[PATCH] cyber2000fb.c __iomem annotations
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / sb1250-mac.c
blobaa4ca182175909c93f6b70eaa2b46e6370d8cbcd
1 /*
2 * Copyright (C) 2001,2002,2003 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * This driver is designed for the Broadcom SiByte SOC built-in
20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/init.h>
34 #include <linux/config.h>
35 #include <linux/bitops.h>
36 #include <asm/processor.h> /* Processor type for cache alignment. */
37 #include <asm/io.h>
38 #include <asm/cache.h>
40 /* This is only here until the firmware is ready. In that case,
41 the firmware leaves the ethernet address in the register for us. */
42 #ifdef CONFIG_SIBYTE_STANDALONE
43 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
44 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
45 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
46 #endif
49 /* These identify the driver base version and may not be removed. */
50 #if 0
51 static char version1[] __devinitdata =
52 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
53 #endif
56 /* Operational parameters that usually are not changed. */
58 #define CONFIG_SBMAC_COALESCE
60 #define MAX_UNITS 3 /* More are supported, limit only on options */
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT (2*HZ)
66 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
67 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
69 /* A few user-configurable values which may be modified when a driver
70 module is loaded. */
72 /* 1 normal messages, 0 quiet .. 7 verbose. */
73 static int debug = 1;
74 module_param(debug, int, S_IRUGO);
75 MODULE_PARM_DESC(debug, "Debug messages");
77 /* mii status msgs */
78 static int noisy_mii = 1;
79 module_param(noisy_mii, int, S_IRUGO);
80 MODULE_PARM_DESC(noisy_mii, "MII status messages");
82 /* Used to pass the media type, etc.
83 Both 'options[]' and 'full_duplex[]' should exist for driver
84 interoperability.
85 The media type is usually passed in 'options[]'.
87 #ifdef MODULE
88 static int options[MAX_UNITS] = {-1, -1, -1};
89 module_param_array(options, int, NULL, S_IRUGO);
90 MODULE_PARM_DESC(options, "1-" __MODULE_STRING(MAX_UNITS));
92 static int full_duplex[MAX_UNITS] = {-1, -1, -1};
93 module_param_array(full_duplex, int, NULL, S_IRUGO);
94 MODULE_PARM_DESC(full_duplex, "1-" __MODULE_STRING(MAX_UNITS));
95 #endif
97 #ifdef CONFIG_SBMAC_COALESCE
98 static int int_pktcnt = 0;
99 module_param(int_pktcnt, int, S_IRUGO);
100 MODULE_PARM_DESC(int_pktcnt, "Packet count");
102 static int int_timeout = 0;
103 module_param(int_timeout, int, S_IRUGO);
104 MODULE_PARM_DESC(int_timeout, "Timeout value");
105 #endif
107 #include <asm/sibyte/sb1250.h>
108 #include <asm/sibyte/sb1250_defs.h>
109 #include <asm/sibyte/sb1250_regs.h>
110 #include <asm/sibyte/sb1250_mac.h>
111 #include <asm/sibyte/sb1250_dma.h>
112 #include <asm/sibyte/sb1250_int.h>
113 #include <asm/sibyte/sb1250_scd.h>
116 /**********************************************************************
117 * Simple types
118 ********************************************************************* */
121 typedef enum { sbmac_speed_auto, sbmac_speed_10,
122 sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
124 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
125 sbmac_duplex_full } sbmac_duplex_t;
127 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
128 sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
130 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
131 sbmac_state_broken } sbmac_state_t;
134 /**********************************************************************
135 * Macros
136 ********************************************************************* */
139 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
140 (d)->sbdma_dscrtable : (d)->f+1)
143 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
145 #define SBMAC_MAX_TXDESCR 32
146 #define SBMAC_MAX_RXDESCR 32
148 #define ETHER_ALIGN 2
149 #define ETHER_ADDR_LEN 6
150 #define ENET_PACKET_SIZE 1518
151 /*#define ENET_PACKET_SIZE 9216 */
153 /**********************************************************************
154 * DMA Descriptor structure
155 ********************************************************************* */
157 typedef struct sbdmadscr_s {
158 uint64_t dscr_a;
159 uint64_t dscr_b;
160 } sbdmadscr_t;
162 typedef unsigned long paddr_t;
164 /**********************************************************************
165 * DMA Controller structure
166 ********************************************************************* */
168 typedef struct sbmacdma_s {
171 * This stuff is used to identify the channel and the registers
172 * associated with it.
175 struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
176 int sbdma_channel; /* channel number */
177 int sbdma_txdir; /* direction (1=transmit) */
178 int sbdma_maxdescr; /* total # of descriptors in ring */
179 #ifdef CONFIG_SBMAC_COALESCE
180 int sbdma_int_pktcnt; /* # descriptors rx/tx before interrupt*/
181 int sbdma_int_timeout; /* # usec rx/tx interrupt */
182 #endif
184 volatile void __iomem *sbdma_config0; /* DMA config register 0 */
185 volatile void __iomem *sbdma_config1; /* DMA config register 1 */
186 volatile void __iomem *sbdma_dscrbase; /* Descriptor base address */
187 volatile void __iomem *sbdma_dscrcnt; /* Descriptor count register */
188 volatile void __iomem *sbdma_curdscr; /* current descriptor address */
191 * This stuff is for maintenance of the ring
194 sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
195 sbdmadscr_t *sbdma_dscrtable_end; /* end of descriptor table */
197 struct sk_buff **sbdma_ctxtable; /* context table, one per descr */
199 paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
200 sbdmadscr_t *sbdma_addptr; /* next dscr for sw to add */
201 sbdmadscr_t *sbdma_remptr; /* next dscr for sw to remove */
202 } sbmacdma_t;
205 /**********************************************************************
206 * Ethernet softc structure
207 ********************************************************************* */
209 struct sbmac_softc {
212 * Linux-specific things
215 struct net_device *sbm_dev; /* pointer to linux device */
216 spinlock_t sbm_lock; /* spin lock */
217 struct timer_list sbm_timer; /* for monitoring MII */
218 struct net_device_stats sbm_stats;
219 int sbm_devflags; /* current device flags */
221 int sbm_phy_oldbmsr;
222 int sbm_phy_oldanlpar;
223 int sbm_phy_oldk1stsr;
224 int sbm_phy_oldlinkstat;
225 int sbm_buffersize;
227 unsigned char sbm_phys[2];
230 * Controller-specific things
233 volatile void __iomem *sbm_base; /* MAC's base address */
234 sbmac_state_t sbm_state; /* current state */
236 volatile void __iomem *sbm_macenable; /* MAC Enable Register */
237 volatile void __iomem *sbm_maccfg; /* MAC Configuration Register */
238 volatile void __iomem *sbm_fifocfg; /* FIFO configuration register */
239 volatile void __iomem *sbm_framecfg; /* Frame configuration register */
240 volatile void __iomem *sbm_rxfilter; /* receive filter register */
241 volatile void __iomem *sbm_isr; /* Interrupt status register */
242 volatile void __iomem *sbm_imr; /* Interrupt mask register */
243 volatile void __iomem *sbm_mdio; /* MDIO register */
245 sbmac_speed_t sbm_speed; /* current speed */
246 sbmac_duplex_t sbm_duplex; /* current duplex */
247 sbmac_fc_t sbm_fc; /* current flow control setting */
249 unsigned char sbm_hwaddr[ETHER_ADDR_LEN];
251 sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
252 sbmacdma_t sbm_rxdma;
253 int rx_hw_checksum;
254 int sbe_idx;
258 /**********************************************************************
259 * Externs
260 ********************************************************************* */
262 /**********************************************************************
263 * Prototypes
264 ********************************************************************* */
266 static void sbdma_initctx(sbmacdma_t *d,
267 struct sbmac_softc *s,
268 int chan,
269 int txrx,
270 int maxdescr);
271 static void sbdma_channel_start(sbmacdma_t *d, int rxtx);
272 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *m);
273 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *m);
274 static void sbdma_emptyring(sbmacdma_t *d);
275 static void sbdma_fillring(sbmacdma_t *d);
276 static void sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d);
277 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d);
278 static int sbmac_initctx(struct sbmac_softc *s);
279 static void sbmac_channel_start(struct sbmac_softc *s);
280 static void sbmac_channel_stop(struct sbmac_softc *s);
281 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,sbmac_state_t);
282 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff);
283 static uint64_t sbmac_addr2reg(unsigned char *ptr);
284 static irqreturn_t sbmac_intr(int irq,void *dev_instance,struct pt_regs *rgs);
285 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
286 static void sbmac_setmulti(struct sbmac_softc *sc);
287 static int sbmac_init(struct net_device *dev, int idx);
288 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed);
289 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc);
291 static int sbmac_open(struct net_device *dev);
292 static void sbmac_timer(unsigned long data);
293 static void sbmac_tx_timeout (struct net_device *dev);
294 static struct net_device_stats *sbmac_get_stats(struct net_device *dev);
295 static void sbmac_set_rx_mode(struct net_device *dev);
296 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
297 static int sbmac_close(struct net_device *dev);
298 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy);
299 static int sbmac_mii_probe(struct net_device *dev);
301 static void sbmac_mii_sync(struct sbmac_softc *s);
302 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt);
303 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx);
304 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
305 unsigned int regval);
308 /**********************************************************************
309 * Globals
310 ********************************************************************* */
312 static uint64_t sbmac_orig_hwaddr[MAX_UNITS];
315 /**********************************************************************
316 * MDIO constants
317 ********************************************************************* */
319 #define MII_COMMAND_START 0x01
320 #define MII_COMMAND_READ 0x02
321 #define MII_COMMAND_WRITE 0x01
322 #define MII_COMMAND_ACK 0x02
324 #define BMCR_RESET 0x8000
325 #define BMCR_LOOPBACK 0x4000
326 #define BMCR_SPEED0 0x2000
327 #define BMCR_ANENABLE 0x1000
328 #define BMCR_POWERDOWN 0x0800
329 #define BMCR_ISOLATE 0x0400
330 #define BMCR_RESTARTAN 0x0200
331 #define BMCR_DUPLEX 0x0100
332 #define BMCR_COLTEST 0x0080
333 #define BMCR_SPEED1 0x0040
334 #define BMCR_SPEED1000 BMCR_SPEED1
335 #define BMCR_SPEED100 BMCR_SPEED0
336 #define BMCR_SPEED10 0
338 #define BMSR_100BT4 0x8000
339 #define BMSR_100BT_FDX 0x4000
340 #define BMSR_100BT_HDX 0x2000
341 #define BMSR_10BT_FDX 0x1000
342 #define BMSR_10BT_HDX 0x0800
343 #define BMSR_100BT2_FDX 0x0400
344 #define BMSR_100BT2_HDX 0x0200
345 #define BMSR_1000BT_XSR 0x0100
346 #define BMSR_PRESUP 0x0040
347 #define BMSR_ANCOMPLT 0x0020
348 #define BMSR_REMFAULT 0x0010
349 #define BMSR_AUTONEG 0x0008
350 #define BMSR_LINKSTAT 0x0004
351 #define BMSR_JABDETECT 0x0002
352 #define BMSR_EXTCAPAB 0x0001
354 #define PHYIDR1 0x2000
355 #define PHYIDR2 0x5C60
357 #define ANAR_NP 0x8000
358 #define ANAR_RF 0x2000
359 #define ANAR_ASYPAUSE 0x0800
360 #define ANAR_PAUSE 0x0400
361 #define ANAR_T4 0x0200
362 #define ANAR_TXFD 0x0100
363 #define ANAR_TXHD 0x0080
364 #define ANAR_10FD 0x0040
365 #define ANAR_10HD 0x0020
366 #define ANAR_PSB 0x0001
368 #define ANLPAR_NP 0x8000
369 #define ANLPAR_ACK 0x4000
370 #define ANLPAR_RF 0x2000
371 #define ANLPAR_ASYPAUSE 0x0800
372 #define ANLPAR_PAUSE 0x0400
373 #define ANLPAR_T4 0x0200
374 #define ANLPAR_TXFD 0x0100
375 #define ANLPAR_TXHD 0x0080
376 #define ANLPAR_10FD 0x0040
377 #define ANLPAR_10HD 0x0020
378 #define ANLPAR_PSB 0x0001 /* 802.3 */
380 #define ANER_PDF 0x0010
381 #define ANER_LPNPABLE 0x0008
382 #define ANER_NPABLE 0x0004
383 #define ANER_PAGERX 0x0002
384 #define ANER_LPANABLE 0x0001
386 #define ANNPTR_NP 0x8000
387 #define ANNPTR_MP 0x2000
388 #define ANNPTR_ACK2 0x1000
389 #define ANNPTR_TOGTX 0x0800
390 #define ANNPTR_CODE 0x0008
392 #define ANNPRR_NP 0x8000
393 #define ANNPRR_MP 0x2000
394 #define ANNPRR_ACK3 0x1000
395 #define ANNPRR_TOGTX 0x0800
396 #define ANNPRR_CODE 0x0008
398 #define K1TCR_TESTMODE 0x0000
399 #define K1TCR_MSMCE 0x1000
400 #define K1TCR_MSCV 0x0800
401 #define K1TCR_RPTR 0x0400
402 #define K1TCR_1000BT_FDX 0x200
403 #define K1TCR_1000BT_HDX 0x100
405 #define K1STSR_MSMCFLT 0x8000
406 #define K1STSR_MSCFGRES 0x4000
407 #define K1STSR_LRSTAT 0x2000
408 #define K1STSR_RRSTAT 0x1000
409 #define K1STSR_LP1KFD 0x0800
410 #define K1STSR_LP1KHD 0x0400
411 #define K1STSR_LPASMDIR 0x0200
413 #define K1SCR_1KX_FDX 0x8000
414 #define K1SCR_1KX_HDX 0x4000
415 #define K1SCR_1KT_FDX 0x2000
416 #define K1SCR_1KT_HDX 0x1000
418 #define STRAP_PHY1 0x0800
419 #define STRAP_NCMODE 0x0400
420 #define STRAP_MANMSCFG 0x0200
421 #define STRAP_ANENABLE 0x0100
422 #define STRAP_MSVAL 0x0080
423 #define STRAP_1KHDXADV 0x0010
424 #define STRAP_1KFDXADV 0x0008
425 #define STRAP_100ADV 0x0004
426 #define STRAP_SPEEDSEL 0x0000
427 #define STRAP_SPEED100 0x0001
429 #define PHYSUP_SPEED1000 0x10
430 #define PHYSUP_SPEED100 0x08
431 #define PHYSUP_SPEED10 0x00
432 #define PHYSUP_LINKUP 0x04
433 #define PHYSUP_FDX 0x02
435 #define MII_BMCR 0x00 /* Basic mode control register (rw) */
436 #define MII_BMSR 0x01 /* Basic mode status register (ro) */
437 #define MII_PHYIDR1 0x02
438 #define MII_PHYIDR2 0x03
440 #define MII_K1STSR 0x0A /* 1K Status Register (ro) */
441 #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
444 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
446 #define ENABLE 1
447 #define DISABLE 0
449 /**********************************************************************
450 * SBMAC_MII_SYNC(s)
452 * Synchronize with the MII - send a pattern of bits to the MII
453 * that will guarantee that it is ready to accept a command.
455 * Input parameters:
456 * s - sbmac structure
458 * Return value:
459 * nothing
460 ********************************************************************* */
462 static void sbmac_mii_sync(struct sbmac_softc *s)
464 int cnt;
465 uint64_t bits;
466 int mac_mdio_genc;
468 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
470 bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
472 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
474 for (cnt = 0; cnt < 32; cnt++) {
475 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
476 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
480 /**********************************************************************
481 * SBMAC_MII_SENDDATA(s,data,bitcnt)
483 * Send some bits to the MII. The bits to be sent are right-
484 * justified in the 'data' parameter.
486 * Input parameters:
487 * s - sbmac structure
488 * data - data to send
489 * bitcnt - number of bits to send
490 ********************************************************************* */
492 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt)
494 int i;
495 uint64_t bits;
496 unsigned int curmask;
497 int mac_mdio_genc;
499 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
501 bits = M_MAC_MDIO_DIR_OUTPUT;
502 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
504 curmask = 1 << (bitcnt - 1);
506 for (i = 0; i < bitcnt; i++) {
507 if (data & curmask)
508 bits |= M_MAC_MDIO_OUT;
509 else bits &= ~M_MAC_MDIO_OUT;
510 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
511 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
512 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
513 curmask >>= 1;
519 /**********************************************************************
520 * SBMAC_MII_READ(s,phyaddr,regidx)
522 * Read a PHY register.
524 * Input parameters:
525 * s - sbmac structure
526 * phyaddr - PHY's address
527 * regidx = index of register to read
529 * Return value:
530 * value read, or 0 if an error occurred.
531 ********************************************************************* */
533 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
535 int idx;
536 int error;
537 int regval;
538 int mac_mdio_genc;
541 * Synchronize ourselves so that the PHY knows the next
542 * thing coming down is a command
545 sbmac_mii_sync(s);
548 * Send the data to the PHY. The sequence is
549 * a "start" command (2 bits)
550 * a "read" command (2 bits)
551 * the PHY addr (5 bits)
552 * the register index (5 bits)
555 sbmac_mii_senddata(s,MII_COMMAND_START, 2);
556 sbmac_mii_senddata(s,MII_COMMAND_READ, 2);
557 sbmac_mii_senddata(s,phyaddr, 5);
558 sbmac_mii_senddata(s,regidx, 5);
560 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
563 * Switch the port around without a clock transition.
565 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
568 * Send out a clock pulse to signal we want the status
571 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
572 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
575 * If an error occurred, the PHY will signal '1' back
577 error = __raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN;
580 * Issue an 'idle' clock pulse, but keep the direction
581 * the same.
583 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
584 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
586 regval = 0;
588 for (idx = 0; idx < 16; idx++) {
589 regval <<= 1;
591 if (error == 0) {
592 if (__raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN)
593 regval |= 1;
596 __raw_writeq(M_MAC_MDIO_DIR_INPUT|M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
597 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
600 /* Switch back to output */
601 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
603 if (error == 0)
604 return regval;
605 return 0;
609 /**********************************************************************
610 * SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
612 * Write a value to a PHY register.
614 * Input parameters:
615 * s - sbmac structure
616 * phyaddr - PHY to use
617 * regidx - register within the PHY
618 * regval - data to write to register
620 * Return value:
621 * nothing
622 ********************************************************************* */
624 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
625 unsigned int regval)
627 int mac_mdio_genc;
629 sbmac_mii_sync(s);
631 sbmac_mii_senddata(s,MII_COMMAND_START,2);
632 sbmac_mii_senddata(s,MII_COMMAND_WRITE,2);
633 sbmac_mii_senddata(s,phyaddr, 5);
634 sbmac_mii_senddata(s,regidx, 5);
635 sbmac_mii_senddata(s,MII_COMMAND_ACK,2);
636 sbmac_mii_senddata(s,regval,16);
638 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
640 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
645 /**********************************************************************
646 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
648 * Initialize a DMA channel context. Since there are potentially
649 * eight DMA channels per MAC, it's nice to do this in a standard
650 * way.
652 * Input parameters:
653 * d - sbmacdma_t structure (DMA channel context)
654 * s - sbmac_softc structure (pointer to a MAC)
655 * chan - channel number (0..1 right now)
656 * txrx - Identifies DMA_TX or DMA_RX for channel direction
657 * maxdescr - number of descriptors
659 * Return value:
660 * nothing
661 ********************************************************************* */
663 static void sbdma_initctx(sbmacdma_t *d,
664 struct sbmac_softc *s,
665 int chan,
666 int txrx,
667 int maxdescr)
670 * Save away interesting stuff in the structure
673 d->sbdma_eth = s;
674 d->sbdma_channel = chan;
675 d->sbdma_txdir = txrx;
677 #if 0
678 /* RMON clearing */
679 s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
680 #endif
682 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BYTES)));
683 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_COLLISIONS)));
684 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_LATE_COL)));
685 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_EX_COL)));
686 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_FCS_ERROR)));
687 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_ABORT)));
688 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BAD)));
689 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_GOOD)));
690 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_RUNT)));
691 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_OVERSIZE)));
692 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BYTES)));
693 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_MCAST)));
694 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BCAST)));
695 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BAD)));
696 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_GOOD)));
697 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_RUNT)));
698 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_OVERSIZE)));
699 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_FCS_ERROR)));
700 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_LENGTH_ERROR)));
701 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_CODE_ERROR)));
702 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_ALIGN_ERROR)));
705 * initialize register pointers
708 d->sbdma_config0 =
709 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
710 d->sbdma_config1 =
711 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
712 d->sbdma_dscrbase =
713 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
714 d->sbdma_dscrcnt =
715 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
716 d->sbdma_curdscr =
717 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
720 * Allocate memory for the ring
723 d->sbdma_maxdescr = maxdescr;
725 d->sbdma_dscrtable = (sbdmadscr_t *)
726 kmalloc((d->sbdma_maxdescr+1)*sizeof(sbdmadscr_t), GFP_KERNEL);
729 * The descriptor table must be aligned to at least 16 bytes or the
730 * MAC will corrupt it.
732 d->sbdma_dscrtable = (sbdmadscr_t *)
733 ALIGN((unsigned long)d->sbdma_dscrtable, sizeof(sbdmadscr_t));
735 memset(d->sbdma_dscrtable,0,d->sbdma_maxdescr*sizeof(sbdmadscr_t));
737 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
739 d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
742 * And context table
745 d->sbdma_ctxtable = (struct sk_buff **)
746 kmalloc(d->sbdma_maxdescr*sizeof(struct sk_buff *), GFP_KERNEL);
748 memset(d->sbdma_ctxtable,0,d->sbdma_maxdescr*sizeof(struct sk_buff *));
750 #ifdef CONFIG_SBMAC_COALESCE
752 * Setup Rx/Tx DMA coalescing defaults
755 if ( int_pktcnt ) {
756 d->sbdma_int_pktcnt = int_pktcnt;
757 } else {
758 d->sbdma_int_pktcnt = 1;
761 if ( int_timeout ) {
762 d->sbdma_int_timeout = int_timeout;
763 } else {
764 d->sbdma_int_timeout = 0;
766 #endif
770 /**********************************************************************
771 * SBDMA_CHANNEL_START(d)
773 * Initialize the hardware registers for a DMA channel.
775 * Input parameters:
776 * d - DMA channel to init (context must be previously init'd
777 * rxtx - DMA_RX or DMA_TX depending on what type of channel
779 * Return value:
780 * nothing
781 ********************************************************************* */
783 static void sbdma_channel_start(sbmacdma_t *d, int rxtx )
786 * Turn on the DMA channel
789 #ifdef CONFIG_SBMAC_COALESCE
790 __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
791 0, d->sbdma_config1);
792 __raw_writeq(M_DMA_EOP_INT_EN |
793 V_DMA_RINGSZ(d->sbdma_maxdescr) |
794 V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
795 0, d->sbdma_config0);
796 #else
797 __raw_writeq(0, d->sbdma_config1);
798 __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
799 0, d->sbdma_config0);
800 #endif
802 __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
805 * Initialize ring pointers
808 d->sbdma_addptr = d->sbdma_dscrtable;
809 d->sbdma_remptr = d->sbdma_dscrtable;
812 /**********************************************************************
813 * SBDMA_CHANNEL_STOP(d)
815 * Initialize the hardware registers for a DMA channel.
817 * Input parameters:
818 * d - DMA channel to init (context must be previously init'd
820 * Return value:
821 * nothing
822 ********************************************************************* */
824 static void sbdma_channel_stop(sbmacdma_t *d)
827 * Turn off the DMA channel
830 __raw_writeq(0, d->sbdma_config1);
832 __raw_writeq(0, d->sbdma_dscrbase);
834 __raw_writeq(0, d->sbdma_config0);
837 * Zero ring pointers
840 d->sbdma_addptr = NULL;
841 d->sbdma_remptr = NULL;
844 static void sbdma_align_skb(struct sk_buff *skb,int power2,int offset)
846 unsigned long addr;
847 unsigned long newaddr;
849 addr = (unsigned long) skb->data;
851 newaddr = (addr + power2 - 1) & ~(power2 - 1);
853 skb_reserve(skb,newaddr-addr+offset);
857 /**********************************************************************
858 * SBDMA_ADD_RCVBUFFER(d,sb)
860 * Add a buffer to the specified DMA channel. For receive channels,
861 * this queues a buffer for inbound packets.
863 * Input parameters:
864 * d - DMA channel descriptor
865 * sb - sk_buff to add, or NULL if we should allocate one
867 * Return value:
868 * 0 if buffer could not be added (ring is full)
869 * 1 if buffer added successfully
870 ********************************************************************* */
873 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *sb)
875 sbdmadscr_t *dsc;
876 sbdmadscr_t *nextdsc;
877 struct sk_buff *sb_new = NULL;
878 int pktsize = ENET_PACKET_SIZE;
880 /* get pointer to our current place in the ring */
882 dsc = d->sbdma_addptr;
883 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
886 * figure out if the ring is full - if the next descriptor
887 * is the same as the one that we're going to remove from
888 * the ring, the ring is full
891 if (nextdsc == d->sbdma_remptr) {
892 return -ENOSPC;
896 * Allocate a sk_buff if we don't already have one.
897 * If we do have an sk_buff, reset it so that it's empty.
899 * Note: sk_buffs don't seem to be guaranteed to have any sort
900 * of alignment when they are allocated. Therefore, allocate enough
901 * extra space to make sure that:
903 * 1. the data does not start in the middle of a cache line.
904 * 2. The data does not end in the middle of a cache line
905 * 3. The buffer can be aligned such that the IP addresses are
906 * naturally aligned.
908 * Remember, the SOCs MAC writes whole cache lines at a time,
909 * without reading the old contents first. So, if the sk_buff's
910 * data portion starts in the middle of a cache line, the SOC
911 * DMA will trash the beginning (and ending) portions.
914 if (sb == NULL) {
915 sb_new = dev_alloc_skb(ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN);
916 if (sb_new == NULL) {
917 printk(KERN_INFO "%s: sk_buff allocation failed\n",
918 d->sbdma_eth->sbm_dev->name);
919 return -ENOBUFS;
922 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, ETHER_ALIGN);
924 /* mark skbuff owned by our device */
925 sb_new->dev = d->sbdma_eth->sbm_dev;
927 else {
928 sb_new = sb;
930 * nothing special to reinit buffer, it's already aligned
931 * and sb->data already points to a good place.
936 * fill in the descriptor
939 #ifdef CONFIG_SBMAC_COALESCE
941 * Do not interrupt per DMA transfer.
943 dsc->dscr_a = virt_to_phys(sb_new->data) |
944 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) | 0;
945 #else
946 dsc->dscr_a = virt_to_phys(sb_new->data) |
947 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) |
948 M_DMA_DSCRA_INTERRUPT;
949 #endif
951 /* receiving: no options */
952 dsc->dscr_b = 0;
955 * fill in the context
958 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
961 * point at next packet
964 d->sbdma_addptr = nextdsc;
967 * Give the buffer to the DMA engine.
970 __raw_writeq(1, d->sbdma_dscrcnt);
972 return 0; /* we did it */
975 /**********************************************************************
976 * SBDMA_ADD_TXBUFFER(d,sb)
978 * Add a transmit buffer to the specified DMA channel, causing a
979 * transmit to start.
981 * Input parameters:
982 * d - DMA channel descriptor
983 * sb - sk_buff to add
985 * Return value:
986 * 0 transmit queued successfully
987 * otherwise error code
988 ********************************************************************* */
991 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *sb)
993 sbdmadscr_t *dsc;
994 sbdmadscr_t *nextdsc;
995 uint64_t phys;
996 uint64_t ncb;
997 int length;
999 /* get pointer to our current place in the ring */
1001 dsc = d->sbdma_addptr;
1002 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
1005 * figure out if the ring is full - if the next descriptor
1006 * is the same as the one that we're going to remove from
1007 * the ring, the ring is full
1010 if (nextdsc == d->sbdma_remptr) {
1011 return -ENOSPC;
1015 * Under Linux, it's not necessary to copy/coalesce buffers
1016 * like it is on NetBSD. We think they're all contiguous,
1017 * but that may not be true for GBE.
1020 length = sb->len;
1023 * fill in the descriptor. Note that the number of cache
1024 * blocks in the descriptor is the number of blocks
1025 * *spanned*, so we need to add in the offset (if any)
1026 * while doing the calculation.
1029 phys = virt_to_phys(sb->data);
1030 ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
1032 dsc->dscr_a = phys |
1033 V_DMA_DSCRA_A_SIZE(ncb) |
1034 #ifndef CONFIG_SBMAC_COALESCE
1035 M_DMA_DSCRA_INTERRUPT |
1036 #endif
1037 M_DMA_ETHTX_SOP;
1039 /* transmitting: set outbound options and length */
1041 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
1042 V_DMA_DSCRB_PKT_SIZE(length);
1045 * fill in the context
1048 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
1051 * point at next packet
1054 d->sbdma_addptr = nextdsc;
1057 * Give the buffer to the DMA engine.
1060 __raw_writeq(1, d->sbdma_dscrcnt);
1062 return 0; /* we did it */
1068 /**********************************************************************
1069 * SBDMA_EMPTYRING(d)
1071 * Free all allocated sk_buffs on the specified DMA channel;
1073 * Input parameters:
1074 * d - DMA channel
1076 * Return value:
1077 * nothing
1078 ********************************************************************* */
1080 static void sbdma_emptyring(sbmacdma_t *d)
1082 int idx;
1083 struct sk_buff *sb;
1085 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1086 sb = d->sbdma_ctxtable[idx];
1087 if (sb) {
1088 dev_kfree_skb(sb);
1089 d->sbdma_ctxtable[idx] = NULL;
1095 /**********************************************************************
1096 * SBDMA_FILLRING(d)
1098 * Fill the specified DMA channel (must be receive channel)
1099 * with sk_buffs
1101 * Input parameters:
1102 * d - DMA channel
1104 * Return value:
1105 * nothing
1106 ********************************************************************* */
1108 static void sbdma_fillring(sbmacdma_t *d)
1110 int idx;
1112 for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++) {
1113 if (sbdma_add_rcvbuffer(d,NULL) != 0)
1114 break;
1119 /**********************************************************************
1120 * SBDMA_RX_PROCESS(sc,d)
1122 * Process "completed" receive buffers on the specified DMA channel.
1123 * Note that this isn't really ideal for priority channels, since
1124 * it processes all of the packets on a given channel before
1125 * returning.
1127 * Input parameters:
1128 * sc - softc structure
1129 * d - DMA channel context
1131 * Return value:
1132 * nothing
1133 ********************************************************************* */
1135 static void sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d)
1137 int curidx;
1138 int hwidx;
1139 sbdmadscr_t *dsc;
1140 struct sk_buff *sb;
1141 int len;
1143 for (;;) {
1145 * figure out where we are (as an index) and where
1146 * the hardware is (also as an index)
1148 * This could be done faster if (for example) the
1149 * descriptor table was page-aligned and contiguous in
1150 * both virtual and physical memory -- you could then
1151 * just compare the low-order bits of the virtual address
1152 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1155 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1156 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1157 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1160 * If they're the same, that means we've processed all
1161 * of the descriptors up to (but not including) the one that
1162 * the hardware is working on right now.
1165 if (curidx == hwidx)
1166 break;
1169 * Otherwise, get the packet's sk_buff ptr back
1172 dsc = &(d->sbdma_dscrtable[curidx]);
1173 sb = d->sbdma_ctxtable[curidx];
1174 d->sbdma_ctxtable[curidx] = NULL;
1176 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1179 * Check packet status. If good, process it.
1180 * If not, silently drop it and put it back on the
1181 * receive ring.
1184 if (!(dsc->dscr_a & M_DMA_ETHRX_BAD)) {
1187 * Add a new buffer to replace the old one. If we fail
1188 * to allocate a buffer, we're going to drop this
1189 * packet and put it right back on the receive ring.
1192 if (sbdma_add_rcvbuffer(d,NULL) == -ENOBUFS) {
1193 sc->sbm_stats.rx_dropped++;
1194 sbdma_add_rcvbuffer(d,sb); /* re-add old buffer */
1195 } else {
1197 * Set length into the packet
1199 skb_put(sb,len);
1202 * Buffer has been replaced on the
1203 * receive ring. Pass the buffer to
1204 * the kernel
1206 sc->sbm_stats.rx_bytes += len;
1207 sc->sbm_stats.rx_packets++;
1208 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1209 /* Check hw IPv4/TCP checksum if supported */
1210 if (sc->rx_hw_checksum == ENABLE) {
1211 if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1212 !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1213 sb->ip_summed = CHECKSUM_UNNECESSARY;
1214 /* don't need to set sb->csum */
1215 } else {
1216 sb->ip_summed = CHECKSUM_NONE;
1220 netif_rx(sb);
1222 } else {
1224 * Packet was mangled somehow. Just drop it and
1225 * put it back on the receive ring.
1227 sc->sbm_stats.rx_errors++;
1228 sbdma_add_rcvbuffer(d,sb);
1233 * .. and advance to the next buffer.
1236 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1243 /**********************************************************************
1244 * SBDMA_TX_PROCESS(sc,d)
1246 * Process "completed" transmit buffers on the specified DMA channel.
1247 * This is normally called within the interrupt service routine.
1248 * Note that this isn't really ideal for priority channels, since
1249 * it processes all of the packets on a given channel before
1250 * returning.
1252 * Input parameters:
1253 * sc - softc structure
1254 * d - DMA channel context
1256 * Return value:
1257 * nothing
1258 ********************************************************************* */
1260 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d)
1262 int curidx;
1263 int hwidx;
1264 sbdmadscr_t *dsc;
1265 struct sk_buff *sb;
1266 unsigned long flags;
1268 spin_lock_irqsave(&(sc->sbm_lock), flags);
1270 for (;;) {
1272 * figure out where we are (as an index) and where
1273 * the hardware is (also as an index)
1275 * This could be done faster if (for example) the
1276 * descriptor table was page-aligned and contiguous in
1277 * both virtual and physical memory -- you could then
1278 * just compare the low-order bits of the virtual address
1279 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1282 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1283 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1284 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1287 * If they're the same, that means we've processed all
1288 * of the descriptors up to (but not including) the one that
1289 * the hardware is working on right now.
1292 if (curidx == hwidx)
1293 break;
1296 * Otherwise, get the packet's sk_buff ptr back
1299 dsc = &(d->sbdma_dscrtable[curidx]);
1300 sb = d->sbdma_ctxtable[curidx];
1301 d->sbdma_ctxtable[curidx] = NULL;
1304 * Stats
1307 sc->sbm_stats.tx_bytes += sb->len;
1308 sc->sbm_stats.tx_packets++;
1311 * for transmits, we just free buffers.
1314 dev_kfree_skb_irq(sb);
1317 * .. and advance to the next buffer.
1320 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1325 * Decide if we should wake up the protocol or not.
1326 * Other drivers seem to do this when we reach a low
1327 * watermark on the transmit queue.
1330 netif_wake_queue(d->sbdma_eth->sbm_dev);
1332 spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1338 /**********************************************************************
1339 * SBMAC_INITCTX(s)
1341 * Initialize an Ethernet context structure - this is called
1342 * once per MAC on the 1250. Memory is allocated here, so don't
1343 * call it again from inside the ioctl routines that bring the
1344 * interface up/down
1346 * Input parameters:
1347 * s - sbmac context structure
1349 * Return value:
1351 ********************************************************************* */
1353 static int sbmac_initctx(struct sbmac_softc *s)
1357 * figure out the addresses of some ports
1360 s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1361 s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1362 s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
1363 s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
1364 s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
1365 s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1366 s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1367 s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1369 s->sbm_phys[0] = 1;
1370 s->sbm_phys[1] = 0;
1372 s->sbm_phy_oldbmsr = 0;
1373 s->sbm_phy_oldanlpar = 0;
1374 s->sbm_phy_oldk1stsr = 0;
1375 s->sbm_phy_oldlinkstat = 0;
1378 * Initialize the DMA channels. Right now, only one per MAC is used
1379 * Note: Only do this _once_, as it allocates memory from the kernel!
1382 sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1383 sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1386 * initial state is OFF
1389 s->sbm_state = sbmac_state_off;
1392 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1395 s->sbm_speed = sbmac_speed_10;
1396 s->sbm_duplex = sbmac_duplex_half;
1397 s->sbm_fc = sbmac_fc_disabled;
1399 return 0;
1403 static void sbdma_uninitctx(struct sbmacdma_s *d)
1405 if (d->sbdma_dscrtable) {
1406 kfree(d->sbdma_dscrtable);
1407 d->sbdma_dscrtable = NULL;
1410 if (d->sbdma_ctxtable) {
1411 kfree(d->sbdma_ctxtable);
1412 d->sbdma_ctxtable = NULL;
1417 static void sbmac_uninitctx(struct sbmac_softc *sc)
1419 sbdma_uninitctx(&(sc->sbm_txdma));
1420 sbdma_uninitctx(&(sc->sbm_rxdma));
1424 /**********************************************************************
1425 * SBMAC_CHANNEL_START(s)
1427 * Start packet processing on this MAC.
1429 * Input parameters:
1430 * s - sbmac structure
1432 * Return value:
1433 * nothing
1434 ********************************************************************* */
1436 static void sbmac_channel_start(struct sbmac_softc *s)
1438 uint64_t reg;
1439 volatile void __iomem *port;
1440 uint64_t cfg,fifo,framecfg;
1441 int idx, th_value;
1444 * Don't do this if running
1447 if (s->sbm_state == sbmac_state_on)
1448 return;
1451 * Bring the controller out of reset, but leave it off.
1454 __raw_writeq(0, s->sbm_macenable);
1457 * Ignore all received packets
1460 __raw_writeq(0, s->sbm_rxfilter);
1463 * Calculate values for various control registers.
1466 cfg = M_MAC_RETRY_EN |
1467 M_MAC_TX_HOLD_SOP_EN |
1468 V_MAC_TX_PAUSE_CNT_16K |
1469 M_MAC_AP_STAT_EN |
1470 M_MAC_FAST_SYNC |
1471 M_MAC_SS_EN |
1475 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1476 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1477 * Use a larger RD_THRSH for gigabit
1479 if (periph_rev >= 2)
1480 th_value = 64;
1481 else
1482 th_value = 28;
1484 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1485 ((s->sbm_speed == sbmac_speed_1000)
1486 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1487 V_MAC_TX_RL_THRSH(4) |
1488 V_MAC_RX_PL_THRSH(4) |
1489 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1490 V_MAC_RX_PL_THRSH(4) |
1491 V_MAC_RX_RL_THRSH(8) |
1494 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1495 V_MAC_MAX_FRAMESZ_DEFAULT |
1496 V_MAC_BACKOFF_SEL(1);
1499 * Clear out the hash address map
1502 port = s->sbm_base + R_MAC_HASH_BASE;
1503 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1504 __raw_writeq(0, port);
1505 port += sizeof(uint64_t);
1509 * Clear out the exact-match table
1512 port = s->sbm_base + R_MAC_ADDR_BASE;
1513 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1514 __raw_writeq(0, port);
1515 port += sizeof(uint64_t);
1519 * Clear out the DMA Channel mapping table registers
1522 port = s->sbm_base + R_MAC_CHUP0_BASE;
1523 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1524 __raw_writeq(0, port);
1525 port += sizeof(uint64_t);
1529 port = s->sbm_base + R_MAC_CHLO0_BASE;
1530 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1531 __raw_writeq(0, port);
1532 port += sizeof(uint64_t);
1536 * Program the hardware address. It goes into the hardware-address
1537 * register as well as the first filter register.
1540 reg = sbmac_addr2reg(s->sbm_hwaddr);
1542 port = s->sbm_base + R_MAC_ADDR_BASE;
1543 __raw_writeq(reg, port);
1544 port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1546 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1548 * Pass1 SOCs do not receive packets addressed to the
1549 * destination address in the R_MAC_ETHERNET_ADDR register.
1550 * Set the value to zero.
1552 __raw_writeq(0, port);
1553 #else
1554 __raw_writeq(reg, port);
1555 #endif
1558 * Set the receive filter for no packets, and write values
1559 * to the various config registers
1562 __raw_writeq(0, s->sbm_rxfilter);
1563 __raw_writeq(0, s->sbm_imr);
1564 __raw_writeq(framecfg, s->sbm_framecfg);
1565 __raw_writeq(fifo, s->sbm_fifocfg);
1566 __raw_writeq(cfg, s->sbm_maccfg);
1569 * Initialize DMA channels (rings should be ok now)
1572 sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1573 sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1576 * Configure the speed, duplex, and flow control
1579 sbmac_set_speed(s,s->sbm_speed);
1580 sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1583 * Fill the receive ring
1586 sbdma_fillring(&(s->sbm_rxdma));
1589 * Turn on the rest of the bits in the enable register
1592 __raw_writeq(M_MAC_RXDMA_EN0 |
1593 M_MAC_TXDMA_EN0 |
1594 M_MAC_RX_ENABLE |
1595 M_MAC_TX_ENABLE, s->sbm_macenable);
1600 #ifdef CONFIG_SBMAC_COALESCE
1602 * Accept any TX interrupt and EOP count/timer RX interrupts on ch 0
1604 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1605 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1606 #else
1608 * Accept any kind of interrupt on TX and RX DMA channel 0
1610 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1611 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1612 #endif
1615 * Enable receiving unicasts and broadcasts
1618 __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1621 * we're running now.
1624 s->sbm_state = sbmac_state_on;
1627 * Program multicast addresses
1630 sbmac_setmulti(s);
1633 * If channel was in promiscuous mode before, turn that on
1636 if (s->sbm_devflags & IFF_PROMISC) {
1637 sbmac_promiscuous_mode(s,1);
1643 /**********************************************************************
1644 * SBMAC_CHANNEL_STOP(s)
1646 * Stop packet processing on this MAC.
1648 * Input parameters:
1649 * s - sbmac structure
1651 * Return value:
1652 * nothing
1653 ********************************************************************* */
1655 static void sbmac_channel_stop(struct sbmac_softc *s)
1657 /* don't do this if already stopped */
1659 if (s->sbm_state == sbmac_state_off)
1660 return;
1662 /* don't accept any packets, disable all interrupts */
1664 __raw_writeq(0, s->sbm_rxfilter);
1665 __raw_writeq(0, s->sbm_imr);
1667 /* Turn off ticker */
1669 /* XXX */
1671 /* turn off receiver and transmitter */
1673 __raw_writeq(0, s->sbm_macenable);
1675 /* We're stopped now. */
1677 s->sbm_state = sbmac_state_off;
1680 * Stop DMA channels (rings should be ok now)
1683 sbdma_channel_stop(&(s->sbm_rxdma));
1684 sbdma_channel_stop(&(s->sbm_txdma));
1686 /* Empty the receive and transmit rings */
1688 sbdma_emptyring(&(s->sbm_rxdma));
1689 sbdma_emptyring(&(s->sbm_txdma));
1693 /**********************************************************************
1694 * SBMAC_SET_CHANNEL_STATE(state)
1696 * Set the channel's state ON or OFF
1698 * Input parameters:
1699 * state - new state
1701 * Return value:
1702 * old state
1703 ********************************************************************* */
1704 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *sc,
1705 sbmac_state_t state)
1707 sbmac_state_t oldstate = sc->sbm_state;
1710 * If same as previous state, return
1713 if (state == oldstate) {
1714 return oldstate;
1718 * If new state is ON, turn channel on
1721 if (state == sbmac_state_on) {
1722 sbmac_channel_start(sc);
1724 else {
1725 sbmac_channel_stop(sc);
1729 * Return previous state
1732 return oldstate;
1736 /**********************************************************************
1737 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1739 * Turn on or off promiscuous mode
1741 * Input parameters:
1742 * sc - softc
1743 * onoff - 1 to turn on, 0 to turn off
1745 * Return value:
1746 * nothing
1747 ********************************************************************* */
1749 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1751 uint64_t reg;
1753 if (sc->sbm_state != sbmac_state_on)
1754 return;
1756 if (onoff) {
1757 reg = __raw_readq(sc->sbm_rxfilter);
1758 reg |= M_MAC_ALLPKT_EN;
1759 __raw_writeq(reg, sc->sbm_rxfilter);
1761 else {
1762 reg = __raw_readq(sc->sbm_rxfilter);
1763 reg &= ~M_MAC_ALLPKT_EN;
1764 __raw_writeq(reg, sc->sbm_rxfilter);
1768 /**********************************************************************
1769 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1771 * Set the iphdr offset as 15 assuming ethernet encapsulation
1773 * Input parameters:
1774 * sc - softc
1776 * Return value:
1777 * nothing
1778 ********************************************************************* */
1780 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1782 uint64_t reg;
1784 /* Hard code the off set to 15 for now */
1785 reg = __raw_readq(sc->sbm_rxfilter);
1786 reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1787 __raw_writeq(reg, sc->sbm_rxfilter);
1789 /* read system identification to determine revision */
1790 if (periph_rev >= 2) {
1791 sc->rx_hw_checksum = ENABLE;
1792 } else {
1793 sc->rx_hw_checksum = DISABLE;
1798 /**********************************************************************
1799 * SBMAC_ADDR2REG(ptr)
1801 * Convert six bytes into the 64-bit register value that
1802 * we typically write into the SBMAC's address/mcast registers
1804 * Input parameters:
1805 * ptr - pointer to 6 bytes
1807 * Return value:
1808 * register value
1809 ********************************************************************* */
1811 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1813 uint64_t reg = 0;
1815 ptr += 6;
1817 reg |= (uint64_t) *(--ptr);
1818 reg <<= 8;
1819 reg |= (uint64_t) *(--ptr);
1820 reg <<= 8;
1821 reg |= (uint64_t) *(--ptr);
1822 reg <<= 8;
1823 reg |= (uint64_t) *(--ptr);
1824 reg <<= 8;
1825 reg |= (uint64_t) *(--ptr);
1826 reg <<= 8;
1827 reg |= (uint64_t) *(--ptr);
1829 return reg;
1833 /**********************************************************************
1834 * SBMAC_SET_SPEED(s,speed)
1836 * Configure LAN speed for the specified MAC.
1837 * Warning: must be called when MAC is off!
1839 * Input parameters:
1840 * s - sbmac structure
1841 * speed - speed to set MAC to (see sbmac_speed_t enum)
1843 * Return value:
1844 * 1 if successful
1845 * 0 indicates invalid parameters
1846 ********************************************************************* */
1848 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed)
1850 uint64_t cfg;
1851 uint64_t framecfg;
1854 * Save new current values
1857 s->sbm_speed = speed;
1859 if (s->sbm_state == sbmac_state_on)
1860 return 0; /* save for next restart */
1863 * Read current register values
1866 cfg = __raw_readq(s->sbm_maccfg);
1867 framecfg = __raw_readq(s->sbm_framecfg);
1870 * Mask out the stuff we want to change
1873 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1874 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1875 M_MAC_SLOT_SIZE);
1878 * Now add in the new bits
1881 switch (speed) {
1882 case sbmac_speed_10:
1883 framecfg |= V_MAC_IFG_RX_10 |
1884 V_MAC_IFG_TX_10 |
1885 K_MAC_IFG_THRSH_10 |
1886 V_MAC_SLOT_SIZE_10;
1887 cfg |= V_MAC_SPEED_SEL_10MBPS;
1888 break;
1890 case sbmac_speed_100:
1891 framecfg |= V_MAC_IFG_RX_100 |
1892 V_MAC_IFG_TX_100 |
1893 V_MAC_IFG_THRSH_100 |
1894 V_MAC_SLOT_SIZE_100;
1895 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1896 break;
1898 case sbmac_speed_1000:
1899 framecfg |= V_MAC_IFG_RX_1000 |
1900 V_MAC_IFG_TX_1000 |
1901 V_MAC_IFG_THRSH_1000 |
1902 V_MAC_SLOT_SIZE_1000;
1903 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1904 break;
1906 case sbmac_speed_auto: /* XXX not implemented */
1907 /* fall through */
1908 default:
1909 return 0;
1913 * Send the bits back to the hardware
1916 __raw_writeq(framecfg, s->sbm_framecfg);
1917 __raw_writeq(cfg, s->sbm_maccfg);
1919 return 1;
1922 /**********************************************************************
1923 * SBMAC_SET_DUPLEX(s,duplex,fc)
1925 * Set Ethernet duplex and flow control options for this MAC
1926 * Warning: must be called when MAC is off!
1928 * Input parameters:
1929 * s - sbmac structure
1930 * duplex - duplex setting (see sbmac_duplex_t)
1931 * fc - flow control setting (see sbmac_fc_t)
1933 * Return value:
1934 * 1 if ok
1935 * 0 if an invalid parameter combination was specified
1936 ********************************************************************* */
1938 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc)
1940 uint64_t cfg;
1943 * Save new current values
1946 s->sbm_duplex = duplex;
1947 s->sbm_fc = fc;
1949 if (s->sbm_state == sbmac_state_on)
1950 return 0; /* save for next restart */
1953 * Read current register values
1956 cfg = __raw_readq(s->sbm_maccfg);
1959 * Mask off the stuff we're about to change
1962 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1965 switch (duplex) {
1966 case sbmac_duplex_half:
1967 switch (fc) {
1968 case sbmac_fc_disabled:
1969 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1970 break;
1972 case sbmac_fc_collision:
1973 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1974 break;
1976 case sbmac_fc_carrier:
1977 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1978 break;
1980 case sbmac_fc_auto: /* XXX not implemented */
1981 /* fall through */
1982 case sbmac_fc_frame: /* not valid in half duplex */
1983 default: /* invalid selection */
1984 return 0;
1986 break;
1988 case sbmac_duplex_full:
1989 switch (fc) {
1990 case sbmac_fc_disabled:
1991 cfg |= V_MAC_FC_CMD_DISABLED;
1992 break;
1994 case sbmac_fc_frame:
1995 cfg |= V_MAC_FC_CMD_ENABLED;
1996 break;
1998 case sbmac_fc_collision: /* not valid in full duplex */
1999 case sbmac_fc_carrier: /* not valid in full duplex */
2000 case sbmac_fc_auto: /* XXX not implemented */
2001 /* fall through */
2002 default:
2003 return 0;
2005 break;
2006 case sbmac_duplex_auto:
2007 /* XXX not implemented */
2008 break;
2012 * Send the bits back to the hardware
2015 __raw_writeq(cfg, s->sbm_maccfg);
2017 return 1;
2023 /**********************************************************************
2024 * SBMAC_INTR()
2026 * Interrupt handler for MAC interrupts
2028 * Input parameters:
2029 * MAC structure
2031 * Return value:
2032 * nothing
2033 ********************************************************************* */
2034 static irqreturn_t sbmac_intr(int irq,void *dev_instance,struct pt_regs *rgs)
2036 struct net_device *dev = (struct net_device *) dev_instance;
2037 struct sbmac_softc *sc = netdev_priv(dev);
2038 uint64_t isr;
2039 int handled = 0;
2041 for (;;) {
2044 * Read the ISR (this clears the bits in the real
2045 * register, except for counter addr)
2048 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2050 if (isr == 0)
2051 break;
2053 handled = 1;
2056 * Transmits on channel 0
2059 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
2060 sbdma_tx_process(sc,&(sc->sbm_txdma));
2064 * Receives on channel 0
2068 * It's important to test all the bits (or at least the
2069 * EOP_SEEN bit) when deciding to do the RX process
2070 * particularly when coalescing, to make sure we
2071 * take care of the following:
2073 * If you have some packets waiting (have been received
2074 * but no interrupt) and get a TX interrupt before
2075 * the RX timer or counter expires, reading the ISR
2076 * above will clear the timer and counter, and you
2077 * won't get another interrupt until a packet shows
2078 * up to start the timer again. Testing
2079 * EOP_SEEN here takes care of this case.
2080 * (EOP_SEEN is part of M_MAC_INT_CHANNEL << S_MAC_RX_CH0)
2084 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2085 sbdma_rx_process(sc,&(sc->sbm_rxdma));
2088 return IRQ_RETVAL(handled);
2092 /**********************************************************************
2093 * SBMAC_START_TX(skb,dev)
2095 * Start output on the specified interface. Basically, we
2096 * queue as many buffers as we can until the ring fills up, or
2097 * we run off the end of the queue, whichever comes first.
2099 * Input parameters:
2102 * Return value:
2103 * nothing
2104 ********************************************************************* */
2105 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2107 struct sbmac_softc *sc = netdev_priv(dev);
2109 /* lock eth irq */
2110 spin_lock_irq (&sc->sbm_lock);
2113 * Put the buffer on the transmit ring. If we
2114 * don't have room, stop the queue.
2117 if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2118 /* XXX save skb that we could not send */
2119 netif_stop_queue(dev);
2120 spin_unlock_irq(&sc->sbm_lock);
2122 return 1;
2125 dev->trans_start = jiffies;
2127 spin_unlock_irq (&sc->sbm_lock);
2129 return 0;
2132 /**********************************************************************
2133 * SBMAC_SETMULTI(sc)
2135 * Reprogram the multicast table into the hardware, given
2136 * the list of multicasts associated with the interface
2137 * structure.
2139 * Input parameters:
2140 * sc - softc
2142 * Return value:
2143 * nothing
2144 ********************************************************************* */
2146 static void sbmac_setmulti(struct sbmac_softc *sc)
2148 uint64_t reg;
2149 volatile void __iomem *port;
2150 int idx;
2151 struct dev_mc_list *mclist;
2152 struct net_device *dev = sc->sbm_dev;
2155 * Clear out entire multicast table. We do this by nuking
2156 * the entire hash table and all the direct matches except
2157 * the first one, which is used for our station address
2160 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2161 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2162 __raw_writeq(0, port);
2165 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2166 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2167 __raw_writeq(0, port);
2171 * Clear the filter to say we don't want any multicasts.
2174 reg = __raw_readq(sc->sbm_rxfilter);
2175 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2176 __raw_writeq(reg, sc->sbm_rxfilter);
2178 if (dev->flags & IFF_ALLMULTI) {
2180 * Enable ALL multicasts. Do this by inverting the
2181 * multicast enable bit.
2183 reg = __raw_readq(sc->sbm_rxfilter);
2184 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2185 __raw_writeq(reg, sc->sbm_rxfilter);
2186 return;
2191 * Progam new multicast entries. For now, only use the
2192 * perfect filter. In the future we'll need to use the
2193 * hash filter if the perfect filter overflows
2196 /* XXX only using perfect filter for now, need to use hash
2197 * XXX if the table overflows */
2199 idx = 1; /* skip station address */
2200 mclist = dev->mc_list;
2201 while (mclist && (idx < MAC_ADDR_COUNT)) {
2202 reg = sbmac_addr2reg(mclist->dmi_addr);
2203 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2204 __raw_writeq(reg, port);
2205 idx++;
2206 mclist = mclist->next;
2210 * Enable the "accept multicast bits" if we programmed at least one
2211 * multicast.
2214 if (idx > 1) {
2215 reg = __raw_readq(sc->sbm_rxfilter);
2216 reg |= M_MAC_MCAST_EN;
2217 __raw_writeq(reg, sc->sbm_rxfilter);
2223 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR)
2224 /**********************************************************************
2225 * SBMAC_PARSE_XDIGIT(str)
2227 * Parse a hex digit, returning its value
2229 * Input parameters:
2230 * str - character
2232 * Return value:
2233 * hex value, or -1 if invalid
2234 ********************************************************************* */
2236 static int sbmac_parse_xdigit(char str)
2238 int digit;
2240 if ((str >= '0') && (str <= '9'))
2241 digit = str - '0';
2242 else if ((str >= 'a') && (str <= 'f'))
2243 digit = str - 'a' + 10;
2244 else if ((str >= 'A') && (str <= 'F'))
2245 digit = str - 'A' + 10;
2246 else
2247 return -1;
2249 return digit;
2252 /**********************************************************************
2253 * SBMAC_PARSE_HWADDR(str,hwaddr)
2255 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2256 * Ethernet address.
2258 * Input parameters:
2259 * str - string
2260 * hwaddr - pointer to hardware address
2262 * Return value:
2263 * 0 if ok, else -1
2264 ********************************************************************* */
2266 static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr)
2268 int digit1,digit2;
2269 int idx = 6;
2271 while (*str && (idx > 0)) {
2272 digit1 = sbmac_parse_xdigit(*str);
2273 if (digit1 < 0)
2274 return -1;
2275 str++;
2276 if (!*str)
2277 return -1;
2279 if ((*str == ':') || (*str == '-')) {
2280 digit2 = digit1;
2281 digit1 = 0;
2283 else {
2284 digit2 = sbmac_parse_xdigit(*str);
2285 if (digit2 < 0)
2286 return -1;
2287 str++;
2290 *hwaddr++ = (digit1 << 4) | digit2;
2291 idx--;
2293 if (*str == '-')
2294 str++;
2295 if (*str == ':')
2296 str++;
2298 return 0;
2300 #endif
2302 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2304 if (new_mtu > ENET_PACKET_SIZE)
2305 return -EINVAL;
2306 _dev->mtu = new_mtu;
2307 printk(KERN_INFO "changing the mtu to %d\n", new_mtu);
2308 return 0;
2311 /**********************************************************************
2312 * SBMAC_INIT(dev)
2314 * Attach routine - init hardware and hook ourselves into linux
2316 * Input parameters:
2317 * dev - net_device structure
2319 * Return value:
2320 * status
2321 ********************************************************************* */
2323 static int sbmac_init(struct net_device *dev, int idx)
2325 struct sbmac_softc *sc;
2326 unsigned char *eaddr;
2327 uint64_t ea_reg;
2328 int i;
2329 int err;
2331 sc = netdev_priv(dev);
2333 /* Determine controller base address */
2335 sc->sbm_base = IOADDR(dev->base_addr);
2336 sc->sbm_dev = dev;
2337 sc->sbe_idx = idx;
2339 eaddr = sc->sbm_hwaddr;
2342 * Read the ethernet address. The firwmare left this programmed
2343 * for us in the ethernet address register for each mac.
2346 ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2347 __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2348 for (i = 0; i < 6; i++) {
2349 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2350 ea_reg >>= 8;
2353 for (i = 0; i < 6; i++) {
2354 dev->dev_addr[i] = eaddr[i];
2359 * Init packet size
2362 sc->sbm_buffersize = ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN;
2365 * Initialize context (get pointers to registers and stuff), then
2366 * allocate the memory for the descriptor tables.
2369 sbmac_initctx(sc);
2372 * Set up Linux device callins
2375 spin_lock_init(&(sc->sbm_lock));
2377 dev->open = sbmac_open;
2378 dev->hard_start_xmit = sbmac_start_tx;
2379 dev->stop = sbmac_close;
2380 dev->get_stats = sbmac_get_stats;
2381 dev->set_multicast_list = sbmac_set_rx_mode;
2382 dev->do_ioctl = sbmac_mii_ioctl;
2383 dev->tx_timeout = sbmac_tx_timeout;
2384 dev->watchdog_timeo = TX_TIMEOUT;
2386 dev->change_mtu = sb1250_change_mtu;
2388 /* This is needed for PASS2 for Rx H/W checksum feature */
2389 sbmac_set_iphdr_offset(sc);
2391 err = register_netdev(dev);
2392 if (err)
2393 goto out_uninit;
2395 if (sc->rx_hw_checksum == ENABLE) {
2396 printk(KERN_INFO "%s: enabling TCP rcv checksum\n",
2397 sc->sbm_dev->name);
2401 * Display Ethernet address (this is called during the config
2402 * process so we need to finish off the config message that
2403 * was being displayed)
2405 printk(KERN_INFO
2406 "%s: SiByte Ethernet at 0x%08lX, address: %02X:%02X:%02X:%02X:%02X:%02X\n",
2407 dev->name, dev->base_addr,
2408 eaddr[0],eaddr[1],eaddr[2],eaddr[3],eaddr[4],eaddr[5]);
2411 return 0;
2413 out_uninit:
2414 sbmac_uninitctx(sc);
2416 return err;
2420 static int sbmac_open(struct net_device *dev)
2422 struct sbmac_softc *sc = netdev_priv(dev);
2424 if (debug > 1) {
2425 printk(KERN_DEBUG "%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2429 * map/route interrupt (clear status first, in case something
2430 * weird is pending; we haven't initialized the mac registers
2431 * yet)
2434 __raw_readq(sc->sbm_isr);
2435 if (request_irq(dev->irq, &sbmac_intr, SA_SHIRQ, dev->name, dev))
2436 return -EBUSY;
2439 * Probe phy address
2442 if(sbmac_mii_probe(dev) == -1) {
2443 printk("%s: failed to probe PHY.\n", dev->name);
2444 return -EINVAL;
2448 * Configure default speed
2451 sbmac_mii_poll(sc,noisy_mii);
2454 * Turn on the channel
2457 sbmac_set_channel_state(sc,sbmac_state_on);
2460 * XXX Station address is in dev->dev_addr
2463 if (dev->if_port == 0)
2464 dev->if_port = 0;
2466 netif_start_queue(dev);
2468 sbmac_set_rx_mode(dev);
2470 /* Set the timer to check for link beat. */
2471 init_timer(&sc->sbm_timer);
2472 sc->sbm_timer.expires = jiffies + 2 * HZ/100;
2473 sc->sbm_timer.data = (unsigned long)dev;
2474 sc->sbm_timer.function = &sbmac_timer;
2475 add_timer(&sc->sbm_timer);
2477 return 0;
2480 static int sbmac_mii_probe(struct net_device *dev)
2482 int i;
2483 struct sbmac_softc *s = netdev_priv(dev);
2484 u16 bmsr, id1, id2;
2485 u32 vendor, device;
2487 for (i=1; i<31; i++) {
2488 bmsr = sbmac_mii_read(s, i, MII_BMSR);
2489 if (bmsr != 0) {
2490 s->sbm_phys[0] = i;
2491 id1 = sbmac_mii_read(s, i, MII_PHYIDR1);
2492 id2 = sbmac_mii_read(s, i, MII_PHYIDR2);
2493 vendor = ((u32)id1 << 6) | ((id2 >> 10) & 0x3f);
2494 device = (id2 >> 4) & 0x3f;
2496 printk(KERN_INFO "%s: found phy %d, vendor %06x part %02x\n",
2497 dev->name, i, vendor, device);
2498 return i;
2501 return -1;
2505 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy)
2507 int bmsr,bmcr,k1stsr,anlpar;
2508 int chg;
2509 char buffer[100];
2510 char *p = buffer;
2512 /* Read the mode status and mode control registers. */
2513 bmsr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMSR);
2514 bmcr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMCR);
2516 /* get the link partner status */
2517 anlpar = sbmac_mii_read(s,s->sbm_phys[0],MII_ANLPAR);
2519 /* if supported, read the 1000baseT register */
2520 if (bmsr & BMSR_1000BT_XSR) {
2521 k1stsr = sbmac_mii_read(s,s->sbm_phys[0],MII_K1STSR);
2523 else {
2524 k1stsr = 0;
2527 chg = 0;
2529 if ((bmsr & BMSR_LINKSTAT) == 0) {
2531 * If link status is down, clear out old info so that when
2532 * it comes back up it will force us to reconfigure speed
2534 s->sbm_phy_oldbmsr = 0;
2535 s->sbm_phy_oldanlpar = 0;
2536 s->sbm_phy_oldk1stsr = 0;
2537 return 0;
2540 if ((s->sbm_phy_oldbmsr != bmsr) ||
2541 (s->sbm_phy_oldanlpar != anlpar) ||
2542 (s->sbm_phy_oldk1stsr != k1stsr)) {
2543 if (debug > 1) {
2544 printk(KERN_DEBUG "%s: bmsr:%x/%x anlpar:%x/%x k1stsr:%x/%x\n",
2545 s->sbm_dev->name,
2546 s->sbm_phy_oldbmsr,bmsr,
2547 s->sbm_phy_oldanlpar,anlpar,
2548 s->sbm_phy_oldk1stsr,k1stsr);
2550 s->sbm_phy_oldbmsr = bmsr;
2551 s->sbm_phy_oldanlpar = anlpar;
2552 s->sbm_phy_oldk1stsr = k1stsr;
2553 chg = 1;
2556 if (chg == 0)
2557 return 0;
2559 p += sprintf(p,"Link speed: ");
2561 if (k1stsr & K1STSR_LP1KFD) {
2562 s->sbm_speed = sbmac_speed_1000;
2563 s->sbm_duplex = sbmac_duplex_full;
2564 s->sbm_fc = sbmac_fc_frame;
2565 p += sprintf(p,"1000BaseT FDX");
2567 else if (k1stsr & K1STSR_LP1KHD) {
2568 s->sbm_speed = sbmac_speed_1000;
2569 s->sbm_duplex = sbmac_duplex_half;
2570 s->sbm_fc = sbmac_fc_disabled;
2571 p += sprintf(p,"1000BaseT HDX");
2573 else if (anlpar & ANLPAR_TXFD) {
2574 s->sbm_speed = sbmac_speed_100;
2575 s->sbm_duplex = sbmac_duplex_full;
2576 s->sbm_fc = (anlpar & ANLPAR_PAUSE) ? sbmac_fc_frame : sbmac_fc_disabled;
2577 p += sprintf(p,"100BaseT FDX");
2579 else if (anlpar & ANLPAR_TXHD) {
2580 s->sbm_speed = sbmac_speed_100;
2581 s->sbm_duplex = sbmac_duplex_half;
2582 s->sbm_fc = sbmac_fc_disabled;
2583 p += sprintf(p,"100BaseT HDX");
2585 else if (anlpar & ANLPAR_10FD) {
2586 s->sbm_speed = sbmac_speed_10;
2587 s->sbm_duplex = sbmac_duplex_full;
2588 s->sbm_fc = sbmac_fc_frame;
2589 p += sprintf(p,"10BaseT FDX");
2591 else if (anlpar & ANLPAR_10HD) {
2592 s->sbm_speed = sbmac_speed_10;
2593 s->sbm_duplex = sbmac_duplex_half;
2594 s->sbm_fc = sbmac_fc_collision;
2595 p += sprintf(p,"10BaseT HDX");
2597 else {
2598 p += sprintf(p,"Unknown");
2601 if (noisy) {
2602 printk(KERN_INFO "%s: %s\n",s->sbm_dev->name,buffer);
2605 return 1;
2609 static void sbmac_timer(unsigned long data)
2611 struct net_device *dev = (struct net_device *)data;
2612 struct sbmac_softc *sc = netdev_priv(dev);
2613 int next_tick = HZ;
2614 int mii_status;
2616 spin_lock_irq (&sc->sbm_lock);
2618 /* make IFF_RUNNING follow the MII status bit "Link established" */
2619 mii_status = sbmac_mii_read(sc, sc->sbm_phys[0], MII_BMSR);
2621 if ( (mii_status & BMSR_LINKSTAT) != (sc->sbm_phy_oldlinkstat) ) {
2622 sc->sbm_phy_oldlinkstat = mii_status & BMSR_LINKSTAT;
2623 if (mii_status & BMSR_LINKSTAT) {
2624 netif_carrier_on(dev);
2626 else {
2627 netif_carrier_off(dev);
2632 * Poll the PHY to see what speed we should be running at
2635 if (sbmac_mii_poll(sc,noisy_mii)) {
2636 if (sc->sbm_state != sbmac_state_off) {
2638 * something changed, restart the channel
2640 if (debug > 1) {
2641 printk("%s: restarting channel because speed changed\n",
2642 sc->sbm_dev->name);
2644 sbmac_channel_stop(sc);
2645 sbmac_channel_start(sc);
2649 spin_unlock_irq (&sc->sbm_lock);
2651 sc->sbm_timer.expires = jiffies + next_tick;
2652 add_timer(&sc->sbm_timer);
2656 static void sbmac_tx_timeout (struct net_device *dev)
2658 struct sbmac_softc *sc = netdev_priv(dev);
2660 spin_lock_irq (&sc->sbm_lock);
2663 dev->trans_start = jiffies;
2664 sc->sbm_stats.tx_errors++;
2666 spin_unlock_irq (&sc->sbm_lock);
2668 printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2674 static struct net_device_stats *sbmac_get_stats(struct net_device *dev)
2676 struct sbmac_softc *sc = netdev_priv(dev);
2677 unsigned long flags;
2679 spin_lock_irqsave(&sc->sbm_lock, flags);
2681 /* XXX update other stats here */
2683 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2685 return &sc->sbm_stats;
2690 static void sbmac_set_rx_mode(struct net_device *dev)
2692 unsigned long flags;
2693 int msg_flag = 0;
2694 struct sbmac_softc *sc = netdev_priv(dev);
2696 spin_lock_irqsave(&sc->sbm_lock, flags);
2697 if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2699 * Promiscuous changed.
2702 if (dev->flags & IFF_PROMISC) {
2703 /* Unconditionally log net taps. */
2704 msg_flag = 1;
2705 sbmac_promiscuous_mode(sc,1);
2707 else {
2708 msg_flag = 2;
2709 sbmac_promiscuous_mode(sc,0);
2712 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2714 if (msg_flag) {
2715 printk(KERN_NOTICE "%s: Promiscuous mode %sabled.\n",
2716 dev->name,(msg_flag==1)?"en":"dis");
2720 * Program the multicasts. Do this every time.
2723 sbmac_setmulti(sc);
2727 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2729 struct sbmac_softc *sc = netdev_priv(dev);
2730 u16 *data = (u16 *)&rq->ifr_ifru;
2731 unsigned long flags;
2732 int retval;
2734 spin_lock_irqsave(&sc->sbm_lock, flags);
2735 retval = 0;
2737 switch(cmd) {
2738 case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */
2739 data[0] = sc->sbm_phys[0] & 0x1f;
2740 /* Fall Through */
2741 case SIOCDEVPRIVATE+1: /* Read the specified MII register. */
2742 data[3] = sbmac_mii_read(sc, data[0] & 0x1f, data[1] & 0x1f);
2743 break;
2744 case SIOCDEVPRIVATE+2: /* Write the specified MII register */
2745 if (!capable(CAP_NET_ADMIN)) {
2746 retval = -EPERM;
2747 break;
2749 if (debug > 1) {
2750 printk(KERN_DEBUG "%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev->name,
2751 data[0],data[1],data[2]);
2753 sbmac_mii_write(sc, data[0] & 0x1f, data[1] & 0x1f, data[2]);
2754 break;
2755 default:
2756 retval = -EOPNOTSUPP;
2759 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2760 return retval;
2763 static int sbmac_close(struct net_device *dev)
2765 struct sbmac_softc *sc = netdev_priv(dev);
2766 unsigned long flags;
2767 int irq;
2769 sbmac_set_channel_state(sc,sbmac_state_off);
2771 del_timer_sync(&sc->sbm_timer);
2773 spin_lock_irqsave(&sc->sbm_lock, flags);
2775 netif_stop_queue(dev);
2777 if (debug > 1) {
2778 printk(KERN_DEBUG "%s: Shutting down ethercard\n",dev->name);
2781 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2783 irq = dev->irq;
2784 synchronize_irq(irq);
2785 free_irq(irq, dev);
2787 sbdma_emptyring(&(sc->sbm_txdma));
2788 sbdma_emptyring(&(sc->sbm_rxdma));
2790 return 0;
2795 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR)
2796 static void
2797 sbmac_setup_hwaddr(int chan,char *addr)
2799 uint8_t eaddr[6];
2800 uint64_t val;
2801 unsigned long port;
2803 port = A_MAC_CHANNEL_BASE(chan);
2804 sbmac_parse_hwaddr(addr,eaddr);
2805 val = sbmac_addr2reg(eaddr);
2806 __raw_writeq(val, IOADDR(port+R_MAC_ETHERNET_ADDR));
2807 val = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2809 #endif
2811 static struct net_device *dev_sbmac[MAX_UNITS];
2813 static int __init
2814 sbmac_init_module(void)
2816 int idx;
2817 struct net_device *dev;
2818 unsigned long port;
2819 int chip_max_units;
2822 * For bringup when not using the firmware, we can pre-fill
2823 * the MAC addresses using the environment variables
2824 * specified in this file (or maybe from the config file?)
2826 #ifdef SBMAC_ETH0_HWADDR
2827 sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR);
2828 #endif
2829 #ifdef SBMAC_ETH1_HWADDR
2830 sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR);
2831 #endif
2832 #ifdef SBMAC_ETH2_HWADDR
2833 sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR);
2834 #endif
2837 * Walk through the Ethernet controllers and find
2838 * those who have their MAC addresses set.
2840 switch (soc_type) {
2841 case K_SYS_SOC_TYPE_BCM1250:
2842 case K_SYS_SOC_TYPE_BCM1250_ALT:
2843 chip_max_units = 3;
2844 break;
2845 case K_SYS_SOC_TYPE_BCM1120:
2846 case K_SYS_SOC_TYPE_BCM1125:
2847 case K_SYS_SOC_TYPE_BCM1125H:
2848 case K_SYS_SOC_TYPE_BCM1250_ALT2: /* Hybrid */
2849 chip_max_units = 2;
2850 break;
2851 default:
2852 chip_max_units = 0;
2853 break;
2855 if (chip_max_units > MAX_UNITS)
2856 chip_max_units = MAX_UNITS;
2858 for (idx = 0; idx < chip_max_units; idx++) {
2861 * This is the base address of the MAC.
2864 port = A_MAC_CHANNEL_BASE(idx);
2867 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2868 * value for us by the firmware if we're going to use this MAC.
2869 * If we find a zero, skip this MAC.
2872 sbmac_orig_hwaddr[idx] = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2873 if (sbmac_orig_hwaddr[idx] == 0) {
2874 printk(KERN_DEBUG "sbmac: not configuring MAC at "
2875 "%lx\n", port);
2876 continue;
2880 * Okay, cool. Initialize this MAC.
2883 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2884 if (!dev)
2885 return -ENOMEM; /* return ENOMEM */
2887 printk(KERN_DEBUG "sbmac: configuring MAC at %lx\n", port);
2889 dev->irq = K_INT_MAC_0 + idx;
2890 dev->base_addr = port;
2891 dev->mem_end = 0;
2892 if (sbmac_init(dev, idx)) {
2893 port = A_MAC_CHANNEL_BASE(idx);
2894 __raw_writeq(sbmac_orig_hwaddr[idx], IOADDR(port+R_MAC_ETHERNET_ADDR));
2895 free_netdev(dev);
2896 continue;
2898 dev_sbmac[idx] = dev;
2900 return 0;
2904 static void __exit
2905 sbmac_cleanup_module(void)
2907 struct net_device *dev;
2908 int idx;
2910 for (idx = 0; idx < MAX_UNITS; idx++) {
2911 struct sbmac_softc *sc;
2912 dev = dev_sbmac[idx];
2913 if (!dev)
2914 continue;
2916 sc = netdev_priv(dev);
2917 unregister_netdev(dev);
2918 sbmac_uninitctx(sc);
2919 free_netdev(dev);
2923 module_init(sbmac_init_module);
2924 module_exit(sbmac_cleanup_module);