2 # Traffic control configuration.
6 bool "QoS and/or fair queueing"
9 When the kernel has several packets to send out over a network
10 device, it has to decide which ones to send first, which ones to
11 delay, and which ones to drop. This is the job of the queueing
12 disciplines, several different algorithms for how to do this
13 "fairly" have been proposed.
15 If you say N here, you will get the standard packet scheduler, which
16 is a FIFO (first come, first served). If you say Y here, you will be
17 able to choose from among several alternative algorithms which can
18 then be attached to different network devices. This is useful for
19 example if some of your network devices are real time devices that
20 need a certain minimum data flow rate, or if you need to limit the
21 maximum data flow rate for traffic which matches specified criteria.
22 This code is considered to be experimental.
24 To administer these schedulers, you'll need the user-level utilities
25 from the package iproute2+tc at <ftp://ftp.tux.org/pub/net/ip-routing/>.
26 That package also contains some documentation; for more, check out
27 <http://linux-net.osdl.org/index.php/Iproute2>.
29 This Quality of Service (QoS) support will enable you to use
30 Differentiated Services (diffserv) and Resource Reservation Protocol
31 (RSVP) on your Linux router if you also say Y to the corresponding
32 classifiers below. Documentation and software is at
33 <http://diffserv.sourceforge.net/>.
35 If you say Y here and to "/proc file system" below, you will be able
36 to read status information about packet schedulers from the file
39 The available schedulers are listed in the following questions; you
40 can say Y to as many as you like. If unsure, say N now.
44 comment "Queueing/Scheduling"
47 tristate "Class Based Queueing (CBQ)"
49 Say Y here if you want to use the Class-Based Queueing (CBQ) packet
50 scheduling algorithm. This algorithm classifies the waiting packets
51 into a tree-like hierarchy of classes; the leaves of this tree are
52 in turn scheduled by separate algorithms.
54 See the top of <file:net/sched/sch_cbq.c> for more details.
56 CBQ is a commonly used scheduler, so if you're unsure, you should
57 say Y here. Then say Y to all the queueing algorithms below that you
58 want to use as leaf disciplines.
60 To compile this code as a module, choose M here: the
61 module will be called sch_cbq.
64 tristate "Hierarchical Token Bucket (HTB)"
66 Say Y here if you want to use the Hierarchical Token Buckets (HTB)
67 packet scheduling algorithm. See
68 <http://luxik.cdi.cz/~devik/qos/htb/> for complete manual and
71 HTB is very similar to CBQ regarding its goals however is has
72 different properties and different algorithm.
74 To compile this code as a module, choose M here: the
75 module will be called sch_htb.
78 tristate "Hierarchical Fair Service Curve (HFSC)"
80 Say Y here if you want to use the Hierarchical Fair Service Curve
81 (HFSC) packet scheduling algorithm.
83 To compile this code as a module, choose M here: the
84 module will be called sch_hfsc.
87 tristate "ATM Virtual Circuits (ATM)"
90 Say Y here if you want to use the ATM pseudo-scheduler. This
91 provides a framework for invoking classifiers, which in turn
92 select classes of this queuing discipline. Each class maps
93 the flow(s) it is handling to a given virtual circuit.
95 See the top of <file:net/sched/sch_atm.c> for more details.
97 To compile this code as a module, choose M here: the
98 module will be called sch_atm.
101 tristate "Multi Band Priority Queueing (PRIO)"
103 Say Y here if you want to use an n-band priority queue packet
106 To compile this code as a module, choose M here: the
107 module will be called sch_prio.
110 tristate "Multi Band Round Robin Queuing (RR)"
113 Say Y here if you want to use an n-band round robin packet
116 The module uses sch_prio for its framework and is aliased as
117 sch_rr, so it will load sch_prio, although it is referred
121 tristate "Random Early Detection (RED)"
123 Say Y here if you want to use the Random Early Detection (RED)
124 packet scheduling algorithm.
126 See the top of <file:net/sched/sch_red.c> for more details.
128 To compile this code as a module, choose M here: the
129 module will be called sch_red.
132 tristate "Stochastic Fairness Queueing (SFQ)"
134 Say Y here if you want to use the Stochastic Fairness Queueing (SFQ)
135 packet scheduling algorithm.
137 See the top of <file:net/sched/sch_sfq.c> for more details.
139 To compile this code as a module, choose M here: the
140 module will be called sch_sfq.
143 tristate "True Link Equalizer (TEQL)"
145 Say Y here if you want to use the True Link Equalizer (TLE) packet
146 scheduling algorithm. This queueing discipline allows the combination
147 of several physical devices into one virtual device.
149 See the top of <file:net/sched/sch_teql.c> for more details.
151 To compile this code as a module, choose M here: the
152 module will be called sch_teql.
155 tristate "Token Bucket Filter (TBF)"
157 Say Y here if you want to use the Token Bucket Filter (TBF) packet
158 scheduling algorithm.
160 See the top of <file:net/sched/sch_tbf.c> for more details.
162 To compile this code as a module, choose M here: the
163 module will be called sch_tbf.
166 tristate "Generic Random Early Detection (GRED)"
168 Say Y here if you want to use the Generic Random Early Detection
169 (GRED) packet scheduling algorithm for some of your network devices
170 (see the top of <file:net/sched/sch_red.c> for details and
171 references about the algorithm).
173 To compile this code as a module, choose M here: the
174 module will be called sch_gred.
176 config NET_SCH_DSMARK
177 tristate "Differentiated Services marker (DSMARK)"
179 Say Y if you want to schedule packets according to the
180 Differentiated Services architecture proposed in RFC 2475.
181 Technical information on this method, with pointers to associated
182 RFCs, is available at <http://www.gta.ufrj.br/diffserv/>.
184 To compile this code as a module, choose M here: the
185 module will be called sch_dsmark.
188 tristate "Network emulator (NETEM)"
190 Say Y if you want to emulate network delay, loss, and packet
191 re-ordering. This is often useful to simulate networks when
192 testing applications or protocols.
194 To compile this driver as a module, choose M here: the module
195 will be called sch_netem.
199 config NET_SCH_INGRESS
200 tristate "Ingress Qdisc"
201 depends on NET_CLS_ACT
203 Say Y here if you want to use classifiers for incoming packets.
206 To compile this code as a module, choose M here: the
207 module will be called sch_ingress.
209 comment "Classification"
215 tristate "Elementary classification (BASIC)"
218 Say Y here if you want to be able to classify packets using
219 only extended matches and actions.
221 To compile this code as a module, choose M here: the
222 module will be called cls_basic.
224 config NET_CLS_TCINDEX
225 tristate "Traffic-Control Index (TCINDEX)"
228 Say Y here if you want to be able to classify packets based on
229 traffic control indices. You will want this feature if you want
230 to implement Differentiated Services together with DSMARK.
232 To compile this code as a module, choose M here: the
233 module will be called cls_tcindex.
235 config NET_CLS_ROUTE4
236 tristate "Routing decision (ROUTE)"
240 If you say Y here, you will be able to classify packets
241 according to the route table entry they matched.
243 To compile this code as a module, choose M here: the
244 module will be called cls_route.
250 tristate "Netfilter mark (FW)"
253 If you say Y here, you will be able to classify packets
254 according to netfilter/firewall marks.
256 To compile this code as a module, choose M here: the
257 module will be called cls_fw.
260 tristate "Universal 32bit comparisons w/ hashing (U32)"
263 Say Y here to be able to classify packets using a universal
264 32bit pieces based comparison scheme.
266 To compile this code as a module, choose M here: the
267 module will be called cls_u32.
270 bool "Performance counters support"
271 depends on NET_CLS_U32
273 Say Y here to make u32 gather additional statistics useful for
274 fine tuning u32 classifiers.
277 bool "Netfilter marks support"
278 depends on NET_CLS_U32
280 Say Y here to be able to use netfilter marks as u32 key.
283 tristate "IPv4 Resource Reservation Protocol (RSVP)"
286 The Resource Reservation Protocol (RSVP) permits end systems to
287 request a minimum and maximum data flow rate for a connection; this
288 is important for real time data such as streaming sound or video.
290 Say Y here if you want to be able to classify outgoing packets based
291 on their RSVP requests.
293 To compile this code as a module, choose M here: the
294 module will be called cls_rsvp.
297 tristate "IPv6 Resource Reservation Protocol (RSVP6)"
300 The Resource Reservation Protocol (RSVP) permits end systems to
301 request a minimum and maximum data flow rate for a connection; this
302 is important for real time data such as streaming sound or video.
304 Say Y here if you want to be able to classify outgoing packets based
305 on their RSVP requests and you are using the IPv6 protocol.
307 To compile this code as a module, choose M here: the
308 module will be called cls_rsvp6.
311 tristate "Flow classifier"
314 If you say Y here, you will be able to classify packets based on
315 a configurable combination of packet keys. This is mostly useful
316 in combination with SFQ.
318 To compile this code as a module, choose M here: the
319 module will be called cls_flow.
322 bool "Extended Matches"
325 Say Y here if you want to use extended matches on top of classifiers
326 and select the extended matches below.
328 Extended matches are small classification helpers not worth writing
329 a separate classifier for.
331 A recent version of the iproute2 package is required to use
334 config NET_EMATCH_STACK
336 depends on NET_EMATCH
339 Size of the local stack variable used while evaluating the tree of
340 ematches. Limits the depth of the tree, i.e. the number of
341 encapsulated precedences. Every level requires 4 bytes of additional
344 config NET_EMATCH_CMP
345 tristate "Simple packet data comparison"
346 depends on NET_EMATCH
348 Say Y here if you want to be able to classify packets based on
349 simple packet data comparisons for 8, 16, and 32bit values.
351 To compile this code as a module, choose M here: the
352 module will be called em_cmp.
354 config NET_EMATCH_NBYTE
355 tristate "Multi byte comparison"
356 depends on NET_EMATCH
358 Say Y here if you want to be able to classify packets based on
359 multiple byte comparisons mainly useful for IPv6 address comparisons.
361 To compile this code as a module, choose M here: the
362 module will be called em_nbyte.
364 config NET_EMATCH_U32
366 depends on NET_EMATCH
368 Say Y here if you want to be able to classify packets using
369 the famous u32 key in combination with logic relations.
371 To compile this code as a module, choose M here: the
372 module will be called em_u32.
374 config NET_EMATCH_META
376 depends on NET_EMATCH
378 Say Y here if you want to be able to classify packets based on
379 metadata such as load average, netfilter attributes, socket
380 attributes and routing decisions.
382 To compile this code as a module, choose M here: the
383 module will be called em_meta.
385 config NET_EMATCH_TEXT
386 tristate "Textsearch"
387 depends on NET_EMATCH
389 select TEXTSEARCH_KMP
391 select TEXTSEARCH_FSM
393 Say Y here if you want to be able to classify packets based on
394 textsearch comparisons.
396 To compile this code as a module, choose M here: the
397 module will be called em_text.
402 Say Y here if you want to use traffic control actions. Actions
403 get attached to classifiers and are invoked after a successful
404 classification. They are used to overwrite the classification
405 result, instantly drop or redirect packets, etc.
407 A recent version of the iproute2 package is required to use
410 config NET_ACT_POLICE
411 tristate "Traffic Policing"
412 depends on NET_CLS_ACT
414 Say Y here if you want to do traffic policing, i.e. strict
415 bandwidth limiting. This action replaces the existing policing
418 To compile this code as a module, choose M here: the
419 module will be called police.
422 tristate "Generic actions"
423 depends on NET_CLS_ACT
425 Say Y here to take generic actions such as dropping and
428 To compile this code as a module, choose M here: the
429 module will be called gact.
432 bool "Probability support"
433 depends on NET_ACT_GACT
435 Say Y here to use the generic action randomly or deterministically.
437 config NET_ACT_MIRRED
438 tristate "Redirecting and Mirroring"
439 depends on NET_CLS_ACT
441 Say Y here to allow packets to be mirrored or redirected to
444 To compile this code as a module, choose M here: the
445 module will be called mirred.
448 tristate "IPtables targets"
449 depends on NET_CLS_ACT && NETFILTER && IP_NF_IPTABLES
451 Say Y here to be able to invoke iptables targets after successful
454 To compile this code as a module, choose M here: the
455 module will be called ipt.
458 tristate "Stateless NAT"
459 depends on NET_CLS_ACT
461 Say Y here to do stateless NAT on IPv4 packets. You should use
462 netfilter for NAT unless you know what you are doing.
464 To compile this code as a module, choose M here: the
465 module will be called nat.
468 tristate "Packet Editing"
469 depends on NET_CLS_ACT
471 Say Y here if you want to mangle the content of packets.
473 To compile this code as a module, choose M here: the
474 module will be called pedit.
477 tristate "Simple Example (Debug)"
478 depends on NET_CLS_ACT
480 Say Y here to add a simple action for demonstration purposes.
481 It is meant as an example and for debugging purposes. It will
482 print a configured policy string followed by the packet count
483 to the console for every packet that passes by.
487 To compile this code as a module, choose M here: the
488 module will be called simple.
491 bool "Incoming device classification"
492 depends on NET_CLS_U32 || NET_CLS_FW
494 Say Y here to extend the u32 and fw classifier to support
495 classification based on the incoming device. This option is
496 likely to disappear in favour of the metadata ematch.