[PATCH] drivers/video: Use ARRAY_SIZE macro
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / scsi / scsi_lib.c
blob8f010a314a3d8b0e9a1e7d795f5badf81718c228
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_dbg.h>
23 #include <scsi/scsi_device.h>
24 #include <scsi/scsi_driver.h>
25 #include <scsi/scsi_eh.h>
26 #include <scsi/scsi_host.h>
27 #include <scsi/scsi_request.h>
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
33 #define SG_MEMPOOL_NR (sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
34 #define SG_MEMPOOL_SIZE 32
36 struct scsi_host_sg_pool {
37 size_t size;
38 char *name;
39 kmem_cache_t *slab;
40 mempool_t *pool;
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 SP(8),
50 SP(16),
51 SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
67 static void scsi_run_queue(struct request_queue *q);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
79 * Returns: Nothing.
81 static void scsi_unprep_request(struct request *req)
83 struct scsi_cmnd *cmd = req->special;
85 req->flags &= ~REQ_DONTPREP;
86 req->special = (req->flags & REQ_SPECIAL) ? cmd->sc_request : NULL;
88 scsi_put_command(cmd);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
101 * Returns: Nothing.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
106 * commands.
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
115 unsigned long flags;
117 SCSI_LOG_MLQUEUE(1,
118 printk("Inserting command %p into mlqueue\n", cmd));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
159 scsi_run_queue(q);
161 return 0;
165 * Function: scsi_do_req
167 * Purpose: Queue a SCSI request
169 * Arguments: sreq - command descriptor.
170 * cmnd - actual SCSI command to be performed.
171 * buffer - data buffer.
172 * bufflen - size of data buffer.
173 * done - completion function to be run.
174 * timeout - how long to let it run before timeout.
175 * retries - number of retries we allow.
177 * Lock status: No locks held upon entry.
179 * Returns: Nothing.
181 * Notes: This function is only used for queueing requests for things
182 * like ioctls and character device requests - this is because
183 * we essentially just inject a request into the queue for the
184 * device.
186 * In order to support the scsi_device_quiesce function, we
187 * now inject requests on the *head* of the device queue
188 * rather than the tail.
190 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
191 void *buffer, unsigned bufflen,
192 void (*done)(struct scsi_cmnd *),
193 int timeout, int retries)
196 * If the upper level driver is reusing these things, then
197 * we should release the low-level block now. Another one will
198 * be allocated later when this request is getting queued.
200 __scsi_release_request(sreq);
203 * Our own function scsi_done (which marks the host as not busy,
204 * disables the timeout counter, etc) will be called by us or by the
205 * scsi_hosts[host].queuecommand() function needs to also call
206 * the completion function for the high level driver.
208 memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
209 sreq->sr_bufflen = bufflen;
210 sreq->sr_buffer = buffer;
211 sreq->sr_allowed = retries;
212 sreq->sr_done = done;
213 sreq->sr_timeout_per_command = timeout;
215 if (sreq->sr_cmd_len == 0)
216 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
219 * head injection *required* here otherwise quiesce won't work
221 * Because users of this function are apt to reuse requests with no
222 * modification, we have to sanitise the request flags here
224 sreq->sr_request->flags &= ~REQ_DONTPREP;
225 blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
226 1, sreq);
228 EXPORT_SYMBOL(scsi_do_req);
231 * scsi_execute - insert request and wait for the result
232 * @sdev: scsi device
233 * @cmd: scsi command
234 * @data_direction: data direction
235 * @buffer: data buffer
236 * @bufflen: len of buffer
237 * @sense: optional sense buffer
238 * @timeout: request timeout in seconds
239 * @retries: number of times to retry request
240 * @flags: or into request flags;
242 * returns the req->errors value which is the the scsi_cmnd result
243 * field.
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246 int data_direction, void *buffer, unsigned bufflen,
247 unsigned char *sense, int timeout, int retries, int flags)
249 struct request *req;
250 int write = (data_direction == DMA_TO_DEVICE);
251 int ret = DRIVER_ERROR << 24;
253 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
255 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
256 buffer, bufflen, __GFP_WAIT))
257 goto out;
259 req->cmd_len = COMMAND_SIZE(cmd[0]);
260 memcpy(req->cmd, cmd, req->cmd_len);
261 req->sense = sense;
262 req->sense_len = 0;
263 req->retries = retries;
264 req->timeout = timeout;
265 req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
268 * head injection *required* here otherwise quiesce won't work
270 blk_execute_rq(req->q, NULL, req, 1);
272 ret = req->errors;
273 out:
274 blk_put_request(req);
276 return ret;
278 EXPORT_SYMBOL(scsi_execute);
281 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
282 int data_direction, void *buffer, unsigned bufflen,
283 struct scsi_sense_hdr *sshdr, int timeout, int retries)
285 char *sense = NULL;
286 int result;
288 if (sshdr) {
289 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
290 if (!sense)
291 return DRIVER_ERROR << 24;
293 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
294 sense, timeout, retries, 0);
295 if (sshdr)
296 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
298 kfree(sense);
299 return result;
301 EXPORT_SYMBOL(scsi_execute_req);
303 struct scsi_io_context {
304 void *data;
305 void (*done)(void *data, char *sense, int result, int resid);
306 char sense[SCSI_SENSE_BUFFERSIZE];
309 static kmem_cache_t *scsi_io_context_cache;
311 static void scsi_end_async(struct request *req, int uptodate)
313 struct scsi_io_context *sioc = req->end_io_data;
315 if (sioc->done)
316 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
318 kmem_cache_free(scsi_io_context_cache, sioc);
319 __blk_put_request(req->q, req);
322 static int scsi_merge_bio(struct request *rq, struct bio *bio)
324 struct request_queue *q = rq->q;
326 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
327 if (rq_data_dir(rq) == WRITE)
328 bio->bi_rw |= (1 << BIO_RW);
329 blk_queue_bounce(q, &bio);
331 if (!rq->bio)
332 blk_rq_bio_prep(q, rq, bio);
333 else if (!q->back_merge_fn(q, rq, bio))
334 return -EINVAL;
335 else {
336 rq->biotail->bi_next = bio;
337 rq->biotail = bio;
338 rq->hard_nr_sectors += bio_sectors(bio);
339 rq->nr_sectors = rq->hard_nr_sectors;
342 return 0;
345 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
347 if (bio->bi_size)
348 return 1;
350 bio_put(bio);
351 return 0;
355 * scsi_req_map_sg - map a scatterlist into a request
356 * @rq: request to fill
357 * @sg: scatterlist
358 * @nsegs: number of elements
359 * @bufflen: len of buffer
360 * @gfp: memory allocation flags
362 * scsi_req_map_sg maps a scatterlist into a request so that the
363 * request can be sent to the block layer. We do not trust the scatterlist
364 * sent to use, as some ULDs use that struct to only organize the pages.
366 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
367 int nsegs, unsigned bufflen, gfp_t gfp)
369 struct request_queue *q = rq->q;
370 int nr_pages = (bufflen + PAGE_SIZE - 1) >> PAGE_SHIFT;
371 unsigned int data_len = 0, len, bytes, off;
372 struct page *page;
373 struct bio *bio = NULL;
374 int i, err, nr_vecs = 0;
376 for (i = 0; i < nsegs; i++) {
377 page = sgl[i].page;
378 off = sgl[i].offset;
379 len = sgl[i].length;
380 data_len += len;
382 while (len > 0) {
383 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
385 if (!bio) {
386 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
387 nr_pages -= nr_vecs;
389 bio = bio_alloc(gfp, nr_vecs);
390 if (!bio) {
391 err = -ENOMEM;
392 goto free_bios;
394 bio->bi_end_io = scsi_bi_endio;
397 if (bio_add_pc_page(q, bio, page, bytes, off) !=
398 bytes) {
399 bio_put(bio);
400 err = -EINVAL;
401 goto free_bios;
404 if (bio->bi_vcnt >= nr_vecs) {
405 err = scsi_merge_bio(rq, bio);
406 if (err) {
407 bio_endio(bio, bio->bi_size, 0);
408 goto free_bios;
410 bio = NULL;
413 page++;
414 len -= bytes;
415 off = 0;
419 rq->buffer = rq->data = NULL;
420 rq->data_len = data_len;
421 return 0;
423 free_bios:
424 while ((bio = rq->bio) != NULL) {
425 rq->bio = bio->bi_next;
427 * call endio instead of bio_put incase it was bounced
429 bio_endio(bio, bio->bi_size, 0);
432 return err;
436 * scsi_execute_async - insert request
437 * @sdev: scsi device
438 * @cmd: scsi command
439 * @cmd_len: length of scsi cdb
440 * @data_direction: data direction
441 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
442 * @bufflen: len of buffer
443 * @use_sg: if buffer is a scatterlist this is the number of elements
444 * @timeout: request timeout in seconds
445 * @retries: number of times to retry request
446 * @flags: or into request flags
448 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
449 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
450 int use_sg, int timeout, int retries, void *privdata,
451 void (*done)(void *, char *, int, int), gfp_t gfp)
453 struct request *req;
454 struct scsi_io_context *sioc;
455 int err = 0;
456 int write = (data_direction == DMA_TO_DEVICE);
458 sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
459 if (!sioc)
460 return DRIVER_ERROR << 24;
461 memset(sioc, 0, sizeof(*sioc));
463 req = blk_get_request(sdev->request_queue, write, gfp);
464 if (!req)
465 goto free_sense;
466 req->flags |= REQ_BLOCK_PC | REQ_QUIET;
468 if (use_sg)
469 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
470 else if (bufflen)
471 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
473 if (err)
474 goto free_req;
476 req->cmd_len = cmd_len;
477 memcpy(req->cmd, cmd, req->cmd_len);
478 req->sense = sioc->sense;
479 req->sense_len = 0;
480 req->timeout = timeout;
481 req->retries = retries;
482 req->end_io_data = sioc;
484 sioc->data = privdata;
485 sioc->done = done;
487 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
488 return 0;
490 free_req:
491 blk_put_request(req);
492 free_sense:
493 kfree(sioc);
494 return DRIVER_ERROR << 24;
496 EXPORT_SYMBOL_GPL(scsi_execute_async);
499 * Function: scsi_init_cmd_errh()
501 * Purpose: Initialize cmd fields related to error handling.
503 * Arguments: cmd - command that is ready to be queued.
505 * Returns: Nothing
507 * Notes: This function has the job of initializing a number of
508 * fields related to error handling. Typically this will
509 * be called once for each command, as required.
511 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
513 cmd->serial_number = 0;
515 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
517 if (cmd->cmd_len == 0)
518 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
521 * We need saved copies of a number of fields - this is because
522 * error handling may need to overwrite these with different values
523 * to run different commands, and once error handling is complete,
524 * we will need to restore these values prior to running the actual
525 * command.
527 cmd->old_use_sg = cmd->use_sg;
528 cmd->old_cmd_len = cmd->cmd_len;
529 cmd->sc_old_data_direction = cmd->sc_data_direction;
530 cmd->old_underflow = cmd->underflow;
531 memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
532 cmd->buffer = cmd->request_buffer;
533 cmd->bufflen = cmd->request_bufflen;
535 return 1;
539 * Function: scsi_setup_cmd_retry()
541 * Purpose: Restore the command state for a retry
543 * Arguments: cmd - command to be restored
545 * Returns: Nothing
547 * Notes: Immediately prior to retrying a command, we need
548 * to restore certain fields that we saved above.
550 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
552 memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
553 cmd->request_buffer = cmd->buffer;
554 cmd->request_bufflen = cmd->bufflen;
555 cmd->use_sg = cmd->old_use_sg;
556 cmd->cmd_len = cmd->old_cmd_len;
557 cmd->sc_data_direction = cmd->sc_old_data_direction;
558 cmd->underflow = cmd->old_underflow;
561 void scsi_device_unbusy(struct scsi_device *sdev)
563 struct Scsi_Host *shost = sdev->host;
564 unsigned long flags;
566 spin_lock_irqsave(shost->host_lock, flags);
567 shost->host_busy--;
568 if (unlikely(scsi_host_in_recovery(shost) &&
569 shost->host_failed))
570 scsi_eh_wakeup(shost);
571 spin_unlock(shost->host_lock);
572 spin_lock(sdev->request_queue->queue_lock);
573 sdev->device_busy--;
574 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
578 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
579 * and call blk_run_queue for all the scsi_devices on the target -
580 * including current_sdev first.
582 * Called with *no* scsi locks held.
584 static void scsi_single_lun_run(struct scsi_device *current_sdev)
586 struct Scsi_Host *shost = current_sdev->host;
587 struct scsi_device *sdev, *tmp;
588 struct scsi_target *starget = scsi_target(current_sdev);
589 unsigned long flags;
591 spin_lock_irqsave(shost->host_lock, flags);
592 starget->starget_sdev_user = NULL;
593 spin_unlock_irqrestore(shost->host_lock, flags);
596 * Call blk_run_queue for all LUNs on the target, starting with
597 * current_sdev. We race with others (to set starget_sdev_user),
598 * but in most cases, we will be first. Ideally, each LU on the
599 * target would get some limited time or requests on the target.
601 blk_run_queue(current_sdev->request_queue);
603 spin_lock_irqsave(shost->host_lock, flags);
604 if (starget->starget_sdev_user)
605 goto out;
606 list_for_each_entry_safe(sdev, tmp, &starget->devices,
607 same_target_siblings) {
608 if (sdev == current_sdev)
609 continue;
610 if (scsi_device_get(sdev))
611 continue;
613 spin_unlock_irqrestore(shost->host_lock, flags);
614 blk_run_queue(sdev->request_queue);
615 spin_lock_irqsave(shost->host_lock, flags);
617 scsi_device_put(sdev);
619 out:
620 spin_unlock_irqrestore(shost->host_lock, flags);
624 * Function: scsi_run_queue()
626 * Purpose: Select a proper request queue to serve next
628 * Arguments: q - last request's queue
630 * Returns: Nothing
632 * Notes: The previous command was completely finished, start
633 * a new one if possible.
635 static void scsi_run_queue(struct request_queue *q)
637 struct scsi_device *sdev = q->queuedata;
638 struct Scsi_Host *shost = sdev->host;
639 unsigned long flags;
641 if (sdev->single_lun)
642 scsi_single_lun_run(sdev);
644 spin_lock_irqsave(shost->host_lock, flags);
645 while (!list_empty(&shost->starved_list) &&
646 !shost->host_blocked && !shost->host_self_blocked &&
647 !((shost->can_queue > 0) &&
648 (shost->host_busy >= shost->can_queue))) {
650 * As long as shost is accepting commands and we have
651 * starved queues, call blk_run_queue. scsi_request_fn
652 * drops the queue_lock and can add us back to the
653 * starved_list.
655 * host_lock protects the starved_list and starved_entry.
656 * scsi_request_fn must get the host_lock before checking
657 * or modifying starved_list or starved_entry.
659 sdev = list_entry(shost->starved_list.next,
660 struct scsi_device, starved_entry);
661 list_del_init(&sdev->starved_entry);
662 spin_unlock_irqrestore(shost->host_lock, flags);
664 blk_run_queue(sdev->request_queue);
666 spin_lock_irqsave(shost->host_lock, flags);
667 if (unlikely(!list_empty(&sdev->starved_entry)))
669 * sdev lost a race, and was put back on the
670 * starved list. This is unlikely but without this
671 * in theory we could loop forever.
673 break;
675 spin_unlock_irqrestore(shost->host_lock, flags);
677 blk_run_queue(q);
681 * Function: scsi_requeue_command()
683 * Purpose: Handle post-processing of completed commands.
685 * Arguments: q - queue to operate on
686 * cmd - command that may need to be requeued.
688 * Returns: Nothing
690 * Notes: After command completion, there may be blocks left
691 * over which weren't finished by the previous command
692 * this can be for a number of reasons - the main one is
693 * I/O errors in the middle of the request, in which case
694 * we need to request the blocks that come after the bad
695 * sector.
696 * Notes: Upon return, cmd is a stale pointer.
698 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
700 struct request *req = cmd->request;
701 unsigned long flags;
703 scsi_unprep_request(req);
704 spin_lock_irqsave(q->queue_lock, flags);
705 blk_requeue_request(q, req);
706 spin_unlock_irqrestore(q->queue_lock, flags);
708 scsi_run_queue(q);
711 void scsi_next_command(struct scsi_cmnd *cmd)
713 struct scsi_device *sdev = cmd->device;
714 struct request_queue *q = sdev->request_queue;
716 /* need to hold a reference on the device before we let go of the cmd */
717 get_device(&sdev->sdev_gendev);
719 scsi_put_command(cmd);
720 scsi_run_queue(q);
722 /* ok to remove device now */
723 put_device(&sdev->sdev_gendev);
726 void scsi_run_host_queues(struct Scsi_Host *shost)
728 struct scsi_device *sdev;
730 shost_for_each_device(sdev, shost)
731 scsi_run_queue(sdev->request_queue);
735 * Function: scsi_end_request()
737 * Purpose: Post-processing of completed commands (usually invoked at end
738 * of upper level post-processing and scsi_io_completion).
740 * Arguments: cmd - command that is complete.
741 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
742 * bytes - number of bytes of completed I/O
743 * requeue - indicates whether we should requeue leftovers.
745 * Lock status: Assumed that lock is not held upon entry.
747 * Returns: cmd if requeue required, NULL otherwise.
749 * Notes: This is called for block device requests in order to
750 * mark some number of sectors as complete.
752 * We are guaranteeing that the request queue will be goosed
753 * at some point during this call.
754 * Notes: If cmd was requeued, upon return it will be a stale pointer.
756 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
757 int bytes, int requeue)
759 request_queue_t *q = cmd->device->request_queue;
760 struct request *req = cmd->request;
761 unsigned long flags;
764 * If there are blocks left over at the end, set up the command
765 * to queue the remainder of them.
767 if (end_that_request_chunk(req, uptodate, bytes)) {
768 int leftover = (req->hard_nr_sectors << 9);
770 if (blk_pc_request(req))
771 leftover = req->data_len;
773 /* kill remainder if no retrys */
774 if (!uptodate && blk_noretry_request(req))
775 end_that_request_chunk(req, 0, leftover);
776 else {
777 if (requeue) {
779 * Bleah. Leftovers again. Stick the
780 * leftovers in the front of the
781 * queue, and goose the queue again.
783 scsi_requeue_command(q, cmd);
784 cmd = NULL;
786 return cmd;
790 add_disk_randomness(req->rq_disk);
792 spin_lock_irqsave(q->queue_lock, flags);
793 if (blk_rq_tagged(req))
794 blk_queue_end_tag(q, req);
795 end_that_request_last(req, uptodate);
796 spin_unlock_irqrestore(q->queue_lock, flags);
799 * This will goose the queue request function at the end, so we don't
800 * need to worry about launching another command.
802 scsi_next_command(cmd);
803 return NULL;
806 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
808 struct scsi_host_sg_pool *sgp;
809 struct scatterlist *sgl;
811 BUG_ON(!cmd->use_sg);
813 switch (cmd->use_sg) {
814 case 1 ... 8:
815 cmd->sglist_len = 0;
816 break;
817 case 9 ... 16:
818 cmd->sglist_len = 1;
819 break;
820 case 17 ... 32:
821 cmd->sglist_len = 2;
822 break;
823 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
824 case 33 ... 64:
825 cmd->sglist_len = 3;
826 break;
827 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
828 case 65 ... 128:
829 cmd->sglist_len = 4;
830 break;
831 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
832 case 129 ... 256:
833 cmd->sglist_len = 5;
834 break;
835 #endif
836 #endif
837 #endif
838 default:
839 return NULL;
842 sgp = scsi_sg_pools + cmd->sglist_len;
843 sgl = mempool_alloc(sgp->pool, gfp_mask);
844 return sgl;
847 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
849 struct scsi_host_sg_pool *sgp;
851 BUG_ON(index >= SG_MEMPOOL_NR);
853 sgp = scsi_sg_pools + index;
854 mempool_free(sgl, sgp->pool);
858 * Function: scsi_release_buffers()
860 * Purpose: Completion processing for block device I/O requests.
862 * Arguments: cmd - command that we are bailing.
864 * Lock status: Assumed that no lock is held upon entry.
866 * Returns: Nothing
868 * Notes: In the event that an upper level driver rejects a
869 * command, we must release resources allocated during
870 * the __init_io() function. Primarily this would involve
871 * the scatter-gather table, and potentially any bounce
872 * buffers.
874 static void scsi_release_buffers(struct scsi_cmnd *cmd)
876 struct request *req = cmd->request;
879 * Free up any indirection buffers we allocated for DMA purposes.
881 if (cmd->use_sg)
882 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
883 else if (cmd->request_buffer != req->buffer)
884 kfree(cmd->request_buffer);
887 * Zero these out. They now point to freed memory, and it is
888 * dangerous to hang onto the pointers.
890 cmd->buffer = NULL;
891 cmd->bufflen = 0;
892 cmd->request_buffer = NULL;
893 cmd->request_bufflen = 0;
897 * Function: scsi_io_completion()
899 * Purpose: Completion processing for block device I/O requests.
901 * Arguments: cmd - command that is finished.
903 * Lock status: Assumed that no lock is held upon entry.
905 * Returns: Nothing
907 * Notes: This function is matched in terms of capabilities to
908 * the function that created the scatter-gather list.
909 * In other words, if there are no bounce buffers
910 * (the normal case for most drivers), we don't need
911 * the logic to deal with cleaning up afterwards.
913 * We must do one of several things here:
915 * a) Call scsi_end_request. This will finish off the
916 * specified number of sectors. If we are done, the
917 * command block will be released, and the queue
918 * function will be goosed. If we are not done, then
919 * scsi_end_request will directly goose the queue.
921 * b) We can just use scsi_requeue_command() here. This would
922 * be used if we just wanted to retry, for example.
924 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
925 unsigned int block_bytes)
927 int result = cmd->result;
928 int this_count = cmd->bufflen;
929 request_queue_t *q = cmd->device->request_queue;
930 struct request *req = cmd->request;
931 int clear_errors = 1;
932 struct scsi_sense_hdr sshdr;
933 int sense_valid = 0;
934 int sense_deferred = 0;
937 * Free up any indirection buffers we allocated for DMA purposes.
938 * For the case of a READ, we need to copy the data out of the
939 * bounce buffer and into the real buffer.
941 if (cmd->use_sg)
942 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
943 else if (cmd->buffer != req->buffer) {
944 if (rq_data_dir(req) == READ) {
945 unsigned long flags;
946 char *to = bio_kmap_irq(req->bio, &flags);
947 memcpy(to, cmd->buffer, cmd->bufflen);
948 bio_kunmap_irq(to, &flags);
950 kfree(cmd->buffer);
953 if (result) {
954 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
955 if (sense_valid)
956 sense_deferred = scsi_sense_is_deferred(&sshdr);
958 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
959 req->errors = result;
960 if (result) {
961 clear_errors = 0;
962 if (sense_valid && req->sense) {
964 * SG_IO wants current and deferred errors
966 int len = 8 + cmd->sense_buffer[7];
968 if (len > SCSI_SENSE_BUFFERSIZE)
969 len = SCSI_SENSE_BUFFERSIZE;
970 memcpy(req->sense, cmd->sense_buffer, len);
971 req->sense_len = len;
973 } else
974 req->data_len = cmd->resid;
978 * Zero these out. They now point to freed memory, and it is
979 * dangerous to hang onto the pointers.
981 cmd->buffer = NULL;
982 cmd->bufflen = 0;
983 cmd->request_buffer = NULL;
984 cmd->request_bufflen = 0;
987 * Next deal with any sectors which we were able to correctly
988 * handle.
990 if (good_bytes >= 0) {
991 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
992 req->nr_sectors, good_bytes));
993 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
995 if (clear_errors)
996 req->errors = 0;
998 * If multiple sectors are requested in one buffer, then
999 * they will have been finished off by the first command.
1000 * If not, then we have a multi-buffer command.
1002 * If block_bytes != 0, it means we had a medium error
1003 * of some sort, and that we want to mark some number of
1004 * sectors as not uptodate. Thus we want to inhibit
1005 * requeueing right here - we will requeue down below
1006 * when we handle the bad sectors.
1010 * If the command completed without error, then either
1011 * finish off the rest of the command, or start a new one.
1013 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
1014 return;
1017 * Now, if we were good little boys and girls, Santa left us a request
1018 * sense buffer. We can extract information from this, so we
1019 * can choose a block to remap, etc.
1021 if (sense_valid && !sense_deferred) {
1022 switch (sshdr.sense_key) {
1023 case UNIT_ATTENTION:
1024 if (cmd->device->removable) {
1025 /* detected disc change. set a bit
1026 * and quietly refuse further access.
1028 cmd->device->changed = 1;
1029 scsi_end_request(cmd, 0,
1030 this_count, 1);
1031 return;
1032 } else {
1034 * Must have been a power glitch, or a
1035 * bus reset. Could not have been a
1036 * media change, so we just retry the
1037 * request and see what happens.
1039 scsi_requeue_command(q, cmd);
1040 return;
1042 break;
1043 case ILLEGAL_REQUEST:
1045 * If we had an ILLEGAL REQUEST returned, then we may
1046 * have performed an unsupported command. The only
1047 * thing this should be would be a ten byte read where
1048 * only a six byte read was supported. Also, on a
1049 * system where READ CAPACITY failed, we may have read
1050 * past the end of the disk.
1052 if ((cmd->device->use_10_for_rw &&
1053 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1054 (cmd->cmnd[0] == READ_10 ||
1055 cmd->cmnd[0] == WRITE_10)) {
1056 cmd->device->use_10_for_rw = 0;
1058 * This will cause a retry with a 6-byte
1059 * command.
1061 scsi_requeue_command(q, cmd);
1062 result = 0;
1063 } else {
1064 scsi_end_request(cmd, 0, this_count, 1);
1065 return;
1067 break;
1068 case NOT_READY:
1070 * If the device is in the process of becoming ready,
1071 * retry.
1073 if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
1074 scsi_requeue_command(q, cmd);
1075 return;
1077 if (!(req->flags & REQ_QUIET))
1078 scmd_printk(KERN_INFO, cmd,
1079 "Device not ready.\n");
1080 scsi_end_request(cmd, 0, this_count, 1);
1081 return;
1082 case VOLUME_OVERFLOW:
1083 if (!(req->flags & REQ_QUIET)) {
1084 scmd_printk(KERN_INFO, cmd,
1085 "Volume overflow, CDB: ");
1086 __scsi_print_command(cmd->data_cmnd);
1087 scsi_print_sense("", cmd);
1089 scsi_end_request(cmd, 0, block_bytes, 1);
1090 return;
1091 default:
1092 break;
1094 } /* driver byte != 0 */
1095 if (host_byte(result) == DID_RESET) {
1097 * Third party bus reset or reset for error
1098 * recovery reasons. Just retry the request
1099 * and see what happens.
1101 scsi_requeue_command(q, cmd);
1102 return;
1104 if (result) {
1105 if (!(req->flags & REQ_QUIET)) {
1106 scmd_printk(KERN_INFO, cmd,
1107 "SCSI error: return code = 0x%x\n", result);
1109 if (driver_byte(result) & DRIVER_SENSE)
1110 scsi_print_sense("", cmd);
1113 * Mark a single buffer as not uptodate. Queue the remainder.
1114 * We sometimes get this cruft in the event that a medium error
1115 * isn't properly reported.
1117 block_bytes = req->hard_cur_sectors << 9;
1118 if (!block_bytes)
1119 block_bytes = req->data_len;
1120 scsi_end_request(cmd, 0, block_bytes, 1);
1123 EXPORT_SYMBOL(scsi_io_completion);
1126 * Function: scsi_init_io()
1128 * Purpose: SCSI I/O initialize function.
1130 * Arguments: cmd - Command descriptor we wish to initialize
1132 * Returns: 0 on success
1133 * BLKPREP_DEFER if the failure is retryable
1134 * BLKPREP_KILL if the failure is fatal
1136 static int scsi_init_io(struct scsi_cmnd *cmd)
1138 struct request *req = cmd->request;
1139 struct scatterlist *sgpnt;
1140 int count;
1143 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1145 if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1146 cmd->request_bufflen = req->data_len;
1147 cmd->request_buffer = req->data;
1148 req->buffer = req->data;
1149 cmd->use_sg = 0;
1150 return 0;
1154 * we used to not use scatter-gather for single segment request,
1155 * but now we do (it makes highmem I/O easier to support without
1156 * kmapping pages)
1158 cmd->use_sg = req->nr_phys_segments;
1161 * if sg table allocation fails, requeue request later.
1163 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1164 if (unlikely(!sgpnt)) {
1165 scsi_unprep_request(req);
1166 return BLKPREP_DEFER;
1169 cmd->request_buffer = (char *) sgpnt;
1170 cmd->request_bufflen = req->nr_sectors << 9;
1171 if (blk_pc_request(req))
1172 cmd->request_bufflen = req->data_len;
1173 req->buffer = NULL;
1176 * Next, walk the list, and fill in the addresses and sizes of
1177 * each segment.
1179 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1182 * mapped well, send it off
1184 if (likely(count <= cmd->use_sg)) {
1185 cmd->use_sg = count;
1186 return 0;
1189 printk(KERN_ERR "Incorrect number of segments after building list\n");
1190 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1191 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1192 req->current_nr_sectors);
1194 /* release the command and kill it */
1195 scsi_release_buffers(cmd);
1196 scsi_put_command(cmd);
1197 return BLKPREP_KILL;
1200 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1201 sector_t *error_sector)
1203 struct scsi_device *sdev = q->queuedata;
1204 struct scsi_driver *drv;
1206 if (sdev->sdev_state != SDEV_RUNNING)
1207 return -ENXIO;
1209 drv = *(struct scsi_driver **) disk->private_data;
1210 if (drv->issue_flush)
1211 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1213 return -EOPNOTSUPP;
1216 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1218 BUG_ON(!blk_pc_request(cmd->request));
1220 * This will complete the whole command with uptodate=1 so
1221 * as far as the block layer is concerned the command completed
1222 * successfully. Since this is a REQ_BLOCK_PC command the
1223 * caller should check the request's errors value
1225 scsi_io_completion(cmd, cmd->bufflen, 0);
1228 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1230 struct request *req = cmd->request;
1232 BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1233 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1234 cmd->cmd_len = req->cmd_len;
1235 if (!req->data_len)
1236 cmd->sc_data_direction = DMA_NONE;
1237 else if (rq_data_dir(req) == WRITE)
1238 cmd->sc_data_direction = DMA_TO_DEVICE;
1239 else
1240 cmd->sc_data_direction = DMA_FROM_DEVICE;
1242 cmd->transfersize = req->data_len;
1243 cmd->allowed = req->retries;
1244 cmd->timeout_per_command = req->timeout;
1245 cmd->done = scsi_blk_pc_done;
1248 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1250 struct scsi_device *sdev = q->queuedata;
1251 struct scsi_cmnd *cmd;
1252 int specials_only = 0;
1255 * Just check to see if the device is online. If it isn't, we
1256 * refuse to process any commands. The device must be brought
1257 * online before trying any recovery commands
1259 if (unlikely(!scsi_device_online(sdev))) {
1260 sdev_printk(KERN_ERR, sdev,
1261 "rejecting I/O to offline device\n");
1262 goto kill;
1264 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1265 /* OK, we're not in a running state don't prep
1266 * user commands */
1267 if (sdev->sdev_state == SDEV_DEL) {
1268 /* Device is fully deleted, no commands
1269 * at all allowed down */
1270 sdev_printk(KERN_ERR, sdev,
1271 "rejecting I/O to dead device\n");
1272 goto kill;
1274 /* OK, we only allow special commands (i.e. not
1275 * user initiated ones */
1276 specials_only = sdev->sdev_state;
1280 * Find the actual device driver associated with this command.
1281 * The SPECIAL requests are things like character device or
1282 * ioctls, which did not originate from ll_rw_blk. Note that
1283 * the special field is also used to indicate the cmd for
1284 * the remainder of a partially fulfilled request that can
1285 * come up when there is a medium error. We have to treat
1286 * these two cases differently. We differentiate by looking
1287 * at request->cmd, as this tells us the real story.
1289 if (req->flags & REQ_SPECIAL && req->special) {
1290 struct scsi_request *sreq = req->special;
1292 if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1293 cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1294 if (unlikely(!cmd))
1295 goto defer;
1296 scsi_init_cmd_from_req(cmd, sreq);
1297 } else
1298 cmd = req->special;
1299 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1301 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1302 if(specials_only == SDEV_QUIESCE ||
1303 specials_only == SDEV_BLOCK)
1304 goto defer;
1306 sdev_printk(KERN_ERR, sdev,
1307 "rejecting I/O to device being removed\n");
1308 goto kill;
1313 * Now try and find a command block that we can use.
1315 if (!req->special) {
1316 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1317 if (unlikely(!cmd))
1318 goto defer;
1319 } else
1320 cmd = req->special;
1322 /* pull a tag out of the request if we have one */
1323 cmd->tag = req->tag;
1324 } else {
1325 blk_dump_rq_flags(req, "SCSI bad req");
1326 goto kill;
1329 /* note the overloading of req->special. When the tag
1330 * is active it always means cmd. If the tag goes
1331 * back for re-queueing, it may be reset */
1332 req->special = cmd;
1333 cmd->request = req;
1336 * FIXME: drop the lock here because the functions below
1337 * expect to be called without the queue lock held. Also,
1338 * previously, we dequeued the request before dropping the
1339 * lock. We hope REQ_STARTED prevents anything untoward from
1340 * happening now.
1342 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1343 int ret;
1346 * This will do a couple of things:
1347 * 1) Fill in the actual SCSI command.
1348 * 2) Fill in any other upper-level specific fields
1349 * (timeout).
1351 * If this returns 0, it means that the request failed
1352 * (reading past end of disk, reading offline device,
1353 * etc). This won't actually talk to the device, but
1354 * some kinds of consistency checking may cause the
1355 * request to be rejected immediately.
1359 * This sets up the scatter-gather table (allocating if
1360 * required).
1362 ret = scsi_init_io(cmd);
1363 switch(ret) {
1364 /* For BLKPREP_KILL/DEFER the cmd was released */
1365 case BLKPREP_KILL:
1366 goto kill;
1367 case BLKPREP_DEFER:
1368 goto defer;
1372 * Initialize the actual SCSI command for this request.
1374 if (req->flags & REQ_BLOCK_PC) {
1375 scsi_setup_blk_pc_cmnd(cmd);
1376 } else if (req->rq_disk) {
1377 struct scsi_driver *drv;
1379 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1380 if (unlikely(!drv->init_command(cmd))) {
1381 scsi_release_buffers(cmd);
1382 scsi_put_command(cmd);
1383 goto kill;
1389 * The request is now prepped, no need to come back here
1391 req->flags |= REQ_DONTPREP;
1392 return BLKPREP_OK;
1394 defer:
1395 /* If we defer, the elv_next_request() returns NULL, but the
1396 * queue must be restarted, so we plug here if no returning
1397 * command will automatically do that. */
1398 if (sdev->device_busy == 0)
1399 blk_plug_device(q);
1400 return BLKPREP_DEFER;
1401 kill:
1402 req->errors = DID_NO_CONNECT << 16;
1403 return BLKPREP_KILL;
1407 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1408 * return 0.
1410 * Called with the queue_lock held.
1412 static inline int scsi_dev_queue_ready(struct request_queue *q,
1413 struct scsi_device *sdev)
1415 if (sdev->device_busy >= sdev->queue_depth)
1416 return 0;
1417 if (sdev->device_busy == 0 && sdev->device_blocked) {
1419 * unblock after device_blocked iterates to zero
1421 if (--sdev->device_blocked == 0) {
1422 SCSI_LOG_MLQUEUE(3,
1423 sdev_printk(KERN_INFO, sdev,
1424 "unblocking device at zero depth\n"));
1425 } else {
1426 blk_plug_device(q);
1427 return 0;
1430 if (sdev->device_blocked)
1431 return 0;
1433 return 1;
1437 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1438 * return 0. We must end up running the queue again whenever 0 is
1439 * returned, else IO can hang.
1441 * Called with host_lock held.
1443 static inline int scsi_host_queue_ready(struct request_queue *q,
1444 struct Scsi_Host *shost,
1445 struct scsi_device *sdev)
1447 if (scsi_host_in_recovery(shost))
1448 return 0;
1449 if (shost->host_busy == 0 && shost->host_blocked) {
1451 * unblock after host_blocked iterates to zero
1453 if (--shost->host_blocked == 0) {
1454 SCSI_LOG_MLQUEUE(3,
1455 printk("scsi%d unblocking host at zero depth\n",
1456 shost->host_no));
1457 } else {
1458 blk_plug_device(q);
1459 return 0;
1462 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1463 shost->host_blocked || shost->host_self_blocked) {
1464 if (list_empty(&sdev->starved_entry))
1465 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1466 return 0;
1469 /* We're OK to process the command, so we can't be starved */
1470 if (!list_empty(&sdev->starved_entry))
1471 list_del_init(&sdev->starved_entry);
1473 return 1;
1477 * Kill a request for a dead device
1479 static void scsi_kill_request(struct request *req, request_queue_t *q)
1481 struct scsi_cmnd *cmd = req->special;
1483 blkdev_dequeue_request(req);
1485 if (unlikely(cmd == NULL)) {
1486 printk(KERN_CRIT "impossible request in %s.\n",
1487 __FUNCTION__);
1488 BUG();
1491 scsi_init_cmd_errh(cmd);
1492 cmd->result = DID_NO_CONNECT << 16;
1493 atomic_inc(&cmd->device->iorequest_cnt);
1494 __scsi_done(cmd);
1497 static void scsi_softirq_done(struct request *rq)
1499 struct scsi_cmnd *cmd = rq->completion_data;
1500 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1501 int disposition;
1503 INIT_LIST_HEAD(&cmd->eh_entry);
1505 disposition = scsi_decide_disposition(cmd);
1506 if (disposition != SUCCESS &&
1507 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1508 sdev_printk(KERN_ERR, cmd->device,
1509 "timing out command, waited %lus\n",
1510 wait_for/HZ);
1511 disposition = SUCCESS;
1514 scsi_log_completion(cmd, disposition);
1516 switch (disposition) {
1517 case SUCCESS:
1518 scsi_finish_command(cmd);
1519 break;
1520 case NEEDS_RETRY:
1521 scsi_retry_command(cmd);
1522 break;
1523 case ADD_TO_MLQUEUE:
1524 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1525 break;
1526 default:
1527 if (!scsi_eh_scmd_add(cmd, 0))
1528 scsi_finish_command(cmd);
1533 * Function: scsi_request_fn()
1535 * Purpose: Main strategy routine for SCSI.
1537 * Arguments: q - Pointer to actual queue.
1539 * Returns: Nothing
1541 * Lock status: IO request lock assumed to be held when called.
1543 static void scsi_request_fn(struct request_queue *q)
1545 struct scsi_device *sdev = q->queuedata;
1546 struct Scsi_Host *shost;
1547 struct scsi_cmnd *cmd;
1548 struct request *req;
1550 if (!sdev) {
1551 printk("scsi: killing requests for dead queue\n");
1552 while ((req = elv_next_request(q)) != NULL)
1553 scsi_kill_request(req, q);
1554 return;
1557 if(!get_device(&sdev->sdev_gendev))
1558 /* We must be tearing the block queue down already */
1559 return;
1562 * To start with, we keep looping until the queue is empty, or until
1563 * the host is no longer able to accept any more requests.
1565 shost = sdev->host;
1566 while (!blk_queue_plugged(q)) {
1567 int rtn;
1569 * get next queueable request. We do this early to make sure
1570 * that the request is fully prepared even if we cannot
1571 * accept it.
1573 req = elv_next_request(q);
1574 if (!req || !scsi_dev_queue_ready(q, sdev))
1575 break;
1577 if (unlikely(!scsi_device_online(sdev))) {
1578 sdev_printk(KERN_ERR, sdev,
1579 "rejecting I/O to offline device\n");
1580 scsi_kill_request(req, q);
1581 continue;
1586 * Remove the request from the request list.
1588 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1589 blkdev_dequeue_request(req);
1590 sdev->device_busy++;
1592 spin_unlock(q->queue_lock);
1593 cmd = req->special;
1594 if (unlikely(cmd == NULL)) {
1595 printk(KERN_CRIT "impossible request in %s.\n"
1596 "please mail a stack trace to "
1597 "linux-scsi@vger.kernel.org",
1598 __FUNCTION__);
1599 BUG();
1601 spin_lock(shost->host_lock);
1603 if (!scsi_host_queue_ready(q, shost, sdev))
1604 goto not_ready;
1605 if (sdev->single_lun) {
1606 if (scsi_target(sdev)->starget_sdev_user &&
1607 scsi_target(sdev)->starget_sdev_user != sdev)
1608 goto not_ready;
1609 scsi_target(sdev)->starget_sdev_user = sdev;
1611 shost->host_busy++;
1614 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1615 * take the lock again.
1617 spin_unlock_irq(shost->host_lock);
1620 * Finally, initialize any error handling parameters, and set up
1621 * the timers for timeouts.
1623 scsi_init_cmd_errh(cmd);
1626 * Dispatch the command to the low-level driver.
1628 rtn = scsi_dispatch_cmd(cmd);
1629 spin_lock_irq(q->queue_lock);
1630 if(rtn) {
1631 /* we're refusing the command; because of
1632 * the way locks get dropped, we need to
1633 * check here if plugging is required */
1634 if(sdev->device_busy == 0)
1635 blk_plug_device(q);
1637 break;
1641 goto out;
1643 not_ready:
1644 spin_unlock_irq(shost->host_lock);
1647 * lock q, handle tag, requeue req, and decrement device_busy. We
1648 * must return with queue_lock held.
1650 * Decrementing device_busy without checking it is OK, as all such
1651 * cases (host limits or settings) should run the queue at some
1652 * later time.
1654 spin_lock_irq(q->queue_lock);
1655 blk_requeue_request(q, req);
1656 sdev->device_busy--;
1657 if(sdev->device_busy == 0)
1658 blk_plug_device(q);
1659 out:
1660 /* must be careful here...if we trigger the ->remove() function
1661 * we cannot be holding the q lock */
1662 spin_unlock_irq(q->queue_lock);
1663 put_device(&sdev->sdev_gendev);
1664 spin_lock_irq(q->queue_lock);
1667 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1669 struct device *host_dev;
1670 u64 bounce_limit = 0xffffffff;
1672 if (shost->unchecked_isa_dma)
1673 return BLK_BOUNCE_ISA;
1675 * Platforms with virtual-DMA translation
1676 * hardware have no practical limit.
1678 if (!PCI_DMA_BUS_IS_PHYS)
1679 return BLK_BOUNCE_ANY;
1681 host_dev = scsi_get_device(shost);
1682 if (host_dev && host_dev->dma_mask)
1683 bounce_limit = *host_dev->dma_mask;
1685 return bounce_limit;
1687 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1689 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1691 struct Scsi_Host *shost = sdev->host;
1692 struct request_queue *q;
1694 q = blk_init_queue(scsi_request_fn, NULL);
1695 if (!q)
1696 return NULL;
1698 blk_queue_prep_rq(q, scsi_prep_fn);
1700 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1701 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1702 blk_queue_max_sectors(q, shost->max_sectors);
1703 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1704 blk_queue_segment_boundary(q, shost->dma_boundary);
1705 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1706 blk_queue_softirq_done(q, scsi_softirq_done);
1708 if (!shost->use_clustering)
1709 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1710 return q;
1713 void scsi_free_queue(struct request_queue *q)
1715 blk_cleanup_queue(q);
1719 * Function: scsi_block_requests()
1721 * Purpose: Utility function used by low-level drivers to prevent further
1722 * commands from being queued to the device.
1724 * Arguments: shost - Host in question
1726 * Returns: Nothing
1728 * Lock status: No locks are assumed held.
1730 * Notes: There is no timer nor any other means by which the requests
1731 * get unblocked other than the low-level driver calling
1732 * scsi_unblock_requests().
1734 void scsi_block_requests(struct Scsi_Host *shost)
1736 shost->host_self_blocked = 1;
1738 EXPORT_SYMBOL(scsi_block_requests);
1741 * Function: scsi_unblock_requests()
1743 * Purpose: Utility function used by low-level drivers to allow further
1744 * commands from being queued to the device.
1746 * Arguments: shost - Host in question
1748 * Returns: Nothing
1750 * Lock status: No locks are assumed held.
1752 * Notes: There is no timer nor any other means by which the requests
1753 * get unblocked other than the low-level driver calling
1754 * scsi_unblock_requests().
1756 * This is done as an API function so that changes to the
1757 * internals of the scsi mid-layer won't require wholesale
1758 * changes to drivers that use this feature.
1760 void scsi_unblock_requests(struct Scsi_Host *shost)
1762 shost->host_self_blocked = 0;
1763 scsi_run_host_queues(shost);
1765 EXPORT_SYMBOL(scsi_unblock_requests);
1767 int __init scsi_init_queue(void)
1769 int i;
1771 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1772 sizeof(struct scsi_io_context),
1773 0, 0, NULL, NULL);
1774 if (!scsi_io_context_cache) {
1775 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1776 return -ENOMEM;
1779 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1780 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1781 int size = sgp->size * sizeof(struct scatterlist);
1783 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1784 SLAB_HWCACHE_ALIGN, NULL, NULL);
1785 if (!sgp->slab) {
1786 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1787 sgp->name);
1790 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1791 sgp->slab);
1792 if (!sgp->pool) {
1793 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1794 sgp->name);
1798 return 0;
1801 void scsi_exit_queue(void)
1803 int i;
1805 kmem_cache_destroy(scsi_io_context_cache);
1807 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1808 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1809 mempool_destroy(sgp->pool);
1810 kmem_cache_destroy(sgp->slab);
1815 * scsi_mode_select - issue a mode select
1816 * @sdev: SCSI device to be queried
1817 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1818 * @sp: Save page bit (0 == don't save, 1 == save)
1819 * @modepage: mode page being requested
1820 * @buffer: request buffer (may not be smaller than eight bytes)
1821 * @len: length of request buffer.
1822 * @timeout: command timeout
1823 * @retries: number of retries before failing
1824 * @data: returns a structure abstracting the mode header data
1825 * @sense: place to put sense data (or NULL if no sense to be collected).
1826 * must be SCSI_SENSE_BUFFERSIZE big.
1828 * Returns zero if successful; negative error number or scsi
1829 * status on error
1833 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1834 unsigned char *buffer, int len, int timeout, int retries,
1835 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1837 unsigned char cmd[10];
1838 unsigned char *real_buffer;
1839 int ret;
1841 memset(cmd, 0, sizeof(cmd));
1842 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1844 if (sdev->use_10_for_ms) {
1845 if (len > 65535)
1846 return -EINVAL;
1847 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1848 if (!real_buffer)
1849 return -ENOMEM;
1850 memcpy(real_buffer + 8, buffer, len);
1851 len += 8;
1852 real_buffer[0] = 0;
1853 real_buffer[1] = 0;
1854 real_buffer[2] = data->medium_type;
1855 real_buffer[3] = data->device_specific;
1856 real_buffer[4] = data->longlba ? 0x01 : 0;
1857 real_buffer[5] = 0;
1858 real_buffer[6] = data->block_descriptor_length >> 8;
1859 real_buffer[7] = data->block_descriptor_length;
1861 cmd[0] = MODE_SELECT_10;
1862 cmd[7] = len >> 8;
1863 cmd[8] = len;
1864 } else {
1865 if (len > 255 || data->block_descriptor_length > 255 ||
1866 data->longlba)
1867 return -EINVAL;
1869 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1870 if (!real_buffer)
1871 return -ENOMEM;
1872 memcpy(real_buffer + 4, buffer, len);
1873 len += 4;
1874 real_buffer[0] = 0;
1875 real_buffer[1] = data->medium_type;
1876 real_buffer[2] = data->device_specific;
1877 real_buffer[3] = data->block_descriptor_length;
1880 cmd[0] = MODE_SELECT;
1881 cmd[4] = len;
1884 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1885 sshdr, timeout, retries);
1886 kfree(real_buffer);
1887 return ret;
1889 EXPORT_SYMBOL_GPL(scsi_mode_select);
1892 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1893 * six bytes if necessary.
1894 * @sdev: SCSI device to be queried
1895 * @dbd: set if mode sense will allow block descriptors to be returned
1896 * @modepage: mode page being requested
1897 * @buffer: request buffer (may not be smaller than eight bytes)
1898 * @len: length of request buffer.
1899 * @timeout: command timeout
1900 * @retries: number of retries before failing
1901 * @data: returns a structure abstracting the mode header data
1902 * @sense: place to put sense data (or NULL if no sense to be collected).
1903 * must be SCSI_SENSE_BUFFERSIZE big.
1905 * Returns zero if unsuccessful, or the header offset (either 4
1906 * or 8 depending on whether a six or ten byte command was
1907 * issued) if successful.
1910 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1911 unsigned char *buffer, int len, int timeout, int retries,
1912 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1914 unsigned char cmd[12];
1915 int use_10_for_ms;
1916 int header_length;
1917 int result;
1918 struct scsi_sense_hdr my_sshdr;
1920 memset(data, 0, sizeof(*data));
1921 memset(&cmd[0], 0, 12);
1922 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1923 cmd[2] = modepage;
1925 /* caller might not be interested in sense, but we need it */
1926 if (!sshdr)
1927 sshdr = &my_sshdr;
1929 retry:
1930 use_10_for_ms = sdev->use_10_for_ms;
1932 if (use_10_for_ms) {
1933 if (len < 8)
1934 len = 8;
1936 cmd[0] = MODE_SENSE_10;
1937 cmd[8] = len;
1938 header_length = 8;
1939 } else {
1940 if (len < 4)
1941 len = 4;
1943 cmd[0] = MODE_SENSE;
1944 cmd[4] = len;
1945 header_length = 4;
1948 memset(buffer, 0, len);
1950 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1951 sshdr, timeout, retries);
1953 /* This code looks awful: what it's doing is making sure an
1954 * ILLEGAL REQUEST sense return identifies the actual command
1955 * byte as the problem. MODE_SENSE commands can return
1956 * ILLEGAL REQUEST if the code page isn't supported */
1958 if (use_10_for_ms && !scsi_status_is_good(result) &&
1959 (driver_byte(result) & DRIVER_SENSE)) {
1960 if (scsi_sense_valid(sshdr)) {
1961 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1962 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1964 * Invalid command operation code
1966 sdev->use_10_for_ms = 0;
1967 goto retry;
1972 if(scsi_status_is_good(result)) {
1973 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1974 (modepage == 6 || modepage == 8))) {
1975 /* Initio breakage? */
1976 header_length = 0;
1977 data->length = 13;
1978 data->medium_type = 0;
1979 data->device_specific = 0;
1980 data->longlba = 0;
1981 data->block_descriptor_length = 0;
1982 } else if(use_10_for_ms) {
1983 data->length = buffer[0]*256 + buffer[1] + 2;
1984 data->medium_type = buffer[2];
1985 data->device_specific = buffer[3];
1986 data->longlba = buffer[4] & 0x01;
1987 data->block_descriptor_length = buffer[6]*256
1988 + buffer[7];
1989 } else {
1990 data->length = buffer[0] + 1;
1991 data->medium_type = buffer[1];
1992 data->device_specific = buffer[2];
1993 data->block_descriptor_length = buffer[3];
1995 data->header_length = header_length;
1998 return result;
2000 EXPORT_SYMBOL(scsi_mode_sense);
2003 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
2005 char cmd[] = {
2006 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2008 struct scsi_sense_hdr sshdr;
2009 int result;
2011 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
2012 timeout, retries);
2014 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
2016 if ((scsi_sense_valid(&sshdr)) &&
2017 ((sshdr.sense_key == UNIT_ATTENTION) ||
2018 (sshdr.sense_key == NOT_READY))) {
2019 sdev->changed = 1;
2020 result = 0;
2023 return result;
2025 EXPORT_SYMBOL(scsi_test_unit_ready);
2028 * scsi_device_set_state - Take the given device through the device
2029 * state model.
2030 * @sdev: scsi device to change the state of.
2031 * @state: state to change to.
2033 * Returns zero if unsuccessful or an error if the requested
2034 * transition is illegal.
2037 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2039 enum scsi_device_state oldstate = sdev->sdev_state;
2041 if (state == oldstate)
2042 return 0;
2044 switch (state) {
2045 case SDEV_CREATED:
2046 /* There are no legal states that come back to
2047 * created. This is the manually initialised start
2048 * state */
2049 goto illegal;
2051 case SDEV_RUNNING:
2052 switch (oldstate) {
2053 case SDEV_CREATED:
2054 case SDEV_OFFLINE:
2055 case SDEV_QUIESCE:
2056 case SDEV_BLOCK:
2057 break;
2058 default:
2059 goto illegal;
2061 break;
2063 case SDEV_QUIESCE:
2064 switch (oldstate) {
2065 case SDEV_RUNNING:
2066 case SDEV_OFFLINE:
2067 break;
2068 default:
2069 goto illegal;
2071 break;
2073 case SDEV_OFFLINE:
2074 switch (oldstate) {
2075 case SDEV_CREATED:
2076 case SDEV_RUNNING:
2077 case SDEV_QUIESCE:
2078 case SDEV_BLOCK:
2079 break;
2080 default:
2081 goto illegal;
2083 break;
2085 case SDEV_BLOCK:
2086 switch (oldstate) {
2087 case SDEV_CREATED:
2088 case SDEV_RUNNING:
2089 break;
2090 default:
2091 goto illegal;
2093 break;
2095 case SDEV_CANCEL:
2096 switch (oldstate) {
2097 case SDEV_CREATED:
2098 case SDEV_RUNNING:
2099 case SDEV_OFFLINE:
2100 case SDEV_BLOCK:
2101 break;
2102 default:
2103 goto illegal;
2105 break;
2107 case SDEV_DEL:
2108 switch (oldstate) {
2109 case SDEV_CANCEL:
2110 break;
2111 default:
2112 goto illegal;
2114 break;
2117 sdev->sdev_state = state;
2118 return 0;
2120 illegal:
2121 SCSI_LOG_ERROR_RECOVERY(1,
2122 sdev_printk(KERN_ERR, sdev,
2123 "Illegal state transition %s->%s\n",
2124 scsi_device_state_name(oldstate),
2125 scsi_device_state_name(state))
2127 return -EINVAL;
2129 EXPORT_SYMBOL(scsi_device_set_state);
2132 * scsi_device_quiesce - Block user issued commands.
2133 * @sdev: scsi device to quiesce.
2135 * This works by trying to transition to the SDEV_QUIESCE state
2136 * (which must be a legal transition). When the device is in this
2137 * state, only special requests will be accepted, all others will
2138 * be deferred. Since special requests may also be requeued requests,
2139 * a successful return doesn't guarantee the device will be
2140 * totally quiescent.
2142 * Must be called with user context, may sleep.
2144 * Returns zero if unsuccessful or an error if not.
2147 scsi_device_quiesce(struct scsi_device *sdev)
2149 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2150 if (err)
2151 return err;
2153 scsi_run_queue(sdev->request_queue);
2154 while (sdev->device_busy) {
2155 msleep_interruptible(200);
2156 scsi_run_queue(sdev->request_queue);
2158 return 0;
2160 EXPORT_SYMBOL(scsi_device_quiesce);
2163 * scsi_device_resume - Restart user issued commands to a quiesced device.
2164 * @sdev: scsi device to resume.
2166 * Moves the device from quiesced back to running and restarts the
2167 * queues.
2169 * Must be called with user context, may sleep.
2171 void
2172 scsi_device_resume(struct scsi_device *sdev)
2174 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2175 return;
2176 scsi_run_queue(sdev->request_queue);
2178 EXPORT_SYMBOL(scsi_device_resume);
2180 static void
2181 device_quiesce_fn(struct scsi_device *sdev, void *data)
2183 scsi_device_quiesce(sdev);
2186 void
2187 scsi_target_quiesce(struct scsi_target *starget)
2189 starget_for_each_device(starget, NULL, device_quiesce_fn);
2191 EXPORT_SYMBOL(scsi_target_quiesce);
2193 static void
2194 device_resume_fn(struct scsi_device *sdev, void *data)
2196 scsi_device_resume(sdev);
2199 void
2200 scsi_target_resume(struct scsi_target *starget)
2202 starget_for_each_device(starget, NULL, device_resume_fn);
2204 EXPORT_SYMBOL(scsi_target_resume);
2207 * scsi_internal_device_block - internal function to put a device
2208 * temporarily into the SDEV_BLOCK state
2209 * @sdev: device to block
2211 * Block request made by scsi lld's to temporarily stop all
2212 * scsi commands on the specified device. Called from interrupt
2213 * or normal process context.
2215 * Returns zero if successful or error if not
2217 * Notes:
2218 * This routine transitions the device to the SDEV_BLOCK state
2219 * (which must be a legal transition). When the device is in this
2220 * state, all commands are deferred until the scsi lld reenables
2221 * the device with scsi_device_unblock or device_block_tmo fires.
2222 * This routine assumes the host_lock is held on entry.
2225 scsi_internal_device_block(struct scsi_device *sdev)
2227 request_queue_t *q = sdev->request_queue;
2228 unsigned long flags;
2229 int err = 0;
2231 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2232 if (err)
2233 return err;
2236 * The device has transitioned to SDEV_BLOCK. Stop the
2237 * block layer from calling the midlayer with this device's
2238 * request queue.
2240 spin_lock_irqsave(q->queue_lock, flags);
2241 blk_stop_queue(q);
2242 spin_unlock_irqrestore(q->queue_lock, flags);
2244 return 0;
2246 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2249 * scsi_internal_device_unblock - resume a device after a block request
2250 * @sdev: device to resume
2252 * Called by scsi lld's or the midlayer to restart the device queue
2253 * for the previously suspended scsi device. Called from interrupt or
2254 * normal process context.
2256 * Returns zero if successful or error if not.
2258 * Notes:
2259 * This routine transitions the device to the SDEV_RUNNING state
2260 * (which must be a legal transition) allowing the midlayer to
2261 * goose the queue for this device. This routine assumes the
2262 * host_lock is held upon entry.
2265 scsi_internal_device_unblock(struct scsi_device *sdev)
2267 request_queue_t *q = sdev->request_queue;
2268 int err;
2269 unsigned long flags;
2272 * Try to transition the scsi device to SDEV_RUNNING
2273 * and goose the device queue if successful.
2275 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2276 if (err)
2277 return err;
2279 spin_lock_irqsave(q->queue_lock, flags);
2280 blk_start_queue(q);
2281 spin_unlock_irqrestore(q->queue_lock, flags);
2283 return 0;
2285 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2287 static void
2288 device_block(struct scsi_device *sdev, void *data)
2290 scsi_internal_device_block(sdev);
2293 static int
2294 target_block(struct device *dev, void *data)
2296 if (scsi_is_target_device(dev))
2297 starget_for_each_device(to_scsi_target(dev), NULL,
2298 device_block);
2299 return 0;
2302 void
2303 scsi_target_block(struct device *dev)
2305 if (scsi_is_target_device(dev))
2306 starget_for_each_device(to_scsi_target(dev), NULL,
2307 device_block);
2308 else
2309 device_for_each_child(dev, NULL, target_block);
2311 EXPORT_SYMBOL_GPL(scsi_target_block);
2313 static void
2314 device_unblock(struct scsi_device *sdev, void *data)
2316 scsi_internal_device_unblock(sdev);
2319 static int
2320 target_unblock(struct device *dev, void *data)
2322 if (scsi_is_target_device(dev))
2323 starget_for_each_device(to_scsi_target(dev), NULL,
2324 device_unblock);
2325 return 0;
2328 void
2329 scsi_target_unblock(struct device *dev)
2331 if (scsi_is_target_device(dev))
2332 starget_for_each_device(to_scsi_target(dev), NULL,
2333 device_unblock);
2334 else
2335 device_for_each_child(dev, NULL, target_unblock);
2337 EXPORT_SYMBOL_GPL(scsi_target_unblock);