLEN)
285 return 0;
286 p += len;
288 if (__put_user(0, envp))
289 return -EFAULT;
290 current->mm->env_end = p;
292 /* Put the elf_info on the stack in the right place. */
293 sp = (elf_addr_t __user *)envp + 1;
294 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
295 return -EFAULT;
296 return 0;
299 #ifndef elf_map
301 static unsigned long elf_map(struct file *filep, unsigned long addr,
302 struct elf_phdr *eppnt, int prot, int type,
303 unsigned long total_size)
305 unsigned long map_addr;
306 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
307 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
308 addr = ELF_PAGESTART(addr);
309 size = ELF_PAGEALIGN(size);
311 /* mmap() will return -EINVAL if given a zero size, but a
312 * segment with zero filesize is perfectly valid */
313 if (!size)
314 return addr;
316 down_write(&current->mm->mmap_sem);
318 * total_size is the size of the ELF (interpreter) image.
319 * The _first_ mmap needs to know the full size, otherwise
320 * randomization might put this image into an overlapping
321 * position with the ELF binary image. (since size < total_size)
322 * So we first map the 'big' image - and unmap the remainder at
323 * the end. (which unmap is needed for ELF images with holes.)
325 if (total_size) {
326 total_size = ELF_PAGEALIGN(total_size);
327 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
328 if (!BAD_ADDR(map_addr))
329 do_munmap(current->mm, map_addr+size, total_size-size);
330 } else
331 map_addr = do_mmap(filep, addr, size, prot, type, off);
333 up_write(&current->mm->mmap_sem);
334 return(map_addr);
337 #endif /* !elf_map */
339 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
341 int i, first_idx = -1, last_idx = -1;
343 for (i = 0; i < nr; i++) {
344 if (cmds[i].p_type == PT_LOAD) {
345 last_idx = i;
346 if (first_idx == -1)
347 first_idx = i;
350 if (first_idx == -1)
351 return 0;
353 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
354 ELF_PAGESTART(cmds[first_idx].p_vaddr);
358 /* This is much more generalized than the library routine read function,
359 so we keep this separate. Technically the library read function
360 is only provided so that we can read a.out libraries that have
361 an ELF header */
363 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
364 struct file *interpreter, unsigned long *interp_map_addr,
365 unsigned long no_base)
367 struct elf_phdr *elf_phdata;
368 struct elf_phdr *eppnt;
369 unsigned long load_addr = 0;
370 int load_addr_set = 0;
371 unsigned long last_bss = 0, elf_bss = 0;
372 unsigned long error = ~0UL;
373 unsigned long total_size;
374 int retval, i, size;
376 /* First of all, some simple consistency checks */
377 if (interp_elf_ex->e_type != ET_EXEC &&
378 interp_elf_ex->e_type != ET_DYN)
379 goto out;
380 if (!elf_check_arch(interp_elf_ex))
381 goto out;
382 if (!interpreter->f_op || !interpreter->f_op->mmap)
383 goto out;
386 * If the size of this structure has changed, then punt, since
387 * we will be doing the wrong thing.
389 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
390 goto out;
391 if (interp_elf_ex->e_phnum < 1 ||
392 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
393 goto out;
395 /* Now read in all of the header information */
396 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
397 if (size > ELF_MIN_ALIGN)
398 goto out;
399 elf_phdata = kmalloc(size, GFP_KERNEL);
400 if (!elf_phdata)
401 goto out;
403 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
404 (char *)elf_phdata,size);
405 error = -EIO;
406 if (retval != size) {
407 if (retval < 0)
408 error = retval;
409 goto out_close;
412 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
413 if (!total_size) {
414 error = -EINVAL;
415 goto out_close;
418 eppnt = elf_phdata;
419 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
420 if (eppnt->p_type == PT_LOAD) {
421 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
422 int elf_prot = 0;
423 unsigned long vaddr = 0;
424 unsigned long k, map_addr;
426 if (eppnt->p_flags & PF_R)
427 elf_prot = PROT_READ;
428 if (eppnt->p_flags & PF_W)
429 elf_prot |= PROT_WRITE;
430 if (eppnt->p_flags & PF_X)
431 elf_prot |= PROT_EXEC;
432 vaddr = eppnt->p_vaddr;
433 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
434 elf_type |= MAP_FIXED;
435 else if (no_base && interp_elf_ex->e_type == ET_DYN)
436 load_addr = -vaddr;
438 map_addr = elf_map(interpreter, load_addr + vaddr,
439 eppnt, elf_prot, elf_type, total_size);
440 total_size = 0;
441 if (!*interp_map_addr)
442 *interp_map_addr = map_addr;
443 error = map_addr;
444 if (BAD_ADDR(map_addr))
445 goto out_close;
447 if (!load_addr_set &&
448 interp_elf_ex->e_type == ET_DYN) {
449 load_addr = map_addr - ELF_PAGESTART(vaddr);
450 load_addr_set = 1;
454 * Check to see if the section's size will overflow the
455 * allowed task size. Note that p_filesz must always be
456 * <= p_memsize so it's only necessary to check p_memsz.
458 k = load_addr + eppnt->p_vaddr;
459 if (BAD_ADDR(k) ||
460 eppnt->p_filesz > eppnt->p_memsz ||
461 eppnt->p_memsz > TASK_SIZE ||
462 TASK_SIZE - eppnt->p_memsz < k) {
463 error = -ENOMEM;
464 goto out_close;
468 * Find the end of the file mapping for this phdr, and
469 * keep track of the largest address we see for this.
471 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
472 if (k > elf_bss)
473 elf_bss = k;
476 * Do the same thing for the memory mapping - between
477 * elf_bss and last_bss is the bss section.
479 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
480 if (k > last_bss)
481 last_bss = k;
486 * Now fill out the bss section. First pad the last page up
487 * to the page boundary, and then perform a mmap to make sure
488 * that there are zero-mapped pages up to and including the
489 * last bss page.
491 if (padzero(elf_bss)) {
492 error = -EFAULT;
493 goto out_close;
496 /* What we have mapped so far */
497 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
499 /* Map the last of the bss segment */
500 if (last_bss > elf_bss) {
501 down_write(&current->mm->mmap_sem);
502 error = do_brk(elf_bss, last_bss - elf_bss);
503 up_write(&current->mm->mmap_sem);
504 if (BAD_ADDR(error))
505 goto out_close;
508 error = load_addr;
510 out_close:
511 kfree(elf_phdata);
512 out:
513 return error;
516 #ifdef CONFIG_ARCH_SUPPORTS_AOUT
517 static unsigned long load_aout_interp(struct exec *interp_ex,
518 struct file *interpreter)
520 unsigned long text_data, elf_entry = ~0UL;
521 char __user * addr;
522 loff_t offset;
524 current->mm->end_code = interp_ex->a_text;
525 text_data = interp_ex->a_text + interp_ex->a_data;
526 current->mm->end_data = text_data;
527 current->mm->brk = interp_ex->a_bss + text_data;
529 switch (N_MAGIC(*interp_ex)) {
530 case OMAGIC:
531 offset = 32;
532 addr = (char __user *)0;
533 break;
534 case ZMAGIC:
535 case QMAGIC:
536 offset = N_TXTOFF(*interp_ex);
537 addr = (char __user *)N_TXTADDR(*interp_ex);
538 break;
539 default:
540 goto out;
543 down_write(&current->mm->mmap_sem);
544 do_brk(0, text_data);
545 up_write(&current->mm->mmap_sem);
546 if (!interpreter->f_op || !interpreter->f_op->read)
547 goto out;
548 if (interpreter->f_op->read(interpreter, addr, text_data, &offset) < 0)
549 goto out;
550 flush_icache_range((unsigned long)addr,
551 (unsigned long)addr + text_data);
553 down_write(&current->mm->mmap_sem);
554 do_brk(ELF_PAGESTART(text_data + ELF_MIN_ALIGN - 1),
555 interp_ex->a_bss);
556 up_write(&current->mm->mmap_sem);
557 elf_entry = interp_ex->a_entry;
559 out:
560 return elf_entry;
562 #else
563 /* dummy extern - the function should never be called if !CONFIG_AOUT_BINFMT */
564 static inline unsigned long load_aout_interp(struct exec *interp_ex,
565 struct file *interpreter)
567 return -ELIBACC;
569 #endif
572 * These are the functions used to load ELF style executables and shared
573 * libraries. There is no binary dependent code anywhere else.
576 #define INTERPRETER_NONE 0
577 #define INTERPRETER_ELF 2
579 #ifdef CONFIG_ARCH_SUPPORTS_AOUT
580 #define INTERPRETER_AOUT 1
581 #define IS_AOUT_INTERP(x) ((x) == INTERPRETER_AOUT)
582 #else
583 #define IS_AOUT_INTERP(x) (0)
584 #endif
586 #ifndef STACK_RND_MASK
587 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
588 #endif
590 static unsigned long randomize_stack_top(unsigned long stack_top)
592 unsigned int random_variable = 0;
594 if ((current->flags & PF_RANDOMIZE) &&
595 !(current->personality & ADDR_NO_RANDOMIZE)) {
596 random_variable = get_random_int() & STACK_RND_MASK;
597 random_variable <<= PAGE_SHIFT;
599 #ifdef CONFIG_STACK_GROWSUP
600 return PAGE_ALIGN(stack_top) + random_variable;
601 #else
602 return PAGE_ALIGN(stack_top) - random_variable;
603 #endif
606 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
608 struct file *interpreter = NULL; /* to shut gcc up */
609 unsigned long load_addr = 0, load_bias = 0;
610 int load_addr_set = 0;
611 char * elf_interpreter = NULL;
612 unsigned int interpreter_type = INTERPRETER_NONE;
613 unsigned long error;
614 struct elf_phdr *elf_ppnt, *elf_phdata;
615 unsigned long elf_bss, elf_brk;
616 int elf_exec_fileno;
617 int retval, i;
618 unsigned int size;
619 unsigned long elf_entry;
620 unsigned long interp_load_addr = 0;
621 unsigned long start_code, end_code, start_data, end_data;
622 unsigned long reloc_func_desc = 0;
623 char passed_fileno[6];
624 struct files_struct *files;
625 int executable_stack = EXSTACK_DEFAULT;
626 unsigned long def_flags = 0;
627 struct {
628 struct elfhdr elf_ex;
629 struct elfhdr interp_elf_ex;
630 struct exec interp_ex;
631 } *loc;
633 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
634 if (!loc) {
635 retval = -ENOMEM;
636 goto out_ret;
639 /* Get the exec-header */
640 loc->elf_ex = *((struct elfhdr *)bprm->buf);
642 retval = -ENOEXEC;
643 /* First of all, some simple consistency checks */
644 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
645 goto out;
647 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
648 goto out;
649 if (!elf_check_arch(&loc->elf_ex))
650 goto out;
651 if (!bprm->file->f_op||!bprm->file->f_op->mmap)
652 goto out;
654 /* Now read in all of the header information */
655 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
656 goto out;
657 if (loc->elf_ex.e_phnum < 1 ||
658 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
659 goto out;
660 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
661 retval = -ENOMEM;
662 elf_phdata = kmalloc(size, GFP_KERNEL);
663 if (!elf_phdata)
664 goto out;
666 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
667 (char *)elf_phdata, size);
668 if (retval != size) {
669 if (retval >= 0)
670 retval = -EIO;
671 goto out_free_ph;
674 files = current->files; /* Refcounted so ok */
675 retval = unshare_files();
676 if (retval < 0)
677 goto out_free_ph;
678 if (files == current->files) {
679 put_files_struct(files);
680 files = NULL;
683 /* exec will make our files private anyway, but for the a.out
684 loader stuff we need to do it earlier */
685 retval = get_unused_fd();
686 if (retval < 0)
687 goto out_free_fh;
688 get_file(bprm->file);
689 fd_install(elf_exec_fileno = retval, bprm->file);
691 elf_ppnt = elf_phdata;
692 elf_bss = 0;
693 elf_brk = 0;
695 start_code = ~0UL;
696 end_code = 0;
697 start_data = 0;
698 end_data = 0;
700 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
701 if (elf_ppnt->p_type == PT_INTERP) {
702 /* This is the program interpreter used for
703 * shared libraries - for now assume that this
704 * is an a.out format binary
706 retval = -ENOEXEC;
707 if (elf_ppnt->p_filesz > PATH_MAX ||
708 elf_ppnt->p_filesz < 2)
709 goto out_free_file;
711 retval = -ENOMEM;
712 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
713 GFP_KERNEL);
714 if (!elf_interpreter)
715 goto out_free_file;
717 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
718 elf_interpreter,
719 elf_ppnt->p_filesz);
720 if (retval != elf_ppnt->p_filesz) {
721 if (retval >= 0)
722 retval = -EIO;
723 goto out_free_interp;
725 /* make sure path is NULL terminated */
726 retval = -ENOEXEC;
727 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
728 goto out_free_interp;
731 * The early SET_PERSONALITY here is so that the lookup
732 * for the interpreter happens in the namespace of the
733 * to-be-execed image. SET_PERSONALITY can select an
734 * alternate root.
736 * However, SET_PERSONALITY is NOT allowed to switch
737 * this task into the new images's memory mapping
738 * policy - that is, TASK_SIZE must still evaluate to
739 * that which is appropriate to the execing application.
740 * This is because exit_mmap() needs to have TASK_SIZE
741 * evaluate to the size of the old image.
743 * So if (say) a 64-bit application is execing a 32-bit
744 * application it is the architecture's responsibility
745 * to defer changing the value of TASK_SIZE until the
746 * switch really is going to happen - do this in
747 * flush_thread(). - akpm
749 SET_PERSONALITY(loc->elf_ex, 0);
751 interpreter = open_exec(elf_interpreter);
752 retval = PTR_ERR(interpreter);
753 if (IS_ERR(interpreter))
754 goto out_free_interp;
757 * If the binary is not readable then enforce
758 * mm->dumpable = 0 regardless of the interpreter's
759 * permissions.
761 if (file_permission(interpreter, MAY_READ) < 0)
762 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
764 retval = kernel_read(interpreter, 0, bprm->buf,
765 BINPRM_BUF_SIZE);
766 if (retval != BINPRM_BUF_SIZE) {
767 if (retval >= 0)
768 retval = -EIO;
769 goto out_free_dentry;
772 /* Get the exec headers */
773 loc->interp_ex = *((struct exec *)bprm->buf);
774 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
775 break;
777 elf_ppnt++;
780 elf_ppnt = elf_phdata;
781 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
782 if (elf_ppnt->p_type == PT_GNU_STACK) {
783 if (elf_ppnt->p_flags & PF_X)
784 executable_stack = EXSTACK_ENABLE_X;
785 else
786 executable_stack = EXSTACK_DISABLE_X;
787 break;
790 /* Some simple consistency checks for the interpreter */
791 if (elf_interpreter) {
792 static int warn;
793 #ifdef CONFIG_ARCH_SUPPORTS_AOUT
794 interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
796 /* Now figure out which format our binary is */
797 if ((N_MAGIC(loc->interp_ex) != OMAGIC) &&
798 (N_MAGIC(loc->interp_ex) != ZMAGIC) &&
799 (N_MAGIC(loc->interp_ex) != QMAGIC))
800 interpreter_type = INTERPRETER_ELF;
801 #else
802 interpreter_type = INTERPRETER_ELF;
803 #endif
804 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
805 interpreter_type &= ~INTERPRETER_ELF;
807 if (IS_AOUT_INTERP(interpreter_type) && warn < 10) {
808 printk(KERN_WARNING "a.out ELF interpreter %s is "
809 "deprecated and will not be supported "
810 "after Linux 2.6.25\n", elf_interpreter);
811 warn++;
814 retval = -ELIBBAD;
815 if (!interpreter_type)
816 goto out_free_dentry;
818 /* Make sure only one type was selected */
819 if ((interpreter_type & INTERPRETER_ELF) &&
820 interpreter_type != INTERPRETER_ELF) {
821 // FIXME - ratelimit this before re-enabling
822 // printk(KERN_WARNING "ELF: Ambiguous type, using ELF\n");
823 interpreter_type = INTERPRETER_ELF;
825 /* Verify the interpreter has a valid arch */
826 if ((interpreter_type == INTERPRETER_ELF) &&
827 !elf_check_arch(&loc->interp_elf_ex))
828 goto out_free_dentry;
829 } else {
830 /* Executables without an interpreter also need a personality */
831 SET_PERSONALITY(loc->elf_ex, 0);
834 /* OK, we are done with that, now set up the arg stuff,
835 and then start this sucker up */
836 if (IS_AOUT_INTERP(interpreter_type) && !bprm->sh_bang) {
837 char *passed_p = passed_fileno;
838 sprintf(passed_fileno, "%d", elf_exec_fileno);
840 if (elf_interpreter) {
841 retval = copy_strings_kernel(1, &passed_p, bprm);
842 if (retval)
843 goto out_free_dentry;
844 bprm->argc++;
848 /* Flush all traces of the currently running executable */
849 retval = flush_old_exec(bprm);
850 if (retval)
851 goto out_free_dentry;
853 /* Discard our unneeded old files struct */
854 if (files) {
855 put_files_struct(files);
856 files = NULL;
859 /* OK, This is the point of no return */
860 current->flags &= ~PF_FORKNOEXEC;
861 current->mm->def_flags = def_flags;
863 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
864 may depend on the personality. */
865 SET_PERSONALITY(loc->elf_ex, 0);
866 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
867 current->personality |= READ_IMPLIES_EXEC;
869 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
870 current->flags |= PF_RANDOMIZE;
871 arch_pick_mmap_layout(current->mm);
873 /* Do this so that we can load the interpreter, if need be. We will
874 change some of these later */
875 current->mm->free_area_cache = current->mm->mmap_base;
876 current->mm->cached_hole_size = 0;
877 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
878 executable_stack);
879 if (retval < 0) {
880 send_sig(SIGKILL, current, 0);
881 goto out_free_dentry;
884 current->mm->start_stack = bprm->p;
886 /* Now we do a little grungy work by mmaping the ELF image into
887 the correct location in memory. */
888 for(i = 0, elf_ppnt = elf_phdata;
889 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
890 int elf_prot = 0, elf_flags;
891 unsigned long k, vaddr;
893 if (elf_ppnt->p_type != PT_LOAD)
894 continue;
896 if (unlikely (elf_brk > elf_bss)) {
897 unsigned long nbyte;
899 /* There was a PT_LOAD segment with p_memsz > p_filesz
900 before this one. Map anonymous pages, if needed,
901 and clear the area. */
902 retval = set_brk (elf_bss + load_bias,
903 elf_brk + load_bias);
904 if (retval) {
905 send_sig(SIGKILL, current, 0);
906 goto out_free_dentry;
908 nbyte = ELF_PAGEOFFSET(elf_bss);
909 if (nbyte) {
910 nbyte = ELF_MIN_ALIGN - nbyte;
911 if (nbyte > elf_brk - elf_bss)
912 nbyte = elf_brk - elf_bss;
913 if (clear_user((void __user *)elf_bss +
914 load_bias, nbyte)) {
916 * This bss-zeroing can fail if the ELF
917 * file specifies odd protections. So
918 * we don't check the return value
924 if (elf_ppnt->p_flags & PF_R)
925 elf_prot |= PROT_READ;
926 if (elf_ppnt->p_flags & PF_W)
927 elf_prot |= PROT_WRITE;
928 if (elf_ppnt->p_flags & PF_X)
929 elf_prot |= PROT_EXEC;
931 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
933 vaddr = elf_ppnt->p_vaddr;
934 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
935 elf_flags |= MAP_FIXED;
936 } else if (loc->elf_ex.e_type == ET_DYN) {
937 /* Try and get dynamic programs out of the way of the
938 * default mmap base, as well as whatever program they
939 * might try to exec. This is because the brk will
940 * follow the loader, and is not movable. */
941 #ifdef CONFIG_X86
942 load_bias = 0;
943 #else
944 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
945 #endif
948 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
949 elf_prot, elf_flags, 0);
950 if (BAD_ADDR(error)) {
951 send_sig(SIGKILL, current, 0);
952 retval = IS_ERR((void *)error) ?
953 PTR_ERR((void*)error) : -EINVAL;
954 goto out_free_dentry;
957 if (!load_addr_set) {
958 load_addr_set = 1;
959 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
960 if (loc->elf_ex.e_type == ET_DYN) {
961 load_bias += error -
962 ELF_PAGESTART(load_bias + vaddr);
963 load_addr += load_bias;
964 reloc_func_desc = load_bias;
967 k = elf_ppnt->p_vaddr;
968 if (k < start_code)
969 start_code = k;
970 if (start_data < k)
971 start_data = k;
974 * Check to see if the section's size will overflow the
975 * allowed task size. Note that p_filesz must always be
976 * <= p_memsz so it is only necessary to check p_memsz.
978 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
979 elf_ppnt->p_memsz > TASK_SIZE ||
980 TASK_SIZE - elf_ppnt->p_memsz < k) {
981 /* set_brk can never work. Avoid overflows. */
982 send_sig(SIGKILL, current, 0);
983 retval = -EINVAL;
984 goto out_free_dentry;
987 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
989 if (k > elf_bss)
990 elf_bss = k;
991 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
992 end_code = k;
993 if (end_data < k)
994 end_data = k;
995 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
996 if (k > elf_brk)
997 elf_brk = k;
1000 loc->elf_ex.e_entry += load_bias;
1001 elf_bss += load_bias;
1002 elf_brk += load_bias;
1003 start_code += load_bias;
1004 end_code += load_bias;
1005 start_data += load_bias;
1006 end_data += load_bias;
1008 /* Calling set_brk effectively mmaps the pages that we need
1009 * for the bss and break sections. We must do this before
1010 * mapping in the interpreter, to make sure it doesn't wind
1011 * up getting placed where the bss needs to go.
1013 retval = set_brk(elf_bss, elf_brk);
1014 if (retval) {
1015 send_sig(SIGKILL, current, 0);
1016 goto out_free_dentry;
1018 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1019 send_sig(SIGSEGV, current, 0);
1020 retval = -EFAULT; /* Nobody gets to see this, but.. */
1021 goto out_free_dentry;
1024 if (elf_interpreter) {
1025 if (IS_AOUT_INTERP(interpreter_type)) {
1026 elf_entry = load_aout_interp(&loc->interp_ex,
1027 interpreter);
1028 } else {
1029 unsigned long uninitialized_var(interp_map_addr);
1031 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1032 interpreter,
1033 &interp_map_addr,
1034 load_bias);
1035 if (!IS_ERR((void *)elf_entry)) {
1037 * load_elf_interp() returns relocation
1038 * adjustment
1040 interp_load_addr = elf_entry;
1041 elf_entry += loc->interp_elf_ex.e_entry;
1044 if (BAD_ADDR(elf_entry)) {
1045 force_sig(SIGSEGV, current);
1046 retval = IS_ERR((void *)elf_entry) ?
1047 (int)elf_entry : -EINVAL;
1048 goto out_free_dentry;
1050 reloc_func_desc = interp_load_addr;
1052 allow_write_access(interpreter);
1053 fput(interpreter);
1054 kfree(elf_interpreter);
1055 } else {
1056 elf_entry = loc->elf_ex.e_entry;
1057 if (BAD_ADDR(elf_entry)) {
1058 force_sig(SIGSEGV, current);
1059 retval = -EINVAL;
1060 goto out_free_dentry;
1064 kfree(elf_phdata);
1066 if (!IS_AOUT_INTERP(interpreter_type))
1067 sys_close(elf_exec_fileno);
1069 set_binfmt(&elf_format);
1071 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1072 retval = arch_setup_additional_pages(bprm, executable_stack);
1073 if (retval < 0) {
1074 send_sig(SIGKILL, current, 0);
1075 goto out;
1077 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1079 compute_creds(bprm);
1080 current->flags &= ~PF_FORKNOEXEC;
1081 retval = create_elf_tables(bprm, &loc->elf_ex,
1082 IS_AOUT_INTERP(interpreter_type),
1083 load_addr, interp_load_addr);
1084 if (retval < 0) {
1085 send_sig(SIGKILL, current, 0);
1086 goto out;
1088 /* N.B. passed_fileno might not be initialized? */
1089 if (IS_AOUT_INTERP(interpreter_type))
1090 current->mm->arg_start += strlen(passed_fileno) + 1;
1091 current->mm->end_code = end_code;
1092 current->mm->start_code = start_code;
1093 current->mm->start_data = start_data;
1094 current->mm->end_data = end_data;
1095 current->mm->start_stack = bprm->p;
1097 #ifdef arch_randomize_brk
1098 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
1099 current->mm->brk = current->mm->start_brk =
1100 arch_randomize_brk(current->mm);
1101 #endif
1103 if (current->personality & MMAP_PAGE_ZERO) {
1104 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1105 and some applications "depend" upon this behavior.
1106 Since we do not have the power to recompile these, we
1107 emulate the SVr4 behavior. Sigh. */
1108 down_write(&current->mm->mmap_sem);
1109 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1110 MAP_FIXED | MAP_PRIVATE, 0);
1111 up_write(&current->mm->mmap_sem);
1114 #ifdef ELF_PLAT_INIT
1116 * The ABI may specify that certain registers be set up in special
1117 * ways (on i386 %edx is the address of a DT_FINI function, for
1118 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1119 * that the e_entry field is the address of the function descriptor
1120 * for the startup routine, rather than the address of the startup
1121 * routine itself. This macro performs whatever initialization to
1122 * the regs structure is required as well as any relocations to the
1123 * function descriptor entries when executing dynamically links apps.
1125 ELF_PLAT_INIT(regs, reloc_func_desc);
1126 #endif
1128 start_thread(regs, elf_entry, bprm->p);
1129 if (unlikely(current->ptrace & PT_PTRACED)) {
1130 if (current->ptrace & PT_TRACE_EXEC)
1131 ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP);
1132 else
1133 send_sig(SIGTRAP, current, 0);
1135 retval = 0;
1136 out:
1137 kfree(loc);
1138 out_ret:
1139 return retval;
1141 /* error cleanup */
1142 out_free_dentry:
1143 allow_write_access(interpreter);
1144 if (interpreter)
1145 fput(interpreter);
1146 out_free_interp:
1147 kfree(elf_interpreter);
1148 out_free_file:
1149 sys_close(elf_exec_fileno);
1150 out_free_fh:
1151 if (files)
1152 reset_files_struct(current, files);
1153 out_free_ph:
1154 kfree(elf_phdata);
1155 goto out;
1158 /* This is really simpleminded and specialized - we are loading an
1159 a.out library that is given an ELF header. */
1160 static int load_elf_library(struct file *file)
1162 struct elf_phdr *elf_phdata;
1163 struct elf_phdr *eppnt;
1164 unsigned long elf_bss, bss, len;
1165 int retval, error, i, j;
1166 struct elfhdr elf_ex;
1168 error = -ENOEXEC;
1169 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1170 if (retval != sizeof(elf_ex))
1171 goto out;
1173 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1174 goto out;
1176 /* First of all, some simple consistency checks */
1177 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1178 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1179 goto out;
1181 /* Now read in all of the header information */
1183 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1184 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1186 error = -ENOMEM;
1187 elf_phdata = kmalloc(j, GFP_KERNEL);
1188 if (!elf_phdata)
1189 goto out;
1191 eppnt = elf_phdata;
1192 error = -ENOEXEC;
1193 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1194 if (retval != j)
1195 goto out_free_ph;
1197 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1198 if ((eppnt + i)->p_type == PT_LOAD)
1199 j++;
1200 if (j != 1)
1201 goto out_free_ph;
1203 while (eppnt->p_type != PT_LOAD)
1204 eppnt++;
1206 /* Now use mmap to map the library into memory. */
1207 down_write(&current->mm->mmap_sem);
1208 error = do_mmap(file,
1209 ELF_PAGESTART(eppnt->p_vaddr),
1210 (eppnt->p_filesz +
1211 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1212 PROT_READ | PROT_WRITE | PROT_EXEC,
1213 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1214 (eppnt->p_offset -
1215 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1216 up_write(&current->mm->mmap_sem);
1217 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1218 goto out_free_ph;
1220 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1221 if (padzero(elf_bss)) {
1222 error = -EFAULT;
1223 goto out_free_ph;
1226 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1227 ELF_MIN_ALIGN - 1);
1228 bss = eppnt->p_memsz + eppnt->p_vaddr;
1229 if (bss > len) {
1230 down_write(&current->mm->mmap_sem);
1231 do_brk(len, bss - len);
1232 up_write(&current->mm->mmap_sem);
1234 error = 0;
1236 out_free_ph:
1237 kfree(elf_phdata);
1238 out:
1239 return error;
1243 * Note that some platforms still use traditional core dumps and not
1244 * the ELF core dump. Each platform can select it as appropriate.
1246 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1249 * ELF core dumper
1251 * Modelled on fs/exec.c:aout_core_dump()
1252 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1255 * These are the only things you should do on a core-file: use only these
1256 * functions to write out all the necessary info.
1258 static int dump_write(struct file *file, const void *addr, int nr)
1260 return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1263 static int dump_seek(struct file *file, loff_t off)
1265 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1266 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1267 return 0;
1268 } else {
1269 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1270 if (!buf)
1271 return 0;
1272 while (off > 0) {
1273 unsigned long n = off;
1274 if (n > PAGE_SIZE)
1275 n = PAGE_SIZE;
1276 if (!dump_write(file, buf, n))
1277 return 0;
1278 off -= n;
1280 free_page((unsigned long)buf);
1282 return 1;
1286 * Decide what to dump of a segment, part, all or none.
1288 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1289 unsigned long mm_flags)
1291 /* The vma can be set up to tell us the answer directly. */
1292 if (vma->vm_flags & VM_ALWAYSDUMP)
1293 goto whole;
1295 /* Do not dump I/O mapped devices or special mappings */
1296 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1297 return 0;
1299 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1301 /* By default, dump shared memory if mapped from an anonymous file. */
1302 if (vma->vm_flags & VM_SHARED) {
1303 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1304 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1305 goto whole;
1306 return 0;
1309 /* Dump segments that have been written to. */
1310 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1311 goto whole;
1312 if (vma->vm_file == NULL)
1313 return 0;
1315 if (FILTER(MAPPED_PRIVATE))
1316 goto whole;
1319 * If this looks like the beginning of a DSO or executable mapping,
1320 * check for an ELF header. If we find one, dump the first page to
1321 * aid in determining what was mapped here.
1323 if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1324 u32 __user *header = (u32 __user *) vma->vm_start;
1325 u32 word;
1327 * Doing it this way gets the constant folded by GCC.
1329 union {
1330 u32 cmp;
1331 char elfmag[SELFMAG];
1332 } magic;
1333 BUILD_BUG_ON(SELFMAG != sizeof word);
1334 magic.elfmag[EI_MAG0] = ELFMAG0;
1335 magic.elfmag[EI_MAG1] = ELFMAG1;
1336 magic.elfmag[EI_MAG2] = ELFMAG2;
1337 magic.elfmag[EI_MAG3] = ELFMAG3;
1338 if (get_user(word, header) == 0 && word == magic.cmp)
1339 return PAGE_SIZE;
1342 #undef FILTER
1344 return 0;
1346 whole:
1347 return vma->vm_end - vma->vm_start;
1350 /* An ELF note in memory */
1351 struct memelfnote
1353 const char *name;
1354 int type;
1355 unsigned int datasz;
1356 void *data;
1359 static int notesize(struct memelfnote *en)
1361 int sz;
1363 sz = sizeof(struct elf_note);
1364 sz += roundup(strlen(en->name) + 1, 4);
1365 sz += roundup(en->datasz, 4);
1367 return sz;
1370 #define DUMP_WRITE(addr, nr, foffset) \
1371 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1373 static int alignfile(struct file *file, loff_t *foffset)
1375 static const char buf[4] = { 0, };
1376 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1377 return 1;
1380 static int writenote(struct memelfnote *men, struct file *file,
1381 loff_t *foffset)
1383 struct elf_note en;
1384 en.n_namesz = strlen(men->name) + 1;
1385 en.n_descsz = men->datasz;
1386 en.n_type = men->type;
1388 DUMP_WRITE(&en, sizeof(en), foffset);
1389 DUMP_WRITE(men->name, en.n_namesz, foffset);
1390 if (!alignfile(file, foffset))
1391 return 0;
1392 DUMP_WRITE(men->data, men->datasz, foffset);
1393 if (!alignfile(file, foffset))
1394 return 0;
1396 return 1;
1398 #undef DUMP_WRITE
1400 #define DUMP_WRITE(addr, nr) \
1401 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1402 goto end_coredump;
1403 #define DUMP_SEEK(off) \
1404 if (!dump_seek(file, (off))) \
1405 goto end_coredump;
1407 static void fill_elf_header(struct elfhdr *elf, int segs,
1408 u16 machine, u32 flags, u8 osabi)
1410 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1411 elf->e_ident[EI_CLASS] = ELF_CLASS;
1412 elf->e_ident[EI_DATA] = ELF_DATA;
1413 elf->e_ident[EI_VERSION] = EV_CURRENT;
1414 elf->e_ident[EI_OSABI] = ELF_OSABI;
1415 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
1417 elf->e_type = ET_CORE;
1418 elf->e_machine = machine;
1419 elf->e_version = EV_CURRENT;
1420 elf->e_entry = 0;
1421 elf->e_phoff = sizeof(struct elfhdr);
1422 elf->e_shoff = 0;
1423 elf->e_flags = flags;
1424 elf->e_ehsize = sizeof(struct elfhdr);
1425 elf->e_phentsize = sizeof(struct elf_phdr);
1426 elf->e_phnum = segs;
1427 elf->e_shentsize = 0;
1428 elf->e_shnum = 0;
1429 elf->e_shstrndx = 0;
1430 return;
1433 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1435 phdr->p_type = PT_NOTE;
1436 phdr->p_offset = offset;
1437 phdr->p_vaddr = 0;
1438 phdr->p_paddr = 0;
1439 phdr->p_filesz = sz;
1440 phdr->p_memsz = 0;
1441 phdr->p_flags = 0;
1442 phdr->p_align = 0;
1443 return;
1446 static void fill_note(struct memelfnote *note, const char *name, int type,
1447 unsigned int sz, void *data)
1449 note->name = name;
1450 note->type = type;
1451 note->datasz = sz;
1452 note->data = data;
1453 return;
1457 * fill up all the fields in prstatus from the given task struct, except
1458 * registers which need to be filled up separately.
1460 static void fill_prstatus(struct elf_prstatus *prstatus,
1461 struct task_struct *p, long signr)
1463 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1464 prstatus->pr_sigpend = p->pending.signal.sig[0];
1465 prstatus->pr_sighold = p->blocked.sig[0];
1466 prstatus->pr_pid = task_pid_vnr(p);
1467 prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1468 prstatus->pr_pgrp = task_pgrp_vnr(p);
1469 prstatus->pr_sid = task_session_vnr(p);
1470 if (thread_group_leader(p)) {
1472 * This is the record for the group leader. Add in the
1473 * cumulative times of previous dead threads. This total
1474 * won't include the time of each live thread whose state
1475 * is included in the core dump. The final total reported
1476 * to our parent process when it calls wait4 will include
1477 * those sums as well as the little bit more time it takes
1478 * this and each other thread to finish dying after the
1479 * core dump synchronization phase.
1481 cputime_to_timeval(cputime_add(p->utime, p->signal->utime),
1482 &prstatus->pr_utime);
1483 cputime_to_timeval(cputime_add(p->stime, p->signal->stime),
1484 &prstatus->pr_stime);
1485 } else {
1486 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1487 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1489 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1490 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1493 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1494 struct mm_struct *mm)
1496 unsigned int i, len;
1498 /* first copy the parameters from user space */
1499 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1501 len = mm->arg_end - mm->arg_start;
1502 if (len >= ELF_PRARGSZ)
1503 len = ELF_PRARGSZ-1;
1504 if (copy_from_user(&psinfo->pr_psargs,
1505 (const char __user *)mm->arg_start, len))
1506 return -EFAULT;
1507 for(i = 0; i < len; i++)
1508 if (psinfo->pr_psargs[i] == 0)
1509 psinfo->pr_psargs[i] = ' ';
1510 psinfo->pr_psargs[len] = 0;
1512 psinfo->pr_pid = task_pid_vnr(p);
1513 psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1514 psinfo->pr_pgrp = task_pgrp_vnr(p);
1515 psinfo->pr_sid = task_session_vnr(p);
1517 i = p->state ? ffz(~p->state) + 1 : 0;
1518 psinfo->pr_state = i;
1519 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1520 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1521 psinfo->pr_nice = task_nice(p);
1522 psinfo->pr_flag = p->flags;
1523 SET_UID(psinfo->pr_uid, p->uid);
1524 SET_GID(psinfo->pr_gid, p->gid);
1525 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1527 return 0;
1530 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1532 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1533 int i = 0;
1535 i += 2;
1536 while (auxv[i - 2] != AT_NULL);
1537 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1540 #ifdef CORE_DUMP_USE_REGSET
1541 #include <linux/regset.h>
1543 struct elf_thread_core_info {
1544 struct elf_thread_core_info *next;
1545 struct task_struct *task;
1546 struct elf_prstatus prstatus;
1547 struct memelfnote notes[0];
1550 struct elf_note_info {
1551 struct elf_thread_core_info *thread;
1552 struct memelfnote psinfo;
1553 struct memelfnote auxv;
1554 size_t size;
1555 int thread_notes;
1558 static int fill_thread_core_info(struct elf_thread_core_info *t,
1559 const struct user_regset_view *view,
1560 long signr, size_t *total)
1562 unsigned int i;
1565 * NT_PRSTATUS is the one special case, because the regset data
1566 * goes into the pr_reg field inside the note contents, rather
1567 * than being the whole note contents. We fill the reset in here.
1568 * We assume that regset 0 is NT_PRSTATUS.
1570 fill_prstatus(&t->prstatus, t->task, signr);
1571 (void) view->regsets[0].get(t->task, &view->regsets[0],
1572 0, sizeof(t->prstatus.pr_reg),
1573 &t->prstatus.pr_reg, NULL);
1575 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1576 sizeof(t->prstatus), &t->prstatus);
1577 *total += notesize(&t->notes[0]);
1580 * Each other regset might generate a note too. For each regset
1581 * that has no core_note_type or is inactive, we leave t->notes[i]
1582 * all zero and we'll know to skip writing it later.
1584 for (i = 1; i < view->n; ++i) {
1585 const struct user_regset *regset = &view->regsets[i];
1586 if (regset->core_note_type &&
1587 (!regset->active || regset->active(t->task, regset))) {
1588 int ret;
1589 size_t size = regset->n * regset->size;
1590 void *data = kmalloc(size, GFP_KERNEL);
1591 if (unlikely(!data))
1592 return 0;
1593 ret = regset->get(t->task, regset,
1594 0, size, data, NULL);
1595 if (unlikely(ret))
1596 kfree(data);
1597 else {
1598 if (regset->core_note_type != NT_PRFPREG)
1599 fill_note(&t->notes[i], "LINUX",
1600 regset->core_note_type,
1601 size, data);
1602 else {
1603 t->prstatus.pr_fpvalid = 1;
1604 fill_note(&t->notes[i], "CORE",
1605 NT_PRFPREG, size, data);
1607 *total += notesize(&t->notes[i]);
1612 return 1;
1615 static int fill_note_info(struct elfhdr *elf, int phdrs,
1616 struct elf_note_info *info,
1617 long signr, struct pt_regs *regs)
1619 struct task_struct *dump_task = current;
1620 const struct user_regset_view *view = task_user_regset_view(dump_task);
1621 struct elf_thread_core_info *t;
1622 struct elf_prpsinfo *psinfo;
1623 struct task_struct *g, *p;
1624 unsigned int i;
1626 info->size = 0;
1627 info->thread = NULL;
1629 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1630 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1632 if (psinfo == NULL)
1633 return 0;
1636 * Figure out how many notes we're going to need for each thread.
1638 info->thread_notes = 0;
1639 for (i = 0; i < view->n; ++i)
1640 if (view->regsets[i].core_note_type != 0)
1641 ++info->thread_notes;
1644 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1645 * since it is our one special case.
1647 if (unlikely(info->thread_notes == 0) ||
1648 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1649 WARN_ON(1);
1650 return 0;
1654 * Initialize the ELF file header.
1656 fill_elf_header(elf, phdrs,
1657 view->e_machine, view->e_flags, view->ei_osabi);
1660 * Allocate a structure for each thread.
1662 rcu_read_lock();
1663 do_each_thread(g, p)
1664 if (p->mm == dump_task->mm) {
1665 t = kzalloc(offsetof(struct elf_thread_core_info,
1666 notes[info->thread_notes]),
1667 GFP_ATOMIC);
1668 if (unlikely(!t)) {
1669 rcu_read_unlock();
1670 return 0;
1672 t->task = p;
1673 if (p == dump_task || !info->thread) {
1674 t->next = info->thread;
1675 info->thread = t;
1676 } else {
1678 * Make sure to keep the original task at
1679 * the head of the list.
1681 t->next = info->thread->next;
1682 info->thread->next = t;
1685 while_each_thread(g, p);
1686 rcu_read_unlock();
1689 * Now fill in each thread's information.
1691 for (t = info->thread; t != NULL; t = t->next)
1692 if (!fill_thread_core_info(t, view, signr, &info->size))
1693 return 0;
1696 * Fill in the two process-wide notes.
1698 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1699 info->size += notesize(&info->psinfo);
1701 fill_auxv_note(&info->auxv, current->mm);
1702 info->size += notesize(&info->auxv);
1704 return 1;
1707 static size_t get_note_info_size(struct elf_note_info *info)
1709 return info->size;
1713 * Write all the notes for each thread. When writing the first thread, the
1714 * process-wide notes are interleaved after the first thread-specific note.
1716 static int write_note_info(struct elf_note_info *info,
1717 struct file *file, loff_t *foffset)
1719 bool first = 1;
1720 struct elf_thread_core_info *t = info->thread;
1722 do {
1723 int i;
1725 if (!writenote(&t->notes[0], file, foffset))
1726 return 0;
1728 if (first && !writenote(&info->psinfo, file, foffset))
1729 return 0;
1730 if (first && !writenote(&info->auxv, file, foffset))
1731 return 0;
1733 for (i = 1; i < info->thread_notes; ++i)
1734 if (t->notes[i].data &&
1735 !writenote(&t->notes[i], file, foffset))
1736 return 0;
1738 first = 0;
1739 t = t->next;
1740 } while (t);
1742 return 1;
1745 static void free_note_info(struct elf_note_info *info)
1747 struct elf_thread_core_info *threads = info->thread;
1748 while (threads) {
1749 unsigned int i;
1750 struct elf_thread_core_info *t = threads;
1751 threads = t->next;
1752 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1753 for (i = 1; i < info->thread_notes; ++i)
1754 kfree(t->notes[i].data);
1755 kfree(t);
1757 kfree(info->psinfo.data);
1760 #else
1762 /* Here is the structure in which status of each thread is captured. */
1763 struct elf_thread_status
1765 struct list_head list;
1766 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1767 elf_fpregset_t fpu; /* NT_PRFPREG */
1768 struct task_struct *thread;
1769 #ifdef ELF_CORE_COPY_XFPREGS
1770 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1771 #endif
1772 struct memelfnote notes[3];
1773 int num_notes;
1777 * In order to add the specific thread information for the elf file format,
1778 * we need to keep a linked list of every threads pr_status and then create
1779 * a single section for them in the final core file.
1781 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1783 int sz = 0;
1784 struct task_struct *p = t->thread;
1785 t->num_notes = 0;
1787 fill_prstatus(&t->prstatus, p, signr);
1788 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1790 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1791 &(t->prstatus));
1792 t->num_notes++;
1793 sz += notesize(&t->notes[0]);
1795 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1796 &t->fpu))) {
1797 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1798 &(t->fpu));
1799 t->num_notes++;
1800 sz += notesize(&t->notes[1]);
1803 #ifdef ELF_CORE_COPY_XFPREGS
1804 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1805 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1806 sizeof(t->xfpu), &t->xfpu);
1807 t->num_notes++;
1808 sz += notesize(&t->notes[2]);
1810 #endif
1811 return sz;
1814 struct elf_note_info {
1815 struct memelfnote *notes;
1816 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1817 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1818 struct list_head thread_list;
1819 elf_fpregset_t *fpu;
1820 #ifdef ELF_CORE_COPY_XFPREGS
1821 elf_fpxregset_t *xfpu;
1822 #endif
1823 int thread_status_size;
1824 int numnote;
1827 static int fill_note_info(struct elfhdr *elf, int phdrs,
1828 struct elf_note_info *info,
1829 long signr, struct pt_regs *regs)
1831 #define NUM_NOTES 6
1832 struct list_head *t;
1833 struct task_struct *g, *p;
1835 info->notes = NULL;
1836 info->prstatus = NULL;
1837 info->psinfo = NULL;
1838 info->fpu = NULL;
1839 #ifdef ELF_CORE_COPY_XFPREGS
1840 info->xfpu = NULL;
1841 #endif
1842 INIT_LIST_HEAD(&info->thread_list);
1844 info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1845 GFP_KERNEL);
1846 if (!info->notes)
1847 return 0;
1848 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1849 if (!info->psinfo)
1850 return 0;
1851 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1852 if (!info->prstatus)
1853 return 0;
1854 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1855 if (!info->fpu)
1856 return 0;
1857 #ifdef ELF_CORE_COPY_XFPREGS
1858 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1859 if (!info->xfpu)
1860 return 0;
1861 #endif
1863 info->thread_status_size = 0;
1864 if (signr) {
1865 struct elf_thread_status *tmp;
1866 rcu_read_lock();
1867 do_each_thread(g, p)
1868 if (current->mm == p->mm && current != p) {
1869 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
1870 if (!tmp) {
1871 rcu_read_unlock();
1872 return 0;
1874 tmp->thread = p;
1875 list_add(&tmp->list, &info->thread_list);
1877 while_each_thread(g, p);
1878 rcu_read_unlock();
1879 list_for_each(t, &info->thread_list) {
1880 struct elf_thread_status *tmp;
1881 int sz;
1883 tmp = list_entry(t, struct elf_thread_status, list);
1884 sz = elf_dump_thread_status(signr, tmp);
1885 info->thread_status_size += sz;
1888 /* now collect the dump for the current */
1889 memset(info->prstatus, 0, sizeof(*info->prstatus));
1890 fill_prstatus(info->prstatus, current, signr);
1891 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1893 /* Set up header */
1894 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1897 * Set up the notes in similar form to SVR4 core dumps made
1898 * with info from their /proc.
1901 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1902 sizeof(*info->prstatus), info->prstatus);
1903 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1904 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1905 sizeof(*info->psinfo), info->psinfo);
1907 info->numnote = 2;
1909 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1911 /* Try to dump the FPU. */
1912 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1913 info->fpu);
1914 if (info->prstatus->pr_fpvalid)
1915 fill_note(info->notes + info->numnote++,
1916 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1917 #ifdef ELF_CORE_COPY_XFPREGS
1918 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1919 fill_note(info->notes + info->numnote++,
1920 "LINUX", ELF_CORE_XFPREG_TYPE,
1921 sizeof(*info->xfpu), info->xfpu);
1922 #endif
1924 return 1;
1926 #undef NUM_NOTES
1929 static size_t get_note_info_size(struct elf_note_info *info)
1931 int sz = 0;
1932 int i;
1934 for (i = 0; i < info->numnote; i++)
1935 sz += notesize(info->notes + i);
1937 sz += info->thread_status_size;
1939 return sz;
1942 static int write_note_info(struct elf_note_info *info,
1943 struct file *file, loff_t *foffset)
1945 int i;
1946 struct list_head *t;
1948 for (i = 0; i < info->numnote; i++)
1949 if (!writenote(info->notes + i, file, foffset))
1950 return 0;
1952 /* write out the thread status notes section */
1953 list_for_each(t, &info->thread_list) {
1954 struct elf_thread_status *tmp =
1955 list_entry(t, struct elf_thread_status, list);
1957 for (i = 0; i < tmp->num_notes; i++)
1958 if (!writenote(&tmp->notes[i], file, foffset))
1959 return 0;
1962 return 1;
1965 static void free_note_info(struct elf_note_info *info)
1967 while (!list_empty(&info->thread_list)) {
1968 struct list_head *tmp = info->thread_list.next;
1969 list_del(tmp);
1970 kfree(list_entry(tmp, struct elf_thread_status, list));
1973 kfree(info->prstatus);
1974 kfree(info->psinfo);
1975 kfree(info->notes);
1976 kfree(info->fpu);
1977 #ifdef ELF_CORE_COPY_XFPREGS
1978 kfree(info->xfpu);
1979 #endif
1982 #endif
1984 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1985 struct vm_area_struct *gate_vma)
1987 struct vm_area_struct *ret = tsk->mm->mmap;
1989 if (ret)
1990 return ret;
1991 return gate_vma;
1994 * Helper function for iterating across a vma list. It ensures that the caller
1995 * will visit `gate_vma' prior to terminating the search.
1997 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1998 struct vm_area_struct *gate_vma)
2000 struct vm_area_struct *ret;
2002 ret = this_vma->vm_next;
2003 if (ret)
2004 return ret;
2005 if (this_vma == gate_vma)
2006 return NULL;
2007 return gate_vma;
2011 * Actual dumper
2013 * This is a two-pass process; first we find the offsets of the bits,
2014 * and then they are actually written out. If we run out of core limit
2015 * we just truncate.
2017 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
2019 int has_dumped = 0;
2020 mm_segment_t fs;
2021 int segs;
2022 size_t size = 0;
2023 struct vm_area_struct *vma, *gate_vma;
2024 struct elfhdr *elf = NULL;
2025 loff_t offset = 0, dataoff, foffset;
2026 unsigned long mm_flags;
2027 struct elf_note_info info;
2030 * We no longer stop all VM operations.
2032 * This is because those proceses that could possibly change map_count
2033 * or the mmap / vma pages are now blocked in do_exit on current
2034 * finishing this core dump.
2036 * Only ptrace can touch these memory addresses, but it doesn't change
2037 * the map_count or the pages allocated. So no possibility of crashing
2038 * exists while dumping the mm->vm_next areas to the core file.
2041 /* alloc memory for large data structures: too large to be on stack */
2042 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2043 if (!elf)
2044 goto cleanup;
2046 segs = current->mm->map_count;
2047 #ifdef ELF_CORE_EXTRA_PHDRS
2048 segs += ELF_CORE_EXTRA_PHDRS;
2049 #endif
2051 gate_vma = get_gate_vma(current);
2052 if (gate_vma != NULL)
2053 segs++;
2056 * Collect all the non-memory information about the process for the
2057 * notes. This also sets up the file header.
2059 if (!fill_note_info(elf, segs + 1, /* including notes section */
2060 &info, signr, regs))
2061 goto cleanup;
2063 has_dumped = 1;
2064 current->flags |= PF_DUMPCORE;
2066 fs = get_fs();
2067 set_fs(KERNEL_DS);
2069 DUMP_WRITE(elf, sizeof(*elf));
2070 offset += sizeof(*elf); /* Elf header */
2071 offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
2072 foffset = offset;
2074 /* Write notes phdr entry */
2076 struct elf_phdr phdr;
2077 size_t sz = get_note_info_size(&info);
2079 sz += elf_coredump_extra_notes_size();
2081 fill_elf_note_phdr(&phdr, sz, offset);
2082 offset += sz;
2083 DUMP_WRITE(&phdr, sizeof(phdr));
2086 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2089 * We must use the same mm->flags while dumping core to avoid
2090 * inconsistency between the program headers and bodies, otherwise an
2091 * unusable core file can be generated.
2093 mm_flags = current->mm->flags;
2095 /* Write program headers for segments dump */
2096 for (vma = first_vma(current, gate_vma); vma != NULL;
2097 vma = next_vma(vma, gate_vma)) {
2098 struct elf_phdr phdr;
2100 phdr.p_type = PT_LOAD;
2101 phdr.p_offset = offset;
2102 phdr.p_vaddr = vma->vm_start;
2103 phdr.p_paddr = 0;
2104 phdr.p_filesz = vma_dump_size(vma, mm_flags);
2105 phdr.p_memsz = vma->vm_end - vma->vm_start;
2106 offset += phdr.p_filesz;
2107 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2108 if (vma->vm_flags & VM_WRITE)
2109 phdr.p_flags |= PF_W;
2110 if (vma->vm_flags & VM_EXEC)
2111 phdr.p_flags |= PF_X;
2112 phdr.p_align = ELF_EXEC_PAGESIZE;
2114 DUMP_WRITE(&phdr, sizeof(phdr));
2117 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
2118 ELF_CORE_WRITE_EXTRA_PHDRS;
2119 #endif
2121 /* write out the notes section */
2122 if (!write_note_info(&info, file, &foffset))
2123 goto end_coredump;
2125 if (elf_coredump_extra_notes_write(file, &foffset))
2126 goto end_coredump;
2128 /* Align to page */
2129 DUMP_SEEK(dataoff - foffset);
2131 for (vma = first_vma(current, gate_vma); vma != NULL;
2132 vma = next_vma(vma, gate_vma)) {
2133 unsigned long addr;
2134 unsigned long end;
2136 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2138 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2139 struct page *page;
2140 struct vm_area_struct *vma;
2142 if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2143 &page, &vma) <= 0) {
2144 DUMP_SEEK(PAGE_SIZE);
2145 } else {
2146 if (page == ZERO_PAGE(0)) {
2147 if (!dump_seek(file, PAGE_SIZE)) {
2148 page_cache_release(page);
2149 goto end_coredump;
2151 } else {
2152 void *kaddr;
2153 flush_cache_page(vma, addr,
2154 page_to_pfn(page));
2155 kaddr = kmap(page);
2156 if ((size += PAGE_SIZE) > limit ||
2157 !dump_write(file, kaddr,
2158 PAGE_SIZE)) {
2159 kunmap(page);
2160 page_cache_release(page);
2161 goto end_coredump;
2163 kunmap(page);
2165 page_cache_release(page);
2170 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2171 ELF_CORE_WRITE_EXTRA_DATA;
2172 #endif
2174 end_coredump:
2175 set_fs(fs);
2177 cleanup:
2178 kfree(elf);
2179 free_note_info(&info);
2180 return has_dumped;
2183 #endif /* USE_ELF_CORE_DUMP */
2185 static int __init init_elf_binfmt(void)
2187 return register_binfmt(&elf_format);
2190 static void __exit exit_elf_binfmt(void)
2192 /* Remove the COFF and ELF loaders. */
2193 unregister_binfmt(&elf_format);
2196 core_initcall(init_elf_binfmt);
2197 module_exit(exit_elf_binfmt);
2198 MODULE_LICENSE("GPL");