4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/cacheflush.h>
59 #include <asm/tlbflush.h>
62 * Protected counters by write_lock_irq(&tasklist_lock)
64 unsigned long total_forks
; /* Handle normal Linux uptimes. */
65 int nr_threads
; /* The idle threads do not count.. */
67 int max_threads
; /* tunable limit on nr_threads */
69 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
71 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
73 int nr_processes(void)
78 for_each_online_cpu(cpu
)
79 total
+= per_cpu(process_counts
, cpu
);
84 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
85 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
86 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
87 static struct kmem_cache
*task_struct_cachep
;
90 /* SLAB cache for signal_struct structures (tsk->signal) */
91 static struct kmem_cache
*signal_cachep
;
93 /* SLAB cache for sighand_struct structures (tsk->sighand) */
94 struct kmem_cache
*sighand_cachep
;
96 /* SLAB cache for files_struct structures (tsk->files) */
97 struct kmem_cache
*files_cachep
;
99 /* SLAB cache for fs_struct structures (tsk->fs) */
100 struct kmem_cache
*fs_cachep
;
102 /* SLAB cache for vm_area_struct structures */
103 struct kmem_cache
*vm_area_cachep
;
105 /* SLAB cache for mm_struct structures (tsk->mm) */
106 static struct kmem_cache
*mm_cachep
;
108 void free_task(struct task_struct
*tsk
)
110 prop_local_destroy_single(&tsk
->dirties
);
111 free_thread_info(tsk
->stack
);
112 rt_mutex_debug_task_free(tsk
);
113 free_task_struct(tsk
);
115 EXPORT_SYMBOL(free_task
);
117 void __put_task_struct(struct task_struct
*tsk
)
119 WARN_ON(!(tsk
->exit_state
& (EXIT_DEAD
| EXIT_ZOMBIE
)));
120 WARN_ON(atomic_read(&tsk
->usage
));
121 WARN_ON(tsk
== current
);
123 security_task_free(tsk
);
125 put_group_info(tsk
->group_info
);
126 delayacct_tsk_free(tsk
);
128 if (!profile_handoff_task(tsk
))
132 void __init
fork_init(unsigned long mempages
)
134 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
135 #ifndef ARCH_MIN_TASKALIGN
136 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
138 /* create a slab on which task_structs can be allocated */
140 kmem_cache_create("task_struct", sizeof(struct task_struct
),
141 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
);
145 * The default maximum number of threads is set to a safe
146 * value: the thread structures can take up at most half
149 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
152 * we need to allow at least 20 threads to boot a system
157 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
158 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
159 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
160 init_task
.signal
->rlim
[RLIMIT_NPROC
];
163 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
165 struct task_struct
*tsk
;
166 struct thread_info
*ti
;
169 prepare_to_copy(orig
);
171 tsk
= alloc_task_struct();
175 ti
= alloc_thread_info(tsk
);
177 free_task_struct(tsk
);
184 err
= prop_local_init_single(&tsk
->dirties
);
186 free_thread_info(ti
);
187 free_task_struct(tsk
);
191 setup_thread_stack(tsk
, orig
);
193 #ifdef CONFIG_CC_STACKPROTECTOR
194 tsk
->stack_canary
= get_random_int();
197 /* One for us, one for whoever does the "release_task()" (usually parent) */
198 atomic_set(&tsk
->usage
,2);
199 atomic_set(&tsk
->fs_excl
, 0);
200 #ifdef CONFIG_BLK_DEV_IO_TRACE
203 tsk
->splice_pipe
= NULL
;
208 static inline int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
210 struct vm_area_struct
*mpnt
, *tmp
, **pprev
;
211 struct rb_node
**rb_link
, *rb_parent
;
213 unsigned long charge
;
214 struct mempolicy
*pol
;
216 down_write(&oldmm
->mmap_sem
);
217 flush_cache_dup_mm(oldmm
);
219 * Not linked in yet - no deadlock potential:
221 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
225 mm
->mmap_cache
= NULL
;
226 mm
->free_area_cache
= oldmm
->mmap_base
;
227 mm
->cached_hole_size
= ~0UL;
229 cpus_clear(mm
->cpu_vm_mask
);
231 rb_link
= &mm
->mm_rb
.rb_node
;
235 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
238 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
239 long pages
= vma_pages(mpnt
);
240 mm
->total_vm
-= pages
;
241 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
246 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
247 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
248 if (security_vm_enough_memory(len
))
252 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
256 pol
= mpol_copy(vma_policy(mpnt
));
257 retval
= PTR_ERR(pol
);
259 goto fail_nomem_policy
;
260 vma_set_policy(tmp
, pol
);
261 tmp
->vm_flags
&= ~VM_LOCKED
;
267 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
269 if (tmp
->vm_flags
& VM_DENYWRITE
)
270 atomic_dec(&inode
->i_writecount
);
272 /* insert tmp into the share list, just after mpnt */
273 spin_lock(&file
->f_mapping
->i_mmap_lock
);
274 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
275 flush_dcache_mmap_lock(file
->f_mapping
);
276 vma_prio_tree_add(tmp
, mpnt
);
277 flush_dcache_mmap_unlock(file
->f_mapping
);
278 spin_unlock(&file
->f_mapping
->i_mmap_lock
);
282 * Link in the new vma and copy the page table entries.
285 pprev
= &tmp
->vm_next
;
287 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
288 rb_link
= &tmp
->vm_rb
.rb_right
;
289 rb_parent
= &tmp
->vm_rb
;
292 retval
= copy_page_range(mm
, oldmm
, mpnt
);
294 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
295 tmp
->vm_ops
->open(tmp
);
300 /* a new mm has just been created */
301 arch_dup_mmap(oldmm
, mm
);
304 up_write(&mm
->mmap_sem
);
306 up_write(&oldmm
->mmap_sem
);
309 kmem_cache_free(vm_area_cachep
, tmp
);
312 vm_unacct_memory(charge
);
316 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
318 mm
->pgd
= pgd_alloc(mm
);
319 if (unlikely(!mm
->pgd
))
324 static inline void mm_free_pgd(struct mm_struct
* mm
)
329 #define dup_mmap(mm, oldmm) (0)
330 #define mm_alloc_pgd(mm) (0)
331 #define mm_free_pgd(mm)
332 #endif /* CONFIG_MMU */
334 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
336 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
337 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
339 #include <linux/init_task.h>
341 static struct mm_struct
* mm_init(struct mm_struct
* mm
)
343 atomic_set(&mm
->mm_users
, 1);
344 atomic_set(&mm
->mm_count
, 1);
345 init_rwsem(&mm
->mmap_sem
);
346 INIT_LIST_HEAD(&mm
->mmlist
);
347 mm
->flags
= (current
->mm
) ? current
->mm
->flags
348 : MMF_DUMP_FILTER_DEFAULT
;
349 mm
->core_waiters
= 0;
351 set_mm_counter(mm
, file_rss
, 0);
352 set_mm_counter(mm
, anon_rss
, 0);
353 spin_lock_init(&mm
->page_table_lock
);
354 rwlock_init(&mm
->ioctx_list_lock
);
355 mm
->ioctx_list
= NULL
;
356 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
357 mm
->cached_hole_size
= ~0UL;
359 if (likely(!mm_alloc_pgd(mm
))) {
368 * Allocate and initialize an mm_struct.
370 struct mm_struct
* mm_alloc(void)
372 struct mm_struct
* mm
;
376 memset(mm
, 0, sizeof(*mm
));
383 * Called when the last reference to the mm
384 * is dropped: either by a lazy thread or by
385 * mmput. Free the page directory and the mm.
387 void fastcall
__mmdrop(struct mm_struct
*mm
)
389 BUG_ON(mm
== &init_mm
);
396 * Decrement the use count and release all resources for an mm.
398 void mmput(struct mm_struct
*mm
)
402 if (atomic_dec_and_test(&mm
->mm_users
)) {
405 if (!list_empty(&mm
->mmlist
)) {
406 spin_lock(&mmlist_lock
);
407 list_del(&mm
->mmlist
);
408 spin_unlock(&mmlist_lock
);
414 EXPORT_SYMBOL_GPL(mmput
);
417 * get_task_mm - acquire a reference to the task's mm
419 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
420 * this kernel workthread has transiently adopted a user mm with use_mm,
421 * to do its AIO) is not set and if so returns a reference to it, after
422 * bumping up the use count. User must release the mm via mmput()
423 * after use. Typically used by /proc and ptrace.
425 struct mm_struct
*get_task_mm(struct task_struct
*task
)
427 struct mm_struct
*mm
;
432 if (task
->flags
& PF_BORROWED_MM
)
435 atomic_inc(&mm
->mm_users
);
440 EXPORT_SYMBOL_GPL(get_task_mm
);
442 /* Please note the differences between mmput and mm_release.
443 * mmput is called whenever we stop holding onto a mm_struct,
444 * error success whatever.
446 * mm_release is called after a mm_struct has been removed
447 * from the current process.
449 * This difference is important for error handling, when we
450 * only half set up a mm_struct for a new process and need to restore
451 * the old one. Because we mmput the new mm_struct before
452 * restoring the old one. . .
453 * Eric Biederman 10 January 1998
455 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
457 struct completion
*vfork_done
= tsk
->vfork_done
;
459 /* Get rid of any cached register state */
460 deactivate_mm(tsk
, mm
);
462 /* notify parent sleeping on vfork() */
464 tsk
->vfork_done
= NULL
;
465 complete(vfork_done
);
469 * If we're exiting normally, clear a user-space tid field if
470 * requested. We leave this alone when dying by signal, to leave
471 * the value intact in a core dump, and to save the unnecessary
472 * trouble otherwise. Userland only wants this done for a sys_exit.
474 if (tsk
->clear_child_tid
475 && !(tsk
->flags
& PF_SIGNALED
)
476 && atomic_read(&mm
->mm_users
) > 1) {
477 u32 __user
* tidptr
= tsk
->clear_child_tid
;
478 tsk
->clear_child_tid
= NULL
;
481 * We don't check the error code - if userspace has
482 * not set up a proper pointer then tough luck.
485 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
490 * Allocate a new mm structure and copy contents from the
491 * mm structure of the passed in task structure.
493 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
495 struct mm_struct
*mm
, *oldmm
= current
->mm
;
505 memcpy(mm
, oldmm
, sizeof(*mm
));
507 /* Initializing for Swap token stuff */
508 mm
->token_priority
= 0;
509 mm
->last_interval
= 0;
514 if (init_new_context(tsk
, mm
))
517 err
= dup_mmap(mm
, oldmm
);
521 mm
->hiwater_rss
= get_mm_rss(mm
);
522 mm
->hiwater_vm
= mm
->total_vm
;
534 * If init_new_context() failed, we cannot use mmput() to free the mm
535 * because it calls destroy_context()
542 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
544 struct mm_struct
* mm
, *oldmm
;
547 tsk
->min_flt
= tsk
->maj_flt
= 0;
548 tsk
->nvcsw
= tsk
->nivcsw
= 0;
551 tsk
->active_mm
= NULL
;
554 * Are we cloning a kernel thread?
556 * We need to steal a active VM for that..
562 if (clone_flags
& CLONE_VM
) {
563 atomic_inc(&oldmm
->mm_users
);
574 /* Initializing for Swap token stuff */
575 mm
->token_priority
= 0;
576 mm
->last_interval
= 0;
586 static inline struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
588 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
589 /* We don't need to lock fs - think why ;-) */
591 atomic_set(&fs
->count
, 1);
592 rwlock_init(&fs
->lock
);
593 fs
->umask
= old
->umask
;
594 read_lock(&old
->lock
);
595 fs
->rootmnt
= mntget(old
->rootmnt
);
596 fs
->root
= dget(old
->root
);
597 fs
->pwdmnt
= mntget(old
->pwdmnt
);
598 fs
->pwd
= dget(old
->pwd
);
600 fs
->altrootmnt
= mntget(old
->altrootmnt
);
601 fs
->altroot
= dget(old
->altroot
);
603 fs
->altrootmnt
= NULL
;
606 read_unlock(&old
->lock
);
611 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
613 return __copy_fs_struct(old
);
616 EXPORT_SYMBOL_GPL(copy_fs_struct
);
618 static inline int copy_fs(unsigned long clone_flags
, struct task_struct
* tsk
)
620 if (clone_flags
& CLONE_FS
) {
621 atomic_inc(¤t
->fs
->count
);
624 tsk
->fs
= __copy_fs_struct(current
->fs
);
630 static int count_open_files(struct fdtable
*fdt
)
632 int size
= fdt
->max_fds
;
635 /* Find the last open fd */
636 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
637 if (fdt
->open_fds
->fds_bits
[--i
])
640 i
= (i
+1) * 8 * sizeof(long);
644 static struct files_struct
*alloc_files(void)
646 struct files_struct
*newf
;
649 newf
= kmem_cache_alloc(files_cachep
, GFP_KERNEL
);
653 atomic_set(&newf
->count
, 1);
655 spin_lock_init(&newf
->file_lock
);
658 fdt
->max_fds
= NR_OPEN_DEFAULT
;
659 fdt
->close_on_exec
= (fd_set
*)&newf
->close_on_exec_init
;
660 fdt
->open_fds
= (fd_set
*)&newf
->open_fds_init
;
661 fdt
->fd
= &newf
->fd_array
[0];
662 INIT_RCU_HEAD(&fdt
->rcu
);
664 rcu_assign_pointer(newf
->fdt
, fdt
);
670 * Allocate a new files structure and copy contents from the
671 * passed in files structure.
672 * errorp will be valid only when the returned files_struct is NULL.
674 static struct files_struct
*dup_fd(struct files_struct
*oldf
, int *errorp
)
676 struct files_struct
*newf
;
677 struct file
**old_fds
, **new_fds
;
678 int open_files
, size
, i
;
679 struct fdtable
*old_fdt
, *new_fdt
;
682 newf
= alloc_files();
686 spin_lock(&oldf
->file_lock
);
687 old_fdt
= files_fdtable(oldf
);
688 new_fdt
= files_fdtable(newf
);
689 open_files
= count_open_files(old_fdt
);
692 * Check whether we need to allocate a larger fd array and fd set.
693 * Note: we're not a clone task, so the open count won't change.
695 if (open_files
> new_fdt
->max_fds
) {
696 new_fdt
->max_fds
= 0;
697 spin_unlock(&oldf
->file_lock
);
698 spin_lock(&newf
->file_lock
);
699 *errorp
= expand_files(newf
, open_files
-1);
700 spin_unlock(&newf
->file_lock
);
703 new_fdt
= files_fdtable(newf
);
705 * Reacquire the oldf lock and a pointer to its fd table
706 * who knows it may have a new bigger fd table. We need
707 * the latest pointer.
709 spin_lock(&oldf
->file_lock
);
710 old_fdt
= files_fdtable(oldf
);
713 old_fds
= old_fdt
->fd
;
714 new_fds
= new_fdt
->fd
;
716 memcpy(new_fdt
->open_fds
->fds_bits
,
717 old_fdt
->open_fds
->fds_bits
, open_files
/8);
718 memcpy(new_fdt
->close_on_exec
->fds_bits
,
719 old_fdt
->close_on_exec
->fds_bits
, open_files
/8);
721 for (i
= open_files
; i
!= 0; i
--) {
722 struct file
*f
= *old_fds
++;
727 * The fd may be claimed in the fd bitmap but not yet
728 * instantiated in the files array if a sibling thread
729 * is partway through open(). So make sure that this
730 * fd is available to the new process.
732 FD_CLR(open_files
- i
, new_fdt
->open_fds
);
734 rcu_assign_pointer(*new_fds
++, f
);
736 spin_unlock(&oldf
->file_lock
);
738 /* compute the remainder to be cleared */
739 size
= (new_fdt
->max_fds
- open_files
) * sizeof(struct file
*);
741 /* This is long word aligned thus could use a optimized version */
742 memset(new_fds
, 0, size
);
744 if (new_fdt
->max_fds
> open_files
) {
745 int left
= (new_fdt
->max_fds
-open_files
)/8;
746 int start
= open_files
/ (8 * sizeof(unsigned long));
748 memset(&new_fdt
->open_fds
->fds_bits
[start
], 0, left
);
749 memset(&new_fdt
->close_on_exec
->fds_bits
[start
], 0, left
);
755 kmem_cache_free(files_cachep
, newf
);
760 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
762 struct files_struct
*oldf
, *newf
;
766 * A background process may not have any files ...
768 oldf
= current
->files
;
772 if (clone_flags
& CLONE_FILES
) {
773 atomic_inc(&oldf
->count
);
778 * Note: we may be using current for both targets (See exec.c)
779 * This works because we cache current->files (old) as oldf. Don't
783 newf
= dup_fd(oldf
, &error
);
794 * Helper to unshare the files of the current task.
795 * We don't want to expose copy_files internals to
796 * the exec layer of the kernel.
799 int unshare_files(void)
801 struct files_struct
*files
= current
->files
;
806 /* This can race but the race causes us to copy when we don't
807 need to and drop the copy */
808 if(atomic_read(&files
->count
) == 1)
810 atomic_inc(&files
->count
);
813 rc
= copy_files(0, current
);
815 current
->files
= files
;
819 EXPORT_SYMBOL(unshare_files
);
821 static inline int copy_sighand(unsigned long clone_flags
, struct task_struct
* tsk
)
823 struct sighand_struct
*sig
;
825 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
826 atomic_inc(¤t
->sighand
->count
);
829 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
830 rcu_assign_pointer(tsk
->sighand
, sig
);
833 atomic_set(&sig
->count
, 1);
834 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
838 void __cleanup_sighand(struct sighand_struct
*sighand
)
840 if (atomic_dec_and_test(&sighand
->count
))
841 kmem_cache_free(sighand_cachep
, sighand
);
844 static inline int copy_signal(unsigned long clone_flags
, struct task_struct
* tsk
)
846 struct signal_struct
*sig
;
849 if (clone_flags
& CLONE_THREAD
) {
850 atomic_inc(¤t
->signal
->count
);
851 atomic_inc(¤t
->signal
->live
);
854 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
859 ret
= copy_thread_group_keys(tsk
);
861 kmem_cache_free(signal_cachep
, sig
);
865 atomic_set(&sig
->count
, 1);
866 atomic_set(&sig
->live
, 1);
867 init_waitqueue_head(&sig
->wait_chldexit
);
869 sig
->group_exit_code
= 0;
870 sig
->group_exit_task
= NULL
;
871 sig
->group_stop_count
= 0;
872 sig
->curr_target
= NULL
;
873 init_sigpending(&sig
->shared_pending
);
874 INIT_LIST_HEAD(&sig
->posix_timers
);
876 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
877 sig
->it_real_incr
.tv64
= 0;
878 sig
->real_timer
.function
= it_real_fn
;
881 sig
->it_virt_expires
= cputime_zero
;
882 sig
->it_virt_incr
= cputime_zero
;
883 sig
->it_prof_expires
= cputime_zero
;
884 sig
->it_prof_incr
= cputime_zero
;
886 sig
->leader
= 0; /* session leadership doesn't inherit */
887 sig
->tty_old_pgrp
= NULL
;
889 sig
->utime
= sig
->stime
= sig
->cutime
= sig
->cstime
= cputime_zero
;
890 sig
->gtime
= cputime_zero
;
891 sig
->cgtime
= cputime_zero
;
892 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
893 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
894 sig
->inblock
= sig
->oublock
= sig
->cinblock
= sig
->coublock
= 0;
895 sig
->sum_sched_runtime
= 0;
896 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
897 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
898 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
899 taskstats_tgid_init(sig
);
901 task_lock(current
->group_leader
);
902 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
903 task_unlock(current
->group_leader
);
905 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
907 * New sole thread in the process gets an expiry time
908 * of the whole CPU time limit.
910 tsk
->it_prof_expires
=
911 secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
913 acct_init_pacct(&sig
->pacct
);
920 void __cleanup_signal(struct signal_struct
*sig
)
922 exit_thread_group_keys(sig
);
923 kmem_cache_free(signal_cachep
, sig
);
926 static inline void cleanup_signal(struct task_struct
*tsk
)
928 struct signal_struct
*sig
= tsk
->signal
;
930 atomic_dec(&sig
->live
);
932 if (atomic_dec_and_test(&sig
->count
))
933 __cleanup_signal(sig
);
936 static inline void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
938 unsigned long new_flags
= p
->flags
;
940 new_flags
&= ~PF_SUPERPRIV
;
941 new_flags
|= PF_FORKNOEXEC
;
942 if (!(clone_flags
& CLONE_PTRACE
))
944 p
->flags
= new_flags
;
947 asmlinkage
long sys_set_tid_address(int __user
*tidptr
)
949 current
->clear_child_tid
= tidptr
;
954 static inline void rt_mutex_init_task(struct task_struct
*p
)
956 spin_lock_init(&p
->pi_lock
);
957 #ifdef CONFIG_RT_MUTEXES
958 plist_head_init(&p
->pi_waiters
, &p
->pi_lock
);
959 p
->pi_blocked_on
= NULL
;
964 * This creates a new process as a copy of the old one,
965 * but does not actually start it yet.
967 * It copies the registers, and all the appropriate
968 * parts of the process environment (as per the clone
969 * flags). The actual kick-off is left to the caller.
971 static struct task_struct
*copy_process(unsigned long clone_flags
,
972 unsigned long stack_start
,
973 struct pt_regs
*regs
,
974 unsigned long stack_size
,
975 int __user
*parent_tidptr
,
976 int __user
*child_tidptr
,
980 struct task_struct
*p
= NULL
;
982 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
983 return ERR_PTR(-EINVAL
);
986 * Thread groups must share signals as well, and detached threads
987 * can only be started up within the thread group.
989 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
990 return ERR_PTR(-EINVAL
);
993 * Shared signal handlers imply shared VM. By way of the above,
994 * thread groups also imply shared VM. Blocking this case allows
995 * for various simplifications in other code.
997 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
998 return ERR_PTR(-EINVAL
);
1000 retval
= security_task_create(clone_flags
);
1005 p
= dup_task_struct(current
);
1009 rt_mutex_init_task(p
);
1011 #ifdef CONFIG_TRACE_IRQFLAGS
1012 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1013 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1016 if (atomic_read(&p
->user
->processes
) >=
1017 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
1018 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
1019 p
->user
!= current
->nsproxy
->user_ns
->root_user
)
1023 atomic_inc(&p
->user
->__count
);
1024 atomic_inc(&p
->user
->processes
);
1025 get_group_info(p
->group_info
);
1028 * If multiple threads are within copy_process(), then this check
1029 * triggers too late. This doesn't hurt, the check is only there
1030 * to stop root fork bombs.
1032 if (nr_threads
>= max_threads
)
1033 goto bad_fork_cleanup_count
;
1035 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
1036 goto bad_fork_cleanup_count
;
1038 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
1039 goto bad_fork_cleanup_put_domain
;
1042 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1043 copy_flags(clone_flags
, p
);
1044 p
->pid
= pid_nr(pid
);
1046 if (clone_flags
& CLONE_PARENT_SETTID
)
1047 if (put_user(p
->pid
, parent_tidptr
))
1048 goto bad_fork_cleanup_delays_binfmt
;
1050 INIT_LIST_HEAD(&p
->children
);
1051 INIT_LIST_HEAD(&p
->sibling
);
1052 p
->vfork_done
= NULL
;
1053 spin_lock_init(&p
->alloc_lock
);
1055 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
1056 init_sigpending(&p
->pending
);
1058 p
->utime
= cputime_zero
;
1059 p
->stime
= cputime_zero
;
1060 p
->gtime
= cputime_zero
;
1062 #ifdef CONFIG_TASK_XACCT
1063 p
->rchar
= 0; /* I/O counter: bytes read */
1064 p
->wchar
= 0; /* I/O counter: bytes written */
1065 p
->syscr
= 0; /* I/O counter: read syscalls */
1066 p
->syscw
= 0; /* I/O counter: write syscalls */
1068 task_io_accounting_init(p
);
1069 acct_clear_integrals(p
);
1071 p
->it_virt_expires
= cputime_zero
;
1072 p
->it_prof_expires
= cputime_zero
;
1073 p
->it_sched_expires
= 0;
1074 INIT_LIST_HEAD(&p
->cpu_timers
[0]);
1075 INIT_LIST_HEAD(&p
->cpu_timers
[1]);
1076 INIT_LIST_HEAD(&p
->cpu_timers
[2]);
1078 p
->lock_depth
= -1; /* -1 = no lock */
1079 do_posix_clock_monotonic_gettime(&p
->start_time
);
1080 p
->real_start_time
= p
->start_time
;
1081 monotonic_to_bootbased(&p
->real_start_time
);
1083 p
->io_context
= NULL
;
1085 p
->audit_context
= NULL
;
1088 p
->mempolicy
= mpol_copy(p
->mempolicy
);
1089 if (IS_ERR(p
->mempolicy
)) {
1090 retval
= PTR_ERR(p
->mempolicy
);
1091 p
->mempolicy
= NULL
;
1092 goto bad_fork_cleanup_cpuset
;
1094 mpol_fix_fork_child_flag(p
);
1096 #ifdef CONFIG_TRACE_IRQFLAGS
1098 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1099 p
->hardirqs_enabled
= 1;
1101 p
->hardirqs_enabled
= 0;
1103 p
->hardirq_enable_ip
= 0;
1104 p
->hardirq_enable_event
= 0;
1105 p
->hardirq_disable_ip
= _THIS_IP_
;
1106 p
->hardirq_disable_event
= 0;
1107 p
->softirqs_enabled
= 1;
1108 p
->softirq_enable_ip
= _THIS_IP_
;
1109 p
->softirq_enable_event
= 0;
1110 p
->softirq_disable_ip
= 0;
1111 p
->softirq_disable_event
= 0;
1112 p
->hardirq_context
= 0;
1113 p
->softirq_context
= 0;
1115 #ifdef CONFIG_LOCKDEP
1116 p
->lockdep_depth
= 0; /* no locks held yet */
1117 p
->curr_chain_key
= 0;
1118 p
->lockdep_recursion
= 0;
1121 #ifdef CONFIG_DEBUG_MUTEXES
1122 p
->blocked_on
= NULL
; /* not blocked yet */
1126 if (clone_flags
& CLONE_THREAD
)
1127 p
->tgid
= current
->tgid
;
1129 if ((retval
= security_task_alloc(p
)))
1130 goto bad_fork_cleanup_policy
;
1131 if ((retval
= audit_alloc(p
)))
1132 goto bad_fork_cleanup_security
;
1133 /* copy all the process information */
1134 if ((retval
= copy_semundo(clone_flags
, p
)))
1135 goto bad_fork_cleanup_audit
;
1136 if ((retval
= copy_files(clone_flags
, p
)))
1137 goto bad_fork_cleanup_semundo
;
1138 if ((retval
= copy_fs(clone_flags
, p
)))
1139 goto bad_fork_cleanup_files
;
1140 if ((retval
= copy_sighand(clone_flags
, p
)))
1141 goto bad_fork_cleanup_fs
;
1142 if ((retval
= copy_signal(clone_flags
, p
)))
1143 goto bad_fork_cleanup_sighand
;
1144 if ((retval
= copy_mm(clone_flags
, p
)))
1145 goto bad_fork_cleanup_signal
;
1146 if ((retval
= copy_keys(clone_flags
, p
)))
1147 goto bad_fork_cleanup_mm
;
1148 if ((retval
= copy_namespaces(clone_flags
, p
)))
1149 goto bad_fork_cleanup_keys
;
1150 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
1152 goto bad_fork_cleanup_namespaces
;
1154 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1156 * Clear TID on mm_release()?
1158 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1159 p
->robust_list
= NULL
;
1160 #ifdef CONFIG_COMPAT
1161 p
->compat_robust_list
= NULL
;
1163 INIT_LIST_HEAD(&p
->pi_state_list
);
1164 p
->pi_state_cache
= NULL
;
1167 * sigaltstack should be cleared when sharing the same VM
1169 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1170 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1173 * Syscall tracing should be turned off in the child regardless
1176 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1177 #ifdef TIF_SYSCALL_EMU
1178 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1181 /* Our parent execution domain becomes current domain
1182 These must match for thread signalling to apply */
1183 p
->parent_exec_id
= p
->self_exec_id
;
1185 /* ok, now we should be set up.. */
1186 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1187 p
->pdeath_signal
= 0;
1191 * Ok, make it visible to the rest of the system.
1192 * We dont wake it up yet.
1194 p
->group_leader
= p
;
1195 INIT_LIST_HEAD(&p
->thread_group
);
1196 INIT_LIST_HEAD(&p
->ptrace_children
);
1197 INIT_LIST_HEAD(&p
->ptrace_list
);
1199 /* Perform scheduler related setup. Assign this task to a CPU. */
1200 sched_fork(p
, clone_flags
);
1202 /* Need tasklist lock for parent etc handling! */
1203 write_lock_irq(&tasklist_lock
);
1205 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1206 p
->ioprio
= current
->ioprio
;
1209 * The task hasn't been attached yet, so its cpus_allowed mask will
1210 * not be changed, nor will its assigned CPU.
1212 * The cpus_allowed mask of the parent may have changed after it was
1213 * copied first time - so re-copy it here, then check the child's CPU
1214 * to ensure it is on a valid CPU (and if not, just force it back to
1215 * parent's CPU). This avoids alot of nasty races.
1217 p
->cpus_allowed
= current
->cpus_allowed
;
1218 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
) ||
1219 !cpu_online(task_cpu(p
))))
1220 set_task_cpu(p
, smp_processor_id());
1222 /* CLONE_PARENT re-uses the old parent */
1223 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
))
1224 p
->real_parent
= current
->real_parent
;
1226 p
->real_parent
= current
;
1227 p
->parent
= p
->real_parent
;
1229 spin_lock(¤t
->sighand
->siglock
);
1232 * Process group and session signals need to be delivered to just the
1233 * parent before the fork or both the parent and the child after the
1234 * fork. Restart if a signal comes in before we add the new process to
1235 * it's process group.
1236 * A fatal signal pending means that current will exit, so the new
1237 * thread can't slip out of an OOM kill (or normal SIGKILL).
1239 recalc_sigpending();
1240 if (signal_pending(current
)) {
1241 spin_unlock(¤t
->sighand
->siglock
);
1242 write_unlock_irq(&tasklist_lock
);
1243 retval
= -ERESTARTNOINTR
;
1244 goto bad_fork_cleanup_namespaces
;
1247 if (clone_flags
& CLONE_THREAD
) {
1248 p
->group_leader
= current
->group_leader
;
1249 list_add_tail_rcu(&p
->thread_group
, &p
->group_leader
->thread_group
);
1251 if (!cputime_eq(current
->signal
->it_virt_expires
,
1253 !cputime_eq(current
->signal
->it_prof_expires
,
1255 current
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
||
1256 !list_empty(¤t
->signal
->cpu_timers
[0]) ||
1257 !list_empty(¤t
->signal
->cpu_timers
[1]) ||
1258 !list_empty(¤t
->signal
->cpu_timers
[2])) {
1260 * Have child wake up on its first tick to check
1261 * for process CPU timers.
1263 p
->it_prof_expires
= jiffies_to_cputime(1);
1267 if (likely(p
->pid
)) {
1269 if (unlikely(p
->ptrace
& PT_PTRACED
))
1270 __ptrace_link(p
, current
->parent
);
1272 if (thread_group_leader(p
)) {
1273 p
->signal
->tty
= current
->signal
->tty
;
1274 p
->signal
->pgrp
= process_group(current
);
1275 set_signal_session(p
->signal
, process_session(current
));
1276 attach_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1277 attach_pid(p
, PIDTYPE_SID
, task_session(current
));
1279 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1280 __get_cpu_var(process_counts
)++;
1282 attach_pid(p
, PIDTYPE_PID
, pid
);
1287 spin_unlock(¤t
->sighand
->siglock
);
1288 write_unlock_irq(&tasklist_lock
);
1289 proc_fork_connector(p
);
1292 bad_fork_cleanup_namespaces
:
1293 exit_task_namespaces(p
);
1294 bad_fork_cleanup_keys
:
1296 bad_fork_cleanup_mm
:
1299 bad_fork_cleanup_signal
:
1301 bad_fork_cleanup_sighand
:
1302 __cleanup_sighand(p
->sighand
);
1303 bad_fork_cleanup_fs
:
1304 exit_fs(p
); /* blocking */
1305 bad_fork_cleanup_files
:
1306 exit_files(p
); /* blocking */
1307 bad_fork_cleanup_semundo
:
1309 bad_fork_cleanup_audit
:
1311 bad_fork_cleanup_security
:
1312 security_task_free(p
);
1313 bad_fork_cleanup_policy
:
1315 mpol_free(p
->mempolicy
);
1316 bad_fork_cleanup_cpuset
:
1319 bad_fork_cleanup_delays_binfmt
:
1320 delayacct_tsk_free(p
);
1322 module_put(p
->binfmt
->module
);
1323 bad_fork_cleanup_put_domain
:
1324 module_put(task_thread_info(p
)->exec_domain
->module
);
1325 bad_fork_cleanup_count
:
1326 put_group_info(p
->group_info
);
1327 atomic_dec(&p
->user
->processes
);
1332 return ERR_PTR(retval
);
1335 noinline
struct pt_regs
* __devinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1337 memset(regs
, 0, sizeof(struct pt_regs
));
1341 struct task_struct
* __cpuinit
fork_idle(int cpu
)
1343 struct task_struct
*task
;
1344 struct pt_regs regs
;
1346 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
, NULL
,
1349 init_idle(task
, cpu
);
1354 static inline int fork_traceflag (unsigned clone_flags
)
1356 if (clone_flags
& CLONE_UNTRACED
)
1358 else if (clone_flags
& CLONE_VFORK
) {
1359 if (current
->ptrace
& PT_TRACE_VFORK
)
1360 return PTRACE_EVENT_VFORK
;
1361 } else if ((clone_flags
& CSIGNAL
) != SIGCHLD
) {
1362 if (current
->ptrace
& PT_TRACE_CLONE
)
1363 return PTRACE_EVENT_CLONE
;
1364 } else if (current
->ptrace
& PT_TRACE_FORK
)
1365 return PTRACE_EVENT_FORK
;
1371 * Ok, this is the main fork-routine.
1373 * It copies the process, and if successful kick-starts
1374 * it and waits for it to finish using the VM if required.
1376 long do_fork(unsigned long clone_flags
,
1377 unsigned long stack_start
,
1378 struct pt_regs
*regs
,
1379 unsigned long stack_size
,
1380 int __user
*parent_tidptr
,
1381 int __user
*child_tidptr
)
1383 struct task_struct
*p
;
1385 struct pid
*pid
= alloc_pid();
1391 if (unlikely(current
->ptrace
)) {
1392 trace
= fork_traceflag (clone_flags
);
1394 clone_flags
|= CLONE_PTRACE
;
1397 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
, parent_tidptr
, child_tidptr
, pid
);
1399 * Do this prior waking up the new thread - the thread pointer
1400 * might get invalid after that point, if the thread exits quickly.
1403 struct completion vfork
;
1405 if (clone_flags
& CLONE_VFORK
) {
1406 p
->vfork_done
= &vfork
;
1407 init_completion(&vfork
);
1410 if ((p
->ptrace
& PT_PTRACED
) || (clone_flags
& CLONE_STOPPED
)) {
1412 * We'll start up with an immediate SIGSTOP.
1414 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1415 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1418 if (!(clone_flags
& CLONE_STOPPED
))
1419 wake_up_new_task(p
, clone_flags
);
1421 p
->state
= TASK_STOPPED
;
1423 if (unlikely (trace
)) {
1424 current
->ptrace_message
= nr
;
1425 ptrace_notify ((trace
<< 8) | SIGTRAP
);
1428 if (clone_flags
& CLONE_VFORK
) {
1429 freezer_do_not_count();
1430 wait_for_completion(&vfork
);
1432 if (unlikely (current
->ptrace
& PT_TRACE_VFORK_DONE
)) {
1433 current
->ptrace_message
= nr
;
1434 ptrace_notify ((PTRACE_EVENT_VFORK_DONE
<< 8) | SIGTRAP
);
1444 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1445 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1448 static void sighand_ctor(struct kmem_cache
*cachep
, void *data
)
1450 struct sighand_struct
*sighand
= data
;
1452 spin_lock_init(&sighand
->siglock
);
1453 init_waitqueue_head(&sighand
->signalfd_wqh
);
1456 void __init
proc_caches_init(void)
1458 sighand_cachep
= kmem_cache_create("sighand_cache",
1459 sizeof(struct sighand_struct
), 0,
1460 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
,
1462 signal_cachep
= kmem_cache_create("signal_cache",
1463 sizeof(struct signal_struct
), 0,
1464 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1465 files_cachep
= kmem_cache_create("files_cache",
1466 sizeof(struct files_struct
), 0,
1467 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1468 fs_cachep
= kmem_cache_create("fs_cache",
1469 sizeof(struct fs_struct
), 0,
1470 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1471 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1472 sizeof(struct vm_area_struct
), 0,
1474 mm_cachep
= kmem_cache_create("mm_struct",
1475 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1476 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1480 * Check constraints on flags passed to the unshare system call and
1481 * force unsharing of additional process context as appropriate.
1483 static inline void check_unshare_flags(unsigned long *flags_ptr
)
1486 * If unsharing a thread from a thread group, must also
1489 if (*flags_ptr
& CLONE_THREAD
)
1490 *flags_ptr
|= CLONE_VM
;
1493 * If unsharing vm, must also unshare signal handlers.
1495 if (*flags_ptr
& CLONE_VM
)
1496 *flags_ptr
|= CLONE_SIGHAND
;
1499 * If unsharing signal handlers and the task was created
1500 * using CLONE_THREAD, then must unshare the thread
1502 if ((*flags_ptr
& CLONE_SIGHAND
) &&
1503 (atomic_read(¤t
->signal
->count
) > 1))
1504 *flags_ptr
|= CLONE_THREAD
;
1507 * If unsharing namespace, must also unshare filesystem information.
1509 if (*flags_ptr
& CLONE_NEWNS
)
1510 *flags_ptr
|= CLONE_FS
;
1514 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1516 static int unshare_thread(unsigned long unshare_flags
)
1518 if (unshare_flags
& CLONE_THREAD
)
1525 * Unshare the filesystem structure if it is being shared
1527 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1529 struct fs_struct
*fs
= current
->fs
;
1531 if ((unshare_flags
& CLONE_FS
) &&
1532 (fs
&& atomic_read(&fs
->count
) > 1)) {
1533 *new_fsp
= __copy_fs_struct(current
->fs
);
1542 * Unsharing of sighand is not supported yet
1544 static int unshare_sighand(unsigned long unshare_flags
, struct sighand_struct
**new_sighp
)
1546 struct sighand_struct
*sigh
= current
->sighand
;
1548 if ((unshare_flags
& CLONE_SIGHAND
) && atomic_read(&sigh
->count
) > 1)
1555 * Unshare vm if it is being shared
1557 static int unshare_vm(unsigned long unshare_flags
, struct mm_struct
**new_mmp
)
1559 struct mm_struct
*mm
= current
->mm
;
1561 if ((unshare_flags
& CLONE_VM
) &&
1562 (mm
&& atomic_read(&mm
->mm_users
) > 1)) {
1570 * Unshare file descriptor table if it is being shared
1572 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1574 struct files_struct
*fd
= current
->files
;
1577 if ((unshare_flags
& CLONE_FILES
) &&
1578 (fd
&& atomic_read(&fd
->count
) > 1)) {
1579 *new_fdp
= dup_fd(fd
, &error
);
1588 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1591 static int unshare_semundo(unsigned long unshare_flags
, struct sem_undo_list
**new_ulistp
)
1593 if (unshare_flags
& CLONE_SYSVSEM
)
1600 * unshare allows a process to 'unshare' part of the process
1601 * context which was originally shared using clone. copy_*
1602 * functions used by do_fork() cannot be used here directly
1603 * because they modify an inactive task_struct that is being
1604 * constructed. Here we are modifying the current, active,
1607 asmlinkage
long sys_unshare(unsigned long unshare_flags
)
1610 struct fs_struct
*fs
, *new_fs
= NULL
;
1611 struct sighand_struct
*new_sigh
= NULL
;
1612 struct mm_struct
*mm
, *new_mm
= NULL
, *active_mm
= NULL
;
1613 struct files_struct
*fd
, *new_fd
= NULL
;
1614 struct sem_undo_list
*new_ulist
= NULL
;
1615 struct nsproxy
*new_nsproxy
= NULL
, *old_nsproxy
= NULL
;
1617 check_unshare_flags(&unshare_flags
);
1619 /* Return -EINVAL for all unsupported flags */
1621 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1622 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1623 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWUSER
|
1625 goto bad_unshare_out
;
1627 if ((err
= unshare_thread(unshare_flags
)))
1628 goto bad_unshare_out
;
1629 if ((err
= unshare_fs(unshare_flags
, &new_fs
)))
1630 goto bad_unshare_cleanup_thread
;
1631 if ((err
= unshare_sighand(unshare_flags
, &new_sigh
)))
1632 goto bad_unshare_cleanup_fs
;
1633 if ((err
= unshare_vm(unshare_flags
, &new_mm
)))
1634 goto bad_unshare_cleanup_sigh
;
1635 if ((err
= unshare_fd(unshare_flags
, &new_fd
)))
1636 goto bad_unshare_cleanup_vm
;
1637 if ((err
= unshare_semundo(unshare_flags
, &new_ulist
)))
1638 goto bad_unshare_cleanup_fd
;
1639 if ((err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
1641 goto bad_unshare_cleanup_semundo
;
1643 if (new_fs
|| new_mm
|| new_fd
|| new_ulist
|| new_nsproxy
) {
1648 old_nsproxy
= current
->nsproxy
;
1649 current
->nsproxy
= new_nsproxy
;
1650 new_nsproxy
= old_nsproxy
;
1655 current
->fs
= new_fs
;
1661 active_mm
= current
->active_mm
;
1662 current
->mm
= new_mm
;
1663 current
->active_mm
= new_mm
;
1664 activate_mm(active_mm
, new_mm
);
1669 fd
= current
->files
;
1670 current
->files
= new_fd
;
1674 task_unlock(current
);
1678 put_nsproxy(new_nsproxy
);
1680 bad_unshare_cleanup_semundo
:
1681 bad_unshare_cleanup_fd
:
1683 put_files_struct(new_fd
);
1685 bad_unshare_cleanup_vm
:
1689 bad_unshare_cleanup_sigh
:
1691 if (atomic_dec_and_test(&new_sigh
->count
))
1692 kmem_cache_free(sighand_cachep
, new_sigh
);
1694 bad_unshare_cleanup_fs
:
1696 put_fs_struct(new_fs
);
1698 bad_unshare_cleanup_thread
: