[PATCH] i386 io_apic.c: Memorize at bootup where the i8259 is connected
[linux-2.6/openmoko-kernel/knife-kernel.git] / net / sctp / socket.c
blobb529af5e6f2a043515de3fa7a2c80c7b0d54e43e
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This file is part of the SCTP kernel reference Implementation
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
18 * The SCTP reference implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
24 * The SCTP reference implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
60 #include <linux/config.h>
61 #include <linux/types.h>
62 #include <linux/kernel.h>
63 #include <linux/wait.h>
64 #include <linux/time.h>
65 #include <linux/ip.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
110 extern kmem_cache_t *sctp_bucket_cachep;
112 /* Get the sndbuf space available at the time on the association. */
113 static inline int sctp_wspace(struct sctp_association *asoc)
115 struct sock *sk = asoc->base.sk;
116 int amt = 0;
118 if (asoc->ep->sndbuf_policy) {
119 /* make sure that no association uses more than sk_sndbuf */
120 amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 } else {
122 /* do socket level accounting */
123 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
126 if (amt < 0)
127 amt = 0;
129 return amt;
132 /* Increment the used sndbuf space count of the corresponding association by
133 * the size of the outgoing data chunk.
134 * Also, set the skb destructor for sndbuf accounting later.
136 * Since it is always 1-1 between chunk and skb, and also a new skb is always
137 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138 * destructor in the data chunk skb for the purpose of the sndbuf space
139 * tracking.
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
143 struct sctp_association *asoc = chunk->asoc;
144 struct sock *sk = asoc->base.sk;
146 /* The sndbuf space is tracked per association. */
147 sctp_association_hold(asoc);
149 skb_set_owner_w(chunk->skb, sk);
151 chunk->skb->destructor = sctp_wfree;
152 /* Save the chunk pointer in skb for sctp_wfree to use later. */
153 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
155 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 sizeof(struct sk_buff) +
157 sizeof(struct sctp_chunk);
159 sk->sk_wmem_queued += SCTP_DATA_SNDSIZE(chunk) +
160 sizeof(struct sk_buff) +
161 sizeof(struct sctp_chunk);
163 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
166 /* Verify that this is a valid address. */
167 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
168 int len)
170 struct sctp_af *af;
172 /* Verify basic sockaddr. */
173 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
174 if (!af)
175 return -EINVAL;
177 /* Is this a valid SCTP address? */
178 if (!af->addr_valid(addr, sctp_sk(sk)))
179 return -EINVAL;
181 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
182 return -EINVAL;
184 return 0;
187 /* Look up the association by its id. If this is not a UDP-style
188 * socket, the ID field is always ignored.
190 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
192 struct sctp_association *asoc = NULL;
194 /* If this is not a UDP-style socket, assoc id should be ignored. */
195 if (!sctp_style(sk, UDP)) {
196 /* Return NULL if the socket state is not ESTABLISHED. It
197 * could be a TCP-style listening socket or a socket which
198 * hasn't yet called connect() to establish an association.
200 if (!sctp_sstate(sk, ESTABLISHED))
201 return NULL;
203 /* Get the first and the only association from the list. */
204 if (!list_empty(&sctp_sk(sk)->ep->asocs))
205 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
206 struct sctp_association, asocs);
207 return asoc;
210 /* Otherwise this is a UDP-style socket. */
211 if (!id || (id == (sctp_assoc_t)-1))
212 return NULL;
214 spin_lock_bh(&sctp_assocs_id_lock);
215 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
216 spin_unlock_bh(&sctp_assocs_id_lock);
218 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
219 return NULL;
221 return asoc;
224 /* Look up the transport from an address and an assoc id. If both address and
225 * id are specified, the associations matching the address and the id should be
226 * the same.
228 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
229 struct sockaddr_storage *addr,
230 sctp_assoc_t id)
232 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
233 struct sctp_transport *transport;
234 union sctp_addr *laddr = (union sctp_addr *)addr;
236 laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
237 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
238 (union sctp_addr *)addr,
239 &transport);
240 laddr->v4.sin_port = htons(laddr->v4.sin_port);
242 if (!addr_asoc)
243 return NULL;
245 id_asoc = sctp_id2assoc(sk, id);
246 if (id_asoc && (id_asoc != addr_asoc))
247 return NULL;
249 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
250 (union sctp_addr *)addr);
252 return transport;
255 /* API 3.1.2 bind() - UDP Style Syntax
256 * The syntax of bind() is,
258 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
260 * sd - the socket descriptor returned by socket().
261 * addr - the address structure (struct sockaddr_in or struct
262 * sockaddr_in6 [RFC 2553]),
263 * addr_len - the size of the address structure.
265 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
267 int retval = 0;
269 sctp_lock_sock(sk);
271 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
272 sk, addr, addr_len);
274 /* Disallow binding twice. */
275 if (!sctp_sk(sk)->ep->base.bind_addr.port)
276 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
277 addr_len);
278 else
279 retval = -EINVAL;
281 sctp_release_sock(sk);
283 return retval;
286 static long sctp_get_port_local(struct sock *, union sctp_addr *);
288 /* Verify this is a valid sockaddr. */
289 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
290 union sctp_addr *addr, int len)
292 struct sctp_af *af;
294 /* Check minimum size. */
295 if (len < sizeof (struct sockaddr))
296 return NULL;
298 /* Does this PF support this AF? */
299 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
300 return NULL;
302 /* If we get this far, af is valid. */
303 af = sctp_get_af_specific(addr->sa.sa_family);
305 if (len < af->sockaddr_len)
306 return NULL;
308 return af;
311 /* Bind a local address either to an endpoint or to an association. */
312 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
314 struct sctp_sock *sp = sctp_sk(sk);
315 struct sctp_endpoint *ep = sp->ep;
316 struct sctp_bind_addr *bp = &ep->base.bind_addr;
317 struct sctp_af *af;
318 unsigned short snum;
319 int ret = 0;
321 /* Common sockaddr verification. */
322 af = sctp_sockaddr_af(sp, addr, len);
323 if (!af) {
324 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
325 sk, addr, len);
326 return -EINVAL;
329 snum = ntohs(addr->v4.sin_port);
331 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
332 ", port: %d, new port: %d, len: %d)\n",
334 addr,
335 bp->port, snum,
336 len);
338 /* PF specific bind() address verification. */
339 if (!sp->pf->bind_verify(sp, addr))
340 return -EADDRNOTAVAIL;
342 /* We must either be unbound, or bind to the same port. */
343 if (bp->port && (snum != bp->port)) {
344 SCTP_DEBUG_PRINTK("sctp_do_bind:"
345 " New port %d does not match existing port "
346 "%d.\n", snum, bp->port);
347 return -EINVAL;
350 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
351 return -EACCES;
353 /* Make sure we are allowed to bind here.
354 * The function sctp_get_port_local() does duplicate address
355 * detection.
357 if ((ret = sctp_get_port_local(sk, addr))) {
358 if (ret == (long) sk) {
359 /* This endpoint has a conflicting address. */
360 return -EINVAL;
361 } else {
362 return -EADDRINUSE;
366 /* Refresh ephemeral port. */
367 if (!bp->port)
368 bp->port = inet_sk(sk)->num;
370 /* Add the address to the bind address list. */
371 sctp_local_bh_disable();
372 sctp_write_lock(&ep->base.addr_lock);
374 /* Use GFP_ATOMIC since BHs are disabled. */
375 addr->v4.sin_port = ntohs(addr->v4.sin_port);
376 ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
377 addr->v4.sin_port = htons(addr->v4.sin_port);
378 sctp_write_unlock(&ep->base.addr_lock);
379 sctp_local_bh_enable();
381 /* Copy back into socket for getsockname() use. */
382 if (!ret) {
383 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
384 af->to_sk_saddr(addr, sk);
387 return ret;
390 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
392 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
393 * at any one time. If a sender, after sending an ASCONF chunk, decides
394 * it needs to transfer another ASCONF Chunk, it MUST wait until the
395 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
396 * subsequent ASCONF. Note this restriction binds each side, so at any
397 * time two ASCONF may be in-transit on any given association (one sent
398 * from each endpoint).
400 static int sctp_send_asconf(struct sctp_association *asoc,
401 struct sctp_chunk *chunk)
403 int retval = 0;
405 /* If there is an outstanding ASCONF chunk, queue it for later
406 * transmission.
408 if (asoc->addip_last_asconf) {
409 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
410 goto out;
413 /* Hold the chunk until an ASCONF_ACK is received. */
414 sctp_chunk_hold(chunk);
415 retval = sctp_primitive_ASCONF(asoc, chunk);
416 if (retval)
417 sctp_chunk_free(chunk);
418 else
419 asoc->addip_last_asconf = chunk;
421 out:
422 return retval;
425 /* Add a list of addresses as bind addresses to local endpoint or
426 * association.
428 * Basically run through each address specified in the addrs/addrcnt
429 * array/length pair, determine if it is IPv6 or IPv4 and call
430 * sctp_do_bind() on it.
432 * If any of them fails, then the operation will be reversed and the
433 * ones that were added will be removed.
435 * Only sctp_setsockopt_bindx() is supposed to call this function.
437 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
439 int cnt;
440 int retval = 0;
441 void *addr_buf;
442 struct sockaddr *sa_addr;
443 struct sctp_af *af;
445 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
446 sk, addrs, addrcnt);
448 addr_buf = addrs;
449 for (cnt = 0; cnt < addrcnt; cnt++) {
450 /* The list may contain either IPv4 or IPv6 address;
451 * determine the address length for walking thru the list.
453 sa_addr = (struct sockaddr *)addr_buf;
454 af = sctp_get_af_specific(sa_addr->sa_family);
455 if (!af) {
456 retval = -EINVAL;
457 goto err_bindx_add;
460 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
461 af->sockaddr_len);
463 addr_buf += af->sockaddr_len;
465 err_bindx_add:
466 if (retval < 0) {
467 /* Failed. Cleanup the ones that have been added */
468 if (cnt > 0)
469 sctp_bindx_rem(sk, addrs, cnt);
470 return retval;
474 return retval;
477 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
478 * associations that are part of the endpoint indicating that a list of local
479 * addresses are added to the endpoint.
481 * If any of the addresses is already in the bind address list of the
482 * association, we do not send the chunk for that association. But it will not
483 * affect other associations.
485 * Only sctp_setsockopt_bindx() is supposed to call this function.
487 static int sctp_send_asconf_add_ip(struct sock *sk,
488 struct sockaddr *addrs,
489 int addrcnt)
491 struct sctp_sock *sp;
492 struct sctp_endpoint *ep;
493 struct sctp_association *asoc;
494 struct sctp_bind_addr *bp;
495 struct sctp_chunk *chunk;
496 struct sctp_sockaddr_entry *laddr;
497 union sctp_addr *addr;
498 void *addr_buf;
499 struct sctp_af *af;
500 struct list_head *pos;
501 struct list_head *p;
502 int i;
503 int retval = 0;
505 if (!sctp_addip_enable)
506 return retval;
508 sp = sctp_sk(sk);
509 ep = sp->ep;
511 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
512 __FUNCTION__, sk, addrs, addrcnt);
514 list_for_each(pos, &ep->asocs) {
515 asoc = list_entry(pos, struct sctp_association, asocs);
517 if (!asoc->peer.asconf_capable)
518 continue;
520 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
521 continue;
523 if (!sctp_state(asoc, ESTABLISHED))
524 continue;
526 /* Check if any address in the packed array of addresses is
527 * in the bind address list of the association. If so,
528 * do not send the asconf chunk to its peer, but continue with
529 * other associations.
531 addr_buf = addrs;
532 for (i = 0; i < addrcnt; i++) {
533 addr = (union sctp_addr *)addr_buf;
534 af = sctp_get_af_specific(addr->v4.sin_family);
535 if (!af) {
536 retval = -EINVAL;
537 goto out;
540 if (sctp_assoc_lookup_laddr(asoc, addr))
541 break;
543 addr_buf += af->sockaddr_len;
545 if (i < addrcnt)
546 continue;
548 /* Use the first address in bind addr list of association as
549 * Address Parameter of ASCONF CHUNK.
551 sctp_read_lock(&asoc->base.addr_lock);
552 bp = &asoc->base.bind_addr;
553 p = bp->address_list.next;
554 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
555 sctp_read_unlock(&asoc->base.addr_lock);
557 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
558 addrcnt, SCTP_PARAM_ADD_IP);
559 if (!chunk) {
560 retval = -ENOMEM;
561 goto out;
564 retval = sctp_send_asconf(asoc, chunk);
566 /* FIXME: After sending the add address ASCONF chunk, we
567 * cannot append the address to the association's binding
568 * address list, because the new address may be used as the
569 * source of a message sent to the peer before the ASCONF
570 * chunk is received by the peer. So we should wait until
571 * ASCONF_ACK is received.
575 out:
576 return retval;
579 /* Remove a list of addresses from bind addresses list. Do not remove the
580 * last address.
582 * Basically run through each address specified in the addrs/addrcnt
583 * array/length pair, determine if it is IPv6 or IPv4 and call
584 * sctp_del_bind() on it.
586 * If any of them fails, then the operation will be reversed and the
587 * ones that were removed will be added back.
589 * At least one address has to be left; if only one address is
590 * available, the operation will return -EBUSY.
592 * Only sctp_setsockopt_bindx() is supposed to call this function.
594 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
596 struct sctp_sock *sp = sctp_sk(sk);
597 struct sctp_endpoint *ep = sp->ep;
598 int cnt;
599 struct sctp_bind_addr *bp = &ep->base.bind_addr;
600 int retval = 0;
601 union sctp_addr saveaddr;
602 void *addr_buf;
603 struct sockaddr *sa_addr;
604 struct sctp_af *af;
606 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
607 sk, addrs, addrcnt);
609 addr_buf = addrs;
610 for (cnt = 0; cnt < addrcnt; cnt++) {
611 /* If the bind address list is empty or if there is only one
612 * bind address, there is nothing more to be removed (we need
613 * at least one address here).
615 if (list_empty(&bp->address_list) ||
616 (sctp_list_single_entry(&bp->address_list))) {
617 retval = -EBUSY;
618 goto err_bindx_rem;
621 /* The list may contain either IPv4 or IPv6 address;
622 * determine the address length to copy the address to
623 * saveaddr.
625 sa_addr = (struct sockaddr *)addr_buf;
626 af = sctp_get_af_specific(sa_addr->sa_family);
627 if (!af) {
628 retval = -EINVAL;
629 goto err_bindx_rem;
631 memcpy(&saveaddr, sa_addr, af->sockaddr_len);
632 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
633 if (saveaddr.v4.sin_port != bp->port) {
634 retval = -EINVAL;
635 goto err_bindx_rem;
638 /* FIXME - There is probably a need to check if sk->sk_saddr and
639 * sk->sk_rcv_addr are currently set to one of the addresses to
640 * be removed. This is something which needs to be looked into
641 * when we are fixing the outstanding issues with multi-homing
642 * socket routing and failover schemes. Refer to comments in
643 * sctp_do_bind(). -daisy
645 sctp_local_bh_disable();
646 sctp_write_lock(&ep->base.addr_lock);
648 retval = sctp_del_bind_addr(bp, &saveaddr);
650 sctp_write_unlock(&ep->base.addr_lock);
651 sctp_local_bh_enable();
653 addr_buf += af->sockaddr_len;
654 err_bindx_rem:
655 if (retval < 0) {
656 /* Failed. Add the ones that has been removed back */
657 if (cnt > 0)
658 sctp_bindx_add(sk, addrs, cnt);
659 return retval;
663 return retval;
666 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
667 * the associations that are part of the endpoint indicating that a list of
668 * local addresses are removed from the endpoint.
670 * If any of the addresses is already in the bind address list of the
671 * association, we do not send the chunk for that association. But it will not
672 * affect other associations.
674 * Only sctp_setsockopt_bindx() is supposed to call this function.
676 static int sctp_send_asconf_del_ip(struct sock *sk,
677 struct sockaddr *addrs,
678 int addrcnt)
680 struct sctp_sock *sp;
681 struct sctp_endpoint *ep;
682 struct sctp_association *asoc;
683 struct sctp_bind_addr *bp;
684 struct sctp_chunk *chunk;
685 union sctp_addr *laddr;
686 void *addr_buf;
687 struct sctp_af *af;
688 struct list_head *pos;
689 int i;
690 int retval = 0;
692 if (!sctp_addip_enable)
693 return retval;
695 sp = sctp_sk(sk);
696 ep = sp->ep;
698 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
699 __FUNCTION__, sk, addrs, addrcnt);
701 list_for_each(pos, &ep->asocs) {
702 asoc = list_entry(pos, struct sctp_association, asocs);
704 if (!asoc->peer.asconf_capable)
705 continue;
707 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
708 continue;
710 if (!sctp_state(asoc, ESTABLISHED))
711 continue;
713 /* Check if any address in the packed array of addresses is
714 * not present in the bind address list of the association.
715 * If so, do not send the asconf chunk to its peer, but
716 * continue with other associations.
718 addr_buf = addrs;
719 for (i = 0; i < addrcnt; i++) {
720 laddr = (union sctp_addr *)addr_buf;
721 af = sctp_get_af_specific(laddr->v4.sin_family);
722 if (!af) {
723 retval = -EINVAL;
724 goto out;
727 if (!sctp_assoc_lookup_laddr(asoc, laddr))
728 break;
730 addr_buf += af->sockaddr_len;
732 if (i < addrcnt)
733 continue;
735 /* Find one address in the association's bind address list
736 * that is not in the packed array of addresses. This is to
737 * make sure that we do not delete all the addresses in the
738 * association.
740 sctp_read_lock(&asoc->base.addr_lock);
741 bp = &asoc->base.bind_addr;
742 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
743 addrcnt, sp);
744 sctp_read_unlock(&asoc->base.addr_lock);
745 if (!laddr)
746 continue;
748 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
749 SCTP_PARAM_DEL_IP);
750 if (!chunk) {
751 retval = -ENOMEM;
752 goto out;
755 retval = sctp_send_asconf(asoc, chunk);
757 /* FIXME: After sending the delete address ASCONF chunk, we
758 * cannot remove the addresses from the association's bind
759 * address list, because there maybe some packet send to
760 * the delete addresses, so we should wait until ASCONF_ACK
761 * packet is received.
764 out:
765 return retval;
768 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
770 * API 8.1
771 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
772 * int flags);
774 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
775 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
776 * or IPv6 addresses.
778 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
779 * Section 3.1.2 for this usage.
781 * addrs is a pointer to an array of one or more socket addresses. Each
782 * address is contained in its appropriate structure (i.e. struct
783 * sockaddr_in or struct sockaddr_in6) the family of the address type
784 * must be used to distengish the address length (note that this
785 * representation is termed a "packed array" of addresses). The caller
786 * specifies the number of addresses in the array with addrcnt.
788 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
789 * -1, and sets errno to the appropriate error code.
791 * For SCTP, the port given in each socket address must be the same, or
792 * sctp_bindx() will fail, setting errno to EINVAL.
794 * The flags parameter is formed from the bitwise OR of zero or more of
795 * the following currently defined flags:
797 * SCTP_BINDX_ADD_ADDR
799 * SCTP_BINDX_REM_ADDR
801 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
802 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
803 * addresses from the association. The two flags are mutually exclusive;
804 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
805 * not remove all addresses from an association; sctp_bindx() will
806 * reject such an attempt with EINVAL.
808 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
809 * additional addresses with an endpoint after calling bind(). Or use
810 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
811 * socket is associated with so that no new association accepted will be
812 * associated with those addresses. If the endpoint supports dynamic
813 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
814 * endpoint to send the appropriate message to the peer to change the
815 * peers address lists.
817 * Adding and removing addresses from a connected association is
818 * optional functionality. Implementations that do not support this
819 * functionality should return EOPNOTSUPP.
821 * Basically do nothing but copying the addresses from user to kernel
822 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
823 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
824 * from userspace.
826 * We don't use copy_from_user() for optimization: we first do the
827 * sanity checks (buffer size -fast- and access check-healthy
828 * pointer); if all of those succeed, then we can alloc the memory
829 * (expensive operation) needed to copy the data to kernel. Then we do
830 * the copying without checking the user space area
831 * (__copy_from_user()).
833 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
834 * it.
836 * sk The sk of the socket
837 * addrs The pointer to the addresses in user land
838 * addrssize Size of the addrs buffer
839 * op Operation to perform (add or remove, see the flags of
840 * sctp_bindx)
842 * Returns 0 if ok, <0 errno code on error.
844 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
845 struct sockaddr __user *addrs,
846 int addrs_size, int op)
848 struct sockaddr *kaddrs;
849 int err;
850 int addrcnt = 0;
851 int walk_size = 0;
852 struct sockaddr *sa_addr;
853 void *addr_buf;
854 struct sctp_af *af;
856 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
857 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
859 if (unlikely(addrs_size <= 0))
860 return -EINVAL;
862 /* Check the user passed a healthy pointer. */
863 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
864 return -EFAULT;
866 /* Alloc space for the address array in kernel memory. */
867 kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
868 if (unlikely(!kaddrs))
869 return -ENOMEM;
871 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
872 kfree(kaddrs);
873 return -EFAULT;
876 /* Walk through the addrs buffer and count the number of addresses. */
877 addr_buf = kaddrs;
878 while (walk_size < addrs_size) {
879 sa_addr = (struct sockaddr *)addr_buf;
880 af = sctp_get_af_specific(sa_addr->sa_family);
882 /* If the address family is not supported or if this address
883 * causes the address buffer to overflow return EINVAL.
885 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
886 kfree(kaddrs);
887 return -EINVAL;
889 addrcnt++;
890 addr_buf += af->sockaddr_len;
891 walk_size += af->sockaddr_len;
894 /* Do the work. */
895 switch (op) {
896 case SCTP_BINDX_ADD_ADDR:
897 err = sctp_bindx_add(sk, kaddrs, addrcnt);
898 if (err)
899 goto out;
900 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
901 break;
903 case SCTP_BINDX_REM_ADDR:
904 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
905 if (err)
906 goto out;
907 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
908 break;
910 default:
911 err = -EINVAL;
912 break;
915 out:
916 kfree(kaddrs);
918 return err;
921 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
923 * Common routine for handling connect() and sctp_connectx().
924 * Connect will come in with just a single address.
926 static int __sctp_connect(struct sock* sk,
927 struct sockaddr *kaddrs,
928 int addrs_size)
930 struct sctp_sock *sp;
931 struct sctp_endpoint *ep;
932 struct sctp_association *asoc = NULL;
933 struct sctp_association *asoc2;
934 struct sctp_transport *transport;
935 union sctp_addr to;
936 struct sctp_af *af;
937 sctp_scope_t scope;
938 long timeo;
939 int err = 0;
940 int addrcnt = 0;
941 int walk_size = 0;
942 struct sockaddr *sa_addr;
943 void *addr_buf;
945 sp = sctp_sk(sk);
946 ep = sp->ep;
948 /* connect() cannot be done on a socket that is already in ESTABLISHED
949 * state - UDP-style peeled off socket or a TCP-style socket that
950 * is already connected.
951 * It cannot be done even on a TCP-style listening socket.
953 if (sctp_sstate(sk, ESTABLISHED) ||
954 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
955 err = -EISCONN;
956 goto out_free;
959 /* Walk through the addrs buffer and count the number of addresses. */
960 addr_buf = kaddrs;
961 while (walk_size < addrs_size) {
962 sa_addr = (struct sockaddr *)addr_buf;
963 af = sctp_get_af_specific(sa_addr->sa_family);
965 /* If the address family is not supported or if this address
966 * causes the address buffer to overflow return EINVAL.
968 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
969 err = -EINVAL;
970 goto out_free;
973 err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
974 af->sockaddr_len);
975 if (err)
976 goto out_free;
978 memcpy(&to, sa_addr, af->sockaddr_len);
979 to.v4.sin_port = ntohs(to.v4.sin_port);
981 /* Check if there already is a matching association on the
982 * endpoint (other than the one created here).
984 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
985 if (asoc2 && asoc2 != asoc) {
986 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
987 err = -EISCONN;
988 else
989 err = -EALREADY;
990 goto out_free;
993 /* If we could not find a matching association on the endpoint,
994 * make sure that there is no peeled-off association matching
995 * the peer address even on another socket.
997 if (sctp_endpoint_is_peeled_off(ep, &to)) {
998 err = -EADDRNOTAVAIL;
999 goto out_free;
1002 if (!asoc) {
1003 /* If a bind() or sctp_bindx() is not called prior to
1004 * an sctp_connectx() call, the system picks an
1005 * ephemeral port and will choose an address set
1006 * equivalent to binding with a wildcard address.
1008 if (!ep->base.bind_addr.port) {
1009 if (sctp_autobind(sk)) {
1010 err = -EAGAIN;
1011 goto out_free;
1013 } else {
1015 * If an unprivileged user inherits a 1-many
1016 * style socket with open associations on a
1017 * privileged port, it MAY be permitted to
1018 * accept new associations, but it SHOULD NOT
1019 * be permitted to open new associations.
1021 if (ep->base.bind_addr.port < PROT_SOCK &&
1022 !capable(CAP_NET_BIND_SERVICE)) {
1023 err = -EACCES;
1024 goto out_free;
1028 scope = sctp_scope(&to);
1029 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1030 if (!asoc) {
1031 err = -ENOMEM;
1032 goto out_free;
1036 /* Prime the peer's transport structures. */
1037 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1038 SCTP_UNKNOWN);
1039 if (!transport) {
1040 err = -ENOMEM;
1041 goto out_free;
1044 addrcnt++;
1045 addr_buf += af->sockaddr_len;
1046 walk_size += af->sockaddr_len;
1049 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1050 if (err < 0) {
1051 goto out_free;
1054 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1055 if (err < 0) {
1056 goto out_free;
1059 /* Initialize sk's dport and daddr for getpeername() */
1060 inet_sk(sk)->dport = htons(asoc->peer.port);
1061 af = sctp_get_af_specific(to.sa.sa_family);
1062 af->to_sk_daddr(&to, sk);
1064 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1065 err = sctp_wait_for_connect(asoc, &timeo);
1067 /* Don't free association on exit. */
1068 asoc = NULL;
1070 out_free:
1072 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1073 " kaddrs: %p err: %d\n",
1074 asoc, kaddrs, err);
1075 if (asoc)
1076 sctp_association_free(asoc);
1077 return err;
1080 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1082 * API 8.9
1083 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1085 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1086 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1087 * or IPv6 addresses.
1089 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1090 * Section 3.1.2 for this usage.
1092 * addrs is a pointer to an array of one or more socket addresses. Each
1093 * address is contained in its appropriate structure (i.e. struct
1094 * sockaddr_in or struct sockaddr_in6) the family of the address type
1095 * must be used to distengish the address length (note that this
1096 * representation is termed a "packed array" of addresses). The caller
1097 * specifies the number of addresses in the array with addrcnt.
1099 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1100 * -1, and sets errno to the appropriate error code.
1102 * For SCTP, the port given in each socket address must be the same, or
1103 * sctp_connectx() will fail, setting errno to EINVAL.
1105 * An application can use sctp_connectx to initiate an association with
1106 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1107 * allows a caller to specify multiple addresses at which a peer can be
1108 * reached. The way the SCTP stack uses the list of addresses to set up
1109 * the association is implementation dependant. This function only
1110 * specifies that the stack will try to make use of all the addresses in
1111 * the list when needed.
1113 * Note that the list of addresses passed in is only used for setting up
1114 * the association. It does not necessarily equal the set of addresses
1115 * the peer uses for the resulting association. If the caller wants to
1116 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1117 * retrieve them after the association has been set up.
1119 * Basically do nothing but copying the addresses from user to kernel
1120 * land and invoking either sctp_connectx(). This is used for tunneling
1121 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1123 * We don't use copy_from_user() for optimization: we first do the
1124 * sanity checks (buffer size -fast- and access check-healthy
1125 * pointer); if all of those succeed, then we can alloc the memory
1126 * (expensive operation) needed to copy the data to kernel. Then we do
1127 * the copying without checking the user space area
1128 * (__copy_from_user()).
1130 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1131 * it.
1133 * sk The sk of the socket
1134 * addrs The pointer to the addresses in user land
1135 * addrssize Size of the addrs buffer
1137 * Returns 0 if ok, <0 errno code on error.
1139 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1140 struct sockaddr __user *addrs,
1141 int addrs_size)
1143 int err = 0;
1144 struct sockaddr *kaddrs;
1146 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1147 __FUNCTION__, sk, addrs, addrs_size);
1149 if (unlikely(addrs_size <= 0))
1150 return -EINVAL;
1152 /* Check the user passed a healthy pointer. */
1153 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1154 return -EFAULT;
1156 /* Alloc space for the address array in kernel memory. */
1157 kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
1158 if (unlikely(!kaddrs))
1159 return -ENOMEM;
1161 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1162 err = -EFAULT;
1163 } else {
1164 err = __sctp_connect(sk, kaddrs, addrs_size);
1167 kfree(kaddrs);
1168 return err;
1171 /* API 3.1.4 close() - UDP Style Syntax
1172 * Applications use close() to perform graceful shutdown (as described in
1173 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1174 * by a UDP-style socket.
1176 * The syntax is
1178 * ret = close(int sd);
1180 * sd - the socket descriptor of the associations to be closed.
1182 * To gracefully shutdown a specific association represented by the
1183 * UDP-style socket, an application should use the sendmsg() call,
1184 * passing no user data, but including the appropriate flag in the
1185 * ancillary data (see Section xxxx).
1187 * If sd in the close() call is a branched-off socket representing only
1188 * one association, the shutdown is performed on that association only.
1190 * 4.1.6 close() - TCP Style Syntax
1192 * Applications use close() to gracefully close down an association.
1194 * The syntax is:
1196 * int close(int sd);
1198 * sd - the socket descriptor of the association to be closed.
1200 * After an application calls close() on a socket descriptor, no further
1201 * socket operations will succeed on that descriptor.
1203 * API 7.1.4 SO_LINGER
1205 * An application using the TCP-style socket can use this option to
1206 * perform the SCTP ABORT primitive. The linger option structure is:
1208 * struct linger {
1209 * int l_onoff; // option on/off
1210 * int l_linger; // linger time
1211 * };
1213 * To enable the option, set l_onoff to 1. If the l_linger value is set
1214 * to 0, calling close() is the same as the ABORT primitive. If the
1215 * value is set to a negative value, the setsockopt() call will return
1216 * an error. If the value is set to a positive value linger_time, the
1217 * close() can be blocked for at most linger_time ms. If the graceful
1218 * shutdown phase does not finish during this period, close() will
1219 * return but the graceful shutdown phase continues in the system.
1221 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1223 struct sctp_endpoint *ep;
1224 struct sctp_association *asoc;
1225 struct list_head *pos, *temp;
1227 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1229 sctp_lock_sock(sk);
1230 sk->sk_shutdown = SHUTDOWN_MASK;
1232 ep = sctp_sk(sk)->ep;
1234 /* Walk all associations on a socket, not on an endpoint. */
1235 list_for_each_safe(pos, temp, &ep->asocs) {
1236 asoc = list_entry(pos, struct sctp_association, asocs);
1238 if (sctp_style(sk, TCP)) {
1239 /* A closed association can still be in the list if
1240 * it belongs to a TCP-style listening socket that is
1241 * not yet accepted. If so, free it. If not, send an
1242 * ABORT or SHUTDOWN based on the linger options.
1244 if (sctp_state(asoc, CLOSED)) {
1245 sctp_unhash_established(asoc);
1246 sctp_association_free(asoc);
1248 } else if (sock_flag(sk, SOCK_LINGER) &&
1249 !sk->sk_lingertime)
1250 sctp_primitive_ABORT(asoc, NULL);
1251 else
1252 sctp_primitive_SHUTDOWN(asoc, NULL);
1253 } else
1254 sctp_primitive_SHUTDOWN(asoc, NULL);
1257 /* Clean up any skbs sitting on the receive queue. */
1258 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1259 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1261 /* On a TCP-style socket, block for at most linger_time if set. */
1262 if (sctp_style(sk, TCP) && timeout)
1263 sctp_wait_for_close(sk, timeout);
1265 /* This will run the backlog queue. */
1266 sctp_release_sock(sk);
1268 /* Supposedly, no process has access to the socket, but
1269 * the net layers still may.
1271 sctp_local_bh_disable();
1272 sctp_bh_lock_sock(sk);
1274 /* Hold the sock, since sk_common_release() will put sock_put()
1275 * and we have just a little more cleanup.
1277 sock_hold(sk);
1278 sk_common_release(sk);
1280 sctp_bh_unlock_sock(sk);
1281 sctp_local_bh_enable();
1283 sock_put(sk);
1285 SCTP_DBG_OBJCNT_DEC(sock);
1288 /* Handle EPIPE error. */
1289 static int sctp_error(struct sock *sk, int flags, int err)
1291 if (err == -EPIPE)
1292 err = sock_error(sk) ? : -EPIPE;
1293 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1294 send_sig(SIGPIPE, current, 0);
1295 return err;
1298 /* API 3.1.3 sendmsg() - UDP Style Syntax
1300 * An application uses sendmsg() and recvmsg() calls to transmit data to
1301 * and receive data from its peer.
1303 * ssize_t sendmsg(int socket, const struct msghdr *message,
1304 * int flags);
1306 * socket - the socket descriptor of the endpoint.
1307 * message - pointer to the msghdr structure which contains a single
1308 * user message and possibly some ancillary data.
1310 * See Section 5 for complete description of the data
1311 * structures.
1313 * flags - flags sent or received with the user message, see Section
1314 * 5 for complete description of the flags.
1316 * Note: This function could use a rewrite especially when explicit
1317 * connect support comes in.
1319 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1321 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1323 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1324 struct msghdr *msg, size_t msg_len)
1326 struct sctp_sock *sp;
1327 struct sctp_endpoint *ep;
1328 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1329 struct sctp_transport *transport, *chunk_tp;
1330 struct sctp_chunk *chunk;
1331 union sctp_addr to;
1332 struct sockaddr *msg_name = NULL;
1333 struct sctp_sndrcvinfo default_sinfo = { 0 };
1334 struct sctp_sndrcvinfo *sinfo;
1335 struct sctp_initmsg *sinit;
1336 sctp_assoc_t associd = 0;
1337 sctp_cmsgs_t cmsgs = { NULL };
1338 int err;
1339 sctp_scope_t scope;
1340 long timeo;
1341 __u16 sinfo_flags = 0;
1342 struct sctp_datamsg *datamsg;
1343 struct list_head *pos;
1344 int msg_flags = msg->msg_flags;
1346 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1347 sk, msg, msg_len);
1349 err = 0;
1350 sp = sctp_sk(sk);
1351 ep = sp->ep;
1353 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1355 /* We cannot send a message over a TCP-style listening socket. */
1356 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1357 err = -EPIPE;
1358 goto out_nounlock;
1361 /* Parse out the SCTP CMSGs. */
1362 err = sctp_msghdr_parse(msg, &cmsgs);
1364 if (err) {
1365 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1366 goto out_nounlock;
1369 /* Fetch the destination address for this packet. This
1370 * address only selects the association--it is not necessarily
1371 * the address we will send to.
1372 * For a peeled-off socket, msg_name is ignored.
1374 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1375 int msg_namelen = msg->msg_namelen;
1377 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1378 msg_namelen);
1379 if (err)
1380 return err;
1382 if (msg_namelen > sizeof(to))
1383 msg_namelen = sizeof(to);
1384 memcpy(&to, msg->msg_name, msg_namelen);
1385 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1386 "0x%x:%u.\n",
1387 to.v4.sin_addr.s_addr, to.v4.sin_port);
1389 to.v4.sin_port = ntohs(to.v4.sin_port);
1390 msg_name = msg->msg_name;
1393 sinfo = cmsgs.info;
1394 sinit = cmsgs.init;
1396 /* Did the user specify SNDRCVINFO? */
1397 if (sinfo) {
1398 sinfo_flags = sinfo->sinfo_flags;
1399 associd = sinfo->sinfo_assoc_id;
1402 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1403 msg_len, sinfo_flags);
1405 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1406 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1407 err = -EINVAL;
1408 goto out_nounlock;
1411 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1412 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1413 * If SCTP_ABORT is set, the message length could be non zero with
1414 * the msg_iov set to the user abort reason.
1416 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1417 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1418 err = -EINVAL;
1419 goto out_nounlock;
1422 /* If SCTP_ADDR_OVER is set, there must be an address
1423 * specified in msg_name.
1425 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1426 err = -EINVAL;
1427 goto out_nounlock;
1430 transport = NULL;
1432 SCTP_DEBUG_PRINTK("About to look up association.\n");
1434 sctp_lock_sock(sk);
1436 /* If a msg_name has been specified, assume this is to be used. */
1437 if (msg_name) {
1438 /* Look for a matching association on the endpoint. */
1439 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1440 if (!asoc) {
1441 /* If we could not find a matching association on the
1442 * endpoint, make sure that it is not a TCP-style
1443 * socket that already has an association or there is
1444 * no peeled-off association on another socket.
1446 if ((sctp_style(sk, TCP) &&
1447 sctp_sstate(sk, ESTABLISHED)) ||
1448 sctp_endpoint_is_peeled_off(ep, &to)) {
1449 err = -EADDRNOTAVAIL;
1450 goto out_unlock;
1453 } else {
1454 asoc = sctp_id2assoc(sk, associd);
1455 if (!asoc) {
1456 err = -EPIPE;
1457 goto out_unlock;
1461 if (asoc) {
1462 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1464 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1465 * socket that has an association in CLOSED state. This can
1466 * happen when an accepted socket has an association that is
1467 * already CLOSED.
1469 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1470 err = -EPIPE;
1471 goto out_unlock;
1474 if (sinfo_flags & SCTP_EOF) {
1475 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1476 asoc);
1477 sctp_primitive_SHUTDOWN(asoc, NULL);
1478 err = 0;
1479 goto out_unlock;
1481 if (sinfo_flags & SCTP_ABORT) {
1482 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1483 sctp_primitive_ABORT(asoc, msg);
1484 err = 0;
1485 goto out_unlock;
1489 /* Do we need to create the association? */
1490 if (!asoc) {
1491 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1493 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1494 err = -EINVAL;
1495 goto out_unlock;
1498 /* Check for invalid stream against the stream counts,
1499 * either the default or the user specified stream counts.
1501 if (sinfo) {
1502 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1503 /* Check against the defaults. */
1504 if (sinfo->sinfo_stream >=
1505 sp->initmsg.sinit_num_ostreams) {
1506 err = -EINVAL;
1507 goto out_unlock;
1509 } else {
1510 /* Check against the requested. */
1511 if (sinfo->sinfo_stream >=
1512 sinit->sinit_num_ostreams) {
1513 err = -EINVAL;
1514 goto out_unlock;
1520 * API 3.1.2 bind() - UDP Style Syntax
1521 * If a bind() or sctp_bindx() is not called prior to a
1522 * sendmsg() call that initiates a new association, the
1523 * system picks an ephemeral port and will choose an address
1524 * set equivalent to binding with a wildcard address.
1526 if (!ep->base.bind_addr.port) {
1527 if (sctp_autobind(sk)) {
1528 err = -EAGAIN;
1529 goto out_unlock;
1531 } else {
1533 * If an unprivileged user inherits a one-to-many
1534 * style socket with open associations on a privileged
1535 * port, it MAY be permitted to accept new associations,
1536 * but it SHOULD NOT be permitted to open new
1537 * associations.
1539 if (ep->base.bind_addr.port < PROT_SOCK &&
1540 !capable(CAP_NET_BIND_SERVICE)) {
1541 err = -EACCES;
1542 goto out_unlock;
1546 scope = sctp_scope(&to);
1547 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1548 if (!new_asoc) {
1549 err = -ENOMEM;
1550 goto out_unlock;
1552 asoc = new_asoc;
1554 /* If the SCTP_INIT ancillary data is specified, set all
1555 * the association init values accordingly.
1557 if (sinit) {
1558 if (sinit->sinit_num_ostreams) {
1559 asoc->c.sinit_num_ostreams =
1560 sinit->sinit_num_ostreams;
1562 if (sinit->sinit_max_instreams) {
1563 asoc->c.sinit_max_instreams =
1564 sinit->sinit_max_instreams;
1566 if (sinit->sinit_max_attempts) {
1567 asoc->max_init_attempts
1568 = sinit->sinit_max_attempts;
1570 if (sinit->sinit_max_init_timeo) {
1571 asoc->max_init_timeo =
1572 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1576 /* Prime the peer's transport structures. */
1577 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1578 if (!transport) {
1579 err = -ENOMEM;
1580 goto out_free;
1582 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1583 if (err < 0) {
1584 err = -ENOMEM;
1585 goto out_free;
1589 /* ASSERT: we have a valid association at this point. */
1590 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1592 if (!sinfo) {
1593 /* If the user didn't specify SNDRCVINFO, make up one with
1594 * some defaults.
1596 default_sinfo.sinfo_stream = asoc->default_stream;
1597 default_sinfo.sinfo_flags = asoc->default_flags;
1598 default_sinfo.sinfo_ppid = asoc->default_ppid;
1599 default_sinfo.sinfo_context = asoc->default_context;
1600 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1601 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1602 sinfo = &default_sinfo;
1605 /* API 7.1.7, the sndbuf size per association bounds the
1606 * maximum size of data that can be sent in a single send call.
1608 if (msg_len > sk->sk_sndbuf) {
1609 err = -EMSGSIZE;
1610 goto out_free;
1613 /* If fragmentation is disabled and the message length exceeds the
1614 * association fragmentation point, return EMSGSIZE. The I-D
1615 * does not specify what this error is, but this looks like
1616 * a great fit.
1618 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1619 err = -EMSGSIZE;
1620 goto out_free;
1623 if (sinfo) {
1624 /* Check for invalid stream. */
1625 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1626 err = -EINVAL;
1627 goto out_free;
1631 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1632 if (!sctp_wspace(asoc)) {
1633 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1634 if (err)
1635 goto out_free;
1638 /* If an address is passed with the sendto/sendmsg call, it is used
1639 * to override the primary destination address in the TCP model, or
1640 * when SCTP_ADDR_OVER flag is set in the UDP model.
1642 if ((sctp_style(sk, TCP) && msg_name) ||
1643 (sinfo_flags & SCTP_ADDR_OVER)) {
1644 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1645 if (!chunk_tp) {
1646 err = -EINVAL;
1647 goto out_free;
1649 } else
1650 chunk_tp = NULL;
1652 /* Auto-connect, if we aren't connected already. */
1653 if (sctp_state(asoc, CLOSED)) {
1654 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1655 if (err < 0)
1656 goto out_free;
1657 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1660 /* Break the message into multiple chunks of maximum size. */
1661 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1662 if (!datamsg) {
1663 err = -ENOMEM;
1664 goto out_free;
1667 /* Now send the (possibly) fragmented message. */
1668 list_for_each(pos, &datamsg->chunks) {
1669 chunk = list_entry(pos, struct sctp_chunk, frag_list);
1670 sctp_datamsg_track(chunk);
1672 /* Do accounting for the write space. */
1673 sctp_set_owner_w(chunk);
1675 chunk->transport = chunk_tp;
1677 /* Send it to the lower layers. Note: all chunks
1678 * must either fail or succeed. The lower layer
1679 * works that way today. Keep it that way or this
1680 * breaks.
1682 err = sctp_primitive_SEND(asoc, chunk);
1683 /* Did the lower layer accept the chunk? */
1684 if (err)
1685 sctp_chunk_free(chunk);
1686 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1689 sctp_datamsg_free(datamsg);
1690 if (err)
1691 goto out_free;
1692 else
1693 err = msg_len;
1695 /* If we are already past ASSOCIATE, the lower
1696 * layers are responsible for association cleanup.
1698 goto out_unlock;
1700 out_free:
1701 if (new_asoc)
1702 sctp_association_free(asoc);
1703 out_unlock:
1704 sctp_release_sock(sk);
1706 out_nounlock:
1707 return sctp_error(sk, msg_flags, err);
1709 #if 0
1710 do_sock_err:
1711 if (msg_len)
1712 err = msg_len;
1713 else
1714 err = sock_error(sk);
1715 goto out;
1717 do_interrupted:
1718 if (msg_len)
1719 err = msg_len;
1720 goto out;
1721 #endif /* 0 */
1724 /* This is an extended version of skb_pull() that removes the data from the
1725 * start of a skb even when data is spread across the list of skb's in the
1726 * frag_list. len specifies the total amount of data that needs to be removed.
1727 * when 'len' bytes could be removed from the skb, it returns 0.
1728 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1729 * could not be removed.
1731 static int sctp_skb_pull(struct sk_buff *skb, int len)
1733 struct sk_buff *list;
1734 int skb_len = skb_headlen(skb);
1735 int rlen;
1737 if (len <= skb_len) {
1738 __skb_pull(skb, len);
1739 return 0;
1741 len -= skb_len;
1742 __skb_pull(skb, skb_len);
1744 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1745 rlen = sctp_skb_pull(list, len);
1746 skb->len -= (len-rlen);
1747 skb->data_len -= (len-rlen);
1749 if (!rlen)
1750 return 0;
1752 len = rlen;
1755 return len;
1758 /* API 3.1.3 recvmsg() - UDP Style Syntax
1760 * ssize_t recvmsg(int socket, struct msghdr *message,
1761 * int flags);
1763 * socket - the socket descriptor of the endpoint.
1764 * message - pointer to the msghdr structure which contains a single
1765 * user message and possibly some ancillary data.
1767 * See Section 5 for complete description of the data
1768 * structures.
1770 * flags - flags sent or received with the user message, see Section
1771 * 5 for complete description of the flags.
1773 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1775 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1776 struct msghdr *msg, size_t len, int noblock,
1777 int flags, int *addr_len)
1779 struct sctp_ulpevent *event = NULL;
1780 struct sctp_sock *sp = sctp_sk(sk);
1781 struct sk_buff *skb;
1782 int copied;
1783 int err = 0;
1784 int skb_len;
1786 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1787 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1788 "len", len, "knoblauch", noblock,
1789 "flags", flags, "addr_len", addr_len);
1791 sctp_lock_sock(sk);
1793 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1794 err = -ENOTCONN;
1795 goto out;
1798 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1799 if (!skb)
1800 goto out;
1802 /* Get the total length of the skb including any skb's in the
1803 * frag_list.
1805 skb_len = skb->len;
1807 copied = skb_len;
1808 if (copied > len)
1809 copied = len;
1811 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1813 event = sctp_skb2event(skb);
1815 if (err)
1816 goto out_free;
1818 sock_recv_timestamp(msg, sk, skb);
1819 if (sctp_ulpevent_is_notification(event)) {
1820 msg->msg_flags |= MSG_NOTIFICATION;
1821 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1822 } else {
1823 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1826 /* Check if we allow SCTP_SNDRCVINFO. */
1827 if (sp->subscribe.sctp_data_io_event)
1828 sctp_ulpevent_read_sndrcvinfo(event, msg);
1829 #if 0
1830 /* FIXME: we should be calling IP/IPv6 layers. */
1831 if (sk->sk_protinfo.af_inet.cmsg_flags)
1832 ip_cmsg_recv(msg, skb);
1833 #endif
1835 err = copied;
1837 /* If skb's length exceeds the user's buffer, update the skb and
1838 * push it back to the receive_queue so that the next call to
1839 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1841 if (skb_len > copied) {
1842 msg->msg_flags &= ~MSG_EOR;
1843 if (flags & MSG_PEEK)
1844 goto out_free;
1845 sctp_skb_pull(skb, copied);
1846 skb_queue_head(&sk->sk_receive_queue, skb);
1848 /* When only partial message is copied to the user, increase
1849 * rwnd by that amount. If all the data in the skb is read,
1850 * rwnd is updated when the event is freed.
1852 sctp_assoc_rwnd_increase(event->asoc, copied);
1853 goto out;
1854 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1855 (event->msg_flags & MSG_EOR))
1856 msg->msg_flags |= MSG_EOR;
1857 else
1858 msg->msg_flags &= ~MSG_EOR;
1860 out_free:
1861 if (flags & MSG_PEEK) {
1862 /* Release the skb reference acquired after peeking the skb in
1863 * sctp_skb_recv_datagram().
1865 kfree_skb(skb);
1866 } else {
1867 /* Free the event which includes releasing the reference to
1868 * the owner of the skb, freeing the skb and updating the
1869 * rwnd.
1871 sctp_ulpevent_free(event);
1873 out:
1874 sctp_release_sock(sk);
1875 return err;
1878 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1880 * This option is a on/off flag. If enabled no SCTP message
1881 * fragmentation will be performed. Instead if a message being sent
1882 * exceeds the current PMTU size, the message will NOT be sent and
1883 * instead a error will be indicated to the user.
1885 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1886 char __user *optval, int optlen)
1888 int val;
1890 if (optlen < sizeof(int))
1891 return -EINVAL;
1893 if (get_user(val, (int __user *)optval))
1894 return -EFAULT;
1896 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1898 return 0;
1901 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1902 int optlen)
1904 if (optlen != sizeof(struct sctp_event_subscribe))
1905 return -EINVAL;
1906 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1907 return -EFAULT;
1908 return 0;
1911 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1913 * This socket option is applicable to the UDP-style socket only. When
1914 * set it will cause associations that are idle for more than the
1915 * specified number of seconds to automatically close. An association
1916 * being idle is defined an association that has NOT sent or received
1917 * user data. The special value of '0' indicates that no automatic
1918 * close of any associations should be performed. The option expects an
1919 * integer defining the number of seconds of idle time before an
1920 * association is closed.
1922 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1923 int optlen)
1925 struct sctp_sock *sp = sctp_sk(sk);
1927 /* Applicable to UDP-style socket only */
1928 if (sctp_style(sk, TCP))
1929 return -EOPNOTSUPP;
1930 if (optlen != sizeof(int))
1931 return -EINVAL;
1932 if (copy_from_user(&sp->autoclose, optval, optlen))
1933 return -EFAULT;
1935 sp->ep->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
1936 return 0;
1939 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1941 * Applications can enable or disable heartbeats for any peer address of
1942 * an association, modify an address's heartbeat interval, force a
1943 * heartbeat to be sent immediately, and adjust the address's maximum
1944 * number of retransmissions sent before an address is considered
1945 * unreachable. The following structure is used to access and modify an
1946 * address's parameters:
1948 * struct sctp_paddrparams {
1949 * sctp_assoc_t spp_assoc_id;
1950 * struct sockaddr_storage spp_address;
1951 * uint32_t spp_hbinterval;
1952 * uint16_t spp_pathmaxrxt;
1953 * };
1955 * spp_assoc_id - (UDP style socket) This is filled in the application,
1956 * and identifies the association for this query.
1957 * spp_address - This specifies which address is of interest.
1958 * spp_hbinterval - This contains the value of the heartbeat interval,
1959 * in milliseconds. A value of 0, when modifying the
1960 * parameter, specifies that the heartbeat on this
1961 * address should be disabled. A value of UINT32_MAX
1962 * (4294967295), when modifying the parameter,
1963 * specifies that a heartbeat should be sent
1964 * immediately to the peer address, and the current
1965 * interval should remain unchanged.
1966 * spp_pathmaxrxt - This contains the maximum number of
1967 * retransmissions before this address shall be
1968 * considered unreachable.
1970 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
1971 char __user *optval, int optlen)
1973 struct sctp_paddrparams params;
1974 struct sctp_transport *trans;
1975 int error;
1977 if (optlen != sizeof(struct sctp_paddrparams))
1978 return -EINVAL;
1979 if (copy_from_user(&params, optval, optlen))
1980 return -EFAULT;
1983 * API 7. Socket Options (setting the default value for the endpoint)
1984 * All options that support specific settings on an association by
1985 * filling in either an association id variable or a sockaddr_storage
1986 * SHOULD also support setting of the same value for the entire endpoint
1987 * (i.e. future associations). To accomplish this the following logic is
1988 * used when setting one of these options:
1990 * c) If neither the sockaddr_storage or association identification is
1991 * set i.e. the sockaddr_storage is set to all 0's (INADDR_ANY) and
1992 * the association identification is 0, the settings are a default
1993 * and to be applied to the endpoint (all future associations).
1996 /* update default value for endpoint (all future associations) */
1997 if (!params.spp_assoc_id &&
1998 sctp_is_any(( union sctp_addr *)&params.spp_address)) {
1999 /* Manual heartbeat on an endpoint is invalid. */
2000 if (0xffffffff == params.spp_hbinterval)
2001 return -EINVAL;
2002 else if (params.spp_hbinterval)
2003 sctp_sk(sk)->paddrparam.spp_hbinterval =
2004 params.spp_hbinterval;
2005 if (params.spp_pathmaxrxt)
2006 sctp_sk(sk)->paddrparam.spp_pathmaxrxt =
2007 params.spp_pathmaxrxt;
2008 return 0;
2011 trans = sctp_addr_id2transport(sk, &params.spp_address,
2012 params.spp_assoc_id);
2013 if (!trans)
2014 return -EINVAL;
2016 /* Applications can enable or disable heartbeats for any peer address
2017 * of an association, modify an address's heartbeat interval, force a
2018 * heartbeat to be sent immediately, and adjust the address's maximum
2019 * number of retransmissions sent before an address is considered
2020 * unreachable.
2022 * The value of the heartbeat interval, in milliseconds. A value of
2023 * UINT32_MAX (4294967295), when modifying the parameter, specifies
2024 * that a heartbeat should be sent immediately to the peer address,
2025 * and the current interval should remain unchanged.
2027 if (0xffffffff == params.spp_hbinterval) {
2028 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2029 if (error)
2030 return error;
2031 } else {
2032 /* The value of the heartbeat interval, in milliseconds. A value of 0,
2033 * when modifying the parameter, specifies that the heartbeat on this
2034 * address should be disabled.
2036 if (params.spp_hbinterval) {
2037 trans->hb_allowed = 1;
2038 trans->hb_interval =
2039 msecs_to_jiffies(params.spp_hbinterval);
2040 } else
2041 trans->hb_allowed = 0;
2044 /* spp_pathmaxrxt contains the maximum number of retransmissions
2045 * before this address shall be considered unreachable.
2047 if (params.spp_pathmaxrxt)
2048 trans->max_retrans = params.spp_pathmaxrxt;
2050 return 0;
2053 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2055 * Applications can specify protocol parameters for the default association
2056 * initialization. The option name argument to setsockopt() and getsockopt()
2057 * is SCTP_INITMSG.
2059 * Setting initialization parameters is effective only on an unconnected
2060 * socket (for UDP-style sockets only future associations are effected
2061 * by the change). With TCP-style sockets, this option is inherited by
2062 * sockets derived from a listener socket.
2064 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2066 struct sctp_initmsg sinit;
2067 struct sctp_sock *sp = sctp_sk(sk);
2069 if (optlen != sizeof(struct sctp_initmsg))
2070 return -EINVAL;
2071 if (copy_from_user(&sinit, optval, optlen))
2072 return -EFAULT;
2074 if (sinit.sinit_num_ostreams)
2075 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2076 if (sinit.sinit_max_instreams)
2077 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2078 if (sinit.sinit_max_attempts)
2079 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2080 if (sinit.sinit_max_init_timeo)
2081 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2083 return 0;
2087 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2089 * Applications that wish to use the sendto() system call may wish to
2090 * specify a default set of parameters that would normally be supplied
2091 * through the inclusion of ancillary data. This socket option allows
2092 * such an application to set the default sctp_sndrcvinfo structure.
2093 * The application that wishes to use this socket option simply passes
2094 * in to this call the sctp_sndrcvinfo structure defined in Section
2095 * 5.2.2) The input parameters accepted by this call include
2096 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2097 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2098 * to this call if the caller is using the UDP model.
2100 static int sctp_setsockopt_default_send_param(struct sock *sk,
2101 char __user *optval, int optlen)
2103 struct sctp_sndrcvinfo info;
2104 struct sctp_association *asoc;
2105 struct sctp_sock *sp = sctp_sk(sk);
2107 if (optlen != sizeof(struct sctp_sndrcvinfo))
2108 return -EINVAL;
2109 if (copy_from_user(&info, optval, optlen))
2110 return -EFAULT;
2112 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2113 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2114 return -EINVAL;
2116 if (asoc) {
2117 asoc->default_stream = info.sinfo_stream;
2118 asoc->default_flags = info.sinfo_flags;
2119 asoc->default_ppid = info.sinfo_ppid;
2120 asoc->default_context = info.sinfo_context;
2121 asoc->default_timetolive = info.sinfo_timetolive;
2122 } else {
2123 sp->default_stream = info.sinfo_stream;
2124 sp->default_flags = info.sinfo_flags;
2125 sp->default_ppid = info.sinfo_ppid;
2126 sp->default_context = info.sinfo_context;
2127 sp->default_timetolive = info.sinfo_timetolive;
2130 return 0;
2133 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2135 * Requests that the local SCTP stack use the enclosed peer address as
2136 * the association primary. The enclosed address must be one of the
2137 * association peer's addresses.
2139 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2140 int optlen)
2142 struct sctp_prim prim;
2143 struct sctp_transport *trans;
2145 if (optlen != sizeof(struct sctp_prim))
2146 return -EINVAL;
2148 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2149 return -EFAULT;
2151 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2152 if (!trans)
2153 return -EINVAL;
2155 sctp_assoc_set_primary(trans->asoc, trans);
2157 return 0;
2161 * 7.1.5 SCTP_NODELAY
2163 * Turn on/off any Nagle-like algorithm. This means that packets are
2164 * generally sent as soon as possible and no unnecessary delays are
2165 * introduced, at the cost of more packets in the network. Expects an
2166 * integer boolean flag.
2168 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2169 int optlen)
2171 int val;
2173 if (optlen < sizeof(int))
2174 return -EINVAL;
2175 if (get_user(val, (int __user *)optval))
2176 return -EFAULT;
2178 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2179 return 0;
2184 * 7.1.1 SCTP_RTOINFO
2186 * The protocol parameters used to initialize and bound retransmission
2187 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2188 * and modify these parameters.
2189 * All parameters are time values, in milliseconds. A value of 0, when
2190 * modifying the parameters, indicates that the current value should not
2191 * be changed.
2194 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2195 struct sctp_rtoinfo rtoinfo;
2196 struct sctp_association *asoc;
2198 if (optlen != sizeof (struct sctp_rtoinfo))
2199 return -EINVAL;
2201 if (copy_from_user(&rtoinfo, optval, optlen))
2202 return -EFAULT;
2204 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2206 /* Set the values to the specific association */
2207 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2208 return -EINVAL;
2210 if (asoc) {
2211 if (rtoinfo.srto_initial != 0)
2212 asoc->rto_initial =
2213 msecs_to_jiffies(rtoinfo.srto_initial);
2214 if (rtoinfo.srto_max != 0)
2215 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2216 if (rtoinfo.srto_min != 0)
2217 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2218 } else {
2219 /* If there is no association or the association-id = 0
2220 * set the values to the endpoint.
2222 struct sctp_sock *sp = sctp_sk(sk);
2224 if (rtoinfo.srto_initial != 0)
2225 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2226 if (rtoinfo.srto_max != 0)
2227 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2228 if (rtoinfo.srto_min != 0)
2229 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2232 return 0;
2237 * 7.1.2 SCTP_ASSOCINFO
2239 * This option is used to tune the the maximum retransmission attempts
2240 * of the association.
2241 * Returns an error if the new association retransmission value is
2242 * greater than the sum of the retransmission value of the peer.
2243 * See [SCTP] for more information.
2246 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2249 struct sctp_assocparams assocparams;
2250 struct sctp_association *asoc;
2252 if (optlen != sizeof(struct sctp_assocparams))
2253 return -EINVAL;
2254 if (copy_from_user(&assocparams, optval, optlen))
2255 return -EFAULT;
2257 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2259 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2260 return -EINVAL;
2262 /* Set the values to the specific association */
2263 if (asoc) {
2264 if (assocparams.sasoc_asocmaxrxt != 0)
2265 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2266 if (assocparams.sasoc_cookie_life != 0) {
2267 asoc->cookie_life.tv_sec =
2268 assocparams.sasoc_cookie_life / 1000;
2269 asoc->cookie_life.tv_usec =
2270 (assocparams.sasoc_cookie_life % 1000)
2271 * 1000;
2273 } else {
2274 /* Set the values to the endpoint */
2275 struct sctp_sock *sp = sctp_sk(sk);
2277 if (assocparams.sasoc_asocmaxrxt != 0)
2278 sp->assocparams.sasoc_asocmaxrxt =
2279 assocparams.sasoc_asocmaxrxt;
2280 if (assocparams.sasoc_cookie_life != 0)
2281 sp->assocparams.sasoc_cookie_life =
2282 assocparams.sasoc_cookie_life;
2284 return 0;
2288 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2290 * This socket option is a boolean flag which turns on or off mapped V4
2291 * addresses. If this option is turned on and the socket is type
2292 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2293 * If this option is turned off, then no mapping will be done of V4
2294 * addresses and a user will receive both PF_INET6 and PF_INET type
2295 * addresses on the socket.
2297 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2299 int val;
2300 struct sctp_sock *sp = sctp_sk(sk);
2302 if (optlen < sizeof(int))
2303 return -EINVAL;
2304 if (get_user(val, (int __user *)optval))
2305 return -EFAULT;
2306 if (val)
2307 sp->v4mapped = 1;
2308 else
2309 sp->v4mapped = 0;
2311 return 0;
2315 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2317 * This socket option specifies the maximum size to put in any outgoing
2318 * SCTP chunk. If a message is larger than this size it will be
2319 * fragmented by SCTP into the specified size. Note that the underlying
2320 * SCTP implementation may fragment into smaller sized chunks when the
2321 * PMTU of the underlying association is smaller than the value set by
2322 * the user.
2324 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2326 struct sctp_association *asoc;
2327 struct list_head *pos;
2328 struct sctp_sock *sp = sctp_sk(sk);
2329 int val;
2331 if (optlen < sizeof(int))
2332 return -EINVAL;
2333 if (get_user(val, (int __user *)optval))
2334 return -EFAULT;
2335 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2336 return -EINVAL;
2337 sp->user_frag = val;
2339 /* Update the frag_point of the existing associations. */
2340 list_for_each(pos, &(sp->ep->asocs)) {
2341 asoc = list_entry(pos, struct sctp_association, asocs);
2342 asoc->frag_point = sctp_frag_point(sp, asoc->pmtu);
2345 return 0;
2350 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2352 * Requests that the peer mark the enclosed address as the association
2353 * primary. The enclosed address must be one of the association's
2354 * locally bound addresses. The following structure is used to make a
2355 * set primary request:
2357 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2358 int optlen)
2360 struct sctp_sock *sp;
2361 struct sctp_endpoint *ep;
2362 struct sctp_association *asoc = NULL;
2363 struct sctp_setpeerprim prim;
2364 struct sctp_chunk *chunk;
2365 int err;
2367 sp = sctp_sk(sk);
2368 ep = sp->ep;
2370 if (!sctp_addip_enable)
2371 return -EPERM;
2373 if (optlen != sizeof(struct sctp_setpeerprim))
2374 return -EINVAL;
2376 if (copy_from_user(&prim, optval, optlen))
2377 return -EFAULT;
2379 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2380 if (!asoc)
2381 return -EINVAL;
2383 if (!asoc->peer.asconf_capable)
2384 return -EPERM;
2386 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2387 return -EPERM;
2389 if (!sctp_state(asoc, ESTABLISHED))
2390 return -ENOTCONN;
2392 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2393 return -EADDRNOTAVAIL;
2395 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2396 chunk = sctp_make_asconf_set_prim(asoc,
2397 (union sctp_addr *)&prim.sspp_addr);
2398 if (!chunk)
2399 return -ENOMEM;
2401 err = sctp_send_asconf(asoc, chunk);
2403 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2405 return err;
2408 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2409 int optlen)
2411 struct sctp_setadaption adaption;
2413 if (optlen != sizeof(struct sctp_setadaption))
2414 return -EINVAL;
2415 if (copy_from_user(&adaption, optval, optlen))
2416 return -EFAULT;
2418 sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2420 return 0;
2423 /* API 6.2 setsockopt(), getsockopt()
2425 * Applications use setsockopt() and getsockopt() to set or retrieve
2426 * socket options. Socket options are used to change the default
2427 * behavior of sockets calls. They are described in Section 7.
2429 * The syntax is:
2431 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
2432 * int __user *optlen);
2433 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2434 * int optlen);
2436 * sd - the socket descript.
2437 * level - set to IPPROTO_SCTP for all SCTP options.
2438 * optname - the option name.
2439 * optval - the buffer to store the value of the option.
2440 * optlen - the size of the buffer.
2442 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2443 char __user *optval, int optlen)
2445 int retval = 0;
2447 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2448 sk, optname);
2450 /* I can hardly begin to describe how wrong this is. This is
2451 * so broken as to be worse than useless. The API draft
2452 * REALLY is NOT helpful here... I am not convinced that the
2453 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2454 * are at all well-founded.
2456 if (level != SOL_SCTP) {
2457 struct sctp_af *af = sctp_sk(sk)->pf->af;
2458 retval = af->setsockopt(sk, level, optname, optval, optlen);
2459 goto out_nounlock;
2462 sctp_lock_sock(sk);
2464 switch (optname) {
2465 case SCTP_SOCKOPT_BINDX_ADD:
2466 /* 'optlen' is the size of the addresses buffer. */
2467 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2468 optlen, SCTP_BINDX_ADD_ADDR);
2469 break;
2471 case SCTP_SOCKOPT_BINDX_REM:
2472 /* 'optlen' is the size of the addresses buffer. */
2473 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2474 optlen, SCTP_BINDX_REM_ADDR);
2475 break;
2477 case SCTP_SOCKOPT_CONNECTX:
2478 /* 'optlen' is the size of the addresses buffer. */
2479 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2480 optlen);
2481 break;
2483 case SCTP_DISABLE_FRAGMENTS:
2484 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2485 break;
2487 case SCTP_EVENTS:
2488 retval = sctp_setsockopt_events(sk, optval, optlen);
2489 break;
2491 case SCTP_AUTOCLOSE:
2492 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2493 break;
2495 case SCTP_PEER_ADDR_PARAMS:
2496 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2497 break;
2499 case SCTP_INITMSG:
2500 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2501 break;
2502 case SCTP_DEFAULT_SEND_PARAM:
2503 retval = sctp_setsockopt_default_send_param(sk, optval,
2504 optlen);
2505 break;
2506 case SCTP_PRIMARY_ADDR:
2507 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2508 break;
2509 case SCTP_SET_PEER_PRIMARY_ADDR:
2510 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2511 break;
2512 case SCTP_NODELAY:
2513 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2514 break;
2515 case SCTP_RTOINFO:
2516 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2517 break;
2518 case SCTP_ASSOCINFO:
2519 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2520 break;
2521 case SCTP_I_WANT_MAPPED_V4_ADDR:
2522 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2523 break;
2524 case SCTP_MAXSEG:
2525 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2526 break;
2527 case SCTP_ADAPTION_LAYER:
2528 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2529 break;
2531 default:
2532 retval = -ENOPROTOOPT;
2533 break;
2536 sctp_release_sock(sk);
2538 out_nounlock:
2539 return retval;
2542 /* API 3.1.6 connect() - UDP Style Syntax
2544 * An application may use the connect() call in the UDP model to initiate an
2545 * association without sending data.
2547 * The syntax is:
2549 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2551 * sd: the socket descriptor to have a new association added to.
2553 * nam: the address structure (either struct sockaddr_in or struct
2554 * sockaddr_in6 defined in RFC2553 [7]).
2556 * len: the size of the address.
2558 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2559 int addr_len)
2561 int err = 0;
2562 struct sctp_af *af;
2564 sctp_lock_sock(sk);
2566 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2567 __FUNCTION__, sk, addr, addr_len);
2569 /* Validate addr_len before calling common connect/connectx routine. */
2570 af = sctp_get_af_specific(addr->sa_family);
2571 if (!af || addr_len < af->sockaddr_len) {
2572 err = -EINVAL;
2573 } else {
2574 /* Pass correct addr len to common routine (so it knows there
2575 * is only one address being passed.
2577 err = __sctp_connect(sk, addr, af->sockaddr_len);
2580 sctp_release_sock(sk);
2581 return err;
2584 /* FIXME: Write comments. */
2585 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2587 return -EOPNOTSUPP; /* STUB */
2590 /* 4.1.4 accept() - TCP Style Syntax
2592 * Applications use accept() call to remove an established SCTP
2593 * association from the accept queue of the endpoint. A new socket
2594 * descriptor will be returned from accept() to represent the newly
2595 * formed association.
2597 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2599 struct sctp_sock *sp;
2600 struct sctp_endpoint *ep;
2601 struct sock *newsk = NULL;
2602 struct sctp_association *asoc;
2603 long timeo;
2604 int error = 0;
2606 sctp_lock_sock(sk);
2608 sp = sctp_sk(sk);
2609 ep = sp->ep;
2611 if (!sctp_style(sk, TCP)) {
2612 error = -EOPNOTSUPP;
2613 goto out;
2616 if (!sctp_sstate(sk, LISTENING)) {
2617 error = -EINVAL;
2618 goto out;
2621 timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2623 error = sctp_wait_for_accept(sk, timeo);
2624 if (error)
2625 goto out;
2627 /* We treat the list of associations on the endpoint as the accept
2628 * queue and pick the first association on the list.
2630 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2632 newsk = sp->pf->create_accept_sk(sk, asoc);
2633 if (!newsk) {
2634 error = -ENOMEM;
2635 goto out;
2638 /* Populate the fields of the newsk from the oldsk and migrate the
2639 * asoc to the newsk.
2641 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2643 out:
2644 sctp_release_sock(sk);
2645 *err = error;
2646 return newsk;
2649 /* The SCTP ioctl handler. */
2650 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2652 return -ENOIOCTLCMD;
2655 /* This is the function which gets called during socket creation to
2656 * initialized the SCTP-specific portion of the sock.
2657 * The sock structure should already be zero-filled memory.
2659 SCTP_STATIC int sctp_init_sock(struct sock *sk)
2661 struct sctp_endpoint *ep;
2662 struct sctp_sock *sp;
2664 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2666 sp = sctp_sk(sk);
2668 /* Initialize the SCTP per socket area. */
2669 switch (sk->sk_type) {
2670 case SOCK_SEQPACKET:
2671 sp->type = SCTP_SOCKET_UDP;
2672 break;
2673 case SOCK_STREAM:
2674 sp->type = SCTP_SOCKET_TCP;
2675 break;
2676 default:
2677 return -ESOCKTNOSUPPORT;
2680 /* Initialize default send parameters. These parameters can be
2681 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
2683 sp->default_stream = 0;
2684 sp->default_ppid = 0;
2685 sp->default_flags = 0;
2686 sp->default_context = 0;
2687 sp->default_timetolive = 0;
2689 /* Initialize default setup parameters. These parameters
2690 * can be modified with the SCTP_INITMSG socket option or
2691 * overridden by the SCTP_INIT CMSG.
2693 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
2694 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
2695 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
2696 sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
2698 /* Initialize default RTO related parameters. These parameters can
2699 * be modified for with the SCTP_RTOINFO socket option.
2701 sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
2702 sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max);
2703 sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min);
2705 /* Initialize default association related parameters. These parameters
2706 * can be modified with the SCTP_ASSOCINFO socket option.
2708 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
2709 sp->assocparams.sasoc_number_peer_destinations = 0;
2710 sp->assocparams.sasoc_peer_rwnd = 0;
2711 sp->assocparams.sasoc_local_rwnd = 0;
2712 sp->assocparams.sasoc_cookie_life =
2713 jiffies_to_msecs(sctp_valid_cookie_life);
2715 /* Initialize default event subscriptions. By default, all the
2716 * options are off.
2718 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
2720 /* Default Peer Address Parameters. These defaults can
2721 * be modified via SCTP_PEER_ADDR_PARAMS
2723 sp->paddrparam.spp_hbinterval = jiffies_to_msecs(sctp_hb_interval);
2724 sp->paddrparam.spp_pathmaxrxt = sctp_max_retrans_path;
2726 /* If enabled no SCTP message fragmentation will be performed.
2727 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
2729 sp->disable_fragments = 0;
2731 /* Turn on/off any Nagle-like algorithm. */
2732 sp->nodelay = 1;
2734 /* Enable by default. */
2735 sp->v4mapped = 1;
2737 /* Auto-close idle associations after the configured
2738 * number of seconds. A value of 0 disables this
2739 * feature. Configure through the SCTP_AUTOCLOSE socket option,
2740 * for UDP-style sockets only.
2742 sp->autoclose = 0;
2744 /* User specified fragmentation limit. */
2745 sp->user_frag = 0;
2747 sp->adaption_ind = 0;
2749 sp->pf = sctp_get_pf_specific(sk->sk_family);
2751 /* Control variables for partial data delivery. */
2752 sp->pd_mode = 0;
2753 skb_queue_head_init(&sp->pd_lobby);
2755 /* Create a per socket endpoint structure. Even if we
2756 * change the data structure relationships, this may still
2757 * be useful for storing pre-connect address information.
2759 ep = sctp_endpoint_new(sk, GFP_KERNEL);
2760 if (!ep)
2761 return -ENOMEM;
2763 sp->ep = ep;
2764 sp->hmac = NULL;
2766 SCTP_DBG_OBJCNT_INC(sock);
2767 return 0;
2770 /* Cleanup any SCTP per socket resources. */
2771 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
2773 struct sctp_endpoint *ep;
2775 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
2777 /* Release our hold on the endpoint. */
2778 ep = sctp_sk(sk)->ep;
2779 sctp_endpoint_free(ep);
2781 return 0;
2784 /* API 4.1.7 shutdown() - TCP Style Syntax
2785 * int shutdown(int socket, int how);
2787 * sd - the socket descriptor of the association to be closed.
2788 * how - Specifies the type of shutdown. The values are
2789 * as follows:
2790 * SHUT_RD
2791 * Disables further receive operations. No SCTP
2792 * protocol action is taken.
2793 * SHUT_WR
2794 * Disables further send operations, and initiates
2795 * the SCTP shutdown sequence.
2796 * SHUT_RDWR
2797 * Disables further send and receive operations
2798 * and initiates the SCTP shutdown sequence.
2800 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
2802 struct sctp_endpoint *ep;
2803 struct sctp_association *asoc;
2805 if (!sctp_style(sk, TCP))
2806 return;
2808 if (how & SEND_SHUTDOWN) {
2809 ep = sctp_sk(sk)->ep;
2810 if (!list_empty(&ep->asocs)) {
2811 asoc = list_entry(ep->asocs.next,
2812 struct sctp_association, asocs);
2813 sctp_primitive_SHUTDOWN(asoc, NULL);
2818 /* 7.2.1 Association Status (SCTP_STATUS)
2820 * Applications can retrieve current status information about an
2821 * association, including association state, peer receiver window size,
2822 * number of unacked data chunks, and number of data chunks pending
2823 * receipt. This information is read-only.
2825 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
2826 char __user *optval,
2827 int __user *optlen)
2829 struct sctp_status status;
2830 struct sctp_association *asoc = NULL;
2831 struct sctp_transport *transport;
2832 sctp_assoc_t associd;
2833 int retval = 0;
2835 if (len != sizeof(status)) {
2836 retval = -EINVAL;
2837 goto out;
2840 if (copy_from_user(&status, optval, sizeof(status))) {
2841 retval = -EFAULT;
2842 goto out;
2845 associd = status.sstat_assoc_id;
2846 asoc = sctp_id2assoc(sk, associd);
2847 if (!asoc) {
2848 retval = -EINVAL;
2849 goto out;
2852 transport = asoc->peer.primary_path;
2854 status.sstat_assoc_id = sctp_assoc2id(asoc);
2855 status.sstat_state = asoc->state;
2856 status.sstat_rwnd = asoc->peer.rwnd;
2857 status.sstat_unackdata = asoc->unack_data;
2859 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
2860 status.sstat_instrms = asoc->c.sinit_max_instreams;
2861 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
2862 status.sstat_fragmentation_point = asoc->frag_point;
2863 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2864 memcpy(&status.sstat_primary.spinfo_address,
2865 &(transport->ipaddr), sizeof(union sctp_addr));
2866 /* Map ipv4 address into v4-mapped-on-v6 address. */
2867 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
2868 (union sctp_addr *)&status.sstat_primary.spinfo_address);
2869 status.sstat_primary.spinfo_state = transport->state;
2870 status.sstat_primary.spinfo_cwnd = transport->cwnd;
2871 status.sstat_primary.spinfo_srtt = transport->srtt;
2872 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
2873 status.sstat_primary.spinfo_mtu = transport->pmtu;
2875 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
2876 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
2878 if (put_user(len, optlen)) {
2879 retval = -EFAULT;
2880 goto out;
2883 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
2884 len, status.sstat_state, status.sstat_rwnd,
2885 status.sstat_assoc_id);
2887 if (copy_to_user(optval, &status, len)) {
2888 retval = -EFAULT;
2889 goto out;
2892 out:
2893 return (retval);
2897 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
2899 * Applications can retrieve information about a specific peer address
2900 * of an association, including its reachability state, congestion
2901 * window, and retransmission timer values. This information is
2902 * read-only.
2904 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
2905 char __user *optval,
2906 int __user *optlen)
2908 struct sctp_paddrinfo pinfo;
2909 struct sctp_transport *transport;
2910 int retval = 0;
2912 if (len != sizeof(pinfo)) {
2913 retval = -EINVAL;
2914 goto out;
2917 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
2918 retval = -EFAULT;
2919 goto out;
2922 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
2923 pinfo.spinfo_assoc_id);
2924 if (!transport)
2925 return -EINVAL;
2927 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2928 pinfo.spinfo_state = transport->state;
2929 pinfo.spinfo_cwnd = transport->cwnd;
2930 pinfo.spinfo_srtt = transport->srtt;
2931 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
2932 pinfo.spinfo_mtu = transport->pmtu;
2934 if (pinfo.spinfo_state == SCTP_UNKNOWN)
2935 pinfo.spinfo_state = SCTP_ACTIVE;
2937 if (put_user(len, optlen)) {
2938 retval = -EFAULT;
2939 goto out;
2942 if (copy_to_user(optval, &pinfo, len)) {
2943 retval = -EFAULT;
2944 goto out;
2947 out:
2948 return (retval);
2951 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2953 * This option is a on/off flag. If enabled no SCTP message
2954 * fragmentation will be performed. Instead if a message being sent
2955 * exceeds the current PMTU size, the message will NOT be sent and
2956 * instead a error will be indicated to the user.
2958 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
2959 char __user *optval, int __user *optlen)
2961 int val;
2963 if (len < sizeof(int))
2964 return -EINVAL;
2966 len = sizeof(int);
2967 val = (sctp_sk(sk)->disable_fragments == 1);
2968 if (put_user(len, optlen))
2969 return -EFAULT;
2970 if (copy_to_user(optval, &val, len))
2971 return -EFAULT;
2972 return 0;
2975 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
2977 * This socket option is used to specify various notifications and
2978 * ancillary data the user wishes to receive.
2980 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
2981 int __user *optlen)
2983 if (len != sizeof(struct sctp_event_subscribe))
2984 return -EINVAL;
2985 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
2986 return -EFAULT;
2987 return 0;
2990 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2992 * This socket option is applicable to the UDP-style socket only. When
2993 * set it will cause associations that are idle for more than the
2994 * specified number of seconds to automatically close. An association
2995 * being idle is defined an association that has NOT sent or received
2996 * user data. The special value of '0' indicates that no automatic
2997 * close of any associations should be performed. The option expects an
2998 * integer defining the number of seconds of idle time before an
2999 * association is closed.
3001 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3003 /* Applicable to UDP-style socket only */
3004 if (sctp_style(sk, TCP))
3005 return -EOPNOTSUPP;
3006 if (len != sizeof(int))
3007 return -EINVAL;
3008 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3009 return -EFAULT;
3010 return 0;
3013 /* Helper routine to branch off an association to a new socket. */
3014 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3015 struct socket **sockp)
3017 struct sock *sk = asoc->base.sk;
3018 struct socket *sock;
3019 int err = 0;
3021 /* An association cannot be branched off from an already peeled-off
3022 * socket, nor is this supported for tcp style sockets.
3024 if (!sctp_style(sk, UDP))
3025 return -EINVAL;
3027 /* Create a new socket. */
3028 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3029 if (err < 0)
3030 return err;
3032 /* Populate the fields of the newsk from the oldsk and migrate the
3033 * asoc to the newsk.
3035 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3036 *sockp = sock;
3038 return err;
3041 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3043 sctp_peeloff_arg_t peeloff;
3044 struct socket *newsock;
3045 int retval = 0;
3046 struct sctp_association *asoc;
3048 if (len != sizeof(sctp_peeloff_arg_t))
3049 return -EINVAL;
3050 if (copy_from_user(&peeloff, optval, len))
3051 return -EFAULT;
3053 asoc = sctp_id2assoc(sk, peeloff.associd);
3054 if (!asoc) {
3055 retval = -EINVAL;
3056 goto out;
3059 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3061 retval = sctp_do_peeloff(asoc, &newsock);
3062 if (retval < 0)
3063 goto out;
3065 /* Map the socket to an unused fd that can be returned to the user. */
3066 retval = sock_map_fd(newsock);
3067 if (retval < 0) {
3068 sock_release(newsock);
3069 goto out;
3072 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3073 __FUNCTION__, sk, asoc, newsock->sk, retval);
3075 /* Return the fd mapped to the new socket. */
3076 peeloff.sd = retval;
3077 if (copy_to_user(optval, &peeloff, len))
3078 retval = -EFAULT;
3080 out:
3081 return retval;
3084 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3086 * Applications can enable or disable heartbeats for any peer address of
3087 * an association, modify an address's heartbeat interval, force a
3088 * heartbeat to be sent immediately, and adjust the address's maximum
3089 * number of retransmissions sent before an address is considered
3090 * unreachable. The following structure is used to access and modify an
3091 * address's parameters:
3093 * struct sctp_paddrparams {
3094 * sctp_assoc_t spp_assoc_id;
3095 * struct sockaddr_storage spp_address;
3096 * uint32_t spp_hbinterval;
3097 * uint16_t spp_pathmaxrxt;
3098 * };
3100 * spp_assoc_id - (UDP style socket) This is filled in the application,
3101 * and identifies the association for this query.
3102 * spp_address - This specifies which address is of interest.
3103 * spp_hbinterval - This contains the value of the heartbeat interval,
3104 * in milliseconds. A value of 0, when modifying the
3105 * parameter, specifies that the heartbeat on this
3106 * address should be disabled. A value of UINT32_MAX
3107 * (4294967295), when modifying the parameter,
3108 * specifies that a heartbeat should be sent
3109 * immediately to the peer address, and the current
3110 * interval should remain unchanged.
3111 * spp_pathmaxrxt - This contains the maximum number of
3112 * retransmissions before this address shall be
3113 * considered unreachable.
3115 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3116 char __user *optval, int __user *optlen)
3118 struct sctp_paddrparams params;
3119 struct sctp_transport *trans;
3121 if (len != sizeof(struct sctp_paddrparams))
3122 return -EINVAL;
3123 if (copy_from_user(&params, optval, len))
3124 return -EFAULT;
3126 /* If no association id is specified retrieve the default value
3127 * for the endpoint that will be used for all future associations
3129 if (!params.spp_assoc_id &&
3130 sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3131 params.spp_hbinterval = sctp_sk(sk)->paddrparam.spp_hbinterval;
3132 params.spp_pathmaxrxt = sctp_sk(sk)->paddrparam.spp_pathmaxrxt;
3134 goto done;
3137 trans = sctp_addr_id2transport(sk, &params.spp_address,
3138 params.spp_assoc_id);
3139 if (!trans)
3140 return -EINVAL;
3142 /* The value of the heartbeat interval, in milliseconds. A value of 0,
3143 * when modifying the parameter, specifies that the heartbeat on this
3144 * address should be disabled.
3146 if (!trans->hb_allowed)
3147 params.spp_hbinterval = 0;
3148 else
3149 params.spp_hbinterval = jiffies_to_msecs(trans->hb_interval);
3151 /* spp_pathmaxrxt contains the maximum number of retransmissions
3152 * before this address shall be considered unreachable.
3154 params.spp_pathmaxrxt = trans->max_retrans;
3156 done:
3157 if (copy_to_user(optval, &params, len))
3158 return -EFAULT;
3160 if (put_user(len, optlen))
3161 return -EFAULT;
3163 return 0;
3166 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3168 * Applications can specify protocol parameters for the default association
3169 * initialization. The option name argument to setsockopt() and getsockopt()
3170 * is SCTP_INITMSG.
3172 * Setting initialization parameters is effective only on an unconnected
3173 * socket (for UDP-style sockets only future associations are effected
3174 * by the change). With TCP-style sockets, this option is inherited by
3175 * sockets derived from a listener socket.
3177 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3179 if (len != sizeof(struct sctp_initmsg))
3180 return -EINVAL;
3181 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3182 return -EFAULT;
3183 return 0;
3186 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3187 char __user *optval,
3188 int __user *optlen)
3190 sctp_assoc_t id;
3191 struct sctp_association *asoc;
3192 struct list_head *pos;
3193 int cnt = 0;
3195 if (len != sizeof(sctp_assoc_t))
3196 return -EINVAL;
3198 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3199 return -EFAULT;
3201 /* For UDP-style sockets, id specifies the association to query. */
3202 asoc = sctp_id2assoc(sk, id);
3203 if (!asoc)
3204 return -EINVAL;
3206 list_for_each(pos, &asoc->peer.transport_addr_list) {
3207 cnt ++;
3210 return cnt;
3214 * Old API for getting list of peer addresses. Does not work for 32-bit
3215 * programs running on a 64-bit kernel
3217 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3218 char __user *optval,
3219 int __user *optlen)
3221 struct sctp_association *asoc;
3222 struct list_head *pos;
3223 int cnt = 0;
3224 struct sctp_getaddrs_old getaddrs;
3225 struct sctp_transport *from;
3226 void __user *to;
3227 union sctp_addr temp;
3228 struct sctp_sock *sp = sctp_sk(sk);
3229 int addrlen;
3231 if (len != sizeof(struct sctp_getaddrs_old))
3232 return -EINVAL;
3234 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3235 return -EFAULT;
3237 if (getaddrs.addr_num <= 0) return -EINVAL;
3239 /* For UDP-style sockets, id specifies the association to query. */
3240 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3241 if (!asoc)
3242 return -EINVAL;
3244 to = (void __user *)getaddrs.addrs;
3245 list_for_each(pos, &asoc->peer.transport_addr_list) {
3246 from = list_entry(pos, struct sctp_transport, transports);
3247 memcpy(&temp, &from->ipaddr, sizeof(temp));
3248 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3249 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3250 temp.v4.sin_port = htons(temp.v4.sin_port);
3251 if (copy_to_user(to, &temp, addrlen))
3252 return -EFAULT;
3253 to += addrlen ;
3254 cnt ++;
3255 if (cnt >= getaddrs.addr_num) break;
3257 getaddrs.addr_num = cnt;
3258 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3259 return -EFAULT;
3261 return 0;
3264 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3265 char __user *optval, int __user *optlen)
3267 struct sctp_association *asoc;
3268 struct list_head *pos;
3269 int cnt = 0;
3270 struct sctp_getaddrs getaddrs;
3271 struct sctp_transport *from;
3272 void __user *to;
3273 union sctp_addr temp;
3274 struct sctp_sock *sp = sctp_sk(sk);
3275 int addrlen;
3276 size_t space_left;
3277 int bytes_copied;
3279 if (len < sizeof(struct sctp_getaddrs))
3280 return -EINVAL;
3282 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3283 return -EFAULT;
3285 /* For UDP-style sockets, id specifies the association to query. */
3286 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3287 if (!asoc)
3288 return -EINVAL;
3290 to = optval + offsetof(struct sctp_getaddrs,addrs);
3291 space_left = len - sizeof(struct sctp_getaddrs) -
3292 offsetof(struct sctp_getaddrs,addrs);
3294 list_for_each(pos, &asoc->peer.transport_addr_list) {
3295 from = list_entry(pos, struct sctp_transport, transports);
3296 memcpy(&temp, &from->ipaddr, sizeof(temp));
3297 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3298 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3299 if(space_left < addrlen)
3300 return -ENOMEM;
3301 temp.v4.sin_port = htons(temp.v4.sin_port);
3302 if (copy_to_user(to, &temp, addrlen))
3303 return -EFAULT;
3304 to += addrlen;
3305 cnt++;
3306 space_left -= addrlen;
3309 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3310 return -EFAULT;
3311 bytes_copied = ((char __user *)to) - optval;
3312 if (put_user(bytes_copied, optlen))
3313 return -EFAULT;
3315 return 0;
3318 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3319 char __user *optval,
3320 int __user *optlen)
3322 sctp_assoc_t id;
3323 struct sctp_bind_addr *bp;
3324 struct sctp_association *asoc;
3325 struct list_head *pos;
3326 struct sctp_sockaddr_entry *addr;
3327 rwlock_t *addr_lock;
3328 unsigned long flags;
3329 int cnt = 0;
3331 if (len != sizeof(sctp_assoc_t))
3332 return -EINVAL;
3334 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3335 return -EFAULT;
3338 * For UDP-style sockets, id specifies the association to query.
3339 * If the id field is set to the value '0' then the locally bound
3340 * addresses are returned without regard to any particular
3341 * association.
3343 if (0 == id) {
3344 bp = &sctp_sk(sk)->ep->base.bind_addr;
3345 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3346 } else {
3347 asoc = sctp_id2assoc(sk, id);
3348 if (!asoc)
3349 return -EINVAL;
3350 bp = &asoc->base.bind_addr;
3351 addr_lock = &asoc->base.addr_lock;
3354 sctp_read_lock(addr_lock);
3356 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3357 * addresses from the global local address list.
3359 if (sctp_list_single_entry(&bp->address_list)) {
3360 addr = list_entry(bp->address_list.next,
3361 struct sctp_sockaddr_entry, list);
3362 if (sctp_is_any(&addr->a)) {
3363 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3364 list_for_each(pos, &sctp_local_addr_list) {
3365 addr = list_entry(pos,
3366 struct sctp_sockaddr_entry,
3367 list);
3368 if ((PF_INET == sk->sk_family) &&
3369 (AF_INET6 == addr->a.sa.sa_family))
3370 continue;
3371 cnt++;
3373 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3374 flags);
3375 } else {
3376 cnt = 1;
3378 goto done;
3381 list_for_each(pos, &bp->address_list) {
3382 cnt ++;
3385 done:
3386 sctp_read_unlock(addr_lock);
3387 return cnt;
3390 /* Helper function that copies local addresses to user and returns the number
3391 * of addresses copied.
3393 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3394 void __user *to)
3396 struct list_head *pos;
3397 struct sctp_sockaddr_entry *addr;
3398 unsigned long flags;
3399 union sctp_addr temp;
3400 int cnt = 0;
3401 int addrlen;
3403 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3404 list_for_each(pos, &sctp_local_addr_list) {
3405 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3406 if ((PF_INET == sk->sk_family) &&
3407 (AF_INET6 == addr->a.sa.sa_family))
3408 continue;
3409 memcpy(&temp, &addr->a, sizeof(temp));
3410 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3411 &temp);
3412 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3413 temp.v4.sin_port = htons(port);
3414 if (copy_to_user(to, &temp, addrlen)) {
3415 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3416 flags);
3417 return -EFAULT;
3419 to += addrlen;
3420 cnt ++;
3421 if (cnt >= max_addrs) break;
3423 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3425 return cnt;
3428 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3429 void * __user *to, size_t space_left)
3431 struct list_head *pos;
3432 struct sctp_sockaddr_entry *addr;
3433 unsigned long flags;
3434 union sctp_addr temp;
3435 int cnt = 0;
3436 int addrlen;
3438 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3439 list_for_each(pos, &sctp_local_addr_list) {
3440 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3441 if ((PF_INET == sk->sk_family) &&
3442 (AF_INET6 == addr->a.sa.sa_family))
3443 continue;
3444 memcpy(&temp, &addr->a, sizeof(temp));
3445 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3446 &temp);
3447 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3448 if(space_left<addrlen)
3449 return -ENOMEM;
3450 temp.v4.sin_port = htons(port);
3451 if (copy_to_user(*to, &temp, addrlen)) {
3452 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3453 flags);
3454 return -EFAULT;
3456 *to += addrlen;
3457 cnt ++;
3458 space_left -= addrlen;
3460 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3462 return cnt;
3465 /* Old API for getting list of local addresses. Does not work for 32-bit
3466 * programs running on a 64-bit kernel
3468 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3469 char __user *optval, int __user *optlen)
3471 struct sctp_bind_addr *bp;
3472 struct sctp_association *asoc;
3473 struct list_head *pos;
3474 int cnt = 0;
3475 struct sctp_getaddrs_old getaddrs;
3476 struct sctp_sockaddr_entry *addr;
3477 void __user *to;
3478 union sctp_addr temp;
3479 struct sctp_sock *sp = sctp_sk(sk);
3480 int addrlen;
3481 rwlock_t *addr_lock;
3482 int err = 0;
3484 if (len != sizeof(struct sctp_getaddrs_old))
3485 return -EINVAL;
3487 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3488 return -EFAULT;
3490 if (getaddrs.addr_num <= 0) return -EINVAL;
3492 * For UDP-style sockets, id specifies the association to query.
3493 * If the id field is set to the value '0' then the locally bound
3494 * addresses are returned without regard to any particular
3495 * association.
3497 if (0 == getaddrs.assoc_id) {
3498 bp = &sctp_sk(sk)->ep->base.bind_addr;
3499 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3500 } else {
3501 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3502 if (!asoc)
3503 return -EINVAL;
3504 bp = &asoc->base.bind_addr;
3505 addr_lock = &asoc->base.addr_lock;
3508 to = getaddrs.addrs;
3510 sctp_read_lock(addr_lock);
3512 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3513 * addresses from the global local address list.
3515 if (sctp_list_single_entry(&bp->address_list)) {
3516 addr = list_entry(bp->address_list.next,
3517 struct sctp_sockaddr_entry, list);
3518 if (sctp_is_any(&addr->a)) {
3519 cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
3520 getaddrs.addr_num,
3521 to);
3522 if (cnt < 0) {
3523 err = cnt;
3524 goto unlock;
3526 goto copy_getaddrs;
3530 list_for_each(pos, &bp->address_list) {
3531 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3532 memcpy(&temp, &addr->a, sizeof(temp));
3533 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3534 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3535 temp.v4.sin_port = htons(temp.v4.sin_port);
3536 if (copy_to_user(to, &temp, addrlen)) {
3537 err = -EFAULT;
3538 goto unlock;
3540 to += addrlen;
3541 cnt ++;
3542 if (cnt >= getaddrs.addr_num) break;
3545 copy_getaddrs:
3546 getaddrs.addr_num = cnt;
3547 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3548 err = -EFAULT;
3550 unlock:
3551 sctp_read_unlock(addr_lock);
3552 return err;
3555 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
3556 char __user *optval, int __user *optlen)
3558 struct sctp_bind_addr *bp;
3559 struct sctp_association *asoc;
3560 struct list_head *pos;
3561 int cnt = 0;
3562 struct sctp_getaddrs getaddrs;
3563 struct sctp_sockaddr_entry *addr;
3564 void __user *to;
3565 union sctp_addr temp;
3566 struct sctp_sock *sp = sctp_sk(sk);
3567 int addrlen;
3568 rwlock_t *addr_lock;
3569 int err = 0;
3570 size_t space_left;
3571 int bytes_copied;
3573 if (len <= sizeof(struct sctp_getaddrs))
3574 return -EINVAL;
3576 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3577 return -EFAULT;
3580 * For UDP-style sockets, id specifies the association to query.
3581 * If the id field is set to the value '0' then the locally bound
3582 * addresses are returned without regard to any particular
3583 * association.
3585 if (0 == getaddrs.assoc_id) {
3586 bp = &sctp_sk(sk)->ep->base.bind_addr;
3587 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3588 } else {
3589 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3590 if (!asoc)
3591 return -EINVAL;
3592 bp = &asoc->base.bind_addr;
3593 addr_lock = &asoc->base.addr_lock;
3596 to = optval + offsetof(struct sctp_getaddrs,addrs);
3597 space_left = len - sizeof(struct sctp_getaddrs) -
3598 offsetof(struct sctp_getaddrs,addrs);
3600 sctp_read_lock(addr_lock);
3602 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3603 * addresses from the global local address list.
3605 if (sctp_list_single_entry(&bp->address_list)) {
3606 addr = list_entry(bp->address_list.next,
3607 struct sctp_sockaddr_entry, list);
3608 if (sctp_is_any(&addr->a)) {
3609 cnt = sctp_copy_laddrs_to_user(sk, bp->port,
3610 &to, space_left);
3611 if (cnt < 0) {
3612 err = cnt;
3613 goto unlock;
3615 goto copy_getaddrs;
3619 list_for_each(pos, &bp->address_list) {
3620 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3621 memcpy(&temp, &addr->a, sizeof(temp));
3622 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3623 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3624 if(space_left < addrlen)
3625 return -ENOMEM; /*fixme: right error?*/
3626 temp.v4.sin_port = htons(temp.v4.sin_port);
3627 if (copy_to_user(to, &temp, addrlen)) {
3628 err = -EFAULT;
3629 goto unlock;
3631 to += addrlen;
3632 cnt ++;
3633 space_left -= addrlen;
3636 copy_getaddrs:
3637 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3638 return -EFAULT;
3639 bytes_copied = ((char __user *)to) - optval;
3640 if (put_user(bytes_copied, optlen))
3641 return -EFAULT;
3643 unlock:
3644 sctp_read_unlock(addr_lock);
3645 return err;
3648 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3650 * Requests that the local SCTP stack use the enclosed peer address as
3651 * the association primary. The enclosed address must be one of the
3652 * association peer's addresses.
3654 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
3655 char __user *optval, int __user *optlen)
3657 struct sctp_prim prim;
3658 struct sctp_association *asoc;
3659 struct sctp_sock *sp = sctp_sk(sk);
3661 if (len != sizeof(struct sctp_prim))
3662 return -EINVAL;
3664 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3665 return -EFAULT;
3667 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
3668 if (!asoc)
3669 return -EINVAL;
3671 if (!asoc->peer.primary_path)
3672 return -ENOTCONN;
3674 asoc->peer.primary_path->ipaddr.v4.sin_port =
3675 htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
3676 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
3677 sizeof(union sctp_addr));
3678 asoc->peer.primary_path->ipaddr.v4.sin_port =
3679 ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
3681 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
3682 (union sctp_addr *)&prim.ssp_addr);
3684 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
3685 return -EFAULT;
3687 return 0;
3691 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
3693 * Requests that the local endpoint set the specified Adaption Layer
3694 * Indication parameter for all future INIT and INIT-ACK exchanges.
3696 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
3697 char __user *optval, int __user *optlen)
3699 struct sctp_setadaption adaption;
3701 if (len != sizeof(struct sctp_setadaption))
3702 return -EINVAL;
3704 adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
3705 if (copy_to_user(optval, &adaption, len))
3706 return -EFAULT;
3708 return 0;
3713 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
3715 * Applications that wish to use the sendto() system call may wish to
3716 * specify a default set of parameters that would normally be supplied
3717 * through the inclusion of ancillary data. This socket option allows
3718 * such an application to set the default sctp_sndrcvinfo structure.
3721 * The application that wishes to use this socket option simply passes
3722 * in to this call the sctp_sndrcvinfo structure defined in Section
3723 * 5.2.2) The input parameters accepted by this call include
3724 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
3725 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
3726 * to this call if the caller is using the UDP model.
3728 * For getsockopt, it get the default sctp_sndrcvinfo structure.
3730 static int sctp_getsockopt_default_send_param(struct sock *sk,
3731 int len, char __user *optval,
3732 int __user *optlen)
3734 struct sctp_sndrcvinfo info;
3735 struct sctp_association *asoc;
3736 struct sctp_sock *sp = sctp_sk(sk);
3738 if (len != sizeof(struct sctp_sndrcvinfo))
3739 return -EINVAL;
3740 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
3741 return -EFAULT;
3743 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3744 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
3745 return -EINVAL;
3747 if (asoc) {
3748 info.sinfo_stream = asoc->default_stream;
3749 info.sinfo_flags = asoc->default_flags;
3750 info.sinfo_ppid = asoc->default_ppid;
3751 info.sinfo_context = asoc->default_context;
3752 info.sinfo_timetolive = asoc->default_timetolive;
3753 } else {
3754 info.sinfo_stream = sp->default_stream;
3755 info.sinfo_flags = sp->default_flags;
3756 info.sinfo_ppid = sp->default_ppid;
3757 info.sinfo_context = sp->default_context;
3758 info.sinfo_timetolive = sp->default_timetolive;
3761 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
3762 return -EFAULT;
3764 return 0;
3769 * 7.1.5 SCTP_NODELAY
3771 * Turn on/off any Nagle-like algorithm. This means that packets are
3772 * generally sent as soon as possible and no unnecessary delays are
3773 * introduced, at the cost of more packets in the network. Expects an
3774 * integer boolean flag.
3777 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
3778 char __user *optval, int __user *optlen)
3780 int val;
3782 if (len < sizeof(int))
3783 return -EINVAL;
3785 len = sizeof(int);
3786 val = (sctp_sk(sk)->nodelay == 1);
3787 if (put_user(len, optlen))
3788 return -EFAULT;
3789 if (copy_to_user(optval, &val, len))
3790 return -EFAULT;
3791 return 0;
3796 * 7.1.1 SCTP_RTOINFO
3798 * The protocol parameters used to initialize and bound retransmission
3799 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3800 * and modify these parameters.
3801 * All parameters are time values, in milliseconds. A value of 0, when
3802 * modifying the parameters, indicates that the current value should not
3803 * be changed.
3806 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
3807 char __user *optval,
3808 int __user *optlen) {
3809 struct sctp_rtoinfo rtoinfo;
3810 struct sctp_association *asoc;
3812 if (len != sizeof (struct sctp_rtoinfo))
3813 return -EINVAL;
3815 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
3816 return -EFAULT;
3818 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3820 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3821 return -EINVAL;
3823 /* Values corresponding to the specific association. */
3824 if (asoc) {
3825 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
3826 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
3827 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
3828 } else {
3829 /* Values corresponding to the endpoint. */
3830 struct sctp_sock *sp = sctp_sk(sk);
3832 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
3833 rtoinfo.srto_max = sp->rtoinfo.srto_max;
3834 rtoinfo.srto_min = sp->rtoinfo.srto_min;
3837 if (put_user(len, optlen))
3838 return -EFAULT;
3840 if (copy_to_user(optval, &rtoinfo, len))
3841 return -EFAULT;
3843 return 0;
3848 * 7.1.2 SCTP_ASSOCINFO
3850 * This option is used to tune the the maximum retransmission attempts
3851 * of the association.
3852 * Returns an error if the new association retransmission value is
3853 * greater than the sum of the retransmission value of the peer.
3854 * See [SCTP] for more information.
3857 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
3858 char __user *optval,
3859 int __user *optlen)
3862 struct sctp_assocparams assocparams;
3863 struct sctp_association *asoc;
3864 struct list_head *pos;
3865 int cnt = 0;
3867 if (len != sizeof (struct sctp_assocparams))
3868 return -EINVAL;
3870 if (copy_from_user(&assocparams, optval,
3871 sizeof (struct sctp_assocparams)))
3872 return -EFAULT;
3874 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3876 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3877 return -EINVAL;
3879 /* Values correspoinding to the specific association */
3880 if (asoc) {
3881 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
3882 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
3883 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
3884 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
3885 * 1000) +
3886 (asoc->cookie_life.tv_usec
3887 / 1000);
3889 list_for_each(pos, &asoc->peer.transport_addr_list) {
3890 cnt ++;
3893 assocparams.sasoc_number_peer_destinations = cnt;
3894 } else {
3895 /* Values corresponding to the endpoint */
3896 struct sctp_sock *sp = sctp_sk(sk);
3898 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
3899 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
3900 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
3901 assocparams.sasoc_cookie_life =
3902 sp->assocparams.sasoc_cookie_life;
3903 assocparams.sasoc_number_peer_destinations =
3904 sp->assocparams.
3905 sasoc_number_peer_destinations;
3908 if (put_user(len, optlen))
3909 return -EFAULT;
3911 if (copy_to_user(optval, &assocparams, len))
3912 return -EFAULT;
3914 return 0;
3918 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3920 * This socket option is a boolean flag which turns on or off mapped V4
3921 * addresses. If this option is turned on and the socket is type
3922 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3923 * If this option is turned off, then no mapping will be done of V4
3924 * addresses and a user will receive both PF_INET6 and PF_INET type
3925 * addresses on the socket.
3927 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
3928 char __user *optval, int __user *optlen)
3930 int val;
3931 struct sctp_sock *sp = sctp_sk(sk);
3933 if (len < sizeof(int))
3934 return -EINVAL;
3936 len = sizeof(int);
3937 val = sp->v4mapped;
3938 if (put_user(len, optlen))
3939 return -EFAULT;
3940 if (copy_to_user(optval, &val, len))
3941 return -EFAULT;
3943 return 0;
3947 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
3949 * This socket option specifies the maximum size to put in any outgoing
3950 * SCTP chunk. If a message is larger than this size it will be
3951 * fragmented by SCTP into the specified size. Note that the underlying
3952 * SCTP implementation may fragment into smaller sized chunks when the
3953 * PMTU of the underlying association is smaller than the value set by
3954 * the user.
3956 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
3957 char __user *optval, int __user *optlen)
3959 int val;
3961 if (len < sizeof(int))
3962 return -EINVAL;
3964 len = sizeof(int);
3966 val = sctp_sk(sk)->user_frag;
3967 if (put_user(len, optlen))
3968 return -EFAULT;
3969 if (copy_to_user(optval, &val, len))
3970 return -EFAULT;
3972 return 0;
3975 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
3976 char __user *optval, int __user *optlen)
3978 int retval = 0;
3979 int len;
3981 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
3982 sk, optname);
3984 /* I can hardly begin to describe how wrong this is. This is
3985 * so broken as to be worse than useless. The API draft
3986 * REALLY is NOT helpful here... I am not convinced that the
3987 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
3988 * are at all well-founded.
3990 if (level != SOL_SCTP) {
3991 struct sctp_af *af = sctp_sk(sk)->pf->af;
3993 retval = af->getsockopt(sk, level, optname, optval, optlen);
3994 return retval;
3997 if (get_user(len, optlen))
3998 return -EFAULT;
4000 sctp_lock_sock(sk);
4002 switch (optname) {
4003 case SCTP_STATUS:
4004 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4005 break;
4006 case SCTP_DISABLE_FRAGMENTS:
4007 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4008 optlen);
4009 break;
4010 case SCTP_EVENTS:
4011 retval = sctp_getsockopt_events(sk, len, optval, optlen);
4012 break;
4013 case SCTP_AUTOCLOSE:
4014 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4015 break;
4016 case SCTP_SOCKOPT_PEELOFF:
4017 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4018 break;
4019 case SCTP_PEER_ADDR_PARAMS:
4020 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4021 optlen);
4022 break;
4023 case SCTP_INITMSG:
4024 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4025 break;
4026 case SCTP_GET_PEER_ADDRS_NUM_OLD:
4027 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4028 optlen);
4029 break;
4030 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4031 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4032 optlen);
4033 break;
4034 case SCTP_GET_PEER_ADDRS_OLD:
4035 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4036 optlen);
4037 break;
4038 case SCTP_GET_LOCAL_ADDRS_OLD:
4039 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4040 optlen);
4041 break;
4042 case SCTP_GET_PEER_ADDRS:
4043 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4044 optlen);
4045 break;
4046 case SCTP_GET_LOCAL_ADDRS:
4047 retval = sctp_getsockopt_local_addrs(sk, len, optval,
4048 optlen);
4049 break;
4050 case SCTP_DEFAULT_SEND_PARAM:
4051 retval = sctp_getsockopt_default_send_param(sk, len,
4052 optval, optlen);
4053 break;
4054 case SCTP_PRIMARY_ADDR:
4055 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4056 break;
4057 case SCTP_NODELAY:
4058 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4059 break;
4060 case SCTP_RTOINFO:
4061 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4062 break;
4063 case SCTP_ASSOCINFO:
4064 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4065 break;
4066 case SCTP_I_WANT_MAPPED_V4_ADDR:
4067 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4068 break;
4069 case SCTP_MAXSEG:
4070 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4071 break;
4072 case SCTP_GET_PEER_ADDR_INFO:
4073 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4074 optlen);
4075 break;
4076 case SCTP_ADAPTION_LAYER:
4077 retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4078 optlen);
4079 break;
4080 default:
4081 retval = -ENOPROTOOPT;
4082 break;
4085 sctp_release_sock(sk);
4086 return retval;
4089 static void sctp_hash(struct sock *sk)
4091 /* STUB */
4094 static void sctp_unhash(struct sock *sk)
4096 /* STUB */
4099 /* Check if port is acceptable. Possibly find first available port.
4101 * The port hash table (contained in the 'global' SCTP protocol storage
4102 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4103 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4104 * list (the list number is the port number hashed out, so as you
4105 * would expect from a hash function, all the ports in a given list have
4106 * such a number that hashes out to the same list number; you were
4107 * expecting that, right?); so each list has a set of ports, with a
4108 * link to the socket (struct sock) that uses it, the port number and
4109 * a fastreuse flag (FIXME: NPI ipg).
4111 static struct sctp_bind_bucket *sctp_bucket_create(
4112 struct sctp_bind_hashbucket *head, unsigned short snum);
4114 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4116 struct sctp_bind_hashbucket *head; /* hash list */
4117 struct sctp_bind_bucket *pp; /* hash list port iterator */
4118 unsigned short snum;
4119 int ret;
4121 /* NOTE: Remember to put this back to net order. */
4122 addr->v4.sin_port = ntohs(addr->v4.sin_port);
4123 snum = addr->v4.sin_port;
4125 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4126 sctp_local_bh_disable();
4128 if (snum == 0) {
4129 /* Search for an available port.
4131 * 'sctp_port_rover' was the last port assigned, so
4132 * we start to search from 'sctp_port_rover +
4133 * 1'. What we do is first check if port 'rover' is
4134 * already in the hash table; if not, we use that; if
4135 * it is, we try next.
4137 int low = sysctl_local_port_range[0];
4138 int high = sysctl_local_port_range[1];
4139 int remaining = (high - low) + 1;
4140 int rover;
4141 int index;
4143 sctp_spin_lock(&sctp_port_alloc_lock);
4144 rover = sctp_port_rover;
4145 do {
4146 rover++;
4147 if ((rover < low) || (rover > high))
4148 rover = low;
4149 index = sctp_phashfn(rover);
4150 head = &sctp_port_hashtable[index];
4151 sctp_spin_lock(&head->lock);
4152 for (pp = head->chain; pp; pp = pp->next)
4153 if (pp->port == rover)
4154 goto next;
4155 break;
4156 next:
4157 sctp_spin_unlock(&head->lock);
4158 } while (--remaining > 0);
4159 sctp_port_rover = rover;
4160 sctp_spin_unlock(&sctp_port_alloc_lock);
4162 /* Exhausted local port range during search? */
4163 ret = 1;
4164 if (remaining <= 0)
4165 goto fail;
4167 /* OK, here is the one we will use. HEAD (the port
4168 * hash table list entry) is non-NULL and we hold it's
4169 * mutex.
4171 snum = rover;
4172 } else {
4173 /* We are given an specific port number; we verify
4174 * that it is not being used. If it is used, we will
4175 * exahust the search in the hash list corresponding
4176 * to the port number (snum) - we detect that with the
4177 * port iterator, pp being NULL.
4179 head = &sctp_port_hashtable[sctp_phashfn(snum)];
4180 sctp_spin_lock(&head->lock);
4181 for (pp = head->chain; pp; pp = pp->next) {
4182 if (pp->port == snum)
4183 goto pp_found;
4186 pp = NULL;
4187 goto pp_not_found;
4188 pp_found:
4189 if (!hlist_empty(&pp->owner)) {
4190 /* We had a port hash table hit - there is an
4191 * available port (pp != NULL) and it is being
4192 * used by other socket (pp->owner not empty); that other
4193 * socket is going to be sk2.
4195 int reuse = sk->sk_reuse;
4196 struct sock *sk2;
4197 struct hlist_node *node;
4199 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4200 if (pp->fastreuse && sk->sk_reuse)
4201 goto success;
4203 /* Run through the list of sockets bound to the port
4204 * (pp->port) [via the pointers bind_next and
4205 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4206 * we get the endpoint they describe and run through
4207 * the endpoint's list of IP (v4 or v6) addresses,
4208 * comparing each of the addresses with the address of
4209 * the socket sk. If we find a match, then that means
4210 * that this port/socket (sk) combination are already
4211 * in an endpoint.
4213 sk_for_each_bound(sk2, node, &pp->owner) {
4214 struct sctp_endpoint *ep2;
4215 ep2 = sctp_sk(sk2)->ep;
4217 if (reuse && sk2->sk_reuse)
4218 continue;
4220 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4221 sctp_sk(sk))) {
4222 ret = (long)sk2;
4223 goto fail_unlock;
4226 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4228 pp_not_found:
4229 /* If there was a hash table miss, create a new port. */
4230 ret = 1;
4231 if (!pp && !(pp = sctp_bucket_create(head, snum)))
4232 goto fail_unlock;
4234 /* In either case (hit or miss), make sure fastreuse is 1 only
4235 * if sk->sk_reuse is too (that is, if the caller requested
4236 * SO_REUSEADDR on this socket -sk-).
4238 if (hlist_empty(&pp->owner))
4239 pp->fastreuse = sk->sk_reuse ? 1 : 0;
4240 else if (pp->fastreuse && !sk->sk_reuse)
4241 pp->fastreuse = 0;
4243 /* We are set, so fill up all the data in the hash table
4244 * entry, tie the socket list information with the rest of the
4245 * sockets FIXME: Blurry, NPI (ipg).
4247 success:
4248 inet_sk(sk)->num = snum;
4249 if (!sctp_sk(sk)->bind_hash) {
4250 sk_add_bind_node(sk, &pp->owner);
4251 sctp_sk(sk)->bind_hash = pp;
4253 ret = 0;
4255 fail_unlock:
4256 sctp_spin_unlock(&head->lock);
4258 fail:
4259 sctp_local_bh_enable();
4260 addr->v4.sin_port = htons(addr->v4.sin_port);
4261 return ret;
4264 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
4265 * port is requested.
4267 static int sctp_get_port(struct sock *sk, unsigned short snum)
4269 long ret;
4270 union sctp_addr addr;
4271 struct sctp_af *af = sctp_sk(sk)->pf->af;
4273 /* Set up a dummy address struct from the sk. */
4274 af->from_sk(&addr, sk);
4275 addr.v4.sin_port = htons(snum);
4277 /* Note: sk->sk_num gets filled in if ephemeral port request. */
4278 ret = sctp_get_port_local(sk, &addr);
4280 return (ret ? 1 : 0);
4284 * 3.1.3 listen() - UDP Style Syntax
4286 * By default, new associations are not accepted for UDP style sockets.
4287 * An application uses listen() to mark a socket as being able to
4288 * accept new associations.
4290 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4292 struct sctp_sock *sp = sctp_sk(sk);
4293 struct sctp_endpoint *ep = sp->ep;
4295 /* Only UDP style sockets that are not peeled off are allowed to
4296 * listen().
4298 if (!sctp_style(sk, UDP))
4299 return -EINVAL;
4301 /* If backlog is zero, disable listening. */
4302 if (!backlog) {
4303 if (sctp_sstate(sk, CLOSED))
4304 return 0;
4306 sctp_unhash_endpoint(ep);
4307 sk->sk_state = SCTP_SS_CLOSED;
4310 /* Return if we are already listening. */
4311 if (sctp_sstate(sk, LISTENING))
4312 return 0;
4315 * If a bind() or sctp_bindx() is not called prior to a listen()
4316 * call that allows new associations to be accepted, the system
4317 * picks an ephemeral port and will choose an address set equivalent
4318 * to binding with a wildcard address.
4320 * This is not currently spelled out in the SCTP sockets
4321 * extensions draft, but follows the practice as seen in TCP
4322 * sockets.
4324 if (!ep->base.bind_addr.port) {
4325 if (sctp_autobind(sk))
4326 return -EAGAIN;
4328 sk->sk_state = SCTP_SS_LISTENING;
4329 sctp_hash_endpoint(ep);
4330 return 0;
4334 * 4.1.3 listen() - TCP Style Syntax
4336 * Applications uses listen() to ready the SCTP endpoint for accepting
4337 * inbound associations.
4339 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4341 struct sctp_sock *sp = sctp_sk(sk);
4342 struct sctp_endpoint *ep = sp->ep;
4344 /* If backlog is zero, disable listening. */
4345 if (!backlog) {
4346 if (sctp_sstate(sk, CLOSED))
4347 return 0;
4349 sctp_unhash_endpoint(ep);
4350 sk->sk_state = SCTP_SS_CLOSED;
4353 if (sctp_sstate(sk, LISTENING))
4354 return 0;
4357 * If a bind() or sctp_bindx() is not called prior to a listen()
4358 * call that allows new associations to be accepted, the system
4359 * picks an ephemeral port and will choose an address set equivalent
4360 * to binding with a wildcard address.
4362 * This is not currently spelled out in the SCTP sockets
4363 * extensions draft, but follows the practice as seen in TCP
4364 * sockets.
4366 if (!ep->base.bind_addr.port) {
4367 if (sctp_autobind(sk))
4368 return -EAGAIN;
4370 sk->sk_state = SCTP_SS_LISTENING;
4371 sk->sk_max_ack_backlog = backlog;
4372 sctp_hash_endpoint(ep);
4373 return 0;
4377 * Move a socket to LISTENING state.
4379 int sctp_inet_listen(struct socket *sock, int backlog)
4381 struct sock *sk = sock->sk;
4382 struct crypto_tfm *tfm=NULL;
4383 int err = -EINVAL;
4385 if (unlikely(backlog < 0))
4386 goto out;
4388 sctp_lock_sock(sk);
4390 if (sock->state != SS_UNCONNECTED)
4391 goto out;
4393 /* Allocate HMAC for generating cookie. */
4394 if (sctp_hmac_alg) {
4395 tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
4396 if (!tfm) {
4397 err = -ENOSYS;
4398 goto out;
4402 switch (sock->type) {
4403 case SOCK_SEQPACKET:
4404 err = sctp_seqpacket_listen(sk, backlog);
4405 break;
4406 case SOCK_STREAM:
4407 err = sctp_stream_listen(sk, backlog);
4408 break;
4409 default:
4410 break;
4412 if (err)
4413 goto cleanup;
4415 /* Store away the transform reference. */
4416 sctp_sk(sk)->hmac = tfm;
4417 out:
4418 sctp_release_sock(sk);
4419 return err;
4420 cleanup:
4421 sctp_crypto_free_tfm(tfm);
4422 goto out;
4426 * This function is done by modeling the current datagram_poll() and the
4427 * tcp_poll(). Note that, based on these implementations, we don't
4428 * lock the socket in this function, even though it seems that,
4429 * ideally, locking or some other mechanisms can be used to ensure
4430 * the integrity of the counters (sndbuf and wmem_queued) used
4431 * in this place. We assume that we don't need locks either until proven
4432 * otherwise.
4434 * Another thing to note is that we include the Async I/O support
4435 * here, again, by modeling the current TCP/UDP code. We don't have
4436 * a good way to test with it yet.
4438 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4440 struct sock *sk = sock->sk;
4441 struct sctp_sock *sp = sctp_sk(sk);
4442 unsigned int mask;
4444 poll_wait(file, sk->sk_sleep, wait);
4446 /* A TCP-style listening socket becomes readable when the accept queue
4447 * is not empty.
4449 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4450 return (!list_empty(&sp->ep->asocs)) ?
4451 (POLLIN | POLLRDNORM) : 0;
4453 mask = 0;
4455 /* Is there any exceptional events? */
4456 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4457 mask |= POLLERR;
4458 if (sk->sk_shutdown == SHUTDOWN_MASK)
4459 mask |= POLLHUP;
4461 /* Is it readable? Reconsider this code with TCP-style support. */
4462 if (!skb_queue_empty(&sk->sk_receive_queue) ||
4463 (sk->sk_shutdown & RCV_SHUTDOWN))
4464 mask |= POLLIN | POLLRDNORM;
4466 /* The association is either gone or not ready. */
4467 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4468 return mask;
4470 /* Is it writable? */
4471 if (sctp_writeable(sk)) {
4472 mask |= POLLOUT | POLLWRNORM;
4473 } else {
4474 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4476 * Since the socket is not locked, the buffer
4477 * might be made available after the writeable check and
4478 * before the bit is set. This could cause a lost I/O
4479 * signal. tcp_poll() has a race breaker for this race
4480 * condition. Based on their implementation, we put
4481 * in the following code to cover it as well.
4483 if (sctp_writeable(sk))
4484 mask |= POLLOUT | POLLWRNORM;
4486 return mask;
4489 /********************************************************************
4490 * 2nd Level Abstractions
4491 ********************************************************************/
4493 static struct sctp_bind_bucket *sctp_bucket_create(
4494 struct sctp_bind_hashbucket *head, unsigned short snum)
4496 struct sctp_bind_bucket *pp;
4498 pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
4499 SCTP_DBG_OBJCNT_INC(bind_bucket);
4500 if (pp) {
4501 pp->port = snum;
4502 pp->fastreuse = 0;
4503 INIT_HLIST_HEAD(&pp->owner);
4504 if ((pp->next = head->chain) != NULL)
4505 pp->next->pprev = &pp->next;
4506 head->chain = pp;
4507 pp->pprev = &head->chain;
4509 return pp;
4512 /* Caller must hold hashbucket lock for this tb with local BH disabled */
4513 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
4515 if (hlist_empty(&pp->owner)) {
4516 if (pp->next)
4517 pp->next->pprev = pp->pprev;
4518 *(pp->pprev) = pp->next;
4519 kmem_cache_free(sctp_bucket_cachep, pp);
4520 SCTP_DBG_OBJCNT_DEC(bind_bucket);
4524 /* Release this socket's reference to a local port. */
4525 static inline void __sctp_put_port(struct sock *sk)
4527 struct sctp_bind_hashbucket *head =
4528 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
4529 struct sctp_bind_bucket *pp;
4531 sctp_spin_lock(&head->lock);
4532 pp = sctp_sk(sk)->bind_hash;
4533 __sk_del_bind_node(sk);
4534 sctp_sk(sk)->bind_hash = NULL;
4535 inet_sk(sk)->num = 0;
4536 sctp_bucket_destroy(pp);
4537 sctp_spin_unlock(&head->lock);
4540 void sctp_put_port(struct sock *sk)
4542 sctp_local_bh_disable();
4543 __sctp_put_port(sk);
4544 sctp_local_bh_enable();
4548 * The system picks an ephemeral port and choose an address set equivalent
4549 * to binding with a wildcard address.
4550 * One of those addresses will be the primary address for the association.
4551 * This automatically enables the multihoming capability of SCTP.
4553 static int sctp_autobind(struct sock *sk)
4555 union sctp_addr autoaddr;
4556 struct sctp_af *af;
4557 unsigned short port;
4559 /* Initialize a local sockaddr structure to INADDR_ANY. */
4560 af = sctp_sk(sk)->pf->af;
4562 port = htons(inet_sk(sk)->num);
4563 af->inaddr_any(&autoaddr, port);
4565 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
4568 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
4570 * From RFC 2292
4571 * 4.2 The cmsghdr Structure *
4573 * When ancillary data is sent or received, any number of ancillary data
4574 * objects can be specified by the msg_control and msg_controllen members of
4575 * the msghdr structure, because each object is preceded by
4576 * a cmsghdr structure defining the object's length (the cmsg_len member).
4577 * Historically Berkeley-derived implementations have passed only one object
4578 * at a time, but this API allows multiple objects to be
4579 * passed in a single call to sendmsg() or recvmsg(). The following example
4580 * shows two ancillary data objects in a control buffer.
4582 * |<--------------------------- msg_controllen -------------------------->|
4583 * | |
4585 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
4587 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
4588 * | | |
4590 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
4592 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
4593 * | | | | |
4595 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4596 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
4598 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
4600 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4604 * msg_control
4605 * points here
4607 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
4608 sctp_cmsgs_t *cmsgs)
4610 struct cmsghdr *cmsg;
4612 for (cmsg = CMSG_FIRSTHDR(msg);
4613 cmsg != NULL;
4614 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
4615 if (!CMSG_OK(msg, cmsg))
4616 return -EINVAL;
4618 /* Should we parse this header or ignore? */
4619 if (cmsg->cmsg_level != IPPROTO_SCTP)
4620 continue;
4622 /* Strictly check lengths following example in SCM code. */
4623 switch (cmsg->cmsg_type) {
4624 case SCTP_INIT:
4625 /* SCTP Socket API Extension
4626 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
4628 * This cmsghdr structure provides information for
4629 * initializing new SCTP associations with sendmsg().
4630 * The SCTP_INITMSG socket option uses this same data
4631 * structure. This structure is not used for
4632 * recvmsg().
4634 * cmsg_level cmsg_type cmsg_data[]
4635 * ------------ ------------ ----------------------
4636 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
4638 if (cmsg->cmsg_len !=
4639 CMSG_LEN(sizeof(struct sctp_initmsg)))
4640 return -EINVAL;
4641 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
4642 break;
4644 case SCTP_SNDRCV:
4645 /* SCTP Socket API Extension
4646 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
4648 * This cmsghdr structure specifies SCTP options for
4649 * sendmsg() and describes SCTP header information
4650 * about a received message through recvmsg().
4652 * cmsg_level cmsg_type cmsg_data[]
4653 * ------------ ------------ ----------------------
4654 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
4656 if (cmsg->cmsg_len !=
4657 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
4658 return -EINVAL;
4660 cmsgs->info =
4661 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
4663 /* Minimally, validate the sinfo_flags. */
4664 if (cmsgs->info->sinfo_flags &
4665 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
4666 SCTP_ABORT | SCTP_EOF))
4667 return -EINVAL;
4668 break;
4670 default:
4671 return -EINVAL;
4674 return 0;
4678 * Wait for a packet..
4679 * Note: This function is the same function as in core/datagram.c
4680 * with a few modifications to make lksctp work.
4682 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
4684 int error;
4685 DEFINE_WAIT(wait);
4687 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
4689 /* Socket errors? */
4690 error = sock_error(sk);
4691 if (error)
4692 goto out;
4694 if (!skb_queue_empty(&sk->sk_receive_queue))
4695 goto ready;
4697 /* Socket shut down? */
4698 if (sk->sk_shutdown & RCV_SHUTDOWN)
4699 goto out;
4701 /* Sequenced packets can come disconnected. If so we report the
4702 * problem.
4704 error = -ENOTCONN;
4706 /* Is there a good reason to think that we may receive some data? */
4707 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
4708 goto out;
4710 /* Handle signals. */
4711 if (signal_pending(current))
4712 goto interrupted;
4714 /* Let another process have a go. Since we are going to sleep
4715 * anyway. Note: This may cause odd behaviors if the message
4716 * does not fit in the user's buffer, but this seems to be the
4717 * only way to honor MSG_DONTWAIT realistically.
4719 sctp_release_sock(sk);
4720 *timeo_p = schedule_timeout(*timeo_p);
4721 sctp_lock_sock(sk);
4723 ready:
4724 finish_wait(sk->sk_sleep, &wait);
4725 return 0;
4727 interrupted:
4728 error = sock_intr_errno(*timeo_p);
4730 out:
4731 finish_wait(sk->sk_sleep, &wait);
4732 *err = error;
4733 return error;
4736 /* Receive a datagram.
4737 * Note: This is pretty much the same routine as in core/datagram.c
4738 * with a few changes to make lksctp work.
4740 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
4741 int noblock, int *err)
4743 int error;
4744 struct sk_buff *skb;
4745 long timeo;
4747 /* Caller is allowed not to check sk->sk_err before calling. */
4748 error = sock_error(sk);
4749 if (error)
4750 goto no_packet;
4752 timeo = sock_rcvtimeo(sk, noblock);
4754 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
4755 timeo, MAX_SCHEDULE_TIMEOUT);
4757 do {
4758 /* Again only user level code calls this function,
4759 * so nothing interrupt level
4760 * will suddenly eat the receive_queue.
4762 * Look at current nfs client by the way...
4763 * However, this function was corrent in any case. 8)
4765 if (flags & MSG_PEEK) {
4766 spin_lock_bh(&sk->sk_receive_queue.lock);
4767 skb = skb_peek(&sk->sk_receive_queue);
4768 if (skb)
4769 atomic_inc(&skb->users);
4770 spin_unlock_bh(&sk->sk_receive_queue.lock);
4771 } else {
4772 skb = skb_dequeue(&sk->sk_receive_queue);
4775 if (skb)
4776 return skb;
4778 if (sk->sk_shutdown & RCV_SHUTDOWN)
4779 break;
4781 /* User doesn't want to wait. */
4782 error = -EAGAIN;
4783 if (!timeo)
4784 goto no_packet;
4785 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
4787 return NULL;
4789 no_packet:
4790 *err = error;
4791 return NULL;
4794 /* If sndbuf has changed, wake up per association sndbuf waiters. */
4795 static void __sctp_write_space(struct sctp_association *asoc)
4797 struct sock *sk = asoc->base.sk;
4798 struct socket *sock = sk->sk_socket;
4800 if ((sctp_wspace(asoc) > 0) && sock) {
4801 if (waitqueue_active(&asoc->wait))
4802 wake_up_interruptible(&asoc->wait);
4804 if (sctp_writeable(sk)) {
4805 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
4806 wake_up_interruptible(sk->sk_sleep);
4808 /* Note that we try to include the Async I/O support
4809 * here by modeling from the current TCP/UDP code.
4810 * We have not tested with it yet.
4812 if (sock->fasync_list &&
4813 !(sk->sk_shutdown & SEND_SHUTDOWN))
4814 sock_wake_async(sock, 2, POLL_OUT);
4819 /* Do accounting for the sndbuf space.
4820 * Decrement the used sndbuf space of the corresponding association by the
4821 * data size which was just transmitted(freed).
4823 static void sctp_wfree(struct sk_buff *skb)
4825 struct sctp_association *asoc;
4826 struct sctp_chunk *chunk;
4827 struct sock *sk;
4829 /* Get the saved chunk pointer. */
4830 chunk = *((struct sctp_chunk **)(skb->cb));
4831 asoc = chunk->asoc;
4832 sk = asoc->base.sk;
4833 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
4834 sizeof(struct sk_buff) +
4835 sizeof(struct sctp_chunk);
4837 sk->sk_wmem_queued -= SCTP_DATA_SNDSIZE(chunk) +
4838 sizeof(struct sk_buff) +
4839 sizeof(struct sctp_chunk);
4841 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
4843 sock_wfree(skb);
4844 __sctp_write_space(asoc);
4846 sctp_association_put(asoc);
4849 /* Helper function to wait for space in the sndbuf. */
4850 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
4851 size_t msg_len)
4853 struct sock *sk = asoc->base.sk;
4854 int err = 0;
4855 long current_timeo = *timeo_p;
4856 DEFINE_WAIT(wait);
4858 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
4859 asoc, (long)(*timeo_p), msg_len);
4861 /* Increment the association's refcnt. */
4862 sctp_association_hold(asoc);
4864 /* Wait on the association specific sndbuf space. */
4865 for (;;) {
4866 prepare_to_wait_exclusive(&asoc->wait, &wait,
4867 TASK_INTERRUPTIBLE);
4868 if (!*timeo_p)
4869 goto do_nonblock;
4870 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4871 asoc->base.dead)
4872 goto do_error;
4873 if (signal_pending(current))
4874 goto do_interrupted;
4875 if (msg_len <= sctp_wspace(asoc))
4876 break;
4878 /* Let another process have a go. Since we are going
4879 * to sleep anyway.
4881 sctp_release_sock(sk);
4882 current_timeo = schedule_timeout(current_timeo);
4883 sctp_lock_sock(sk);
4885 *timeo_p = current_timeo;
4888 out:
4889 finish_wait(&asoc->wait, &wait);
4891 /* Release the association's refcnt. */
4892 sctp_association_put(asoc);
4894 return err;
4896 do_error:
4897 err = -EPIPE;
4898 goto out;
4900 do_interrupted:
4901 err = sock_intr_errno(*timeo_p);
4902 goto out;
4904 do_nonblock:
4905 err = -EAGAIN;
4906 goto out;
4909 /* If socket sndbuf has changed, wake up all per association waiters. */
4910 void sctp_write_space(struct sock *sk)
4912 struct sctp_association *asoc;
4913 struct list_head *pos;
4915 /* Wake up the tasks in each wait queue. */
4916 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
4917 asoc = list_entry(pos, struct sctp_association, asocs);
4918 __sctp_write_space(asoc);
4922 /* Is there any sndbuf space available on the socket?
4924 * Note that wmem_queued is the sum of the send buffers on all of the
4925 * associations on the same socket. For a UDP-style socket with
4926 * multiple associations, it is possible for it to be "unwriteable"
4927 * prematurely. I assume that this is acceptable because
4928 * a premature "unwriteable" is better than an accidental "writeable" which
4929 * would cause an unwanted block under certain circumstances. For the 1-1
4930 * UDP-style sockets or TCP-style sockets, this code should work.
4931 * - Daisy
4933 static int sctp_writeable(struct sock *sk)
4935 int amt = 0;
4937 amt = sk->sk_sndbuf - sk->sk_wmem_queued;
4938 if (amt < 0)
4939 amt = 0;
4940 return amt;
4943 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
4944 * returns immediately with EINPROGRESS.
4946 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
4948 struct sock *sk = asoc->base.sk;
4949 int err = 0;
4950 long current_timeo = *timeo_p;
4951 DEFINE_WAIT(wait);
4953 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
4954 (long)(*timeo_p));
4956 /* Increment the association's refcnt. */
4957 sctp_association_hold(asoc);
4959 for (;;) {
4960 prepare_to_wait_exclusive(&asoc->wait, &wait,
4961 TASK_INTERRUPTIBLE);
4962 if (!*timeo_p)
4963 goto do_nonblock;
4964 if (sk->sk_shutdown & RCV_SHUTDOWN)
4965 break;
4966 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4967 asoc->base.dead)
4968 goto do_error;
4969 if (signal_pending(current))
4970 goto do_interrupted;
4972 if (sctp_state(asoc, ESTABLISHED))
4973 break;
4975 /* Let another process have a go. Since we are going
4976 * to sleep anyway.
4978 sctp_release_sock(sk);
4979 current_timeo = schedule_timeout(current_timeo);
4980 sctp_lock_sock(sk);
4982 *timeo_p = current_timeo;
4985 out:
4986 finish_wait(&asoc->wait, &wait);
4988 /* Release the association's refcnt. */
4989 sctp_association_put(asoc);
4991 return err;
4993 do_error:
4994 if (asoc->init_err_counter + 1 >= asoc->max_init_attempts)
4995 err = -ETIMEDOUT;
4996 else
4997 err = -ECONNREFUSED;
4998 goto out;
5000 do_interrupted:
5001 err = sock_intr_errno(*timeo_p);
5002 goto out;
5004 do_nonblock:
5005 err = -EINPROGRESS;
5006 goto out;
5009 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5011 struct sctp_endpoint *ep;
5012 int err = 0;
5013 DEFINE_WAIT(wait);
5015 ep = sctp_sk(sk)->ep;
5018 for (;;) {
5019 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5020 TASK_INTERRUPTIBLE);
5022 if (list_empty(&ep->asocs)) {
5023 sctp_release_sock(sk);
5024 timeo = schedule_timeout(timeo);
5025 sctp_lock_sock(sk);
5028 err = -EINVAL;
5029 if (!sctp_sstate(sk, LISTENING))
5030 break;
5032 err = 0;
5033 if (!list_empty(&ep->asocs))
5034 break;
5036 err = sock_intr_errno(timeo);
5037 if (signal_pending(current))
5038 break;
5040 err = -EAGAIN;
5041 if (!timeo)
5042 break;
5045 finish_wait(sk->sk_sleep, &wait);
5047 return err;
5050 void sctp_wait_for_close(struct sock *sk, long timeout)
5052 DEFINE_WAIT(wait);
5054 do {
5055 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5056 if (list_empty(&sctp_sk(sk)->ep->asocs))
5057 break;
5058 sctp_release_sock(sk);
5059 timeout = schedule_timeout(timeout);
5060 sctp_lock_sock(sk);
5061 } while (!signal_pending(current) && timeout);
5063 finish_wait(sk->sk_sleep, &wait);
5066 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5067 * and its messages to the newsk.
5069 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5070 struct sctp_association *assoc,
5071 sctp_socket_type_t type)
5073 struct sctp_sock *oldsp = sctp_sk(oldsk);
5074 struct sctp_sock *newsp = sctp_sk(newsk);
5075 struct sctp_bind_bucket *pp; /* hash list port iterator */
5076 struct sctp_endpoint *newep = newsp->ep;
5077 struct sk_buff *skb, *tmp;
5078 struct sctp_ulpevent *event;
5079 int flags = 0;
5081 /* Migrate socket buffer sizes and all the socket level options to the
5082 * new socket.
5084 newsk->sk_sndbuf = oldsk->sk_sndbuf;
5085 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5086 /* Brute force copy old sctp opt. */
5087 inet_sk_copy_descendant(newsk, oldsk);
5089 /* Restore the ep value that was overwritten with the above structure
5090 * copy.
5092 newsp->ep = newep;
5093 newsp->hmac = NULL;
5095 /* Hook this new socket in to the bind_hash list. */
5096 pp = sctp_sk(oldsk)->bind_hash;
5097 sk_add_bind_node(newsk, &pp->owner);
5098 sctp_sk(newsk)->bind_hash = pp;
5099 inet_sk(newsk)->num = inet_sk(oldsk)->num;
5101 /* Copy the bind_addr list from the original endpoint to the new
5102 * endpoint so that we can handle restarts properly
5104 if (assoc->peer.ipv4_address)
5105 flags |= SCTP_ADDR4_PEERSUPP;
5106 if (assoc->peer.ipv6_address)
5107 flags |= SCTP_ADDR6_PEERSUPP;
5108 sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5109 &oldsp->ep->base.bind_addr,
5110 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5112 /* Move any messages in the old socket's receive queue that are for the
5113 * peeled off association to the new socket's receive queue.
5115 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5116 event = sctp_skb2event(skb);
5117 if (event->asoc == assoc) {
5118 __skb_unlink(skb, &oldsk->sk_receive_queue);
5119 __skb_queue_tail(&newsk->sk_receive_queue, skb);
5123 /* Clean up any messages pending delivery due to partial
5124 * delivery. Three cases:
5125 * 1) No partial deliver; no work.
5126 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5127 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5129 skb_queue_head_init(&newsp->pd_lobby);
5130 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5132 if (sctp_sk(oldsk)->pd_mode) {
5133 struct sk_buff_head *queue;
5135 /* Decide which queue to move pd_lobby skbs to. */
5136 if (assoc->ulpq.pd_mode) {
5137 queue = &newsp->pd_lobby;
5138 } else
5139 queue = &newsk->sk_receive_queue;
5141 /* Walk through the pd_lobby, looking for skbs that
5142 * need moved to the new socket.
5144 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5145 event = sctp_skb2event(skb);
5146 if (event->asoc == assoc) {
5147 __skb_unlink(skb, &oldsp->pd_lobby);
5148 __skb_queue_tail(queue, skb);
5152 /* Clear up any skbs waiting for the partial
5153 * delivery to finish.
5155 if (assoc->ulpq.pd_mode)
5156 sctp_clear_pd(oldsk);
5160 /* Set the type of socket to indicate that it is peeled off from the
5161 * original UDP-style socket or created with the accept() call on a
5162 * TCP-style socket..
5164 newsp->type = type;
5166 /* Migrate the association to the new socket. */
5167 sctp_assoc_migrate(assoc, newsk);
5169 /* If the association on the newsk is already closed before accept()
5170 * is called, set RCV_SHUTDOWN flag.
5172 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5173 newsk->sk_shutdown |= RCV_SHUTDOWN;
5175 newsk->sk_state = SCTP_SS_ESTABLISHED;
5178 /* This proto struct describes the ULP interface for SCTP. */
5179 struct proto sctp_prot = {
5180 .name = "SCTP",
5181 .owner = THIS_MODULE,
5182 .close = sctp_close,
5183 .connect = sctp_connect,
5184 .disconnect = sctp_disconnect,
5185 .accept = sctp_accept,
5186 .ioctl = sctp_ioctl,
5187 .init = sctp_init_sock,
5188 .destroy = sctp_destroy_sock,
5189 .shutdown = sctp_shutdown,
5190 .setsockopt = sctp_setsockopt,
5191 .getsockopt = sctp_getsockopt,
5192 .sendmsg = sctp_sendmsg,
5193 .recvmsg = sctp_recvmsg,
5194 .bind = sctp_bind,
5195 .backlog_rcv = sctp_backlog_rcv,
5196 .hash = sctp_hash,
5197 .unhash = sctp_unhash,
5198 .get_port = sctp_get_port,
5199 .obj_size = sizeof(struct sctp_sock),
5202 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5203 struct proto sctpv6_prot = {
5204 .name = "SCTPv6",
5205 .owner = THIS_MODULE,
5206 .close = sctp_close,
5207 .connect = sctp_connect,
5208 .disconnect = sctp_disconnect,
5209 .accept = sctp_accept,
5210 .ioctl = sctp_ioctl,
5211 .init = sctp_init_sock,
5212 .destroy = sctp_destroy_sock,
5213 .shutdown = sctp_shutdown,
5214 .setsockopt = sctp_setsockopt,
5215 .getsockopt = sctp_getsockopt,
5216 .sendmsg = sctp_sendmsg,
5217 .recvmsg = sctp_recvmsg,
5218 .bind = sctp_bind,
5219 .backlog_rcv = sctp_backlog_rcv,
5220 .hash = sctp_hash,
5221 .unhash = sctp_unhash,
5222 .get_port = sctp_get_port,
5223 .obj_size = sizeof(struct sctp6_sock),
5225 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */