4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
44 #include <linux/swapops.h>
49 /* Incremented by the number of inactive pages that were scanned */
50 unsigned long nr_scanned
;
52 /* This context's GFP mask */
57 /* Can pages be swapped as part of reclaim? */
60 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 * In this context, it doesn't matter that we scan the
63 * whole list at once. */
68 int all_unreclaimable
;
72 * The list of shrinker callbacks used by to apply pressure to
77 struct list_head list
;
78 int seeks
; /* seeks to recreate an obj */
79 long nr
; /* objs pending delete */
82 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
84 #ifdef ARCH_HAS_PREFETCH
85 #define prefetch_prev_lru_page(_page, _base, _field) \
87 if ((_page)->lru.prev != _base) { \
90 prev = lru_to_page(&(_page->lru)); \
91 prefetch(&prev->_field); \
95 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #ifdef ARCH_HAS_PREFETCHW
99 #define prefetchw_prev_lru_page(_page, _base, _field) \
101 if ((_page)->lru.prev != _base) { \
104 prev = lru_to_page(&(_page->lru)); \
105 prefetchw(&prev->_field); \
109 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
113 * From 0 .. 100. Higher means more swappy.
115 int vm_swappiness
= 60;
116 long vm_total_pages
; /* The total number of pages which the VM controls */
118 static LIST_HEAD(shrinker_list
);
119 static DECLARE_RWSEM(shrinker_rwsem
);
122 * Add a shrinker callback to be called from the vm
124 struct shrinker
*set_shrinker(int seeks
, shrinker_t theshrinker
)
126 struct shrinker
*shrinker
;
128 shrinker
= kmalloc(sizeof(*shrinker
), GFP_KERNEL
);
130 shrinker
->shrinker
= theshrinker
;
131 shrinker
->seeks
= seeks
;
133 down_write(&shrinker_rwsem
);
134 list_add_tail(&shrinker
->list
, &shrinker_list
);
135 up_write(&shrinker_rwsem
);
139 EXPORT_SYMBOL(set_shrinker
);
144 void remove_shrinker(struct shrinker
*shrinker
)
146 down_write(&shrinker_rwsem
);
147 list_del(&shrinker
->list
);
148 up_write(&shrinker_rwsem
);
151 EXPORT_SYMBOL(remove_shrinker
);
153 #define SHRINK_BATCH 128
155 * Call the shrink functions to age shrinkable caches
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object. With this in mind we age equal
159 * percentages of the lru and ageable caches. This should balance the seeks
160 * generated by these structures.
162 * If the vm encounted mapped pages on the LRU it increase the pressure on
163 * slab to avoid swapping.
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt. It is used for balancing
169 * slab reclaim versus page reclaim.
171 * Returns the number of slab objects which we shrunk.
173 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
174 unsigned long lru_pages
)
176 struct shrinker
*shrinker
;
177 unsigned long ret
= 0;
180 scanned
= SWAP_CLUSTER_MAX
;
182 if (!down_read_trylock(&shrinker_rwsem
))
183 return 1; /* Assume we'll be able to shrink next time */
185 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
186 unsigned long long delta
;
187 unsigned long total_scan
;
188 unsigned long max_pass
= (*shrinker
->shrinker
)(0, gfp_mask
);
190 delta
= (4 * scanned
) / shrinker
->seeks
;
192 do_div(delta
, lru_pages
+ 1);
193 shrinker
->nr
+= delta
;
194 if (shrinker
->nr
< 0) {
195 printk(KERN_ERR
"%s: nr=%ld\n",
196 __FUNCTION__
, shrinker
->nr
);
197 shrinker
->nr
= max_pass
;
201 * Avoid risking looping forever due to too large nr value:
202 * never try to free more than twice the estimate number of
205 if (shrinker
->nr
> max_pass
* 2)
206 shrinker
->nr
= max_pass
* 2;
208 total_scan
= shrinker
->nr
;
211 while (total_scan
>= SHRINK_BATCH
) {
212 long this_scan
= SHRINK_BATCH
;
216 nr_before
= (*shrinker
->shrinker
)(0, gfp_mask
);
217 shrink_ret
= (*shrinker
->shrinker
)(this_scan
, gfp_mask
);
218 if (shrink_ret
== -1)
220 if (shrink_ret
< nr_before
)
221 ret
+= nr_before
- shrink_ret
;
222 count_vm_events(SLABS_SCANNED
, this_scan
);
223 total_scan
-= this_scan
;
228 shrinker
->nr
+= total_scan
;
230 up_read(&shrinker_rwsem
);
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page
*page
)
237 struct address_space
*mapping
;
239 /* Page is in somebody's page tables. */
240 if (page_mapped(page
))
243 /* Be more reluctant to reclaim swapcache than pagecache */
244 if (PageSwapCache(page
))
247 mapping
= page_mapping(page
);
251 /* File is mmap'd by somebody? */
252 return mapping_mapped(mapping
);
255 static inline int is_page_cache_freeable(struct page
*page
)
257 return page_count(page
) - !!PagePrivate(page
) == 2;
260 static int may_write_to_queue(struct backing_dev_info
*bdi
)
262 if (current
->flags
& PF_SWAPWRITE
)
264 if (!bdi_write_congested(bdi
))
266 if (bdi
== current
->backing_dev_info
)
272 * We detected a synchronous write error writing a page out. Probably
273 * -ENOSPC. We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up. But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
280 * We're allowed to run sleeping lock_page() here because we know the caller has
283 static void handle_write_error(struct address_space
*mapping
,
284 struct page
*page
, int error
)
287 if (page_mapping(page
) == mapping
) {
288 if (error
== -ENOSPC
)
289 set_bit(AS_ENOSPC
, &mapping
->flags
);
291 set_bit(AS_EIO
, &mapping
->flags
);
296 /* possible outcome of pageout() */
298 /* failed to write page out, page is locked */
300 /* move page to the active list, page is locked */
302 /* page has been sent to the disk successfully, page is unlocked */
304 /* page is clean and locked */
309 * pageout is called by shrink_page_list() for each dirty page.
310 * Calls ->writepage().
312 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
)
315 * If the page is dirty, only perform writeback if that write
316 * will be non-blocking. To prevent this allocation from being
317 * stalled by pagecache activity. But note that there may be
318 * stalls if we need to run get_block(). We could test
319 * PagePrivate for that.
321 * If this process is currently in generic_file_write() against
322 * this page's queue, we can perform writeback even if that
325 * If the page is swapcache, write it back even if that would
326 * block, for some throttling. This happens by accident, because
327 * swap_backing_dev_info is bust: it doesn't reflect the
328 * congestion state of the swapdevs. Easy to fix, if needed.
329 * See swapfile.c:page_queue_congested().
331 if (!is_page_cache_freeable(page
))
335 * Some data journaling orphaned pages can have
336 * page->mapping == NULL while being dirty with clean buffers.
338 if (PagePrivate(page
)) {
339 if (try_to_free_buffers(page
)) {
340 ClearPageDirty(page
);
341 printk("%s: orphaned page\n", __FUNCTION__
);
347 if (mapping
->a_ops
->writepage
== NULL
)
348 return PAGE_ACTIVATE
;
349 if (!may_write_to_queue(mapping
->backing_dev_info
))
352 if (clear_page_dirty_for_io(page
)) {
354 struct writeback_control wbc
= {
355 .sync_mode
= WB_SYNC_NONE
,
356 .nr_to_write
= SWAP_CLUSTER_MAX
,
358 .range_end
= LLONG_MAX
,
363 SetPageReclaim(page
);
364 res
= mapping
->a_ops
->writepage(page
, &wbc
);
366 handle_write_error(mapping
, page
, res
);
367 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
368 ClearPageReclaim(page
);
369 return PAGE_ACTIVATE
;
371 if (!PageWriteback(page
)) {
372 /* synchronous write or broken a_ops? */
373 ClearPageReclaim(page
);
375 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
383 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
384 * someone else has a ref on the page, abort and return 0. If it was
385 * successfully detached, return 1. Assumes the caller has a single ref on
388 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
390 BUG_ON(!PageLocked(page
));
391 BUG_ON(mapping
!= page_mapping(page
));
393 write_lock_irq(&mapping
->tree_lock
);
395 * The non racy check for a busy page.
397 * Must be careful with the order of the tests. When someone has
398 * a ref to the page, it may be possible that they dirty it then
399 * drop the reference. So if PageDirty is tested before page_count
400 * here, then the following race may occur:
402 * get_user_pages(&page);
403 * [user mapping goes away]
405 * !PageDirty(page) [good]
406 * SetPageDirty(page);
408 * !page_count(page) [good, discard it]
410 * [oops, our write_to data is lost]
412 * Reversing the order of the tests ensures such a situation cannot
413 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
414 * load is not satisfied before that of page->_count.
416 * Note that if SetPageDirty is always performed via set_page_dirty,
417 * and thus under tree_lock, then this ordering is not required.
419 if (unlikely(page_count(page
) != 2))
422 if (unlikely(PageDirty(page
)))
425 if (PageSwapCache(page
)) {
426 swp_entry_t swap
= { .val
= page_private(page
) };
427 __delete_from_swap_cache(page
);
428 write_unlock_irq(&mapping
->tree_lock
);
430 __put_page(page
); /* The pagecache ref */
434 __remove_from_page_cache(page
);
435 write_unlock_irq(&mapping
->tree_lock
);
440 write_unlock_irq(&mapping
->tree_lock
);
445 * shrink_page_list() returns the number of reclaimed pages
447 static unsigned long shrink_page_list(struct list_head
*page_list
,
448 struct scan_control
*sc
)
450 LIST_HEAD(ret_pages
);
451 struct pagevec freed_pvec
;
453 unsigned long nr_reclaimed
= 0;
457 pagevec_init(&freed_pvec
, 1);
458 while (!list_empty(page_list
)) {
459 struct address_space
*mapping
;
466 page
= lru_to_page(page_list
);
467 list_del(&page
->lru
);
469 if (TestSetPageLocked(page
))
472 VM_BUG_ON(PageActive(page
));
476 if (!sc
->may_swap
&& page_mapped(page
))
479 /* Double the slab pressure for mapped and swapcache pages */
480 if (page_mapped(page
) || PageSwapCache(page
))
483 if (PageWriteback(page
))
486 referenced
= page_referenced(page
, 1);
487 /* In active use or really unfreeable? Activate it. */
488 if (referenced
&& page_mapping_inuse(page
))
489 goto activate_locked
;
493 * Anonymous process memory has backing store?
494 * Try to allocate it some swap space here.
496 if (PageAnon(page
) && !PageSwapCache(page
))
497 if (!add_to_swap(page
, GFP_ATOMIC
))
498 goto activate_locked
;
499 #endif /* CONFIG_SWAP */
501 mapping
= page_mapping(page
);
502 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
503 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
506 * The page is mapped into the page tables of one or more
507 * processes. Try to unmap it here.
509 if (page_mapped(page
) && mapping
) {
510 switch (try_to_unmap(page
, 0)) {
512 goto activate_locked
;
516 ; /* try to free the page below */
520 if (PageDirty(page
)) {
525 if (!sc
->may_writepage
)
528 /* Page is dirty, try to write it out here */
529 switch(pageout(page
, mapping
)) {
533 goto activate_locked
;
535 if (PageWriteback(page
) || PageDirty(page
))
538 * A synchronous write - probably a ramdisk. Go
539 * ahead and try to reclaim the page.
541 if (TestSetPageLocked(page
))
543 if (PageDirty(page
) || PageWriteback(page
))
545 mapping
= page_mapping(page
);
547 ; /* try to free the page below */
552 * If the page has buffers, try to free the buffer mappings
553 * associated with this page. If we succeed we try to free
556 * We do this even if the page is PageDirty().
557 * try_to_release_page() does not perform I/O, but it is
558 * possible for a page to have PageDirty set, but it is actually
559 * clean (all its buffers are clean). This happens if the
560 * buffers were written out directly, with submit_bh(). ext3
561 * will do this, as well as the blockdev mapping.
562 * try_to_release_page() will discover that cleanness and will
563 * drop the buffers and mark the page clean - it can be freed.
565 * Rarely, pages can have buffers and no ->mapping. These are
566 * the pages which were not successfully invalidated in
567 * truncate_complete_page(). We try to drop those buffers here
568 * and if that worked, and the page is no longer mapped into
569 * process address space (page_count == 1) it can be freed.
570 * Otherwise, leave the page on the LRU so it is swappable.
572 if (PagePrivate(page
)) {
573 if (!try_to_release_page(page
, sc
->gfp_mask
))
574 goto activate_locked
;
575 if (!mapping
&& page_count(page
) == 1)
579 if (!mapping
|| !remove_mapping(mapping
, page
))
585 if (!pagevec_add(&freed_pvec
, page
))
586 __pagevec_release_nonlru(&freed_pvec
);
595 list_add(&page
->lru
, &ret_pages
);
596 VM_BUG_ON(PageLRU(page
));
598 list_splice(&ret_pages
, page_list
);
599 if (pagevec_count(&freed_pvec
))
600 __pagevec_release_nonlru(&freed_pvec
);
601 count_vm_events(PGACTIVATE
, pgactivate
);
606 * zone->lru_lock is heavily contended. Some of the functions that
607 * shrink the lists perform better by taking out a batch of pages
608 * and working on them outside the LRU lock.
610 * For pagecache intensive workloads, this function is the hottest
611 * spot in the kernel (apart from copy_*_user functions).
613 * Appropriate locks must be held before calling this function.
615 * @nr_to_scan: The number of pages to look through on the list.
616 * @src: The LRU list to pull pages off.
617 * @dst: The temp list to put pages on to.
618 * @scanned: The number of pages that were scanned.
620 * returns how many pages were moved onto *@dst.
622 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
623 struct list_head
*src
, struct list_head
*dst
,
624 unsigned long *scanned
)
626 unsigned long nr_taken
= 0;
630 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
631 struct list_head
*target
;
632 page
= lru_to_page(src
);
633 prefetchw_prev_lru_page(page
, src
, flags
);
635 VM_BUG_ON(!PageLRU(page
));
637 list_del(&page
->lru
);
639 if (likely(get_page_unless_zero(page
))) {
641 * Be careful not to clear PageLRU until after we're
642 * sure the page is not being freed elsewhere -- the
643 * page release code relies on it.
648 } /* else it is being freed elsewhere */
650 list_add(&page
->lru
, target
);
658 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
661 static unsigned long shrink_inactive_list(unsigned long max_scan
,
662 struct zone
*zone
, struct scan_control
*sc
)
664 LIST_HEAD(page_list
);
666 unsigned long nr_scanned
= 0;
667 unsigned long nr_reclaimed
= 0;
669 pagevec_init(&pvec
, 1);
672 spin_lock_irq(&zone
->lru_lock
);
675 unsigned long nr_taken
;
676 unsigned long nr_scan
;
677 unsigned long nr_freed
;
679 nr_taken
= isolate_lru_pages(sc
->swap_cluster_max
,
680 &zone
->inactive_list
,
681 &page_list
, &nr_scan
);
682 __mod_zone_page_state(zone
, NR_INACTIVE
, -nr_taken
);
683 zone
->pages_scanned
+= nr_scan
;
684 spin_unlock_irq(&zone
->lru_lock
);
686 nr_scanned
+= nr_scan
;
687 nr_freed
= shrink_page_list(&page_list
, sc
);
688 nr_reclaimed
+= nr_freed
;
690 if (current_is_kswapd()) {
691 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
692 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
694 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
695 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
700 spin_lock(&zone
->lru_lock
);
702 * Put back any unfreeable pages.
704 while (!list_empty(&page_list
)) {
705 page
= lru_to_page(&page_list
);
706 VM_BUG_ON(PageLRU(page
));
708 list_del(&page
->lru
);
709 if (PageActive(page
))
710 add_page_to_active_list(zone
, page
);
712 add_page_to_inactive_list(zone
, page
);
713 if (!pagevec_add(&pvec
, page
)) {
714 spin_unlock_irq(&zone
->lru_lock
);
715 __pagevec_release(&pvec
);
716 spin_lock_irq(&zone
->lru_lock
);
719 } while (nr_scanned
< max_scan
);
720 spin_unlock(&zone
->lru_lock
);
723 pagevec_release(&pvec
);
728 * We are about to scan this zone at a certain priority level. If that priority
729 * level is smaller (ie: more urgent) than the previous priority, then note
730 * that priority level within the zone. This is done so that when the next
731 * process comes in to scan this zone, it will immediately start out at this
732 * priority level rather than having to build up its own scanning priority.
733 * Here, this priority affects only the reclaim-mapped threshold.
735 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
737 if (priority
< zone
->prev_priority
)
738 zone
->prev_priority
= priority
;
741 static inline int zone_is_near_oom(struct zone
*zone
)
743 return zone
->pages_scanned
>= (zone_page_state(zone
, NR_ACTIVE
)
744 + zone_page_state(zone
, NR_INACTIVE
))*3;
748 * This moves pages from the active list to the inactive list.
750 * We move them the other way if the page is referenced by one or more
751 * processes, from rmap.
753 * If the pages are mostly unmapped, the processing is fast and it is
754 * appropriate to hold zone->lru_lock across the whole operation. But if
755 * the pages are mapped, the processing is slow (page_referenced()) so we
756 * should drop zone->lru_lock around each page. It's impossible to balance
757 * this, so instead we remove the pages from the LRU while processing them.
758 * It is safe to rely on PG_active against the non-LRU pages in here because
759 * nobody will play with that bit on a non-LRU page.
761 * The downside is that we have to touch page->_count against each page.
762 * But we had to alter page->flags anyway.
764 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
765 struct scan_control
*sc
, int priority
)
767 unsigned long pgmoved
;
768 int pgdeactivate
= 0;
769 unsigned long pgscanned
;
770 LIST_HEAD(l_hold
); /* The pages which were snipped off */
771 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
772 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
775 int reclaim_mapped
= 0;
782 if (zone_is_near_oom(zone
))
783 goto force_reclaim_mapped
;
786 * `distress' is a measure of how much trouble we're having
787 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
789 distress
= 100 >> min(zone
->prev_priority
, priority
);
792 * The point of this algorithm is to decide when to start
793 * reclaiming mapped memory instead of just pagecache. Work out
797 mapped_ratio
= ((global_page_state(NR_FILE_MAPPED
) +
798 global_page_state(NR_ANON_PAGES
)) * 100) /
802 * Now decide how much we really want to unmap some pages. The
803 * mapped ratio is downgraded - just because there's a lot of
804 * mapped memory doesn't necessarily mean that page reclaim
807 * The distress ratio is important - we don't want to start
810 * A 100% value of vm_swappiness overrides this algorithm
813 swap_tendency
= mapped_ratio
/ 2 + distress
+ sc
->swappiness
;
816 * Now use this metric to decide whether to start moving mapped
817 * memory onto the inactive list.
819 if (swap_tendency
>= 100)
820 force_reclaim_mapped
:
825 spin_lock_irq(&zone
->lru_lock
);
826 pgmoved
= isolate_lru_pages(nr_pages
, &zone
->active_list
,
827 &l_hold
, &pgscanned
);
828 zone
->pages_scanned
+= pgscanned
;
829 __mod_zone_page_state(zone
, NR_ACTIVE
, -pgmoved
);
830 spin_unlock_irq(&zone
->lru_lock
);
832 while (!list_empty(&l_hold
)) {
834 page
= lru_to_page(&l_hold
);
835 list_del(&page
->lru
);
836 if (page_mapped(page
)) {
837 if (!reclaim_mapped
||
838 (total_swap_pages
== 0 && PageAnon(page
)) ||
839 page_referenced(page
, 0)) {
840 list_add(&page
->lru
, &l_active
);
844 list_add(&page
->lru
, &l_inactive
);
847 pagevec_init(&pvec
, 1);
849 spin_lock_irq(&zone
->lru_lock
);
850 while (!list_empty(&l_inactive
)) {
851 page
= lru_to_page(&l_inactive
);
852 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
853 VM_BUG_ON(PageLRU(page
));
855 VM_BUG_ON(!PageActive(page
));
856 ClearPageActive(page
);
858 list_move(&page
->lru
, &zone
->inactive_list
);
860 if (!pagevec_add(&pvec
, page
)) {
861 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
862 spin_unlock_irq(&zone
->lru_lock
);
863 pgdeactivate
+= pgmoved
;
865 if (buffer_heads_over_limit
)
866 pagevec_strip(&pvec
);
867 __pagevec_release(&pvec
);
868 spin_lock_irq(&zone
->lru_lock
);
871 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
872 pgdeactivate
+= pgmoved
;
873 if (buffer_heads_over_limit
) {
874 spin_unlock_irq(&zone
->lru_lock
);
875 pagevec_strip(&pvec
);
876 spin_lock_irq(&zone
->lru_lock
);
880 while (!list_empty(&l_active
)) {
881 page
= lru_to_page(&l_active
);
882 prefetchw_prev_lru_page(page
, &l_active
, flags
);
883 VM_BUG_ON(PageLRU(page
));
885 VM_BUG_ON(!PageActive(page
));
886 list_move(&page
->lru
, &zone
->active_list
);
888 if (!pagevec_add(&pvec
, page
)) {
889 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
891 spin_unlock_irq(&zone
->lru_lock
);
892 __pagevec_release(&pvec
);
893 spin_lock_irq(&zone
->lru_lock
);
896 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
898 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
899 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
900 spin_unlock_irq(&zone
->lru_lock
);
902 pagevec_release(&pvec
);
906 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
908 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
909 struct scan_control
*sc
)
911 unsigned long nr_active
;
912 unsigned long nr_inactive
;
913 unsigned long nr_to_scan
;
914 unsigned long nr_reclaimed
= 0;
916 atomic_inc(&zone
->reclaim_in_progress
);
919 * Add one to `nr_to_scan' just to make sure that the kernel will
920 * slowly sift through the active list.
922 zone
->nr_scan_active
+=
923 (zone_page_state(zone
, NR_ACTIVE
) >> priority
) + 1;
924 nr_active
= zone
->nr_scan_active
;
925 if (nr_active
>= sc
->swap_cluster_max
)
926 zone
->nr_scan_active
= 0;
930 zone
->nr_scan_inactive
+=
931 (zone_page_state(zone
, NR_INACTIVE
) >> priority
) + 1;
932 nr_inactive
= zone
->nr_scan_inactive
;
933 if (nr_inactive
>= sc
->swap_cluster_max
)
934 zone
->nr_scan_inactive
= 0;
938 while (nr_active
|| nr_inactive
) {
940 nr_to_scan
= min(nr_active
,
941 (unsigned long)sc
->swap_cluster_max
);
942 nr_active
-= nr_to_scan
;
943 shrink_active_list(nr_to_scan
, zone
, sc
, priority
);
947 nr_to_scan
= min(nr_inactive
,
948 (unsigned long)sc
->swap_cluster_max
);
949 nr_inactive
-= nr_to_scan
;
950 nr_reclaimed
+= shrink_inactive_list(nr_to_scan
, zone
,
955 throttle_vm_writeout();
957 atomic_dec(&zone
->reclaim_in_progress
);
962 * This is the direct reclaim path, for page-allocating processes. We only
963 * try to reclaim pages from zones which will satisfy the caller's allocation
966 * We reclaim from a zone even if that zone is over pages_high. Because:
967 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
969 * b) The zones may be over pages_high but they must go *over* pages_high to
970 * satisfy the `incremental min' zone defense algorithm.
972 * Returns the number of reclaimed pages.
974 * If a zone is deemed to be full of pinned pages then just give it a light
975 * scan then give up on it.
977 static unsigned long shrink_zones(int priority
, struct zone
**zones
,
978 struct scan_control
*sc
)
980 unsigned long nr_reclaimed
= 0;
983 sc
->all_unreclaimable
= 1;
984 for (i
= 0; zones
[i
] != NULL
; i
++) {
985 struct zone
*zone
= zones
[i
];
987 if (!populated_zone(zone
))
990 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
993 note_zone_scanning_priority(zone
, priority
);
995 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
996 continue; /* Let kswapd poll it */
998 sc
->all_unreclaimable
= 0;
1000 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
1002 return nr_reclaimed
;
1006 * This is the main entry point to direct page reclaim.
1008 * If a full scan of the inactive list fails to free enough memory then we
1009 * are "out of memory" and something needs to be killed.
1011 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1012 * high - the zone may be full of dirty or under-writeback pages, which this
1013 * caller can't do much about. We kick pdflush and take explicit naps in the
1014 * hope that some of these pages can be written. But if the allocating task
1015 * holds filesystem locks which prevent writeout this might not work, and the
1016 * allocation attempt will fail.
1018 unsigned long try_to_free_pages(struct zone
**zones
, gfp_t gfp_mask
)
1022 unsigned long total_scanned
= 0;
1023 unsigned long nr_reclaimed
= 0;
1024 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1025 unsigned long lru_pages
= 0;
1027 struct scan_control sc
= {
1028 .gfp_mask
= gfp_mask
,
1029 .may_writepage
= !laptop_mode
,
1030 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1032 .swappiness
= vm_swappiness
,
1035 count_vm_event(ALLOCSTALL
);
1037 for (i
= 0; zones
[i
] != NULL
; i
++) {
1038 struct zone
*zone
= zones
[i
];
1040 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1043 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1044 + zone_page_state(zone
, NR_INACTIVE
);
1047 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1050 disable_swap_token();
1051 nr_reclaimed
+= shrink_zones(priority
, zones
, &sc
);
1052 shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
);
1053 if (reclaim_state
) {
1054 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1055 reclaim_state
->reclaimed_slab
= 0;
1057 total_scanned
+= sc
.nr_scanned
;
1058 if (nr_reclaimed
>= sc
.swap_cluster_max
) {
1064 * Try to write back as many pages as we just scanned. This
1065 * tends to cause slow streaming writers to write data to the
1066 * disk smoothly, at the dirtying rate, which is nice. But
1067 * that's undesirable in laptop mode, where we *want* lumpy
1068 * writeout. So in laptop mode, write out the whole world.
1070 if (total_scanned
> sc
.swap_cluster_max
+
1071 sc
.swap_cluster_max
/ 2) {
1072 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1073 sc
.may_writepage
= 1;
1076 /* Take a nap, wait for some writeback to complete */
1077 if (sc
.nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1078 congestion_wait(WRITE
, HZ
/10);
1080 /* top priority shrink_caches still had more to do? don't OOM, then */
1081 if (!sc
.all_unreclaimable
)
1085 * Now that we've scanned all the zones at this priority level, note
1086 * that level within the zone so that the next thread which performs
1087 * scanning of this zone will immediately start out at this priority
1088 * level. This affects only the decision whether or not to bring
1089 * mapped pages onto the inactive list.
1093 for (i
= 0; zones
[i
] != 0; i
++) {
1094 struct zone
*zone
= zones
[i
];
1096 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1099 zone
->prev_priority
= priority
;
1105 * For kswapd, balance_pgdat() will work across all this node's zones until
1106 * they are all at pages_high.
1108 * Returns the number of pages which were actually freed.
1110 * There is special handling here for zones which are full of pinned pages.
1111 * This can happen if the pages are all mlocked, or if they are all used by
1112 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1113 * What we do is to detect the case where all pages in the zone have been
1114 * scanned twice and there has been zero successful reclaim. Mark the zone as
1115 * dead and from now on, only perform a short scan. Basically we're polling
1116 * the zone for when the problem goes away.
1118 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1119 * zones which have free_pages > pages_high, but once a zone is found to have
1120 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1121 * of the number of free pages in the lower zones. This interoperates with
1122 * the page allocator fallback scheme to ensure that aging of pages is balanced
1125 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1130 unsigned long total_scanned
;
1131 unsigned long nr_reclaimed
;
1132 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1133 struct scan_control sc
= {
1134 .gfp_mask
= GFP_KERNEL
,
1136 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1137 .swappiness
= vm_swappiness
,
1140 * temp_priority is used to remember the scanning priority at which
1141 * this zone was successfully refilled to free_pages == pages_high.
1143 int temp_priority
[MAX_NR_ZONES
];
1148 sc
.may_writepage
= !laptop_mode
;
1149 count_vm_event(PAGEOUTRUN
);
1151 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1152 temp_priority
[i
] = DEF_PRIORITY
;
1154 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1155 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1156 unsigned long lru_pages
= 0;
1158 /* The swap token gets in the way of swapout... */
1160 disable_swap_token();
1165 * Scan in the highmem->dma direction for the highest
1166 * zone which needs scanning
1168 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1169 struct zone
*zone
= pgdat
->node_zones
+ i
;
1171 if (!populated_zone(zone
))
1174 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1177 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1186 for (i
= 0; i
<= end_zone
; i
++) {
1187 struct zone
*zone
= pgdat
->node_zones
+ i
;
1189 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1190 + zone_page_state(zone
, NR_INACTIVE
);
1194 * Now scan the zone in the dma->highmem direction, stopping
1195 * at the last zone which needs scanning.
1197 * We do this because the page allocator works in the opposite
1198 * direction. This prevents the page allocator from allocating
1199 * pages behind kswapd's direction of progress, which would
1200 * cause too much scanning of the lower zones.
1202 for (i
= 0; i
<= end_zone
; i
++) {
1203 struct zone
*zone
= pgdat
->node_zones
+ i
;
1206 if (!populated_zone(zone
))
1209 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1212 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1215 temp_priority
[i
] = priority
;
1217 note_zone_scanning_priority(zone
, priority
);
1218 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1219 reclaim_state
->reclaimed_slab
= 0;
1220 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1222 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1223 total_scanned
+= sc
.nr_scanned
;
1224 if (zone
->all_unreclaimable
)
1226 if (nr_slab
== 0 && zone
->pages_scanned
>=
1227 (zone_page_state(zone
, NR_ACTIVE
)
1228 + zone_page_state(zone
, NR_INACTIVE
)) * 6)
1229 zone
->all_unreclaimable
= 1;
1231 * If we've done a decent amount of scanning and
1232 * the reclaim ratio is low, start doing writepage
1233 * even in laptop mode
1235 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1236 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1237 sc
.may_writepage
= 1;
1240 break; /* kswapd: all done */
1242 * OK, kswapd is getting into trouble. Take a nap, then take
1243 * another pass across the zones.
1245 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1246 congestion_wait(WRITE
, HZ
/10);
1249 * We do this so kswapd doesn't build up large priorities for
1250 * example when it is freeing in parallel with allocators. It
1251 * matches the direct reclaim path behaviour in terms of impact
1252 * on zone->*_priority.
1254 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1259 * Note within each zone the priority level at which this zone was
1260 * brought into a happy state. So that the next thread which scans this
1261 * zone will start out at that priority level.
1263 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1264 struct zone
*zone
= pgdat
->node_zones
+ i
;
1266 zone
->prev_priority
= temp_priority
[i
];
1268 if (!all_zones_ok
) {
1276 return nr_reclaimed
;
1280 * The background pageout daemon, started as a kernel thread
1281 * from the init process.
1283 * This basically trickles out pages so that we have _some_
1284 * free memory available even if there is no other activity
1285 * that frees anything up. This is needed for things like routing
1286 * etc, where we otherwise might have all activity going on in
1287 * asynchronous contexts that cannot page things out.
1289 * If there are applications that are active memory-allocators
1290 * (most normal use), this basically shouldn't matter.
1292 static int kswapd(void *p
)
1294 unsigned long order
;
1295 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1296 struct task_struct
*tsk
= current
;
1298 struct reclaim_state reclaim_state
= {
1299 .reclaimed_slab
= 0,
1303 cpumask
= node_to_cpumask(pgdat
->node_id
);
1304 if (!cpus_empty(cpumask
))
1305 set_cpus_allowed(tsk
, cpumask
);
1306 current
->reclaim_state
= &reclaim_state
;
1309 * Tell the memory management that we're a "memory allocator",
1310 * and that if we need more memory we should get access to it
1311 * regardless (see "__alloc_pages()"). "kswapd" should
1312 * never get caught in the normal page freeing logic.
1314 * (Kswapd normally doesn't need memory anyway, but sometimes
1315 * you need a small amount of memory in order to be able to
1316 * page out something else, and this flag essentially protects
1317 * us from recursively trying to free more memory as we're
1318 * trying to free the first piece of memory in the first place).
1320 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1324 unsigned long new_order
;
1328 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1329 new_order
= pgdat
->kswapd_max_order
;
1330 pgdat
->kswapd_max_order
= 0;
1331 if (order
< new_order
) {
1333 * Don't sleep if someone wants a larger 'order'
1339 order
= pgdat
->kswapd_max_order
;
1341 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1343 balance_pgdat(pgdat
, order
);
1349 * A zone is low on free memory, so wake its kswapd task to service it.
1351 void wakeup_kswapd(struct zone
*zone
, int order
)
1355 if (!populated_zone(zone
))
1358 pgdat
= zone
->zone_pgdat
;
1359 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1361 if (pgdat
->kswapd_max_order
< order
)
1362 pgdat
->kswapd_max_order
= order
;
1363 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1365 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1367 wake_up_interruptible(&pgdat
->kswapd_wait
);
1372 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1373 * from LRU lists system-wide, for given pass and priority, and returns the
1374 * number of reclaimed pages
1376 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1378 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
1379 int pass
, struct scan_control
*sc
)
1382 unsigned long nr_to_scan
, ret
= 0;
1384 for_each_zone(zone
) {
1386 if (!populated_zone(zone
))
1389 if (zone
->all_unreclaimable
&& prio
!= DEF_PRIORITY
)
1392 /* For pass = 0 we don't shrink the active list */
1394 zone
->nr_scan_active
+=
1395 (zone_page_state(zone
, NR_ACTIVE
) >> prio
) + 1;
1396 if (zone
->nr_scan_active
>= nr_pages
|| pass
> 3) {
1397 zone
->nr_scan_active
= 0;
1398 nr_to_scan
= min(nr_pages
,
1399 zone_page_state(zone
, NR_ACTIVE
));
1400 shrink_active_list(nr_to_scan
, zone
, sc
, prio
);
1404 zone
->nr_scan_inactive
+=
1405 (zone_page_state(zone
, NR_INACTIVE
) >> prio
) + 1;
1406 if (zone
->nr_scan_inactive
>= nr_pages
|| pass
> 3) {
1407 zone
->nr_scan_inactive
= 0;
1408 nr_to_scan
= min(nr_pages
,
1409 zone_page_state(zone
, NR_INACTIVE
));
1410 ret
+= shrink_inactive_list(nr_to_scan
, zone
, sc
);
1411 if (ret
>= nr_pages
)
1419 static unsigned long count_lru_pages(void)
1421 return global_page_state(NR_ACTIVE
) + global_page_state(NR_INACTIVE
);
1425 * Try to free `nr_pages' of memory, system-wide, and return the number of
1428 * Rather than trying to age LRUs the aim is to preserve the overall
1429 * LRU order by reclaiming preferentially
1430 * inactive > active > active referenced > active mapped
1432 unsigned long shrink_all_memory(unsigned long nr_pages
)
1434 unsigned long lru_pages
, nr_slab
;
1435 unsigned long ret
= 0;
1437 struct reclaim_state reclaim_state
;
1438 struct scan_control sc
= {
1439 .gfp_mask
= GFP_KERNEL
,
1441 .swap_cluster_max
= nr_pages
,
1443 .swappiness
= vm_swappiness
,
1446 current
->reclaim_state
= &reclaim_state
;
1448 lru_pages
= count_lru_pages();
1449 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
1450 /* If slab caches are huge, it's better to hit them first */
1451 while (nr_slab
>= lru_pages
) {
1452 reclaim_state
.reclaimed_slab
= 0;
1453 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1454 if (!reclaim_state
.reclaimed_slab
)
1457 ret
+= reclaim_state
.reclaimed_slab
;
1458 if (ret
>= nr_pages
)
1461 nr_slab
-= reclaim_state
.reclaimed_slab
;
1465 * We try to shrink LRUs in 5 passes:
1466 * 0 = Reclaim from inactive_list only
1467 * 1 = Reclaim from active list but don't reclaim mapped
1468 * 2 = 2nd pass of type 1
1469 * 3 = Reclaim mapped (normal reclaim)
1470 * 4 = 2nd pass of type 3
1472 for (pass
= 0; pass
< 5; pass
++) {
1475 /* Force reclaiming mapped pages in the passes #3 and #4 */
1478 sc
.swappiness
= 100;
1481 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
1482 unsigned long nr_to_scan
= nr_pages
- ret
;
1485 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
1486 if (ret
>= nr_pages
)
1489 reclaim_state
.reclaimed_slab
= 0;
1490 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
1492 ret
+= reclaim_state
.reclaimed_slab
;
1493 if (ret
>= nr_pages
)
1496 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
1497 congestion_wait(WRITE
, HZ
/ 10);
1502 * If ret = 0, we could not shrink LRUs, but there may be something
1507 reclaim_state
.reclaimed_slab
= 0;
1508 shrink_slab(nr_pages
, sc
.gfp_mask
, count_lru_pages());
1509 ret
+= reclaim_state
.reclaimed_slab
;
1510 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
1514 current
->reclaim_state
= NULL
;
1520 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1521 not required for correctness. So if the last cpu in a node goes
1522 away, we get changed to run anywhere: as the first one comes back,
1523 restore their cpu bindings. */
1524 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1525 unsigned long action
, void *hcpu
)
1530 if (action
== CPU_ONLINE
) {
1531 for_each_online_pgdat(pgdat
) {
1532 mask
= node_to_cpumask(pgdat
->node_id
);
1533 if (any_online_cpu(mask
) != NR_CPUS
)
1534 /* One of our CPUs online: restore mask */
1535 set_cpus_allowed(pgdat
->kswapd
, mask
);
1542 * This kswapd start function will be called by init and node-hot-add.
1543 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1545 int kswapd_run(int nid
)
1547 pg_data_t
*pgdat
= NODE_DATA(nid
);
1553 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
1554 if (IS_ERR(pgdat
->kswapd
)) {
1555 /* failure at boot is fatal */
1556 BUG_ON(system_state
== SYSTEM_BOOTING
);
1557 printk("Failed to start kswapd on node %d\n",nid
);
1563 static int __init
kswapd_init(void)
1568 for_each_online_node(nid
)
1570 hotcpu_notifier(cpu_callback
, 0);
1574 module_init(kswapd_init
)
1580 * If non-zero call zone_reclaim when the number of free pages falls below
1583 int zone_reclaim_mode __read_mostly
;
1585 #define RECLAIM_OFF 0
1586 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1587 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1588 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1591 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1592 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1595 #define ZONE_RECLAIM_PRIORITY 4
1598 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1601 int sysctl_min_unmapped_ratio
= 1;
1604 * If the number of slab pages in a zone grows beyond this percentage then
1605 * slab reclaim needs to occur.
1607 int sysctl_min_slab_ratio
= 5;
1610 * Try to free up some pages from this zone through reclaim.
1612 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1614 /* Minimum pages needed in order to stay on node */
1615 const unsigned long nr_pages
= 1 << order
;
1616 struct task_struct
*p
= current
;
1617 struct reclaim_state reclaim_state
;
1619 unsigned long nr_reclaimed
= 0;
1620 struct scan_control sc
= {
1621 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
1622 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
1623 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
1625 .gfp_mask
= gfp_mask
,
1626 .swappiness
= vm_swappiness
,
1628 unsigned long slab_reclaimable
;
1630 disable_swap_token();
1633 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1634 * and we also need to be able to write out pages for RECLAIM_WRITE
1637 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
1638 reclaim_state
.reclaimed_slab
= 0;
1639 p
->reclaim_state
= &reclaim_state
;
1641 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1642 zone_page_state(zone
, NR_FILE_MAPPED
) >
1643 zone
->min_unmapped_pages
) {
1645 * Free memory by calling shrink zone with increasing
1646 * priorities until we have enough memory freed.
1648 priority
= ZONE_RECLAIM_PRIORITY
;
1650 note_zone_scanning_priority(zone
, priority
);
1651 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1653 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
1656 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1657 if (slab_reclaimable
> zone
->min_slab_pages
) {
1659 * shrink_slab() does not currently allow us to determine how
1660 * many pages were freed in this zone. So we take the current
1661 * number of slab pages and shake the slab until it is reduced
1662 * by the same nr_pages that we used for reclaiming unmapped
1665 * Note that shrink_slab will free memory on all zones and may
1668 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
1669 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
1670 slab_reclaimable
- nr_pages
)
1674 * Update nr_reclaimed by the number of slab pages we
1675 * reclaimed from this zone.
1677 nr_reclaimed
+= slab_reclaimable
-
1678 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1681 p
->reclaim_state
= NULL
;
1682 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
1683 return nr_reclaimed
>= nr_pages
;
1686 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1692 * Zone reclaim reclaims unmapped file backed pages and
1693 * slab pages if we are over the defined limits.
1695 * A small portion of unmapped file backed pages is needed for
1696 * file I/O otherwise pages read by file I/O will be immediately
1697 * thrown out if the zone is overallocated. So we do not reclaim
1698 * if less than a specified percentage of the zone is used by
1699 * unmapped file backed pages.
1701 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1702 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
1703 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
1704 <= zone
->min_slab_pages
)
1708 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1709 * not have reclaimable pages and if we should not delay the allocation
1712 if (!(gfp_mask
& __GFP_WAIT
) ||
1713 zone
->all_unreclaimable
||
1714 atomic_read(&zone
->reclaim_in_progress
) > 0 ||
1715 (current
->flags
& PF_MEMALLOC
))
1719 * Only run zone reclaim on the local zone or on zones that do not
1720 * have associated processors. This will favor the local processor
1721 * over remote processors and spread off node memory allocations
1722 * as wide as possible.
1724 node_id
= zone_to_nid(zone
);
1725 mask
= node_to_cpumask(node_id
);
1726 if (!cpus_empty(mask
) && node_id
!= numa_node_id())
1728 return __zone_reclaim(zone
, gfp_mask
, order
);