3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
129 #ifdef CONFIG_DEBUG_SLAB
132 #define FORCED_DEBUG 1
136 #define FORCED_DEBUG 0
139 /* Shouldn't this be in a header file somewhere? */
140 #define BYTES_PER_WORD sizeof(void *)
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
153 * Note that this flag disables some debug features.
155 #define ARCH_KMALLOC_MINALIGN 0
158 #ifndef ARCH_SLAB_MINALIGN
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
166 #define ARCH_SLAB_MINALIGN 0
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173 /* Legal flag mask for kmem_cache_create(). */
175 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
191 * Bufctl's are used for linking objs within a slab
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
207 typedef unsigned int kmem_bufctl_t
;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct list_head list
;
222 unsigned long colouroff
;
223 void *s_mem
; /* including colour offset */
224 unsigned int inuse
; /* num of objs active in slab */
226 unsigned short nodeid
;
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct rcu_head head
;
247 struct kmem_cache
*cachep
;
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
266 unsigned int batchcount
;
267 unsigned int touched
;
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
273 * [0] is for gcc 2.95. It should really be [].
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init
{
283 struct array_cache cache
;
284 void *entries
[BOOT_CPUCACHE_ENTRIES
];
288 * The slab lists for all objects.
291 struct list_head slabs_partial
; /* partial list first, better asm code */
292 struct list_head slabs_full
;
293 struct list_head slabs_free
;
294 unsigned long free_objects
;
295 unsigned int free_limit
;
296 unsigned int colour_next
; /* Per-node cache coloring */
297 spinlock_t list_lock
;
298 struct array_cache
*shared
; /* shared per node */
299 struct array_cache
**alien
; /* on other nodes */
300 unsigned long next_reap
; /* updated without locking */
301 int free_touched
; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
309 #define CACHE_CACHE 0
311 #define SIZE_L3 (1 + MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache
*cache
,
314 struct kmem_list3
*l3
, int tofree
);
315 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
317 static int enable_cpucache(struct kmem_cache
*cachep
);
318 static void cache_reap(struct work_struct
*unused
);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline
int index_of(const size_t size
)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size
)) {
336 #include "linux/kmalloc_sizes.h"
344 static int slab_early_init
= 1;
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 static void kmem_list3_init(struct kmem_list3
*parent
)
351 INIT_LIST_HEAD(&parent
->slabs_full
);
352 INIT_LIST_HEAD(&parent
->slabs_partial
);
353 INIT_LIST_HEAD(&parent
->slabs_free
);
354 parent
->shared
= NULL
;
355 parent
->alien
= NULL
;
356 parent
->colour_next
= 0;
357 spin_lock_init(&parent
->list_lock
);
358 parent
->free_objects
= 0;
359 parent
->free_touched
= 0;
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache
*array
[NR_CPUS
];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount
;
389 unsigned int buffer_size
;
390 u32 reciprocal_buffer_size
;
391 /* 3) touched by every alloc & free from the backend */
392 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
394 unsigned int flags
; /* constant flags */
395 unsigned int num
; /* # of objs per slab */
397 /* 4) cache_grow/shrink */
398 /* order of pgs per slab (2^n) */
399 unsigned int gfporder
;
401 /* force GFP flags, e.g. GFP_DMA */
404 size_t colour
; /* cache colouring range */
405 unsigned int colour_off
; /* colour offset */
406 struct kmem_cache
*slabp_cache
;
407 unsigned int slab_size
;
408 unsigned int dflags
; /* dynamic flags */
410 /* constructor func */
411 void (*ctor
) (void *, struct kmem_cache
*, unsigned long);
413 /* de-constructor func */
414 void (*dtor
) (void *, struct kmem_cache
*, unsigned long);
416 /* 5) cache creation/removal */
418 struct list_head next
;
422 unsigned long num_active
;
423 unsigned long num_allocations
;
424 unsigned long high_mark
;
426 unsigned long reaped
;
427 unsigned long errors
;
428 unsigned long max_freeable
;
429 unsigned long node_allocs
;
430 unsigned long node_frees
;
431 unsigned long node_overflow
;
439 * If debugging is enabled, then the allocator can add additional
440 * fields and/or padding to every object. buffer_size contains the total
441 * object size including these internal fields, the following two
442 * variables contain the offset to the user object and its size.
449 #define CFLGS_OFF_SLAB (0x80000000UL)
450 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
452 #define BATCHREFILL_LIMIT 16
454 * Optimization question: fewer reaps means less probability for unnessary
455 * cpucache drain/refill cycles.
457 * OTOH the cpuarrays can contain lots of objects,
458 * which could lock up otherwise freeable slabs.
460 #define REAPTIMEOUT_CPUC (2*HZ)
461 #define REAPTIMEOUT_LIST3 (4*HZ)
464 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
465 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
466 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
467 #define STATS_INC_GROWN(x) ((x)->grown++)
468 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
469 #define STATS_SET_HIGH(x) \
471 if ((x)->num_active > (x)->high_mark) \
472 (x)->high_mark = (x)->num_active; \
474 #define STATS_INC_ERR(x) ((x)->errors++)
475 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
476 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
477 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
478 #define STATS_SET_FREEABLE(x, i) \
480 if ((x)->max_freeable < i) \
481 (x)->max_freeable = i; \
483 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
484 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
485 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
486 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
488 #define STATS_INC_ACTIVE(x) do { } while (0)
489 #define STATS_DEC_ACTIVE(x) do { } while (0)
490 #define STATS_INC_ALLOCED(x) do { } while (0)
491 #define STATS_INC_GROWN(x) do { } while (0)
492 #define STATS_ADD_REAPED(x,y) do { } while (0)
493 #define STATS_SET_HIGH(x) do { } while (0)
494 #define STATS_INC_ERR(x) do { } while (0)
495 #define STATS_INC_NODEALLOCS(x) do { } while (0)
496 #define STATS_INC_NODEFREES(x) do { } while (0)
497 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
498 #define STATS_SET_FREEABLE(x, i) do { } while (0)
499 #define STATS_INC_ALLOCHIT(x) do { } while (0)
500 #define STATS_INC_ALLOCMISS(x) do { } while (0)
501 #define STATS_INC_FREEHIT(x) do { } while (0)
502 #define STATS_INC_FREEMISS(x) do { } while (0)
508 * memory layout of objects:
510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
511 * the end of an object is aligned with the end of the real
512 * allocation. Catches writes behind the end of the allocation.
513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 * [BYTES_PER_WORD long]
520 static int obj_offset(struct kmem_cache
*cachep
)
522 return cachep
->obj_offset
;
525 static int obj_size(struct kmem_cache
*cachep
)
527 return cachep
->obj_size
;
530 static unsigned long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
532 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
533 return (unsigned long*) (objp
+obj_offset(cachep
)-BYTES_PER_WORD
);
536 static unsigned long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
538 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
539 if (cachep
->flags
& SLAB_STORE_USER
)
540 return (unsigned long *)(objp
+ cachep
->buffer_size
-
542 return (unsigned long *)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
545 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
547 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
548 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
553 #define obj_offset(x) 0
554 #define obj_size(cachep) (cachep->buffer_size)
555 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
557 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
565 #if defined(CONFIG_LARGE_ALLOCS)
566 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
567 #define MAX_GFP_ORDER 13 /* up to 32Mb */
568 #elif defined(CONFIG_MMU)
569 #define MAX_OBJ_ORDER 5 /* 32 pages */
570 #define MAX_GFP_ORDER 5 /* 32 pages */
572 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
573 #define MAX_GFP_ORDER 8 /* up to 1Mb */
577 * Do not go above this order unless 0 objects fit into the slab.
579 #define BREAK_GFP_ORDER_HI 1
580 #define BREAK_GFP_ORDER_LO 0
581 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator. These are used to find the slab an obj belongs to. With kfree(),
586 * these are used to find the cache which an obj belongs to.
588 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
590 page
->lru
.next
= (struct list_head
*)cache
;
593 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
595 if (unlikely(PageCompound(page
)))
596 page
= (struct page
*)page_private(page
);
597 BUG_ON(!PageSlab(page
));
598 return (struct kmem_cache
*)page
->lru
.next
;
601 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
603 page
->lru
.prev
= (struct list_head
*)slab
;
606 static inline struct slab
*page_get_slab(struct page
*page
)
608 if (unlikely(PageCompound(page
)))
609 page
= (struct page
*)page_private(page
);
610 BUG_ON(!PageSlab(page
));
611 return (struct slab
*)page
->lru
.prev
;
614 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
616 struct page
*page
= virt_to_page(obj
);
617 return page_get_cache(page
);
620 static inline struct slab
*virt_to_slab(const void *obj
)
622 struct page
*page
= virt_to_page(obj
);
623 return page_get_slab(page
);
626 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
629 return slab
->s_mem
+ cache
->buffer_size
* idx
;
633 * We want to avoid an expensive divide : (offset / cache->buffer_size)
634 * Using the fact that buffer_size is a constant for a particular cache,
635 * we can replace (offset / cache->buffer_size) by
636 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
638 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
639 const struct slab
*slab
, void *obj
)
641 u32 offset
= (obj
- slab
->s_mem
);
642 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
646 * These are the default caches for kmalloc. Custom caches can have other sizes.
648 struct cache_sizes malloc_sizes
[] = {
649 #define CACHE(x) { .cs_size = (x) },
650 #include <linux/kmalloc_sizes.h>
654 EXPORT_SYMBOL(malloc_sizes
);
656 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
662 static struct cache_names __initdata cache_names
[] = {
663 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
664 #include <linux/kmalloc_sizes.h>
669 static struct arraycache_init initarray_cache __initdata
=
670 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
671 static struct arraycache_init initarray_generic
=
672 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
674 /* internal cache of cache description objs */
675 static struct kmem_cache cache_cache
= {
677 .limit
= BOOT_CPUCACHE_ENTRIES
,
679 .buffer_size
= sizeof(struct kmem_cache
),
680 .name
= "kmem_cache",
682 .obj_size
= sizeof(struct kmem_cache
),
686 #define BAD_ALIEN_MAGIC 0x01020304ul
688 #ifdef CONFIG_LOCKDEP
691 * Slab sometimes uses the kmalloc slabs to store the slab headers
692 * for other slabs "off slab".
693 * The locking for this is tricky in that it nests within the locks
694 * of all other slabs in a few places; to deal with this special
695 * locking we put on-slab caches into a separate lock-class.
697 * We set lock class for alien array caches which are up during init.
698 * The lock annotation will be lost if all cpus of a node goes down and
699 * then comes back up during hotplug
701 static struct lock_class_key on_slab_l3_key
;
702 static struct lock_class_key on_slab_alc_key
;
704 static inline void init_lock_keys(void)
708 struct cache_sizes
*s
= malloc_sizes
;
710 while (s
->cs_size
!= ULONG_MAX
) {
712 struct array_cache
**alc
;
714 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
715 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
717 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
720 * FIXME: This check for BAD_ALIEN_MAGIC
721 * should go away when common slab code is taught to
722 * work even without alien caches.
723 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
724 * for alloc_alien_cache,
726 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
730 lockdep_set_class(&alc
[r
]->lock
,
738 static inline void init_lock_keys(void)
744 * 1. Guard access to the cache-chain.
745 * 2. Protect sanity of cpu_online_map against cpu hotplug events
747 static DEFINE_MUTEX(cache_chain_mutex
);
748 static struct list_head cache_chain
;
751 * chicken and egg problem: delay the per-cpu array allocation
752 * until the general caches are up.
762 * used by boot code to determine if it can use slab based allocator
764 int slab_is_available(void)
766 return g_cpucache_up
== FULL
;
769 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
771 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
773 return cachep
->array
[smp_processor_id()];
776 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
779 struct cache_sizes
*csizep
= malloc_sizes
;
782 /* This happens if someone tries to call
783 * kmem_cache_create(), or __kmalloc(), before
784 * the generic caches are initialized.
786 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
788 while (size
> csizep
->cs_size
)
792 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
793 * has cs_{dma,}cachep==NULL. Thus no special case
794 * for large kmalloc calls required.
796 #ifdef CONFIG_ZONE_DMA
797 if (unlikely(gfpflags
& GFP_DMA
))
798 return csizep
->cs_dmacachep
;
800 return csizep
->cs_cachep
;
803 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
805 return __find_general_cachep(size
, gfpflags
);
808 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
810 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
814 * Calculate the number of objects and left-over bytes for a given buffer size.
816 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
817 size_t align
, int flags
, size_t *left_over
,
822 size_t slab_size
= PAGE_SIZE
<< gfporder
;
825 * The slab management structure can be either off the slab or
826 * on it. For the latter case, the memory allocated for a
830 * - One kmem_bufctl_t for each object
831 * - Padding to respect alignment of @align
832 * - @buffer_size bytes for each object
834 * If the slab management structure is off the slab, then the
835 * alignment will already be calculated into the size. Because
836 * the slabs are all pages aligned, the objects will be at the
837 * correct alignment when allocated.
839 if (flags
& CFLGS_OFF_SLAB
) {
841 nr_objs
= slab_size
/ buffer_size
;
843 if (nr_objs
> SLAB_LIMIT
)
844 nr_objs
= SLAB_LIMIT
;
847 * Ignore padding for the initial guess. The padding
848 * is at most @align-1 bytes, and @buffer_size is at
849 * least @align. In the worst case, this result will
850 * be one greater than the number of objects that fit
851 * into the memory allocation when taking the padding
854 nr_objs
= (slab_size
- sizeof(struct slab
)) /
855 (buffer_size
+ sizeof(kmem_bufctl_t
));
858 * This calculated number will be either the right
859 * amount, or one greater than what we want.
861 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
865 if (nr_objs
> SLAB_LIMIT
)
866 nr_objs
= SLAB_LIMIT
;
868 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
871 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
874 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
876 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
879 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
880 function
, cachep
->name
, msg
);
885 * By default on NUMA we use alien caches to stage the freeing of
886 * objects allocated from other nodes. This causes massive memory
887 * inefficiencies when using fake NUMA setup to split memory into a
888 * large number of small nodes, so it can be disabled on the command
892 static int use_alien_caches __read_mostly
= 1;
893 static int __init
noaliencache_setup(char *s
)
895 use_alien_caches
= 0;
898 __setup("noaliencache", noaliencache_setup
);
902 * Special reaping functions for NUMA systems called from cache_reap().
903 * These take care of doing round robin flushing of alien caches (containing
904 * objects freed on different nodes from which they were allocated) and the
905 * flushing of remote pcps by calling drain_node_pages.
907 static DEFINE_PER_CPU(unsigned long, reap_node
);
909 static void init_reap_node(int cpu
)
913 node
= next_node(cpu_to_node(cpu
), node_online_map
);
914 if (node
== MAX_NUMNODES
)
915 node
= first_node(node_online_map
);
917 per_cpu(reap_node
, cpu
) = node
;
920 static void next_reap_node(void)
922 int node
= __get_cpu_var(reap_node
);
925 * Also drain per cpu pages on remote zones
927 if (node
!= numa_node_id())
928 drain_node_pages(node
);
930 node
= next_node(node
, node_online_map
);
931 if (unlikely(node
>= MAX_NUMNODES
))
932 node
= first_node(node_online_map
);
933 __get_cpu_var(reap_node
) = node
;
937 #define init_reap_node(cpu) do { } while (0)
938 #define next_reap_node(void) do { } while (0)
942 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
943 * via the workqueue/eventd.
944 * Add the CPU number into the expiration time to minimize the possibility of
945 * the CPUs getting into lockstep and contending for the global cache chain
948 static void __devinit
start_cpu_timer(int cpu
)
950 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
953 * When this gets called from do_initcalls via cpucache_init(),
954 * init_workqueues() has already run, so keventd will be setup
957 if (keventd_up() && reap_work
->work
.func
== NULL
) {
959 INIT_DELAYED_WORK(reap_work
, cache_reap
);
960 schedule_delayed_work_on(cpu
, reap_work
,
961 __round_jiffies_relative(HZ
, cpu
));
965 static struct array_cache
*alloc_arraycache(int node
, int entries
,
968 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
969 struct array_cache
*nc
= NULL
;
971 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
975 nc
->batchcount
= batchcount
;
977 spin_lock_init(&nc
->lock
);
983 * Transfer objects in one arraycache to another.
984 * Locking must be handled by the caller.
986 * Return the number of entries transferred.
988 static int transfer_objects(struct array_cache
*to
,
989 struct array_cache
*from
, unsigned int max
)
991 /* Figure out how many entries to transfer */
992 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
997 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
1008 #define drain_alien_cache(cachep, alien) do { } while (0)
1009 #define reap_alien(cachep, l3) do { } while (0)
1011 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1013 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1016 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1020 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1025 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1031 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1032 gfp_t flags
, int nodeid
)
1037 #else /* CONFIG_NUMA */
1039 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1040 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1042 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1044 struct array_cache
**ac_ptr
;
1045 int memsize
= sizeof(void *) * MAX_NUMNODES
;
1050 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1053 if (i
== node
|| !node_online(i
)) {
1057 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1059 for (i
--; i
<= 0; i
--)
1069 static void free_alien_cache(struct array_cache
**ac_ptr
)
1080 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1081 struct array_cache
*ac
, int node
)
1083 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1086 spin_lock(&rl3
->list_lock
);
1088 * Stuff objects into the remote nodes shared array first.
1089 * That way we could avoid the overhead of putting the objects
1090 * into the free lists and getting them back later.
1093 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1095 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1097 spin_unlock(&rl3
->list_lock
);
1102 * Called from cache_reap() to regularly drain alien caches round robin.
1104 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1106 int node
= __get_cpu_var(reap_node
);
1109 struct array_cache
*ac
= l3
->alien
[node
];
1111 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1112 __drain_alien_cache(cachep
, ac
, node
);
1113 spin_unlock_irq(&ac
->lock
);
1118 static void drain_alien_cache(struct kmem_cache
*cachep
,
1119 struct array_cache
**alien
)
1122 struct array_cache
*ac
;
1123 unsigned long flags
;
1125 for_each_online_node(i
) {
1128 spin_lock_irqsave(&ac
->lock
, flags
);
1129 __drain_alien_cache(cachep
, ac
, i
);
1130 spin_unlock_irqrestore(&ac
->lock
, flags
);
1135 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1137 struct slab
*slabp
= virt_to_slab(objp
);
1138 int nodeid
= slabp
->nodeid
;
1139 struct kmem_list3
*l3
;
1140 struct array_cache
*alien
= NULL
;
1143 node
= numa_node_id();
1146 * Make sure we are not freeing a object from another node to the array
1147 * cache on this cpu.
1149 if (likely(slabp
->nodeid
== node
) || unlikely(!use_alien_caches
))
1152 l3
= cachep
->nodelists
[node
];
1153 STATS_INC_NODEFREES(cachep
);
1154 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1155 alien
= l3
->alien
[nodeid
];
1156 spin_lock(&alien
->lock
);
1157 if (unlikely(alien
->avail
== alien
->limit
)) {
1158 STATS_INC_ACOVERFLOW(cachep
);
1159 __drain_alien_cache(cachep
, alien
, nodeid
);
1161 alien
->entry
[alien
->avail
++] = objp
;
1162 spin_unlock(&alien
->lock
);
1164 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1165 free_block(cachep
, &objp
, 1, nodeid
);
1166 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1172 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1173 unsigned long action
, void *hcpu
)
1175 long cpu
= (long)hcpu
;
1176 struct kmem_cache
*cachep
;
1177 struct kmem_list3
*l3
= NULL
;
1178 int node
= cpu_to_node(cpu
);
1179 int memsize
= sizeof(struct kmem_list3
);
1182 case CPU_UP_PREPARE
:
1183 mutex_lock(&cache_chain_mutex
);
1185 * We need to do this right in the beginning since
1186 * alloc_arraycache's are going to use this list.
1187 * kmalloc_node allows us to add the slab to the right
1188 * kmem_list3 and not this cpu's kmem_list3
1191 list_for_each_entry(cachep
, &cache_chain
, next
) {
1193 * Set up the size64 kmemlist for cpu before we can
1194 * begin anything. Make sure some other cpu on this
1195 * node has not already allocated this
1197 if (!cachep
->nodelists
[node
]) {
1198 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1201 kmem_list3_init(l3
);
1202 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1203 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1206 * The l3s don't come and go as CPUs come and
1207 * go. cache_chain_mutex is sufficient
1210 cachep
->nodelists
[node
] = l3
;
1213 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1214 cachep
->nodelists
[node
]->free_limit
=
1215 (1 + nr_cpus_node(node
)) *
1216 cachep
->batchcount
+ cachep
->num
;
1217 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1221 * Now we can go ahead with allocating the shared arrays and
1224 list_for_each_entry(cachep
, &cache_chain
, next
) {
1225 struct array_cache
*nc
;
1226 struct array_cache
*shared
;
1227 struct array_cache
**alien
= NULL
;
1229 nc
= alloc_arraycache(node
, cachep
->limit
,
1230 cachep
->batchcount
);
1233 shared
= alloc_arraycache(node
,
1234 cachep
->shared
* cachep
->batchcount
,
1239 if (use_alien_caches
) {
1240 alien
= alloc_alien_cache(node
, cachep
->limit
);
1244 cachep
->array
[cpu
] = nc
;
1245 l3
= cachep
->nodelists
[node
];
1248 spin_lock_irq(&l3
->list_lock
);
1251 * We are serialised from CPU_DEAD or
1252 * CPU_UP_CANCELLED by the cpucontrol lock
1254 l3
->shared
= shared
;
1263 spin_unlock_irq(&l3
->list_lock
);
1265 free_alien_cache(alien
);
1269 mutex_unlock(&cache_chain_mutex
);
1270 start_cpu_timer(cpu
);
1272 #ifdef CONFIG_HOTPLUG_CPU
1273 case CPU_DOWN_PREPARE
:
1274 mutex_lock(&cache_chain_mutex
);
1276 case CPU_DOWN_FAILED
:
1277 mutex_unlock(&cache_chain_mutex
);
1281 * Even if all the cpus of a node are down, we don't free the
1282 * kmem_list3 of any cache. This to avoid a race between
1283 * cpu_down, and a kmalloc allocation from another cpu for
1284 * memory from the node of the cpu going down. The list3
1285 * structure is usually allocated from kmem_cache_create() and
1286 * gets destroyed at kmem_cache_destroy().
1290 case CPU_UP_CANCELED
:
1291 list_for_each_entry(cachep
, &cache_chain
, next
) {
1292 struct array_cache
*nc
;
1293 struct array_cache
*shared
;
1294 struct array_cache
**alien
;
1297 mask
= node_to_cpumask(node
);
1298 /* cpu is dead; no one can alloc from it. */
1299 nc
= cachep
->array
[cpu
];
1300 cachep
->array
[cpu
] = NULL
;
1301 l3
= cachep
->nodelists
[node
];
1304 goto free_array_cache
;
1306 spin_lock_irq(&l3
->list_lock
);
1308 /* Free limit for this kmem_list3 */
1309 l3
->free_limit
-= cachep
->batchcount
;
1311 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1313 if (!cpus_empty(mask
)) {
1314 spin_unlock_irq(&l3
->list_lock
);
1315 goto free_array_cache
;
1318 shared
= l3
->shared
;
1320 free_block(cachep
, l3
->shared
->entry
,
1321 l3
->shared
->avail
, node
);
1328 spin_unlock_irq(&l3
->list_lock
);
1332 drain_alien_cache(cachep
, alien
);
1333 free_alien_cache(alien
);
1339 * In the previous loop, all the objects were freed to
1340 * the respective cache's slabs, now we can go ahead and
1341 * shrink each nodelist to its limit.
1343 list_for_each_entry(cachep
, &cache_chain
, next
) {
1344 l3
= cachep
->nodelists
[node
];
1347 drain_freelist(cachep
, l3
, l3
->free_objects
);
1349 mutex_unlock(&cache_chain_mutex
);
1357 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1358 &cpuup_callback
, NULL
, 0
1362 * swap the static kmem_list3 with kmalloced memory
1364 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1367 struct kmem_list3
*ptr
;
1369 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1372 local_irq_disable();
1373 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1375 * Do not assume that spinlocks can be initialized via memcpy:
1377 spin_lock_init(&ptr
->list_lock
);
1379 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1380 cachep
->nodelists
[nodeid
] = ptr
;
1385 * Initialisation. Called after the page allocator have been initialised and
1386 * before smp_init().
1388 void __init
kmem_cache_init(void)
1391 struct cache_sizes
*sizes
;
1392 struct cache_names
*names
;
1397 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1398 kmem_list3_init(&initkmem_list3
[i
]);
1399 if (i
< MAX_NUMNODES
)
1400 cache_cache
.nodelists
[i
] = NULL
;
1404 * Fragmentation resistance on low memory - only use bigger
1405 * page orders on machines with more than 32MB of memory.
1407 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1408 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1410 /* Bootstrap is tricky, because several objects are allocated
1411 * from caches that do not exist yet:
1412 * 1) initialize the cache_cache cache: it contains the struct
1413 * kmem_cache structures of all caches, except cache_cache itself:
1414 * cache_cache is statically allocated.
1415 * Initially an __init data area is used for the head array and the
1416 * kmem_list3 structures, it's replaced with a kmalloc allocated
1417 * array at the end of the bootstrap.
1418 * 2) Create the first kmalloc cache.
1419 * The struct kmem_cache for the new cache is allocated normally.
1420 * An __init data area is used for the head array.
1421 * 3) Create the remaining kmalloc caches, with minimally sized
1423 * 4) Replace the __init data head arrays for cache_cache and the first
1424 * kmalloc cache with kmalloc allocated arrays.
1425 * 5) Replace the __init data for kmem_list3 for cache_cache and
1426 * the other cache's with kmalloc allocated memory.
1427 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1430 node
= numa_node_id();
1432 /* 1) create the cache_cache */
1433 INIT_LIST_HEAD(&cache_chain
);
1434 list_add(&cache_cache
.next
, &cache_chain
);
1435 cache_cache
.colour_off
= cache_line_size();
1436 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1437 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
];
1439 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1441 cache_cache
.reciprocal_buffer_size
=
1442 reciprocal_value(cache_cache
.buffer_size
);
1444 for (order
= 0; order
< MAX_ORDER
; order
++) {
1445 cache_estimate(order
, cache_cache
.buffer_size
,
1446 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1447 if (cache_cache
.num
)
1450 BUG_ON(!cache_cache
.num
);
1451 cache_cache
.gfporder
= order
;
1452 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1453 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1454 sizeof(struct slab
), cache_line_size());
1456 /* 2+3) create the kmalloc caches */
1457 sizes
= malloc_sizes
;
1458 names
= cache_names
;
1461 * Initialize the caches that provide memory for the array cache and the
1462 * kmem_list3 structures first. Without this, further allocations will
1466 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1467 sizes
[INDEX_AC
].cs_size
,
1468 ARCH_KMALLOC_MINALIGN
,
1469 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1472 if (INDEX_AC
!= INDEX_L3
) {
1473 sizes
[INDEX_L3
].cs_cachep
=
1474 kmem_cache_create(names
[INDEX_L3
].name
,
1475 sizes
[INDEX_L3
].cs_size
,
1476 ARCH_KMALLOC_MINALIGN
,
1477 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1481 slab_early_init
= 0;
1483 while (sizes
->cs_size
!= ULONG_MAX
) {
1485 * For performance, all the general caches are L1 aligned.
1486 * This should be particularly beneficial on SMP boxes, as it
1487 * eliminates "false sharing".
1488 * Note for systems short on memory removing the alignment will
1489 * allow tighter packing of the smaller caches.
1491 if (!sizes
->cs_cachep
) {
1492 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1494 ARCH_KMALLOC_MINALIGN
,
1495 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1498 #ifdef CONFIG_ZONE_DMA
1499 sizes
->cs_dmacachep
= kmem_cache_create(
1502 ARCH_KMALLOC_MINALIGN
,
1503 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1510 /* 4) Replace the bootstrap head arrays */
1512 struct array_cache
*ptr
;
1514 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1516 local_irq_disable();
1517 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1518 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1519 sizeof(struct arraycache_init
));
1521 * Do not assume that spinlocks can be initialized via memcpy:
1523 spin_lock_init(&ptr
->lock
);
1525 cache_cache
.array
[smp_processor_id()] = ptr
;
1528 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1530 local_irq_disable();
1531 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1532 != &initarray_generic
.cache
);
1533 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1534 sizeof(struct arraycache_init
));
1536 * Do not assume that spinlocks can be initialized via memcpy:
1538 spin_lock_init(&ptr
->lock
);
1540 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1544 /* 5) Replace the bootstrap kmem_list3's */
1548 /* Replace the static kmem_list3 structures for the boot cpu */
1549 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
], node
);
1551 for_each_online_node(nid
) {
1552 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1553 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1555 if (INDEX_AC
!= INDEX_L3
) {
1556 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1557 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1562 /* 6) resize the head arrays to their final sizes */
1564 struct kmem_cache
*cachep
;
1565 mutex_lock(&cache_chain_mutex
);
1566 list_for_each_entry(cachep
, &cache_chain
, next
)
1567 if (enable_cpucache(cachep
))
1569 mutex_unlock(&cache_chain_mutex
);
1572 /* Annotate slab for lockdep -- annotate the malloc caches */
1577 g_cpucache_up
= FULL
;
1580 * Register a cpu startup notifier callback that initializes
1581 * cpu_cache_get for all new cpus
1583 register_cpu_notifier(&cpucache_notifier
);
1586 * The reap timers are started later, with a module init call: That part
1587 * of the kernel is not yet operational.
1591 static int __init
cpucache_init(void)
1596 * Register the timers that return unneeded pages to the page allocator
1598 for_each_online_cpu(cpu
)
1599 start_cpu_timer(cpu
);
1602 __initcall(cpucache_init
);
1605 * Interface to system's page allocator. No need to hold the cache-lock.
1607 * If we requested dmaable memory, we will get it. Even if we
1608 * did not request dmaable memory, we might get it, but that
1609 * would be relatively rare and ignorable.
1611 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1619 * Nommu uses slab's for process anonymous memory allocations, and thus
1620 * requires __GFP_COMP to properly refcount higher order allocations
1622 flags
|= __GFP_COMP
;
1625 flags
|= cachep
->gfpflags
;
1627 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1631 nr_pages
= (1 << cachep
->gfporder
);
1632 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1633 add_zone_page_state(page_zone(page
),
1634 NR_SLAB_RECLAIMABLE
, nr_pages
);
1636 add_zone_page_state(page_zone(page
),
1637 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1638 for (i
= 0; i
< nr_pages
; i
++)
1639 __SetPageSlab(page
+ i
);
1640 return page_address(page
);
1644 * Interface to system's page release.
1646 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1648 unsigned long i
= (1 << cachep
->gfporder
);
1649 struct page
*page
= virt_to_page(addr
);
1650 const unsigned long nr_freed
= i
;
1652 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1653 sub_zone_page_state(page_zone(page
),
1654 NR_SLAB_RECLAIMABLE
, nr_freed
);
1656 sub_zone_page_state(page_zone(page
),
1657 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1659 BUG_ON(!PageSlab(page
));
1660 __ClearPageSlab(page
);
1663 if (current
->reclaim_state
)
1664 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1665 free_pages((unsigned long)addr
, cachep
->gfporder
);
1668 static void kmem_rcu_free(struct rcu_head
*head
)
1670 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1671 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1673 kmem_freepages(cachep
, slab_rcu
->addr
);
1674 if (OFF_SLAB(cachep
))
1675 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1680 #ifdef CONFIG_DEBUG_PAGEALLOC
1681 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1682 unsigned long caller
)
1684 int size
= obj_size(cachep
);
1686 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1688 if (size
< 5 * sizeof(unsigned long))
1691 *addr
++ = 0x12345678;
1693 *addr
++ = smp_processor_id();
1694 size
-= 3 * sizeof(unsigned long);
1696 unsigned long *sptr
= &caller
;
1697 unsigned long svalue
;
1699 while (!kstack_end(sptr
)) {
1701 if (kernel_text_address(svalue
)) {
1703 size
-= sizeof(unsigned long);
1704 if (size
<= sizeof(unsigned long))
1710 *addr
++ = 0x87654321;
1714 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1716 int size
= obj_size(cachep
);
1717 addr
= &((char *)addr
)[obj_offset(cachep
)];
1719 memset(addr
, val
, size
);
1720 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1723 static void dump_line(char *data
, int offset
, int limit
)
1726 unsigned char error
= 0;
1729 printk(KERN_ERR
"%03x:", offset
);
1730 for (i
= 0; i
< limit
; i
++) {
1731 if (data
[offset
+ i
] != POISON_FREE
) {
1732 error
= data
[offset
+ i
];
1735 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1739 if (bad_count
== 1) {
1740 error
^= POISON_FREE
;
1741 if (!(error
& (error
- 1))) {
1742 printk(KERN_ERR
"Single bit error detected. Probably "
1745 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1748 printk(KERN_ERR
"Run a memory test tool.\n");
1757 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1762 if (cachep
->flags
& SLAB_RED_ZONE
) {
1763 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1764 *dbg_redzone1(cachep
, objp
),
1765 *dbg_redzone2(cachep
, objp
));
1768 if (cachep
->flags
& SLAB_STORE_USER
) {
1769 printk(KERN_ERR
"Last user: [<%p>]",
1770 *dbg_userword(cachep
, objp
));
1771 print_symbol("(%s)",
1772 (unsigned long)*dbg_userword(cachep
, objp
));
1775 realobj
= (char *)objp
+ obj_offset(cachep
);
1776 size
= obj_size(cachep
);
1777 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1780 if (i
+ limit
> size
)
1782 dump_line(realobj
, i
, limit
);
1786 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1792 realobj
= (char *)objp
+ obj_offset(cachep
);
1793 size
= obj_size(cachep
);
1795 for (i
= 0; i
< size
; i
++) {
1796 char exp
= POISON_FREE
;
1799 if (realobj
[i
] != exp
) {
1805 "Slab corruption: start=%p, len=%d\n",
1807 print_objinfo(cachep
, objp
, 0);
1809 /* Hexdump the affected line */
1812 if (i
+ limit
> size
)
1814 dump_line(realobj
, i
, limit
);
1817 /* Limit to 5 lines */
1823 /* Print some data about the neighboring objects, if they
1826 struct slab
*slabp
= virt_to_slab(objp
);
1829 objnr
= obj_to_index(cachep
, slabp
, objp
);
1831 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1832 realobj
= (char *)objp
+ obj_offset(cachep
);
1833 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1835 print_objinfo(cachep
, objp
, 2);
1837 if (objnr
+ 1 < cachep
->num
) {
1838 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1839 realobj
= (char *)objp
+ obj_offset(cachep
);
1840 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1842 print_objinfo(cachep
, objp
, 2);
1850 * slab_destroy_objs - destroy a slab and its objects
1851 * @cachep: cache pointer being destroyed
1852 * @slabp: slab pointer being destroyed
1854 * Call the registered destructor for each object in a slab that is being
1857 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1860 for (i
= 0; i
< cachep
->num
; i
++) {
1861 void *objp
= index_to_obj(cachep
, slabp
, i
);
1863 if (cachep
->flags
& SLAB_POISON
) {
1864 #ifdef CONFIG_DEBUG_PAGEALLOC
1865 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1867 kernel_map_pages(virt_to_page(objp
),
1868 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1870 check_poison_obj(cachep
, objp
);
1872 check_poison_obj(cachep
, objp
);
1875 if (cachep
->flags
& SLAB_RED_ZONE
) {
1876 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1877 slab_error(cachep
, "start of a freed object "
1879 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1880 slab_error(cachep
, "end of a freed object "
1883 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1884 (cachep
->dtor
) (objp
+ obj_offset(cachep
), cachep
, 0);
1888 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1892 for (i
= 0; i
< cachep
->num
; i
++) {
1893 void *objp
= index_to_obj(cachep
, slabp
, i
);
1894 (cachep
->dtor
) (objp
, cachep
, 0);
1901 * slab_destroy - destroy and release all objects in a slab
1902 * @cachep: cache pointer being destroyed
1903 * @slabp: slab pointer being destroyed
1905 * Destroy all the objs in a slab, and release the mem back to the system.
1906 * Before calling the slab must have been unlinked from the cache. The
1907 * cache-lock is not held/needed.
1909 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1911 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1913 slab_destroy_objs(cachep
, slabp
);
1914 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1915 struct slab_rcu
*slab_rcu
;
1917 slab_rcu
= (struct slab_rcu
*)slabp
;
1918 slab_rcu
->cachep
= cachep
;
1919 slab_rcu
->addr
= addr
;
1920 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1922 kmem_freepages(cachep
, addr
);
1923 if (OFF_SLAB(cachep
))
1924 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1929 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1930 * size of kmem_list3.
1932 static void set_up_list3s(struct kmem_cache
*cachep
, int index
)
1936 for_each_online_node(node
) {
1937 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1938 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1940 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1944 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1947 struct kmem_list3
*l3
;
1949 for_each_online_cpu(i
)
1950 kfree(cachep
->array
[i
]);
1952 /* NUMA: free the list3 structures */
1953 for_each_online_node(i
) {
1954 l3
= cachep
->nodelists
[i
];
1957 free_alien_cache(l3
->alien
);
1961 kmem_cache_free(&cache_cache
, cachep
);
1966 * calculate_slab_order - calculate size (page order) of slabs
1967 * @cachep: pointer to the cache that is being created
1968 * @size: size of objects to be created in this cache.
1969 * @align: required alignment for the objects.
1970 * @flags: slab allocation flags
1972 * Also calculates the number of objects per slab.
1974 * This could be made much more intelligent. For now, try to avoid using
1975 * high order pages for slabs. When the gfp() functions are more friendly
1976 * towards high-order requests, this should be changed.
1978 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1979 size_t size
, size_t align
, unsigned long flags
)
1981 unsigned long offslab_limit
;
1982 size_t left_over
= 0;
1985 for (gfporder
= 0; gfporder
<= MAX_GFP_ORDER
; gfporder
++) {
1989 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
1993 if (flags
& CFLGS_OFF_SLAB
) {
1995 * Max number of objs-per-slab for caches which
1996 * use off-slab slabs. Needed to avoid a possible
1997 * looping condition in cache_grow().
1999 offslab_limit
= size
- sizeof(struct slab
);
2000 offslab_limit
/= sizeof(kmem_bufctl_t
);
2002 if (num
> offslab_limit
)
2006 /* Found something acceptable - save it away */
2008 cachep
->gfporder
= gfporder
;
2009 left_over
= remainder
;
2012 * A VFS-reclaimable slab tends to have most allocations
2013 * as GFP_NOFS and we really don't want to have to be allocating
2014 * higher-order pages when we are unable to shrink dcache.
2016 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2020 * Large number of objects is good, but very large slabs are
2021 * currently bad for the gfp()s.
2023 if (gfporder
>= slab_break_gfp_order
)
2027 * Acceptable internal fragmentation?
2029 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2035 static int setup_cpu_cache(struct kmem_cache
*cachep
)
2037 if (g_cpucache_up
== FULL
)
2038 return enable_cpucache(cachep
);
2040 if (g_cpucache_up
== NONE
) {
2042 * Note: the first kmem_cache_create must create the cache
2043 * that's used by kmalloc(24), otherwise the creation of
2044 * further caches will BUG().
2046 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2049 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2050 * the first cache, then we need to set up all its list3s,
2051 * otherwise the creation of further caches will BUG().
2053 set_up_list3s(cachep
, SIZE_AC
);
2054 if (INDEX_AC
== INDEX_L3
)
2055 g_cpucache_up
= PARTIAL_L3
;
2057 g_cpucache_up
= PARTIAL_AC
;
2059 cachep
->array
[smp_processor_id()] =
2060 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2062 if (g_cpucache_up
== PARTIAL_AC
) {
2063 set_up_list3s(cachep
, SIZE_L3
);
2064 g_cpucache_up
= PARTIAL_L3
;
2067 for_each_online_node(node
) {
2068 cachep
->nodelists
[node
] =
2069 kmalloc_node(sizeof(struct kmem_list3
),
2071 BUG_ON(!cachep
->nodelists
[node
]);
2072 kmem_list3_init(cachep
->nodelists
[node
]);
2076 cachep
->nodelists
[numa_node_id()]->next_reap
=
2077 jiffies
+ REAPTIMEOUT_LIST3
+
2078 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2080 cpu_cache_get(cachep
)->avail
= 0;
2081 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2082 cpu_cache_get(cachep
)->batchcount
= 1;
2083 cpu_cache_get(cachep
)->touched
= 0;
2084 cachep
->batchcount
= 1;
2085 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2090 * kmem_cache_create - Create a cache.
2091 * @name: A string which is used in /proc/slabinfo to identify this cache.
2092 * @size: The size of objects to be created in this cache.
2093 * @align: The required alignment for the objects.
2094 * @flags: SLAB flags
2095 * @ctor: A constructor for the objects.
2096 * @dtor: A destructor for the objects.
2098 * Returns a ptr to the cache on success, NULL on failure.
2099 * Cannot be called within a int, but can be interrupted.
2100 * The @ctor is run when new pages are allocated by the cache
2101 * and the @dtor is run before the pages are handed back.
2103 * @name must be valid until the cache is destroyed. This implies that
2104 * the module calling this has to destroy the cache before getting unloaded.
2108 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2109 * to catch references to uninitialised memory.
2111 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2112 * for buffer overruns.
2114 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2115 * cacheline. This can be beneficial if you're counting cycles as closely
2119 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2120 unsigned long flags
,
2121 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
2122 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
2124 size_t left_over
, slab_size
, ralign
;
2125 struct kmem_cache
*cachep
= NULL
, *pc
;
2128 * Sanity checks... these are all serious usage bugs.
2130 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2131 (size
> (1 << MAX_OBJ_ORDER
) * PAGE_SIZE
) || (dtor
&& !ctor
)) {
2132 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
2138 * We use cache_chain_mutex to ensure a consistent view of
2139 * cpu_online_map as well. Please see cpuup_callback
2141 mutex_lock(&cache_chain_mutex
);
2143 list_for_each_entry(pc
, &cache_chain
, next
) {
2148 * This happens when the module gets unloaded and doesn't
2149 * destroy its slab cache and no-one else reuses the vmalloc
2150 * area of the module. Print a warning.
2152 res
= probe_kernel_address(pc
->name
, tmp
);
2154 printk("SLAB: cache with size %d has lost its name\n",
2159 if (!strcmp(pc
->name
, name
)) {
2160 printk("kmem_cache_create: duplicate cache %s\n", name
);
2167 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2168 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
2169 /* No constructor, but inital state check requested */
2170 printk(KERN_ERR
"%s: No con, but init state check "
2171 "requested - %s\n", __FUNCTION__
, name
);
2172 flags
&= ~SLAB_DEBUG_INITIAL
;
2176 * Enable redzoning and last user accounting, except for caches with
2177 * large objects, if the increased size would increase the object size
2178 * above the next power of two: caches with object sizes just above a
2179 * power of two have a significant amount of internal fragmentation.
2181 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + 3 * BYTES_PER_WORD
))
2182 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2183 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2184 flags
|= SLAB_POISON
;
2186 if (flags
& SLAB_DESTROY_BY_RCU
)
2187 BUG_ON(flags
& SLAB_POISON
);
2189 if (flags
& SLAB_DESTROY_BY_RCU
)
2193 * Always checks flags, a caller might be expecting debug support which
2196 BUG_ON(flags
& ~CREATE_MASK
);
2199 * Check that size is in terms of words. This is needed to avoid
2200 * unaligned accesses for some archs when redzoning is used, and makes
2201 * sure any on-slab bufctl's are also correctly aligned.
2203 if (size
& (BYTES_PER_WORD
- 1)) {
2204 size
+= (BYTES_PER_WORD
- 1);
2205 size
&= ~(BYTES_PER_WORD
- 1);
2208 /* calculate the final buffer alignment: */
2210 /* 1) arch recommendation: can be overridden for debug */
2211 if (flags
& SLAB_HWCACHE_ALIGN
) {
2213 * Default alignment: as specified by the arch code. Except if
2214 * an object is really small, then squeeze multiple objects into
2217 ralign
= cache_line_size();
2218 while (size
<= ralign
/ 2)
2221 ralign
= BYTES_PER_WORD
;
2225 * Redzoning and user store require word alignment. Note this will be
2226 * overridden by architecture or caller mandated alignment if either
2227 * is greater than BYTES_PER_WORD.
2229 if (flags
& SLAB_RED_ZONE
|| flags
& SLAB_STORE_USER
)
2230 ralign
= BYTES_PER_WORD
;
2232 /* 2) arch mandated alignment */
2233 if (ralign
< ARCH_SLAB_MINALIGN
) {
2234 ralign
= ARCH_SLAB_MINALIGN
;
2236 /* 3) caller mandated alignment */
2237 if (ralign
< align
) {
2240 /* disable debug if necessary */
2241 if (ralign
> BYTES_PER_WORD
)
2242 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2248 /* Get cache's description obj. */
2249 cachep
= kmem_cache_zalloc(&cache_cache
, GFP_KERNEL
);
2254 cachep
->obj_size
= size
;
2257 * Both debugging options require word-alignment which is calculated
2260 if (flags
& SLAB_RED_ZONE
) {
2261 /* add space for red zone words */
2262 cachep
->obj_offset
+= BYTES_PER_WORD
;
2263 size
+= 2 * BYTES_PER_WORD
;
2265 if (flags
& SLAB_STORE_USER
) {
2266 /* user store requires one word storage behind the end of
2269 size
+= BYTES_PER_WORD
;
2271 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2272 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2273 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2274 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2281 * Determine if the slab management is 'on' or 'off' slab.
2282 * (bootstrapping cannot cope with offslab caches so don't do
2285 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2287 * Size is large, assume best to place the slab management obj
2288 * off-slab (should allow better packing of objs).
2290 flags
|= CFLGS_OFF_SLAB
;
2292 size
= ALIGN(size
, align
);
2294 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2297 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
2298 kmem_cache_free(&cache_cache
, cachep
);
2302 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2303 + sizeof(struct slab
), align
);
2306 * If the slab has been placed off-slab, and we have enough space then
2307 * move it on-slab. This is at the expense of any extra colouring.
2309 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2310 flags
&= ~CFLGS_OFF_SLAB
;
2311 left_over
-= slab_size
;
2314 if (flags
& CFLGS_OFF_SLAB
) {
2315 /* really off slab. No need for manual alignment */
2317 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2320 cachep
->colour_off
= cache_line_size();
2321 /* Offset must be a multiple of the alignment. */
2322 if (cachep
->colour_off
< align
)
2323 cachep
->colour_off
= align
;
2324 cachep
->colour
= left_over
/ cachep
->colour_off
;
2325 cachep
->slab_size
= slab_size
;
2326 cachep
->flags
= flags
;
2327 cachep
->gfpflags
= 0;
2328 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2329 cachep
->gfpflags
|= GFP_DMA
;
2330 cachep
->buffer_size
= size
;
2331 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2333 if (flags
& CFLGS_OFF_SLAB
) {
2334 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2336 * This is a possibility for one of the malloc_sizes caches.
2337 * But since we go off slab only for object size greater than
2338 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2339 * this should not happen at all.
2340 * But leave a BUG_ON for some lucky dude.
2342 BUG_ON(!cachep
->slabp_cache
);
2344 cachep
->ctor
= ctor
;
2345 cachep
->dtor
= dtor
;
2346 cachep
->name
= name
;
2348 if (setup_cpu_cache(cachep
)) {
2349 __kmem_cache_destroy(cachep
);
2354 /* cache setup completed, link it into the list */
2355 list_add(&cachep
->next
, &cache_chain
);
2357 if (!cachep
&& (flags
& SLAB_PANIC
))
2358 panic("kmem_cache_create(): failed to create slab `%s'\n",
2360 mutex_unlock(&cache_chain_mutex
);
2363 EXPORT_SYMBOL(kmem_cache_create
);
2366 static void check_irq_off(void)
2368 BUG_ON(!irqs_disabled());
2371 static void check_irq_on(void)
2373 BUG_ON(irqs_disabled());
2376 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2380 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2384 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2388 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2393 #define check_irq_off() do { } while(0)
2394 #define check_irq_on() do { } while(0)
2395 #define check_spinlock_acquired(x) do { } while(0)
2396 #define check_spinlock_acquired_node(x, y) do { } while(0)
2399 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2400 struct array_cache
*ac
,
2401 int force
, int node
);
2403 static void do_drain(void *arg
)
2405 struct kmem_cache
*cachep
= arg
;
2406 struct array_cache
*ac
;
2407 int node
= numa_node_id();
2410 ac
= cpu_cache_get(cachep
);
2411 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2412 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2413 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2417 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2419 struct kmem_list3
*l3
;
2422 on_each_cpu(do_drain
, cachep
, 1, 1);
2424 for_each_online_node(node
) {
2425 l3
= cachep
->nodelists
[node
];
2426 if (l3
&& l3
->alien
)
2427 drain_alien_cache(cachep
, l3
->alien
);
2430 for_each_online_node(node
) {
2431 l3
= cachep
->nodelists
[node
];
2433 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2438 * Remove slabs from the list of free slabs.
2439 * Specify the number of slabs to drain in tofree.
2441 * Returns the actual number of slabs released.
2443 static int drain_freelist(struct kmem_cache
*cache
,
2444 struct kmem_list3
*l3
, int tofree
)
2446 struct list_head
*p
;
2451 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2453 spin_lock_irq(&l3
->list_lock
);
2454 p
= l3
->slabs_free
.prev
;
2455 if (p
== &l3
->slabs_free
) {
2456 spin_unlock_irq(&l3
->list_lock
);
2460 slabp
= list_entry(p
, struct slab
, list
);
2462 BUG_ON(slabp
->inuse
);
2464 list_del(&slabp
->list
);
2466 * Safe to drop the lock. The slab is no longer linked
2469 l3
->free_objects
-= cache
->num
;
2470 spin_unlock_irq(&l3
->list_lock
);
2471 slab_destroy(cache
, slabp
);
2478 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2479 static int __cache_shrink(struct kmem_cache
*cachep
)
2482 struct kmem_list3
*l3
;
2484 drain_cpu_caches(cachep
);
2487 for_each_online_node(i
) {
2488 l3
= cachep
->nodelists
[i
];
2492 drain_freelist(cachep
, l3
, l3
->free_objects
);
2494 ret
+= !list_empty(&l3
->slabs_full
) ||
2495 !list_empty(&l3
->slabs_partial
);
2497 return (ret
? 1 : 0);
2501 * kmem_cache_shrink - Shrink a cache.
2502 * @cachep: The cache to shrink.
2504 * Releases as many slabs as possible for a cache.
2505 * To help debugging, a zero exit status indicates all slabs were released.
2507 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2510 BUG_ON(!cachep
|| in_interrupt());
2512 mutex_lock(&cache_chain_mutex
);
2513 ret
= __cache_shrink(cachep
);
2514 mutex_unlock(&cache_chain_mutex
);
2517 EXPORT_SYMBOL(kmem_cache_shrink
);
2520 * kmem_cache_destroy - delete a cache
2521 * @cachep: the cache to destroy
2523 * Remove a struct kmem_cache object from the slab cache.
2525 * It is expected this function will be called by a module when it is
2526 * unloaded. This will remove the cache completely, and avoid a duplicate
2527 * cache being allocated each time a module is loaded and unloaded, if the
2528 * module doesn't have persistent in-kernel storage across loads and unloads.
2530 * The cache must be empty before calling this function.
2532 * The caller must guarantee that noone will allocate memory from the cache
2533 * during the kmem_cache_destroy().
2535 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2537 BUG_ON(!cachep
|| in_interrupt());
2539 /* Find the cache in the chain of caches. */
2540 mutex_lock(&cache_chain_mutex
);
2542 * the chain is never empty, cache_cache is never destroyed
2544 list_del(&cachep
->next
);
2545 if (__cache_shrink(cachep
)) {
2546 slab_error(cachep
, "Can't free all objects");
2547 list_add(&cachep
->next
, &cache_chain
);
2548 mutex_unlock(&cache_chain_mutex
);
2552 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2555 __kmem_cache_destroy(cachep
);
2556 mutex_unlock(&cache_chain_mutex
);
2558 EXPORT_SYMBOL(kmem_cache_destroy
);
2561 * Get the memory for a slab management obj.
2562 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2563 * always come from malloc_sizes caches. The slab descriptor cannot
2564 * come from the same cache which is getting created because,
2565 * when we are searching for an appropriate cache for these
2566 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2567 * If we are creating a malloc_sizes cache here it would not be visible to
2568 * kmem_find_general_cachep till the initialization is complete.
2569 * Hence we cannot have slabp_cache same as the original cache.
2571 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2572 int colour_off
, gfp_t local_flags
,
2577 if (OFF_SLAB(cachep
)) {
2578 /* Slab management obj is off-slab. */
2579 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2580 local_flags
& ~GFP_THISNODE
, nodeid
);
2584 slabp
= objp
+ colour_off
;
2585 colour_off
+= cachep
->slab_size
;
2588 slabp
->colouroff
= colour_off
;
2589 slabp
->s_mem
= objp
+ colour_off
;
2590 slabp
->nodeid
= nodeid
;
2594 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2596 return (kmem_bufctl_t
*) (slabp
+ 1);
2599 static void cache_init_objs(struct kmem_cache
*cachep
,
2600 struct slab
*slabp
, unsigned long ctor_flags
)
2604 for (i
= 0; i
< cachep
->num
; i
++) {
2605 void *objp
= index_to_obj(cachep
, slabp
, i
);
2607 /* need to poison the objs? */
2608 if (cachep
->flags
& SLAB_POISON
)
2609 poison_obj(cachep
, objp
, POISON_FREE
);
2610 if (cachep
->flags
& SLAB_STORE_USER
)
2611 *dbg_userword(cachep
, objp
) = NULL
;
2613 if (cachep
->flags
& SLAB_RED_ZONE
) {
2614 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2615 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2618 * Constructors are not allowed to allocate memory from the same
2619 * cache which they are a constructor for. Otherwise, deadlock.
2620 * They must also be threaded.
2622 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2623 cachep
->ctor(objp
+ obj_offset(cachep
), cachep
,
2626 if (cachep
->flags
& SLAB_RED_ZONE
) {
2627 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2628 slab_error(cachep
, "constructor overwrote the"
2629 " end of an object");
2630 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2631 slab_error(cachep
, "constructor overwrote the"
2632 " start of an object");
2634 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2635 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2636 kernel_map_pages(virt_to_page(objp
),
2637 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2640 cachep
->ctor(objp
, cachep
, ctor_flags
);
2642 slab_bufctl(slabp
)[i
] = i
+ 1;
2644 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2648 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2650 if (CONFIG_ZONE_DMA_FLAG
) {
2651 if (flags
& GFP_DMA
)
2652 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2654 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2658 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2661 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2665 next
= slab_bufctl(slabp
)[slabp
->free
];
2667 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2668 WARN_ON(slabp
->nodeid
!= nodeid
);
2675 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2676 void *objp
, int nodeid
)
2678 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2681 /* Verify that the slab belongs to the intended node */
2682 WARN_ON(slabp
->nodeid
!= nodeid
);
2684 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2685 printk(KERN_ERR
"slab: double free detected in cache "
2686 "'%s', objp %p\n", cachep
->name
, objp
);
2690 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2691 slabp
->free
= objnr
;
2696 * Map pages beginning at addr to the given cache and slab. This is required
2697 * for the slab allocator to be able to lookup the cache and slab of a
2698 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2700 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2706 page
= virt_to_page(addr
);
2709 if (likely(!PageCompound(page
)))
2710 nr_pages
<<= cache
->gfporder
;
2713 page_set_cache(page
, cache
);
2714 page_set_slab(page
, slab
);
2716 } while (--nr_pages
);
2720 * Grow (by 1) the number of slabs within a cache. This is called by
2721 * kmem_cache_alloc() when there are no active objs left in a cache.
2723 static int cache_grow(struct kmem_cache
*cachep
,
2724 gfp_t flags
, int nodeid
, void *objp
)
2729 unsigned long ctor_flags
;
2730 struct kmem_list3
*l3
;
2733 * Be lazy and only check for valid flags here, keeping it out of the
2734 * critical path in kmem_cache_alloc().
2736 BUG_ON(flags
& ~(GFP_DMA
| GFP_LEVEL_MASK
| __GFP_NO_GROW
));
2737 if (flags
& __GFP_NO_GROW
)
2740 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2741 local_flags
= (flags
& GFP_LEVEL_MASK
);
2742 if (!(local_flags
& __GFP_WAIT
))
2744 * Not allowed to sleep. Need to tell a constructor about
2745 * this - it might need to know...
2747 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2749 /* Take the l3 list lock to change the colour_next on this node */
2751 l3
= cachep
->nodelists
[nodeid
];
2752 spin_lock(&l3
->list_lock
);
2754 /* Get colour for the slab, and cal the next value. */
2755 offset
= l3
->colour_next
;
2757 if (l3
->colour_next
>= cachep
->colour
)
2758 l3
->colour_next
= 0;
2759 spin_unlock(&l3
->list_lock
);
2761 offset
*= cachep
->colour_off
;
2763 if (local_flags
& __GFP_WAIT
)
2767 * The test for missing atomic flag is performed here, rather than
2768 * the more obvious place, simply to reduce the critical path length
2769 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2770 * will eventually be caught here (where it matters).
2772 kmem_flagcheck(cachep
, flags
);
2775 * Get mem for the objs. Attempt to allocate a physical page from
2779 objp
= kmem_getpages(cachep
, flags
, nodeid
);
2783 /* Get slab management. */
2784 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2785 local_flags
& ~GFP_THISNODE
, nodeid
);
2789 slabp
->nodeid
= nodeid
;
2790 slab_map_pages(cachep
, slabp
, objp
);
2792 cache_init_objs(cachep
, slabp
, ctor_flags
);
2794 if (local_flags
& __GFP_WAIT
)
2795 local_irq_disable();
2797 spin_lock(&l3
->list_lock
);
2799 /* Make slab active. */
2800 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2801 STATS_INC_GROWN(cachep
);
2802 l3
->free_objects
+= cachep
->num
;
2803 spin_unlock(&l3
->list_lock
);
2806 kmem_freepages(cachep
, objp
);
2808 if (local_flags
& __GFP_WAIT
)
2809 local_irq_disable();
2816 * Perform extra freeing checks:
2817 * - detect bad pointers.
2818 * - POISON/RED_ZONE checking
2819 * - destructor calls, for caches with POISON+dtor
2821 static void kfree_debugcheck(const void *objp
)
2823 if (!virt_addr_valid(objp
)) {
2824 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2825 (unsigned long)objp
);
2830 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2832 unsigned long redzone1
, redzone2
;
2834 redzone1
= *dbg_redzone1(cache
, obj
);
2835 redzone2
= *dbg_redzone2(cache
, obj
);
2840 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2843 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2844 slab_error(cache
, "double free detected");
2846 slab_error(cache
, "memory outside object was overwritten");
2848 printk(KERN_ERR
"%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2849 obj
, redzone1
, redzone2
);
2852 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2859 objp
-= obj_offset(cachep
);
2860 kfree_debugcheck(objp
);
2861 page
= virt_to_page(objp
);
2863 slabp
= page_get_slab(page
);
2865 if (cachep
->flags
& SLAB_RED_ZONE
) {
2866 verify_redzone_free(cachep
, objp
);
2867 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2868 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2870 if (cachep
->flags
& SLAB_STORE_USER
)
2871 *dbg_userword(cachep
, objp
) = caller
;
2873 objnr
= obj_to_index(cachep
, slabp
, objp
);
2875 BUG_ON(objnr
>= cachep
->num
);
2876 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2878 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
2880 * Need to call the slab's constructor so the caller can
2881 * perform a verify of its state (debugging). Called without
2882 * the cache-lock held.
2884 cachep
->ctor(objp
+ obj_offset(cachep
),
2885 cachep
, SLAB_CTOR_CONSTRUCTOR
| SLAB_CTOR_VERIFY
);
2887 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
2888 /* we want to cache poison the object,
2889 * call the destruction callback
2891 cachep
->dtor(objp
+ obj_offset(cachep
), cachep
, 0);
2893 #ifdef CONFIG_DEBUG_SLAB_LEAK
2894 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2896 if (cachep
->flags
& SLAB_POISON
) {
2897 #ifdef CONFIG_DEBUG_PAGEALLOC
2898 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2899 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2900 kernel_map_pages(virt_to_page(objp
),
2901 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2903 poison_obj(cachep
, objp
, POISON_FREE
);
2906 poison_obj(cachep
, objp
, POISON_FREE
);
2912 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2917 /* Check slab's freelist to see if this obj is there. */
2918 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2920 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2923 if (entries
!= cachep
->num
- slabp
->inuse
) {
2925 printk(KERN_ERR
"slab: Internal list corruption detected in "
2926 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2927 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2929 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2932 printk("\n%03x:", i
);
2933 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2940 #define kfree_debugcheck(x) do { } while(0)
2941 #define cache_free_debugcheck(x,objp,z) (objp)
2942 #define check_slabp(x,y) do { } while(0)
2945 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2948 struct kmem_list3
*l3
;
2949 struct array_cache
*ac
;
2952 node
= numa_node_id();
2955 ac
= cpu_cache_get(cachep
);
2957 batchcount
= ac
->batchcount
;
2958 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2960 * If there was little recent activity on this cache, then
2961 * perform only a partial refill. Otherwise we could generate
2964 batchcount
= BATCHREFILL_LIMIT
;
2966 l3
= cachep
->nodelists
[node
];
2968 BUG_ON(ac
->avail
> 0 || !l3
);
2969 spin_lock(&l3
->list_lock
);
2971 /* See if we can refill from the shared array */
2972 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2975 while (batchcount
> 0) {
2976 struct list_head
*entry
;
2978 /* Get slab alloc is to come from. */
2979 entry
= l3
->slabs_partial
.next
;
2980 if (entry
== &l3
->slabs_partial
) {
2981 l3
->free_touched
= 1;
2982 entry
= l3
->slabs_free
.next
;
2983 if (entry
== &l3
->slabs_free
)
2987 slabp
= list_entry(entry
, struct slab
, list
);
2988 check_slabp(cachep
, slabp
);
2989 check_spinlock_acquired(cachep
);
2990 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2991 STATS_INC_ALLOCED(cachep
);
2992 STATS_INC_ACTIVE(cachep
);
2993 STATS_SET_HIGH(cachep
);
2995 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
2998 check_slabp(cachep
, slabp
);
3000 /* move slabp to correct slabp list: */
3001 list_del(&slabp
->list
);
3002 if (slabp
->free
== BUFCTL_END
)
3003 list_add(&slabp
->list
, &l3
->slabs_full
);
3005 list_add(&slabp
->list
, &l3
->slabs_partial
);
3009 l3
->free_objects
-= ac
->avail
;
3011 spin_unlock(&l3
->list_lock
);
3013 if (unlikely(!ac
->avail
)) {
3015 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3017 /* cache_grow can reenable interrupts, then ac could change. */
3018 ac
= cpu_cache_get(cachep
);
3019 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3022 if (!ac
->avail
) /* objects refilled by interrupt? */
3026 return ac
->entry
[--ac
->avail
];
3029 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3032 might_sleep_if(flags
& __GFP_WAIT
);
3034 kmem_flagcheck(cachep
, flags
);
3039 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3040 gfp_t flags
, void *objp
, void *caller
)
3044 if (cachep
->flags
& SLAB_POISON
) {
3045 #ifdef CONFIG_DEBUG_PAGEALLOC
3046 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3047 kernel_map_pages(virt_to_page(objp
),
3048 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3050 check_poison_obj(cachep
, objp
);
3052 check_poison_obj(cachep
, objp
);
3054 poison_obj(cachep
, objp
, POISON_INUSE
);
3056 if (cachep
->flags
& SLAB_STORE_USER
)
3057 *dbg_userword(cachep
, objp
) = caller
;
3059 if (cachep
->flags
& SLAB_RED_ZONE
) {
3060 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3061 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3062 slab_error(cachep
, "double free, or memory outside"
3063 " object was overwritten");
3065 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3066 objp
, *dbg_redzone1(cachep
, objp
),
3067 *dbg_redzone2(cachep
, objp
));
3069 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3070 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3072 #ifdef CONFIG_DEBUG_SLAB_LEAK
3077 slabp
= page_get_slab(virt_to_page(objp
));
3078 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3079 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3082 objp
+= obj_offset(cachep
);
3083 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
3084 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
3086 if (!(flags
& __GFP_WAIT
))
3087 ctor_flags
|= SLAB_CTOR_ATOMIC
;
3089 cachep
->ctor(objp
, cachep
, ctor_flags
);
3091 #if ARCH_SLAB_MINALIGN
3092 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3093 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3094 objp
, ARCH_SLAB_MINALIGN
);
3100 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3103 #ifdef CONFIG_FAILSLAB
3105 static struct failslab_attr
{
3107 struct fault_attr attr
;
3109 u32 ignore_gfp_wait
;
3110 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3111 struct dentry
*ignore_gfp_wait_file
;
3115 .attr
= FAULT_ATTR_INITIALIZER
,
3116 .ignore_gfp_wait
= 1,
3119 static int __init
setup_failslab(char *str
)
3121 return setup_fault_attr(&failslab
.attr
, str
);
3123 __setup("failslab=", setup_failslab
);
3125 static int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3127 if (cachep
== &cache_cache
)
3129 if (flags
& __GFP_NOFAIL
)
3131 if (failslab
.ignore_gfp_wait
&& (flags
& __GFP_WAIT
))
3134 return should_fail(&failslab
.attr
, obj_size(cachep
));
3137 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3139 static int __init
failslab_debugfs(void)
3141 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
3145 err
= init_fault_attr_dentries(&failslab
.attr
, "failslab");
3148 dir
= failslab
.attr
.dentries
.dir
;
3150 failslab
.ignore_gfp_wait_file
=
3151 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3152 &failslab
.ignore_gfp_wait
);
3154 if (!failslab
.ignore_gfp_wait_file
) {
3156 debugfs_remove(failslab
.ignore_gfp_wait_file
);
3157 cleanup_fault_attr_dentries(&failslab
.attr
);
3163 late_initcall(failslab_debugfs
);
3165 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3167 #else /* CONFIG_FAILSLAB */
3169 static inline int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3174 #endif /* CONFIG_FAILSLAB */
3176 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3179 struct array_cache
*ac
;
3183 if (should_failslab(cachep
, flags
))
3186 ac
= cpu_cache_get(cachep
);
3187 if (likely(ac
->avail
)) {
3188 STATS_INC_ALLOCHIT(cachep
);
3190 objp
= ac
->entry
[--ac
->avail
];
3192 STATS_INC_ALLOCMISS(cachep
);
3193 objp
= cache_alloc_refill(cachep
, flags
);
3200 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3202 * If we are in_interrupt, then process context, including cpusets and
3203 * mempolicy, may not apply and should not be used for allocation policy.
3205 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3207 int nid_alloc
, nid_here
;
3209 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3211 nid_alloc
= nid_here
= numa_node_id();
3212 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3213 nid_alloc
= cpuset_mem_spread_node();
3214 else if (current
->mempolicy
)
3215 nid_alloc
= slab_node(current
->mempolicy
);
3216 if (nid_alloc
!= nid_here
)
3217 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3222 * Fallback function if there was no memory available and no objects on a
3223 * certain node and fall back is permitted. First we scan all the
3224 * available nodelists for available objects. If that fails then we
3225 * perform an allocation without specifying a node. This allows the page
3226 * allocator to do its reclaim / fallback magic. We then insert the
3227 * slab into the proper nodelist and then allocate from it.
3229 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3231 struct zonelist
*zonelist
;
3237 if (flags
& __GFP_THISNODE
)
3240 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
3241 ->node_zonelists
[gfp_zone(flags
)];
3242 local_flags
= (flags
& GFP_LEVEL_MASK
);
3246 * Look through allowed nodes for objects available
3247 * from existing per node queues.
3249 for (z
= zonelist
->zones
; *z
&& !obj
; z
++) {
3250 nid
= zone_to_nid(*z
);
3252 if (cpuset_zone_allowed_hardwall(*z
, flags
) &&
3253 cache
->nodelists
[nid
] &&
3254 cache
->nodelists
[nid
]->free_objects
)
3255 obj
= ____cache_alloc_node(cache
,
3256 flags
| GFP_THISNODE
, nid
);
3259 if (!obj
&& !(flags
& __GFP_NO_GROW
)) {
3261 * This allocation will be performed within the constraints
3262 * of the current cpuset / memory policy requirements.
3263 * We may trigger various forms of reclaim on the allowed
3264 * set and go into memory reserves if necessary.
3266 if (local_flags
& __GFP_WAIT
)
3268 kmem_flagcheck(cache
, flags
);
3269 obj
= kmem_getpages(cache
, flags
, -1);
3270 if (local_flags
& __GFP_WAIT
)
3271 local_irq_disable();
3274 * Insert into the appropriate per node queues
3276 nid
= page_to_nid(virt_to_page(obj
));
3277 if (cache_grow(cache
, flags
, nid
, obj
)) {
3278 obj
= ____cache_alloc_node(cache
,
3279 flags
| GFP_THISNODE
, nid
);
3282 * Another processor may allocate the
3283 * objects in the slab since we are
3284 * not holding any locks.
3288 /* cache_grow already freed obj */
3297 * A interface to enable slab creation on nodeid
3299 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3302 struct list_head
*entry
;
3304 struct kmem_list3
*l3
;
3308 l3
= cachep
->nodelists
[nodeid
];
3313 spin_lock(&l3
->list_lock
);
3314 entry
= l3
->slabs_partial
.next
;
3315 if (entry
== &l3
->slabs_partial
) {
3316 l3
->free_touched
= 1;
3317 entry
= l3
->slabs_free
.next
;
3318 if (entry
== &l3
->slabs_free
)
3322 slabp
= list_entry(entry
, struct slab
, list
);
3323 check_spinlock_acquired_node(cachep
, nodeid
);
3324 check_slabp(cachep
, slabp
);
3326 STATS_INC_NODEALLOCS(cachep
);
3327 STATS_INC_ACTIVE(cachep
);
3328 STATS_SET_HIGH(cachep
);
3330 BUG_ON(slabp
->inuse
== cachep
->num
);
3332 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3333 check_slabp(cachep
, slabp
);
3335 /* move slabp to correct slabp list: */
3336 list_del(&slabp
->list
);
3338 if (slabp
->free
== BUFCTL_END
)
3339 list_add(&slabp
->list
, &l3
->slabs_full
);
3341 list_add(&slabp
->list
, &l3
->slabs_partial
);
3343 spin_unlock(&l3
->list_lock
);
3347 spin_unlock(&l3
->list_lock
);
3348 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3352 return fallback_alloc(cachep
, flags
);
3359 * kmem_cache_alloc_node - Allocate an object on the specified node
3360 * @cachep: The cache to allocate from.
3361 * @flags: See kmalloc().
3362 * @nodeid: node number of the target node.
3363 * @caller: return address of caller, used for debug information
3365 * Identical to kmem_cache_alloc but it will allocate memory on the given
3366 * node, which can improve the performance for cpu bound structures.
3368 * Fallback to other node is possible if __GFP_THISNODE is not set.
3370 static __always_inline
void *
3371 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3374 unsigned long save_flags
;
3377 cache_alloc_debugcheck_before(cachep
, flags
);
3378 local_irq_save(save_flags
);
3380 if (unlikely(nodeid
== -1))
3381 nodeid
= numa_node_id();
3383 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3384 /* Node not bootstrapped yet */
3385 ptr
= fallback_alloc(cachep
, flags
);
3389 if (nodeid
== numa_node_id()) {
3391 * Use the locally cached objects if possible.
3392 * However ____cache_alloc does not allow fallback
3393 * to other nodes. It may fail while we still have
3394 * objects on other nodes available.
3396 ptr
= ____cache_alloc(cachep
, flags
);
3400 /* ___cache_alloc_node can fall back to other nodes */
3401 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3403 local_irq_restore(save_flags
);
3404 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3409 static __always_inline
void *
3410 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3414 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3415 objp
= alternate_node_alloc(cache
, flags
);
3419 objp
= ____cache_alloc(cache
, flags
);
3422 * We may just have run out of memory on the local node.
3423 * ____cache_alloc_node() knows how to locate memory on other nodes
3426 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3433 static __always_inline
void *
3434 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3436 return ____cache_alloc(cachep
, flags
);
3439 #endif /* CONFIG_NUMA */
3441 static __always_inline
void *
3442 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3444 unsigned long save_flags
;
3447 cache_alloc_debugcheck_before(cachep
, flags
);
3448 local_irq_save(save_flags
);
3449 objp
= __do_cache_alloc(cachep
, flags
);
3450 local_irq_restore(save_flags
);
3451 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3458 * Caller needs to acquire correct kmem_list's list_lock
3460 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3464 struct kmem_list3
*l3
;
3466 for (i
= 0; i
< nr_objects
; i
++) {
3467 void *objp
= objpp
[i
];
3470 slabp
= virt_to_slab(objp
);
3471 l3
= cachep
->nodelists
[node
];
3472 list_del(&slabp
->list
);
3473 check_spinlock_acquired_node(cachep
, node
);
3474 check_slabp(cachep
, slabp
);
3475 slab_put_obj(cachep
, slabp
, objp
, node
);
3476 STATS_DEC_ACTIVE(cachep
);
3478 check_slabp(cachep
, slabp
);
3480 /* fixup slab chains */
3481 if (slabp
->inuse
== 0) {
3482 if (l3
->free_objects
> l3
->free_limit
) {
3483 l3
->free_objects
-= cachep
->num
;
3484 /* No need to drop any previously held
3485 * lock here, even if we have a off-slab slab
3486 * descriptor it is guaranteed to come from
3487 * a different cache, refer to comments before
3490 slab_destroy(cachep
, slabp
);
3492 list_add(&slabp
->list
, &l3
->slabs_free
);
3495 /* Unconditionally move a slab to the end of the
3496 * partial list on free - maximum time for the
3497 * other objects to be freed, too.
3499 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3504 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3507 struct kmem_list3
*l3
;
3508 int node
= numa_node_id();
3510 batchcount
= ac
->batchcount
;
3512 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3515 l3
= cachep
->nodelists
[node
];
3516 spin_lock(&l3
->list_lock
);
3518 struct array_cache
*shared_array
= l3
->shared
;
3519 int max
= shared_array
->limit
- shared_array
->avail
;
3521 if (batchcount
> max
)
3523 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3524 ac
->entry
, sizeof(void *) * batchcount
);
3525 shared_array
->avail
+= batchcount
;
3530 free_block(cachep
, ac
->entry
, batchcount
, node
);
3535 struct list_head
*p
;
3537 p
= l3
->slabs_free
.next
;
3538 while (p
!= &(l3
->slabs_free
)) {
3541 slabp
= list_entry(p
, struct slab
, list
);
3542 BUG_ON(slabp
->inuse
);
3547 STATS_SET_FREEABLE(cachep
, i
);
3550 spin_unlock(&l3
->list_lock
);
3551 ac
->avail
-= batchcount
;
3552 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3556 * Release an obj back to its cache. If the obj has a constructed state, it must
3557 * be in this state _before_ it is released. Called with disabled ints.
3559 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3561 struct array_cache
*ac
= cpu_cache_get(cachep
);
3564 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3566 if (cache_free_alien(cachep
, objp
))
3569 if (likely(ac
->avail
< ac
->limit
)) {
3570 STATS_INC_FREEHIT(cachep
);
3571 ac
->entry
[ac
->avail
++] = objp
;
3574 STATS_INC_FREEMISS(cachep
);
3575 cache_flusharray(cachep
, ac
);
3576 ac
->entry
[ac
->avail
++] = objp
;
3581 * kmem_cache_alloc - Allocate an object
3582 * @cachep: The cache to allocate from.
3583 * @flags: See kmalloc().
3585 * Allocate an object from this cache. The flags are only relevant
3586 * if the cache has no available objects.
3588 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3590 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3592 EXPORT_SYMBOL(kmem_cache_alloc
);
3595 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3596 * @cache: The cache to allocate from.
3597 * @flags: See kmalloc().
3599 * Allocate an object from this cache and set the allocated memory to zero.
3600 * The flags are only relevant if the cache has no available objects.
3602 void *kmem_cache_zalloc(struct kmem_cache
*cache
, gfp_t flags
)
3604 void *ret
= __cache_alloc(cache
, flags
, __builtin_return_address(0));
3606 memset(ret
, 0, obj_size(cache
));
3609 EXPORT_SYMBOL(kmem_cache_zalloc
);
3612 * kmem_ptr_validate - check if an untrusted pointer might
3614 * @cachep: the cache we're checking against
3615 * @ptr: pointer to validate
3617 * This verifies that the untrusted pointer looks sane:
3618 * it is _not_ a guarantee that the pointer is actually
3619 * part of the slab cache in question, but it at least
3620 * validates that the pointer can be dereferenced and
3621 * looks half-way sane.
3623 * Currently only used for dentry validation.
3625 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3627 unsigned long addr
= (unsigned long)ptr
;
3628 unsigned long min_addr
= PAGE_OFFSET
;
3629 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3630 unsigned long size
= cachep
->buffer_size
;
3633 if (unlikely(addr
< min_addr
))
3635 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3637 if (unlikely(addr
& align_mask
))
3639 if (unlikely(!kern_addr_valid(addr
)))
3641 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3643 page
= virt_to_page(ptr
);
3644 if (unlikely(!PageSlab(page
)))
3646 if (unlikely(page_get_cache(page
) != cachep
))
3654 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3656 return __cache_alloc_node(cachep
, flags
, nodeid
,
3657 __builtin_return_address(0));
3659 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3661 static __always_inline
void *
3662 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3664 struct kmem_cache
*cachep
;
3666 cachep
= kmem_find_general_cachep(size
, flags
);
3667 if (unlikely(cachep
== NULL
))
3669 return kmem_cache_alloc_node(cachep
, flags
, node
);
3672 #ifdef CONFIG_DEBUG_SLAB
3673 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3675 return __do_kmalloc_node(size
, flags
, node
,
3676 __builtin_return_address(0));
3678 EXPORT_SYMBOL(__kmalloc_node
);
3680 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3681 int node
, void *caller
)
3683 return __do_kmalloc_node(size
, flags
, node
, caller
);
3685 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3687 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3689 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3691 EXPORT_SYMBOL(__kmalloc_node
);
3692 #endif /* CONFIG_DEBUG_SLAB */
3693 #endif /* CONFIG_NUMA */
3696 * __do_kmalloc - allocate memory
3697 * @size: how many bytes of memory are required.
3698 * @flags: the type of memory to allocate (see kmalloc).
3699 * @caller: function caller for debug tracking of the caller
3701 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3704 struct kmem_cache
*cachep
;
3706 /* If you want to save a few bytes .text space: replace
3708 * Then kmalloc uses the uninlined functions instead of the inline
3711 cachep
= __find_general_cachep(size
, flags
);
3712 if (unlikely(cachep
== NULL
))
3714 return __cache_alloc(cachep
, flags
, caller
);
3718 #ifdef CONFIG_DEBUG_SLAB
3719 void *__kmalloc(size_t size
, gfp_t flags
)
3721 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3723 EXPORT_SYMBOL(__kmalloc
);
3725 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3727 return __do_kmalloc(size
, flags
, caller
);
3729 EXPORT_SYMBOL(__kmalloc_track_caller
);
3732 void *__kmalloc(size_t size
, gfp_t flags
)
3734 return __do_kmalloc(size
, flags
, NULL
);
3736 EXPORT_SYMBOL(__kmalloc
);
3740 * kmem_cache_free - Deallocate an object
3741 * @cachep: The cache the allocation was from.
3742 * @objp: The previously allocated object.
3744 * Free an object which was previously allocated from this
3747 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3749 unsigned long flags
;
3751 BUG_ON(virt_to_cache(objp
) != cachep
);
3753 local_irq_save(flags
);
3754 __cache_free(cachep
, objp
);
3755 local_irq_restore(flags
);
3757 EXPORT_SYMBOL(kmem_cache_free
);
3760 * kfree - free previously allocated memory
3761 * @objp: pointer returned by kmalloc.
3763 * If @objp is NULL, no operation is performed.
3765 * Don't free memory not originally allocated by kmalloc()
3766 * or you will run into trouble.
3768 void kfree(const void *objp
)
3770 struct kmem_cache
*c
;
3771 unsigned long flags
;
3773 if (unlikely(!objp
))
3775 local_irq_save(flags
);
3776 kfree_debugcheck(objp
);
3777 c
= virt_to_cache(objp
);
3778 debug_check_no_locks_freed(objp
, obj_size(c
));
3779 __cache_free(c
, (void *)objp
);
3780 local_irq_restore(flags
);
3782 EXPORT_SYMBOL(kfree
);
3784 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3786 return obj_size(cachep
);
3788 EXPORT_SYMBOL(kmem_cache_size
);
3790 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3792 return cachep
->name
;
3794 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3797 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3799 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3802 struct kmem_list3
*l3
;
3803 struct array_cache
*new_shared
;
3804 struct array_cache
**new_alien
= NULL
;
3806 for_each_online_node(node
) {
3808 if (use_alien_caches
) {
3809 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3814 new_shared
= alloc_arraycache(node
,
3815 cachep
->shared
*cachep
->batchcount
,
3818 free_alien_cache(new_alien
);
3822 l3
= cachep
->nodelists
[node
];
3824 struct array_cache
*shared
= l3
->shared
;
3826 spin_lock_irq(&l3
->list_lock
);
3829 free_block(cachep
, shared
->entry
,
3830 shared
->avail
, node
);
3832 l3
->shared
= new_shared
;
3834 l3
->alien
= new_alien
;
3837 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3838 cachep
->batchcount
+ cachep
->num
;
3839 spin_unlock_irq(&l3
->list_lock
);
3841 free_alien_cache(new_alien
);
3844 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3846 free_alien_cache(new_alien
);
3851 kmem_list3_init(l3
);
3852 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3853 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3854 l3
->shared
= new_shared
;
3855 l3
->alien
= new_alien
;
3856 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3857 cachep
->batchcount
+ cachep
->num
;
3858 cachep
->nodelists
[node
] = l3
;
3863 if (!cachep
->next
.next
) {
3864 /* Cache is not active yet. Roll back what we did */
3867 if (cachep
->nodelists
[node
]) {
3868 l3
= cachep
->nodelists
[node
];
3871 free_alien_cache(l3
->alien
);
3873 cachep
->nodelists
[node
] = NULL
;
3881 struct ccupdate_struct
{
3882 struct kmem_cache
*cachep
;
3883 struct array_cache
*new[NR_CPUS
];
3886 static void do_ccupdate_local(void *info
)
3888 struct ccupdate_struct
*new = info
;
3889 struct array_cache
*old
;
3892 old
= cpu_cache_get(new->cachep
);
3894 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3895 new->new[smp_processor_id()] = old
;
3898 /* Always called with the cache_chain_mutex held */
3899 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3900 int batchcount
, int shared
)
3902 struct ccupdate_struct
*new;
3905 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3909 for_each_online_cpu(i
) {
3910 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3913 for (i
--; i
>= 0; i
--)
3919 new->cachep
= cachep
;
3921 on_each_cpu(do_ccupdate_local
, (void *)new, 1, 1);
3924 cachep
->batchcount
= batchcount
;
3925 cachep
->limit
= limit
;
3926 cachep
->shared
= shared
;
3928 for_each_online_cpu(i
) {
3929 struct array_cache
*ccold
= new->new[i
];
3932 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3933 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3934 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3938 return alloc_kmemlist(cachep
);
3941 /* Called with cache_chain_mutex held always */
3942 static int enable_cpucache(struct kmem_cache
*cachep
)
3948 * The head array serves three purposes:
3949 * - create a LIFO ordering, i.e. return objects that are cache-warm
3950 * - reduce the number of spinlock operations.
3951 * - reduce the number of linked list operations on the slab and
3952 * bufctl chains: array operations are cheaper.
3953 * The numbers are guessed, we should auto-tune as described by
3956 if (cachep
->buffer_size
> 131072)
3958 else if (cachep
->buffer_size
> PAGE_SIZE
)
3960 else if (cachep
->buffer_size
> 1024)
3962 else if (cachep
->buffer_size
> 256)
3968 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3969 * allocation behaviour: Most allocs on one cpu, most free operations
3970 * on another cpu. For these cases, an efficient object passing between
3971 * cpus is necessary. This is provided by a shared array. The array
3972 * replaces Bonwick's magazine layer.
3973 * On uniprocessor, it's functionally equivalent (but less efficient)
3974 * to a larger limit. Thus disabled by default.
3978 if (cachep
->buffer_size
<= PAGE_SIZE
)
3984 * With debugging enabled, large batchcount lead to excessively long
3985 * periods with disabled local interrupts. Limit the batchcount
3990 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3992 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3993 cachep
->name
, -err
);
3998 * Drain an array if it contains any elements taking the l3 lock only if
3999 * necessary. Note that the l3 listlock also protects the array_cache
4000 * if drain_array() is used on the shared array.
4002 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4003 struct array_cache
*ac
, int force
, int node
)
4007 if (!ac
|| !ac
->avail
)
4009 if (ac
->touched
&& !force
) {
4012 spin_lock_irq(&l3
->list_lock
);
4014 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4015 if (tofree
> ac
->avail
)
4016 tofree
= (ac
->avail
+ 1) / 2;
4017 free_block(cachep
, ac
->entry
, tofree
, node
);
4018 ac
->avail
-= tofree
;
4019 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4020 sizeof(void *) * ac
->avail
);
4022 spin_unlock_irq(&l3
->list_lock
);
4027 * cache_reap - Reclaim memory from caches.
4028 * @unused: unused parameter
4030 * Called from workqueue/eventd every few seconds.
4032 * - clear the per-cpu caches for this CPU.
4033 * - return freeable pages to the main free memory pool.
4035 * If we cannot acquire the cache chain mutex then just give up - we'll try
4036 * again on the next iteration.
4038 static void cache_reap(struct work_struct
*w
)
4040 struct kmem_cache
*searchp
;
4041 struct kmem_list3
*l3
;
4042 int node
= numa_node_id();
4043 struct delayed_work
*work
=
4044 container_of(w
, struct delayed_work
, work
);
4046 if (!mutex_trylock(&cache_chain_mutex
))
4047 /* Give up. Setup the next iteration. */
4050 list_for_each_entry(searchp
, &cache_chain
, next
) {
4054 * We only take the l3 lock if absolutely necessary and we
4055 * have established with reasonable certainty that
4056 * we can do some work if the lock was obtained.
4058 l3
= searchp
->nodelists
[node
];
4060 reap_alien(searchp
, l3
);
4062 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4065 * These are racy checks but it does not matter
4066 * if we skip one check or scan twice.
4068 if (time_after(l3
->next_reap
, jiffies
))
4071 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4073 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4075 if (l3
->free_touched
)
4076 l3
->free_touched
= 0;
4080 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4081 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4082 STATS_ADD_REAPED(searchp
, freed
);
4088 mutex_unlock(&cache_chain_mutex
);
4090 refresh_cpu_vm_stats(smp_processor_id());
4092 /* Set up the next iteration */
4093 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4096 #ifdef CONFIG_PROC_FS
4098 static void print_slabinfo_header(struct seq_file
*m
)
4101 * Output format version, so at least we can change it
4102 * without _too_ many complaints.
4105 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4107 seq_puts(m
, "slabinfo - version: 2.1\n");
4109 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4110 "<objperslab> <pagesperslab>");
4111 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4112 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4114 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4115 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4116 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4121 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4124 struct list_head
*p
;
4126 mutex_lock(&cache_chain_mutex
);
4128 print_slabinfo_header(m
);
4129 p
= cache_chain
.next
;
4132 if (p
== &cache_chain
)
4135 return list_entry(p
, struct kmem_cache
, next
);
4138 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4140 struct kmem_cache
*cachep
= p
;
4142 return cachep
->next
.next
== &cache_chain
?
4143 NULL
: list_entry(cachep
->next
.next
, struct kmem_cache
, next
);
4146 static void s_stop(struct seq_file
*m
, void *p
)
4148 mutex_unlock(&cache_chain_mutex
);
4151 static int s_show(struct seq_file
*m
, void *p
)
4153 struct kmem_cache
*cachep
= p
;
4155 unsigned long active_objs
;
4156 unsigned long num_objs
;
4157 unsigned long active_slabs
= 0;
4158 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4162 struct kmem_list3
*l3
;
4166 for_each_online_node(node
) {
4167 l3
= cachep
->nodelists
[node
];
4172 spin_lock_irq(&l3
->list_lock
);
4174 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4175 if (slabp
->inuse
!= cachep
->num
&& !error
)
4176 error
= "slabs_full accounting error";
4177 active_objs
+= cachep
->num
;
4180 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4181 if (slabp
->inuse
== cachep
->num
&& !error
)
4182 error
= "slabs_partial inuse accounting error";
4183 if (!slabp
->inuse
&& !error
)
4184 error
= "slabs_partial/inuse accounting error";
4185 active_objs
+= slabp
->inuse
;
4188 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4189 if (slabp
->inuse
&& !error
)
4190 error
= "slabs_free/inuse accounting error";
4193 free_objects
+= l3
->free_objects
;
4195 shared_avail
+= l3
->shared
->avail
;
4197 spin_unlock_irq(&l3
->list_lock
);
4199 num_slabs
+= active_slabs
;
4200 num_objs
= num_slabs
* cachep
->num
;
4201 if (num_objs
- active_objs
!= free_objects
&& !error
)
4202 error
= "free_objects accounting error";
4204 name
= cachep
->name
;
4206 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4208 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4209 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4210 cachep
->num
, (1 << cachep
->gfporder
));
4211 seq_printf(m
, " : tunables %4u %4u %4u",
4212 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4213 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4214 active_slabs
, num_slabs
, shared_avail
);
4217 unsigned long high
= cachep
->high_mark
;
4218 unsigned long allocs
= cachep
->num_allocations
;
4219 unsigned long grown
= cachep
->grown
;
4220 unsigned long reaped
= cachep
->reaped
;
4221 unsigned long errors
= cachep
->errors
;
4222 unsigned long max_freeable
= cachep
->max_freeable
;
4223 unsigned long node_allocs
= cachep
->node_allocs
;
4224 unsigned long node_frees
= cachep
->node_frees
;
4225 unsigned long overflows
= cachep
->node_overflow
;
4227 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4228 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4229 reaped
, errors
, max_freeable
, node_allocs
,
4230 node_frees
, overflows
);
4234 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4235 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4236 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4237 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4239 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4240 allochit
, allocmiss
, freehit
, freemiss
);
4248 * slabinfo_op - iterator that generates /proc/slabinfo
4257 * num-pages-per-slab
4258 * + further values on SMP and with statistics enabled
4261 const struct seq_operations slabinfo_op
= {
4268 #define MAX_SLABINFO_WRITE 128
4270 * slabinfo_write - Tuning for the slab allocator
4272 * @buffer: user buffer
4273 * @count: data length
4276 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4277 size_t count
, loff_t
*ppos
)
4279 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4280 int limit
, batchcount
, shared
, res
;
4281 struct kmem_cache
*cachep
;
4283 if (count
> MAX_SLABINFO_WRITE
)
4285 if (copy_from_user(&kbuf
, buffer
, count
))
4287 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4289 tmp
= strchr(kbuf
, ' ');
4294 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4297 /* Find the cache in the chain of caches. */
4298 mutex_lock(&cache_chain_mutex
);
4300 list_for_each_entry(cachep
, &cache_chain
, next
) {
4301 if (!strcmp(cachep
->name
, kbuf
)) {
4302 if (limit
< 1 || batchcount
< 1 ||
4303 batchcount
> limit
|| shared
< 0) {
4306 res
= do_tune_cpucache(cachep
, limit
,
4307 batchcount
, shared
);
4312 mutex_unlock(&cache_chain_mutex
);
4318 #ifdef CONFIG_DEBUG_SLAB_LEAK
4320 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4323 struct list_head
*p
;
4325 mutex_lock(&cache_chain_mutex
);
4326 p
= cache_chain
.next
;
4329 if (p
== &cache_chain
)
4332 return list_entry(p
, struct kmem_cache
, next
);
4335 static inline int add_caller(unsigned long *n
, unsigned long v
)
4345 unsigned long *q
= p
+ 2 * i
;
4359 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4365 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4371 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4372 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4374 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4379 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4381 #ifdef CONFIG_KALLSYMS
4384 unsigned long offset
, size
;
4385 char namebuf
[KSYM_NAME_LEN
+1];
4387 name
= kallsyms_lookup(address
, &size
, &offset
, &modname
, namebuf
);
4390 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4392 seq_printf(m
, " [%s]", modname
);
4396 seq_printf(m
, "%p", (void *)address
);
4399 static int leaks_show(struct seq_file
*m
, void *p
)
4401 struct kmem_cache
*cachep
= p
;
4403 struct kmem_list3
*l3
;
4405 unsigned long *n
= m
->private;
4409 if (!(cachep
->flags
& SLAB_STORE_USER
))
4411 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4414 /* OK, we can do it */
4418 for_each_online_node(node
) {
4419 l3
= cachep
->nodelists
[node
];
4424 spin_lock_irq(&l3
->list_lock
);
4426 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4427 handle_slab(n
, cachep
, slabp
);
4428 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4429 handle_slab(n
, cachep
, slabp
);
4430 spin_unlock_irq(&l3
->list_lock
);
4432 name
= cachep
->name
;
4434 /* Increase the buffer size */
4435 mutex_unlock(&cache_chain_mutex
);
4436 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4438 /* Too bad, we are really out */
4440 mutex_lock(&cache_chain_mutex
);
4443 *(unsigned long *)m
->private = n
[0] * 2;
4445 mutex_lock(&cache_chain_mutex
);
4446 /* Now make sure this entry will be retried */
4450 for (i
= 0; i
< n
[1]; i
++) {
4451 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4452 show_symbol(m
, n
[2*i
+2]);
4459 const struct seq_operations slabstats_op
= {
4460 .start
= leaks_start
,
4469 * ksize - get the actual amount of memory allocated for a given object
4470 * @objp: Pointer to the object
4472 * kmalloc may internally round up allocations and return more memory
4473 * than requested. ksize() can be used to determine the actual amount of
4474 * memory allocated. The caller may use this additional memory, even though
4475 * a smaller amount of memory was initially specified with the kmalloc call.
4476 * The caller must guarantee that objp points to a valid object previously
4477 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4478 * must not be freed during the duration of the call.
4480 unsigned int ksize(const void *objp
)
4482 if (unlikely(objp
== NULL
))
4485 return obj_size(virt_to_cache(objp
));