revert "proc: fix the threaded proc self"
[linux-2.6/openmoko-kernel/knife-kernel.git] / mm / slub.c
blobe2989ae243b53571bb8ee5695771adbd90185f3d
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
111 static inline int SlabFrozen(struct page *page)
113 return page->flags & FROZEN;
116 static inline void SetSlabFrozen(struct page *page)
118 page->flags |= FROZEN;
121 static inline void ClearSlabFrozen(struct page *page)
123 page->flags &= ~FROZEN;
126 static inline int SlabDebug(struct page *page)
128 return page->flags & SLABDEBUG;
131 static inline void SetSlabDebug(struct page *page)
133 page->flags |= SLABDEBUG;
136 static inline void ClearSlabDebug(struct page *page)
138 page->flags &= ~SLABDEBUG;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
153 * Currently fastpath is not supported if preemption is enabled.
155 #if defined(CONFIG_FAST_CMPXCHG_LOCAL) && !defined(CONFIG_PREEMPT)
156 #define SLUB_FASTPATH
157 #endif
159 #if PAGE_SHIFT <= 12
162 * Small page size. Make sure that we do not fragment memory
164 #define DEFAULT_MAX_ORDER 1
165 #define DEFAULT_MIN_OBJECTS 4
167 #else
170 * Large page machines are customarily able to handle larger
171 * page orders.
173 #define DEFAULT_MAX_ORDER 2
174 #define DEFAULT_MIN_OBJECTS 8
176 #endif
179 * Mininum number of partial slabs. These will be left on the partial
180 * lists even if they are empty. kmem_cache_shrink may reclaim them.
182 #define MIN_PARTIAL 5
185 * Maximum number of desirable partial slabs.
186 * The existence of more partial slabs makes kmem_cache_shrink
187 * sort the partial list by the number of objects in the.
189 #define MAX_PARTIAL 10
191 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
192 SLAB_POISON | SLAB_STORE_USER)
195 * Set of flags that will prevent slab merging
197 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
198 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
200 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
201 SLAB_CACHE_DMA)
203 #ifndef ARCH_KMALLOC_MINALIGN
204 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
205 #endif
207 #ifndef ARCH_SLAB_MINALIGN
208 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
209 #endif
211 /* Internal SLUB flags */
212 #define __OBJECT_POISON 0x80000000 /* Poison object */
213 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
215 /* Not all arches define cache_line_size */
216 #ifndef cache_line_size
217 #define cache_line_size() L1_CACHE_BYTES
218 #endif
220 static int kmem_size = sizeof(struct kmem_cache);
222 #ifdef CONFIG_SMP
223 static struct notifier_block slab_notifier;
224 #endif
226 static enum {
227 DOWN, /* No slab functionality available */
228 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
229 UP, /* Everything works but does not show up in sysfs */
230 SYSFS /* Sysfs up */
231 } slab_state = DOWN;
233 /* A list of all slab caches on the system */
234 static DECLARE_RWSEM(slub_lock);
235 static LIST_HEAD(slab_caches);
238 * Tracking user of a slab.
240 struct track {
241 void *addr; /* Called from address */
242 int cpu; /* Was running on cpu */
243 int pid; /* Pid context */
244 unsigned long when; /* When did the operation occur */
247 enum track_item { TRACK_ALLOC, TRACK_FREE };
249 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
250 static int sysfs_slab_add(struct kmem_cache *);
251 static int sysfs_slab_alias(struct kmem_cache *, const char *);
252 static void sysfs_slab_remove(struct kmem_cache *);
254 #else
255 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
256 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
257 { return 0; }
258 static inline void sysfs_slab_remove(struct kmem_cache *s)
260 kfree(s);
263 #endif
265 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
267 #ifdef CONFIG_SLUB_STATS
268 c->stat[si]++;
269 #endif
272 /********************************************************************
273 * Core slab cache functions
274 *******************************************************************/
276 int slab_is_available(void)
278 return slab_state >= UP;
281 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
283 #ifdef CONFIG_NUMA
284 return s->node[node];
285 #else
286 return &s->local_node;
287 #endif
290 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
292 #ifdef CONFIG_SMP
293 return s->cpu_slab[cpu];
294 #else
295 return &s->cpu_slab;
296 #endif
300 * The end pointer in a slab is special. It points to the first object in the
301 * slab but has bit 0 set to mark it.
303 * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
304 * in the mapping set.
306 static inline int is_end(void *addr)
308 return (unsigned long)addr & PAGE_MAPPING_ANON;
311 void *slab_address(struct page *page)
313 return page->end - PAGE_MAPPING_ANON;
316 static inline int check_valid_pointer(struct kmem_cache *s,
317 struct page *page, const void *object)
319 void *base;
321 if (object == page->end)
322 return 1;
324 base = slab_address(page);
325 if (object < base || object >= base + s->objects * s->size ||
326 (object - base) % s->size) {
327 return 0;
330 return 1;
334 * Slow version of get and set free pointer.
336 * This version requires touching the cache lines of kmem_cache which
337 * we avoid to do in the fast alloc free paths. There we obtain the offset
338 * from the page struct.
340 static inline void *get_freepointer(struct kmem_cache *s, void *object)
342 return *(void **)(object + s->offset);
345 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
347 *(void **)(object + s->offset) = fp;
350 /* Loop over all objects in a slab */
351 #define for_each_object(__p, __s, __addr) \
352 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
353 __p += (__s)->size)
355 /* Scan freelist */
356 #define for_each_free_object(__p, __s, __free) \
357 for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
358 __p))
360 /* Determine object index from a given position */
361 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
363 return (p - addr) / s->size;
366 #ifdef CONFIG_SLUB_DEBUG
368 * Debug settings:
370 #ifdef CONFIG_SLUB_DEBUG_ON
371 static int slub_debug = DEBUG_DEFAULT_FLAGS;
372 #else
373 static int slub_debug;
374 #endif
376 static char *slub_debug_slabs;
379 * Object debugging
381 static void print_section(char *text, u8 *addr, unsigned int length)
383 int i, offset;
384 int newline = 1;
385 char ascii[17];
387 ascii[16] = 0;
389 for (i = 0; i < length; i++) {
390 if (newline) {
391 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
392 newline = 0;
394 printk(KERN_CONT " %02x", addr[i]);
395 offset = i % 16;
396 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
397 if (offset == 15) {
398 printk(KERN_CONT " %s\n", ascii);
399 newline = 1;
402 if (!newline) {
403 i %= 16;
404 while (i < 16) {
405 printk(KERN_CONT " ");
406 ascii[i] = ' ';
407 i++;
409 printk(KERN_CONT " %s\n", ascii);
413 static struct track *get_track(struct kmem_cache *s, void *object,
414 enum track_item alloc)
416 struct track *p;
418 if (s->offset)
419 p = object + s->offset + sizeof(void *);
420 else
421 p = object + s->inuse;
423 return p + alloc;
426 static void set_track(struct kmem_cache *s, void *object,
427 enum track_item alloc, void *addr)
429 struct track *p;
431 if (s->offset)
432 p = object + s->offset + sizeof(void *);
433 else
434 p = object + s->inuse;
436 p += alloc;
437 if (addr) {
438 p->addr = addr;
439 p->cpu = smp_processor_id();
440 p->pid = current ? current->pid : -1;
441 p->when = jiffies;
442 } else
443 memset(p, 0, sizeof(struct track));
446 static void init_tracking(struct kmem_cache *s, void *object)
448 if (!(s->flags & SLAB_STORE_USER))
449 return;
451 set_track(s, object, TRACK_FREE, NULL);
452 set_track(s, object, TRACK_ALLOC, NULL);
455 static void print_track(const char *s, struct track *t)
457 if (!t->addr)
458 return;
460 printk(KERN_ERR "INFO: %s in ", s);
461 __print_symbol("%s", (unsigned long)t->addr);
462 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
465 static void print_tracking(struct kmem_cache *s, void *object)
467 if (!(s->flags & SLAB_STORE_USER))
468 return;
470 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
471 print_track("Freed", get_track(s, object, TRACK_FREE));
474 static void print_page_info(struct page *page)
476 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
477 page, page->inuse, page->freelist, page->flags);
481 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
483 va_list args;
484 char buf[100];
486 va_start(args, fmt);
487 vsnprintf(buf, sizeof(buf), fmt, args);
488 va_end(args);
489 printk(KERN_ERR "========================================"
490 "=====================================\n");
491 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
492 printk(KERN_ERR "----------------------------------------"
493 "-------------------------------------\n\n");
496 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
498 va_list args;
499 char buf[100];
501 va_start(args, fmt);
502 vsnprintf(buf, sizeof(buf), fmt, args);
503 va_end(args);
504 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
507 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
509 unsigned int off; /* Offset of last byte */
510 u8 *addr = slab_address(page);
512 print_tracking(s, p);
514 print_page_info(page);
516 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
517 p, p - addr, get_freepointer(s, p));
519 if (p > addr + 16)
520 print_section("Bytes b4", p - 16, 16);
522 print_section("Object", p, min(s->objsize, 128));
524 if (s->flags & SLAB_RED_ZONE)
525 print_section("Redzone", p + s->objsize,
526 s->inuse - s->objsize);
528 if (s->offset)
529 off = s->offset + sizeof(void *);
530 else
531 off = s->inuse;
533 if (s->flags & SLAB_STORE_USER)
534 off += 2 * sizeof(struct track);
536 if (off != s->size)
537 /* Beginning of the filler is the free pointer */
538 print_section("Padding", p + off, s->size - off);
540 dump_stack();
543 static void object_err(struct kmem_cache *s, struct page *page,
544 u8 *object, char *reason)
546 slab_bug(s, reason);
547 print_trailer(s, page, object);
550 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
552 va_list args;
553 char buf[100];
555 va_start(args, fmt);
556 vsnprintf(buf, sizeof(buf), fmt, args);
557 va_end(args);
558 slab_bug(s, fmt);
559 print_page_info(page);
560 dump_stack();
563 static void init_object(struct kmem_cache *s, void *object, int active)
565 u8 *p = object;
567 if (s->flags & __OBJECT_POISON) {
568 memset(p, POISON_FREE, s->objsize - 1);
569 p[s->objsize - 1] = POISON_END;
572 if (s->flags & SLAB_RED_ZONE)
573 memset(p + s->objsize,
574 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
575 s->inuse - s->objsize);
578 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
580 while (bytes) {
581 if (*start != (u8)value)
582 return start;
583 start++;
584 bytes--;
586 return NULL;
589 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
590 void *from, void *to)
592 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
593 memset(from, data, to - from);
596 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
597 u8 *object, char *what,
598 u8 *start, unsigned int value, unsigned int bytes)
600 u8 *fault;
601 u8 *end;
603 fault = check_bytes(start, value, bytes);
604 if (!fault)
605 return 1;
607 end = start + bytes;
608 while (end > fault && end[-1] == value)
609 end--;
611 slab_bug(s, "%s overwritten", what);
612 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
613 fault, end - 1, fault[0], value);
614 print_trailer(s, page, object);
616 restore_bytes(s, what, value, fault, end);
617 return 0;
621 * Object layout:
623 * object address
624 * Bytes of the object to be managed.
625 * If the freepointer may overlay the object then the free
626 * pointer is the first word of the object.
628 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
629 * 0xa5 (POISON_END)
631 * object + s->objsize
632 * Padding to reach word boundary. This is also used for Redzoning.
633 * Padding is extended by another word if Redzoning is enabled and
634 * objsize == inuse.
636 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
637 * 0xcc (RED_ACTIVE) for objects in use.
639 * object + s->inuse
640 * Meta data starts here.
642 * A. Free pointer (if we cannot overwrite object on free)
643 * B. Tracking data for SLAB_STORE_USER
644 * C. Padding to reach required alignment boundary or at mininum
645 * one word if debuggin is on to be able to detect writes
646 * before the word boundary.
648 * Padding is done using 0x5a (POISON_INUSE)
650 * object + s->size
651 * Nothing is used beyond s->size.
653 * If slabcaches are merged then the objsize and inuse boundaries are mostly
654 * ignored. And therefore no slab options that rely on these boundaries
655 * may be used with merged slabcaches.
658 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
660 unsigned long off = s->inuse; /* The end of info */
662 if (s->offset)
663 /* Freepointer is placed after the object. */
664 off += sizeof(void *);
666 if (s->flags & SLAB_STORE_USER)
667 /* We also have user information there */
668 off += 2 * sizeof(struct track);
670 if (s->size == off)
671 return 1;
673 return check_bytes_and_report(s, page, p, "Object padding",
674 p + off, POISON_INUSE, s->size - off);
677 static int slab_pad_check(struct kmem_cache *s, struct page *page)
679 u8 *start;
680 u8 *fault;
681 u8 *end;
682 int length;
683 int remainder;
685 if (!(s->flags & SLAB_POISON))
686 return 1;
688 start = slab_address(page);
689 end = start + (PAGE_SIZE << s->order);
690 length = s->objects * s->size;
691 remainder = end - (start + length);
692 if (!remainder)
693 return 1;
695 fault = check_bytes(start + length, POISON_INUSE, remainder);
696 if (!fault)
697 return 1;
698 while (end > fault && end[-1] == POISON_INUSE)
699 end--;
701 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
702 print_section("Padding", start, length);
704 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
705 return 0;
708 static int check_object(struct kmem_cache *s, struct page *page,
709 void *object, int active)
711 u8 *p = object;
712 u8 *endobject = object + s->objsize;
714 if (s->flags & SLAB_RED_ZONE) {
715 unsigned int red =
716 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
718 if (!check_bytes_and_report(s, page, object, "Redzone",
719 endobject, red, s->inuse - s->objsize))
720 return 0;
721 } else {
722 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
723 check_bytes_and_report(s, page, p, "Alignment padding",
724 endobject, POISON_INUSE, s->inuse - s->objsize);
728 if (s->flags & SLAB_POISON) {
729 if (!active && (s->flags & __OBJECT_POISON) &&
730 (!check_bytes_and_report(s, page, p, "Poison", p,
731 POISON_FREE, s->objsize - 1) ||
732 !check_bytes_and_report(s, page, p, "Poison",
733 p + s->objsize - 1, POISON_END, 1)))
734 return 0;
736 * check_pad_bytes cleans up on its own.
738 check_pad_bytes(s, page, p);
741 if (!s->offset && active)
743 * Object and freepointer overlap. Cannot check
744 * freepointer while object is allocated.
746 return 1;
748 /* Check free pointer validity */
749 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
750 object_err(s, page, p, "Freepointer corrupt");
752 * No choice but to zap it and thus loose the remainder
753 * of the free objects in this slab. May cause
754 * another error because the object count is now wrong.
756 set_freepointer(s, p, page->end);
757 return 0;
759 return 1;
762 static int check_slab(struct kmem_cache *s, struct page *page)
764 VM_BUG_ON(!irqs_disabled());
766 if (!PageSlab(page)) {
767 slab_err(s, page, "Not a valid slab page");
768 return 0;
770 if (page->inuse > s->objects) {
771 slab_err(s, page, "inuse %u > max %u",
772 s->name, page->inuse, s->objects);
773 return 0;
775 /* Slab_pad_check fixes things up after itself */
776 slab_pad_check(s, page);
777 return 1;
781 * Determine if a certain object on a page is on the freelist. Must hold the
782 * slab lock to guarantee that the chains are in a consistent state.
784 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
786 int nr = 0;
787 void *fp = page->freelist;
788 void *object = NULL;
790 while (fp != page->end && nr <= s->objects) {
791 if (fp == search)
792 return 1;
793 if (!check_valid_pointer(s, page, fp)) {
794 if (object) {
795 object_err(s, page, object,
796 "Freechain corrupt");
797 set_freepointer(s, object, page->end);
798 break;
799 } else {
800 slab_err(s, page, "Freepointer corrupt");
801 page->freelist = page->end;
802 page->inuse = s->objects;
803 slab_fix(s, "Freelist cleared");
804 return 0;
806 break;
808 object = fp;
809 fp = get_freepointer(s, object);
810 nr++;
813 if (page->inuse != s->objects - nr) {
814 slab_err(s, page, "Wrong object count. Counter is %d but "
815 "counted were %d", page->inuse, s->objects - nr);
816 page->inuse = s->objects - nr;
817 slab_fix(s, "Object count adjusted.");
819 return search == NULL;
822 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
824 if (s->flags & SLAB_TRACE) {
825 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
826 s->name,
827 alloc ? "alloc" : "free",
828 object, page->inuse,
829 page->freelist);
831 if (!alloc)
832 print_section("Object", (void *)object, s->objsize);
834 dump_stack();
839 * Tracking of fully allocated slabs for debugging purposes.
841 static void add_full(struct kmem_cache_node *n, struct page *page)
843 spin_lock(&n->list_lock);
844 list_add(&page->lru, &n->full);
845 spin_unlock(&n->list_lock);
848 static void remove_full(struct kmem_cache *s, struct page *page)
850 struct kmem_cache_node *n;
852 if (!(s->flags & SLAB_STORE_USER))
853 return;
855 n = get_node(s, page_to_nid(page));
857 spin_lock(&n->list_lock);
858 list_del(&page->lru);
859 spin_unlock(&n->list_lock);
862 static void setup_object_debug(struct kmem_cache *s, struct page *page,
863 void *object)
865 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
866 return;
868 init_object(s, object, 0);
869 init_tracking(s, object);
872 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
873 void *object, void *addr)
875 if (!check_slab(s, page))
876 goto bad;
878 if (object && !on_freelist(s, page, object)) {
879 object_err(s, page, object, "Object already allocated");
880 goto bad;
883 if (!check_valid_pointer(s, page, object)) {
884 object_err(s, page, object, "Freelist Pointer check fails");
885 goto bad;
888 if (object && !check_object(s, page, object, 0))
889 goto bad;
891 /* Success perform special debug activities for allocs */
892 if (s->flags & SLAB_STORE_USER)
893 set_track(s, object, TRACK_ALLOC, addr);
894 trace(s, page, object, 1);
895 init_object(s, object, 1);
896 return 1;
898 bad:
899 if (PageSlab(page)) {
901 * If this is a slab page then lets do the best we can
902 * to avoid issues in the future. Marking all objects
903 * as used avoids touching the remaining objects.
905 slab_fix(s, "Marking all objects used");
906 page->inuse = s->objects;
907 page->freelist = page->end;
909 return 0;
912 static int free_debug_processing(struct kmem_cache *s, struct page *page,
913 void *object, void *addr)
915 if (!check_slab(s, page))
916 goto fail;
918 if (!check_valid_pointer(s, page, object)) {
919 slab_err(s, page, "Invalid object pointer 0x%p", object);
920 goto fail;
923 if (on_freelist(s, page, object)) {
924 object_err(s, page, object, "Object already free");
925 goto fail;
928 if (!check_object(s, page, object, 1))
929 return 0;
931 if (unlikely(s != page->slab)) {
932 if (!PageSlab(page)) {
933 slab_err(s, page, "Attempt to free object(0x%p) "
934 "outside of slab", object);
935 } else if (!page->slab) {
936 printk(KERN_ERR
937 "SLUB <none>: no slab for object 0x%p.\n",
938 object);
939 dump_stack();
940 } else
941 object_err(s, page, object,
942 "page slab pointer corrupt.");
943 goto fail;
946 /* Special debug activities for freeing objects */
947 if (!SlabFrozen(page) && page->freelist == page->end)
948 remove_full(s, page);
949 if (s->flags & SLAB_STORE_USER)
950 set_track(s, object, TRACK_FREE, addr);
951 trace(s, page, object, 0);
952 init_object(s, object, 0);
953 return 1;
955 fail:
956 slab_fix(s, "Object at 0x%p not freed", object);
957 return 0;
960 static int __init setup_slub_debug(char *str)
962 slub_debug = DEBUG_DEFAULT_FLAGS;
963 if (*str++ != '=' || !*str)
965 * No options specified. Switch on full debugging.
967 goto out;
969 if (*str == ',')
971 * No options but restriction on slabs. This means full
972 * debugging for slabs matching a pattern.
974 goto check_slabs;
976 slub_debug = 0;
977 if (*str == '-')
979 * Switch off all debugging measures.
981 goto out;
984 * Determine which debug features should be switched on
986 for (; *str && *str != ','; str++) {
987 switch (tolower(*str)) {
988 case 'f':
989 slub_debug |= SLAB_DEBUG_FREE;
990 break;
991 case 'z':
992 slub_debug |= SLAB_RED_ZONE;
993 break;
994 case 'p':
995 slub_debug |= SLAB_POISON;
996 break;
997 case 'u':
998 slub_debug |= SLAB_STORE_USER;
999 break;
1000 case 't':
1001 slub_debug |= SLAB_TRACE;
1002 break;
1003 default:
1004 printk(KERN_ERR "slub_debug option '%c' "
1005 "unknown. skipped\n", *str);
1009 check_slabs:
1010 if (*str == ',')
1011 slub_debug_slabs = str + 1;
1012 out:
1013 return 1;
1016 __setup("slub_debug", setup_slub_debug);
1018 static unsigned long kmem_cache_flags(unsigned long objsize,
1019 unsigned long flags, const char *name,
1020 void (*ctor)(struct kmem_cache *, void *))
1023 * The page->offset field is only 16 bit wide. This is an offset
1024 * in units of words from the beginning of an object. If the slab
1025 * size is bigger then we cannot move the free pointer behind the
1026 * object anymore.
1028 * On 32 bit platforms the limit is 256k. On 64bit platforms
1029 * the limit is 512k.
1031 * Debugging or ctor may create a need to move the free
1032 * pointer. Fail if this happens.
1034 if (objsize >= 65535 * sizeof(void *)) {
1035 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1036 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1037 BUG_ON(ctor);
1038 } else {
1040 * Enable debugging if selected on the kernel commandline.
1042 if (slub_debug && (!slub_debug_slabs ||
1043 strncmp(slub_debug_slabs, name,
1044 strlen(slub_debug_slabs)) == 0))
1045 flags |= slub_debug;
1048 return flags;
1050 #else
1051 static inline void setup_object_debug(struct kmem_cache *s,
1052 struct page *page, void *object) {}
1054 static inline int alloc_debug_processing(struct kmem_cache *s,
1055 struct page *page, void *object, void *addr) { return 0; }
1057 static inline int free_debug_processing(struct kmem_cache *s,
1058 struct page *page, void *object, void *addr) { return 0; }
1060 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1061 { return 1; }
1062 static inline int check_object(struct kmem_cache *s, struct page *page,
1063 void *object, int active) { return 1; }
1064 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1065 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1066 unsigned long flags, const char *name,
1067 void (*ctor)(struct kmem_cache *, void *))
1069 return flags;
1071 #define slub_debug 0
1072 #endif
1074 * Slab allocation and freeing
1076 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1078 struct page *page;
1079 int pages = 1 << s->order;
1081 if (s->order)
1082 flags |= __GFP_COMP;
1084 if (s->flags & SLAB_CACHE_DMA)
1085 flags |= SLUB_DMA;
1087 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1088 flags |= __GFP_RECLAIMABLE;
1090 if (node == -1)
1091 page = alloc_pages(flags, s->order);
1092 else
1093 page = alloc_pages_node(node, flags, s->order);
1095 if (!page)
1096 return NULL;
1098 mod_zone_page_state(page_zone(page),
1099 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1100 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1101 pages);
1103 return page;
1106 static void setup_object(struct kmem_cache *s, struct page *page,
1107 void *object)
1109 setup_object_debug(s, page, object);
1110 if (unlikely(s->ctor))
1111 s->ctor(s, object);
1114 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1116 struct page *page;
1117 struct kmem_cache_node *n;
1118 void *start;
1119 void *last;
1120 void *p;
1122 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1124 page = allocate_slab(s,
1125 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1126 if (!page)
1127 goto out;
1129 n = get_node(s, page_to_nid(page));
1130 if (n)
1131 atomic_long_inc(&n->nr_slabs);
1132 page->slab = s;
1133 page->flags |= 1 << PG_slab;
1134 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1135 SLAB_STORE_USER | SLAB_TRACE))
1136 SetSlabDebug(page);
1138 start = page_address(page);
1139 page->end = start + 1;
1141 if (unlikely(s->flags & SLAB_POISON))
1142 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1144 last = start;
1145 for_each_object(p, s, start) {
1146 setup_object(s, page, last);
1147 set_freepointer(s, last, p);
1148 last = p;
1150 setup_object(s, page, last);
1151 set_freepointer(s, last, page->end);
1153 page->freelist = start;
1154 page->inuse = 0;
1155 out:
1156 return page;
1159 static void __free_slab(struct kmem_cache *s, struct page *page)
1161 int pages = 1 << s->order;
1163 if (unlikely(SlabDebug(page))) {
1164 void *p;
1166 slab_pad_check(s, page);
1167 for_each_object(p, s, slab_address(page))
1168 check_object(s, page, p, 0);
1169 ClearSlabDebug(page);
1172 mod_zone_page_state(page_zone(page),
1173 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1174 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1175 -pages);
1177 page->mapping = NULL;
1178 __free_pages(page, s->order);
1181 static void rcu_free_slab(struct rcu_head *h)
1183 struct page *page;
1185 page = container_of((struct list_head *)h, struct page, lru);
1186 __free_slab(page->slab, page);
1189 static void free_slab(struct kmem_cache *s, struct page *page)
1191 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1193 * RCU free overloads the RCU head over the LRU
1195 struct rcu_head *head = (void *)&page->lru;
1197 call_rcu(head, rcu_free_slab);
1198 } else
1199 __free_slab(s, page);
1202 static void discard_slab(struct kmem_cache *s, struct page *page)
1204 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1206 atomic_long_dec(&n->nr_slabs);
1207 reset_page_mapcount(page);
1208 __ClearPageSlab(page);
1209 free_slab(s, page);
1213 * Per slab locking using the pagelock
1215 static __always_inline void slab_lock(struct page *page)
1217 bit_spin_lock(PG_locked, &page->flags);
1220 static __always_inline void slab_unlock(struct page *page)
1222 __bit_spin_unlock(PG_locked, &page->flags);
1225 static __always_inline int slab_trylock(struct page *page)
1227 int rc = 1;
1229 rc = bit_spin_trylock(PG_locked, &page->flags);
1230 return rc;
1234 * Management of partially allocated slabs
1236 static void add_partial(struct kmem_cache_node *n,
1237 struct page *page, int tail)
1239 spin_lock(&n->list_lock);
1240 n->nr_partial++;
1241 if (tail)
1242 list_add_tail(&page->lru, &n->partial);
1243 else
1244 list_add(&page->lru, &n->partial);
1245 spin_unlock(&n->list_lock);
1248 static void remove_partial(struct kmem_cache *s,
1249 struct page *page)
1251 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1253 spin_lock(&n->list_lock);
1254 list_del(&page->lru);
1255 n->nr_partial--;
1256 spin_unlock(&n->list_lock);
1260 * Lock slab and remove from the partial list.
1262 * Must hold list_lock.
1264 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1266 if (slab_trylock(page)) {
1267 list_del(&page->lru);
1268 n->nr_partial--;
1269 SetSlabFrozen(page);
1270 return 1;
1272 return 0;
1276 * Try to allocate a partial slab from a specific node.
1278 static struct page *get_partial_node(struct kmem_cache_node *n)
1280 struct page *page;
1283 * Racy check. If we mistakenly see no partial slabs then we
1284 * just allocate an empty slab. If we mistakenly try to get a
1285 * partial slab and there is none available then get_partials()
1286 * will return NULL.
1288 if (!n || !n->nr_partial)
1289 return NULL;
1291 spin_lock(&n->list_lock);
1292 list_for_each_entry(page, &n->partial, lru)
1293 if (lock_and_freeze_slab(n, page))
1294 goto out;
1295 page = NULL;
1296 out:
1297 spin_unlock(&n->list_lock);
1298 return page;
1302 * Get a page from somewhere. Search in increasing NUMA distances.
1304 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1306 #ifdef CONFIG_NUMA
1307 struct zonelist *zonelist;
1308 struct zone **z;
1309 struct page *page;
1312 * The defrag ratio allows a configuration of the tradeoffs between
1313 * inter node defragmentation and node local allocations. A lower
1314 * defrag_ratio increases the tendency to do local allocations
1315 * instead of attempting to obtain partial slabs from other nodes.
1317 * If the defrag_ratio is set to 0 then kmalloc() always
1318 * returns node local objects. If the ratio is higher then kmalloc()
1319 * may return off node objects because partial slabs are obtained
1320 * from other nodes and filled up.
1322 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1323 * defrag_ratio = 1000) then every (well almost) allocation will
1324 * first attempt to defrag slab caches on other nodes. This means
1325 * scanning over all nodes to look for partial slabs which may be
1326 * expensive if we do it every time we are trying to find a slab
1327 * with available objects.
1329 if (!s->remote_node_defrag_ratio ||
1330 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1331 return NULL;
1333 zonelist = &NODE_DATA(
1334 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1335 for (z = zonelist->zones; *z; z++) {
1336 struct kmem_cache_node *n;
1338 n = get_node(s, zone_to_nid(*z));
1340 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1341 n->nr_partial > MIN_PARTIAL) {
1342 page = get_partial_node(n);
1343 if (page)
1344 return page;
1347 #endif
1348 return NULL;
1352 * Get a partial page, lock it and return it.
1354 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1356 struct page *page;
1357 int searchnode = (node == -1) ? numa_node_id() : node;
1359 page = get_partial_node(get_node(s, searchnode));
1360 if (page || (flags & __GFP_THISNODE))
1361 return page;
1363 return get_any_partial(s, flags);
1367 * Move a page back to the lists.
1369 * Must be called with the slab lock held.
1371 * On exit the slab lock will have been dropped.
1373 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1375 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1376 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1378 ClearSlabFrozen(page);
1379 if (page->inuse) {
1381 if (page->freelist != page->end) {
1382 add_partial(n, page, tail);
1383 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1384 } else {
1385 stat(c, DEACTIVATE_FULL);
1386 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1387 add_full(n, page);
1389 slab_unlock(page);
1390 } else {
1391 stat(c, DEACTIVATE_EMPTY);
1392 if (n->nr_partial < MIN_PARTIAL) {
1394 * Adding an empty slab to the partial slabs in order
1395 * to avoid page allocator overhead. This slab needs
1396 * to come after the other slabs with objects in
1397 * order to fill them up. That way the size of the
1398 * partial list stays small. kmem_cache_shrink can
1399 * reclaim empty slabs from the partial list.
1401 add_partial(n, page, 1);
1402 slab_unlock(page);
1403 } else {
1404 slab_unlock(page);
1405 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1406 discard_slab(s, page);
1412 * Remove the cpu slab
1414 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1416 struct page *page = c->page;
1417 int tail = 1;
1419 if (c->freelist)
1420 stat(c, DEACTIVATE_REMOTE_FREES);
1422 * Merge cpu freelist into freelist. Typically we get here
1423 * because both freelists are empty. So this is unlikely
1424 * to occur.
1426 * We need to use _is_end here because deactivate slab may
1427 * be called for a debug slab. Then c->freelist may contain
1428 * a dummy pointer.
1430 while (unlikely(!is_end(c->freelist))) {
1431 void **object;
1433 tail = 0; /* Hot objects. Put the slab first */
1435 /* Retrieve object from cpu_freelist */
1436 object = c->freelist;
1437 c->freelist = c->freelist[c->offset];
1439 /* And put onto the regular freelist */
1440 object[c->offset] = page->freelist;
1441 page->freelist = object;
1442 page->inuse--;
1444 c->page = NULL;
1445 unfreeze_slab(s, page, tail);
1448 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 stat(c, CPUSLAB_FLUSH);
1451 slab_lock(c->page);
1452 deactivate_slab(s, c);
1456 * Flush cpu slab.
1457 * Called from IPI handler with interrupts disabled.
1459 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1461 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1463 if (likely(c && c->page))
1464 flush_slab(s, c);
1467 static void flush_cpu_slab(void *d)
1469 struct kmem_cache *s = d;
1471 __flush_cpu_slab(s, smp_processor_id());
1474 static void flush_all(struct kmem_cache *s)
1476 #ifdef CONFIG_SMP
1477 on_each_cpu(flush_cpu_slab, s, 1, 1);
1478 #else
1479 unsigned long flags;
1481 local_irq_save(flags);
1482 flush_cpu_slab(s);
1483 local_irq_restore(flags);
1484 #endif
1488 * Check if the objects in a per cpu structure fit numa
1489 * locality expectations.
1491 static inline int node_match(struct kmem_cache_cpu *c, int node)
1493 #ifdef CONFIG_NUMA
1494 if (node != -1 && c->node != node)
1495 return 0;
1496 #endif
1497 return 1;
1501 * Slow path. The lockless freelist is empty or we need to perform
1502 * debugging duties.
1504 * Interrupts are disabled.
1506 * Processing is still very fast if new objects have been freed to the
1507 * regular freelist. In that case we simply take over the regular freelist
1508 * as the lockless freelist and zap the regular freelist.
1510 * If that is not working then we fall back to the partial lists. We take the
1511 * first element of the freelist as the object to allocate now and move the
1512 * rest of the freelist to the lockless freelist.
1514 * And if we were unable to get a new slab from the partial slab lists then
1515 * we need to allocate a new slab. This is slowest path since we may sleep.
1517 static void *__slab_alloc(struct kmem_cache *s,
1518 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1520 void **object;
1521 struct page *new;
1522 #ifdef SLUB_FASTPATH
1523 unsigned long flags;
1525 local_irq_save(flags);
1526 #endif
1527 if (!c->page)
1528 goto new_slab;
1530 slab_lock(c->page);
1531 if (unlikely(!node_match(c, node)))
1532 goto another_slab;
1533 stat(c, ALLOC_REFILL);
1534 load_freelist:
1535 object = c->page->freelist;
1536 if (unlikely(object == c->page->end))
1537 goto another_slab;
1538 if (unlikely(SlabDebug(c->page)))
1539 goto debug;
1541 object = c->page->freelist;
1542 c->freelist = object[c->offset];
1543 c->page->inuse = s->objects;
1544 c->page->freelist = c->page->end;
1545 c->node = page_to_nid(c->page);
1546 unlock_out:
1547 slab_unlock(c->page);
1548 stat(c, ALLOC_SLOWPATH);
1549 out:
1550 #ifdef SLUB_FASTPATH
1551 local_irq_restore(flags);
1552 #endif
1553 return object;
1555 another_slab:
1556 deactivate_slab(s, c);
1558 new_slab:
1559 new = get_partial(s, gfpflags, node);
1560 if (new) {
1561 c->page = new;
1562 stat(c, ALLOC_FROM_PARTIAL);
1563 goto load_freelist;
1566 if (gfpflags & __GFP_WAIT)
1567 local_irq_enable();
1569 new = new_slab(s, gfpflags, node);
1571 if (gfpflags & __GFP_WAIT)
1572 local_irq_disable();
1574 if (new) {
1575 c = get_cpu_slab(s, smp_processor_id());
1576 stat(c, ALLOC_SLAB);
1577 if (c->page)
1578 flush_slab(s, c);
1579 slab_lock(new);
1580 SetSlabFrozen(new);
1581 c->page = new;
1582 goto load_freelist;
1584 object = NULL;
1585 goto out;
1586 debug:
1587 object = c->page->freelist;
1588 if (!alloc_debug_processing(s, c->page, object, addr))
1589 goto another_slab;
1591 c->page->inuse++;
1592 c->page->freelist = object[c->offset];
1593 c->node = -1;
1594 goto unlock_out;
1598 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1599 * have the fastpath folded into their functions. So no function call
1600 * overhead for requests that can be satisfied on the fastpath.
1602 * The fastpath works by first checking if the lockless freelist can be used.
1603 * If not then __slab_alloc is called for slow processing.
1605 * Otherwise we can simply pick the next object from the lockless free list.
1607 static __always_inline void *slab_alloc(struct kmem_cache *s,
1608 gfp_t gfpflags, int node, void *addr)
1610 void **object;
1611 struct kmem_cache_cpu *c;
1614 * The SLUB_FASTPATH path is provisional and is currently disabled if the
1615 * kernel is compiled with preemption or if the arch does not support
1616 * fast cmpxchg operations. There are a couple of coming changes that will
1617 * simplify matters and allow preemption. Ultimately we may end up making
1618 * SLUB_FASTPATH the default.
1620 * 1. The introduction of the per cpu allocator will avoid array lookups
1621 * through get_cpu_slab(). A special register can be used instead.
1623 * 2. The introduction of per cpu atomic operations (cpu_ops) means that
1624 * we can realize the logic here entirely with per cpu atomics. The
1625 * per cpu atomic ops will take care of the preemption issues.
1628 #ifdef SLUB_FASTPATH
1629 c = get_cpu_slab(s, raw_smp_processor_id());
1630 do {
1631 object = c->freelist;
1632 if (unlikely(is_end(object) || !node_match(c, node))) {
1633 object = __slab_alloc(s, gfpflags, node, addr, c);
1634 break;
1636 stat(c, ALLOC_FASTPATH);
1637 } while (cmpxchg_local(&c->freelist, object, object[c->offset])
1638 != object);
1639 #else
1640 unsigned long flags;
1642 local_irq_save(flags);
1643 c = get_cpu_slab(s, smp_processor_id());
1644 if (unlikely(is_end(c->freelist) || !node_match(c, node)))
1646 object = __slab_alloc(s, gfpflags, node, addr, c);
1648 else {
1649 object = c->freelist;
1650 c->freelist = object[c->offset];
1651 stat(c, ALLOC_FASTPATH);
1653 local_irq_restore(flags);
1654 #endif
1656 if (unlikely((gfpflags & __GFP_ZERO) && object))
1657 memset(object, 0, c->objsize);
1659 return object;
1662 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1664 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1666 EXPORT_SYMBOL(kmem_cache_alloc);
1668 #ifdef CONFIG_NUMA
1669 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1671 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1673 EXPORT_SYMBOL(kmem_cache_alloc_node);
1674 #endif
1677 * Slow patch handling. This may still be called frequently since objects
1678 * have a longer lifetime than the cpu slabs in most processing loads.
1680 * So we still attempt to reduce cache line usage. Just take the slab
1681 * lock and free the item. If there is no additional partial page
1682 * handling required then we can return immediately.
1684 static void __slab_free(struct kmem_cache *s, struct page *page,
1685 void *x, void *addr, unsigned int offset)
1687 void *prior;
1688 void **object = (void *)x;
1689 struct kmem_cache_cpu *c;
1691 #ifdef SLUB_FASTPATH
1692 unsigned long flags;
1694 local_irq_save(flags);
1695 #endif
1696 c = get_cpu_slab(s, raw_smp_processor_id());
1697 stat(c, FREE_SLOWPATH);
1698 slab_lock(page);
1700 if (unlikely(SlabDebug(page)))
1701 goto debug;
1702 checks_ok:
1703 prior = object[offset] = page->freelist;
1704 page->freelist = object;
1705 page->inuse--;
1707 if (unlikely(SlabFrozen(page))) {
1708 stat(c, FREE_FROZEN);
1709 goto out_unlock;
1712 if (unlikely(!page->inuse))
1713 goto slab_empty;
1716 * Objects left in the slab. If it
1717 * was not on the partial list before
1718 * then add it.
1720 if (unlikely(prior == page->end)) {
1721 add_partial(get_node(s, page_to_nid(page)), page, 1);
1722 stat(c, FREE_ADD_PARTIAL);
1725 out_unlock:
1726 slab_unlock(page);
1727 #ifdef SLUB_FASTPATH
1728 local_irq_restore(flags);
1729 #endif
1730 return;
1732 slab_empty:
1733 if (prior != page->end) {
1735 * Slab still on the partial list.
1737 remove_partial(s, page);
1738 stat(c, FREE_REMOVE_PARTIAL);
1740 slab_unlock(page);
1741 stat(c, FREE_SLAB);
1742 #ifdef SLUB_FASTPATH
1743 local_irq_restore(flags);
1744 #endif
1745 discard_slab(s, page);
1746 return;
1748 debug:
1749 if (!free_debug_processing(s, page, x, addr))
1750 goto out_unlock;
1751 goto checks_ok;
1755 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1756 * can perform fastpath freeing without additional function calls.
1758 * The fastpath is only possible if we are freeing to the current cpu slab
1759 * of this processor. This typically the case if we have just allocated
1760 * the item before.
1762 * If fastpath is not possible then fall back to __slab_free where we deal
1763 * with all sorts of special processing.
1765 static __always_inline void slab_free(struct kmem_cache *s,
1766 struct page *page, void *x, void *addr)
1768 void **object = (void *)x;
1769 struct kmem_cache_cpu *c;
1771 #ifdef SLUB_FASTPATH
1772 void **freelist;
1774 c = get_cpu_slab(s, raw_smp_processor_id());
1775 debug_check_no_locks_freed(object, s->objsize);
1776 do {
1777 freelist = c->freelist;
1778 barrier();
1780 * If the compiler would reorder the retrieval of c->page to
1781 * come before c->freelist then an interrupt could
1782 * change the cpu slab before we retrieve c->freelist. We
1783 * could be matching on a page no longer active and put the
1784 * object onto the freelist of the wrong slab.
1786 * On the other hand: If we already have the freelist pointer
1787 * then any change of cpu_slab will cause the cmpxchg to fail
1788 * since the freelist pointers are unique per slab.
1790 if (unlikely(page != c->page || c->node < 0)) {
1791 __slab_free(s, page, x, addr, c->offset);
1792 break;
1794 object[c->offset] = freelist;
1795 stat(c, FREE_FASTPATH);
1796 } while (cmpxchg_local(&c->freelist, freelist, object) != freelist);
1797 #else
1798 unsigned long flags;
1800 local_irq_save(flags);
1801 debug_check_no_locks_freed(object, s->objsize);
1802 c = get_cpu_slab(s, smp_processor_id());
1803 if (likely(page == c->page && c->node >= 0)) {
1804 object[c->offset] = c->freelist;
1805 c->freelist = object;
1806 stat(c, FREE_FASTPATH);
1807 } else
1808 __slab_free(s, page, x, addr, c->offset);
1810 local_irq_restore(flags);
1811 #endif
1814 void kmem_cache_free(struct kmem_cache *s, void *x)
1816 struct page *page;
1818 page = virt_to_head_page(x);
1820 slab_free(s, page, x, __builtin_return_address(0));
1822 EXPORT_SYMBOL(kmem_cache_free);
1824 /* Figure out on which slab object the object resides */
1825 static struct page *get_object_page(const void *x)
1827 struct page *page = virt_to_head_page(x);
1829 if (!PageSlab(page))
1830 return NULL;
1832 return page;
1836 * Object placement in a slab is made very easy because we always start at
1837 * offset 0. If we tune the size of the object to the alignment then we can
1838 * get the required alignment by putting one properly sized object after
1839 * another.
1841 * Notice that the allocation order determines the sizes of the per cpu
1842 * caches. Each processor has always one slab available for allocations.
1843 * Increasing the allocation order reduces the number of times that slabs
1844 * must be moved on and off the partial lists and is therefore a factor in
1845 * locking overhead.
1849 * Mininum / Maximum order of slab pages. This influences locking overhead
1850 * and slab fragmentation. A higher order reduces the number of partial slabs
1851 * and increases the number of allocations possible without having to
1852 * take the list_lock.
1854 static int slub_min_order;
1855 static int slub_max_order = DEFAULT_MAX_ORDER;
1856 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1859 * Merge control. If this is set then no merging of slab caches will occur.
1860 * (Could be removed. This was introduced to pacify the merge skeptics.)
1862 static int slub_nomerge;
1865 * Calculate the order of allocation given an slab object size.
1867 * The order of allocation has significant impact on performance and other
1868 * system components. Generally order 0 allocations should be preferred since
1869 * order 0 does not cause fragmentation in the page allocator. Larger objects
1870 * be problematic to put into order 0 slabs because there may be too much
1871 * unused space left. We go to a higher order if more than 1/8th of the slab
1872 * would be wasted.
1874 * In order to reach satisfactory performance we must ensure that a minimum
1875 * number of objects is in one slab. Otherwise we may generate too much
1876 * activity on the partial lists which requires taking the list_lock. This is
1877 * less a concern for large slabs though which are rarely used.
1879 * slub_max_order specifies the order where we begin to stop considering the
1880 * number of objects in a slab as critical. If we reach slub_max_order then
1881 * we try to keep the page order as low as possible. So we accept more waste
1882 * of space in favor of a small page order.
1884 * Higher order allocations also allow the placement of more objects in a
1885 * slab and thereby reduce object handling overhead. If the user has
1886 * requested a higher mininum order then we start with that one instead of
1887 * the smallest order which will fit the object.
1889 static inline int slab_order(int size, int min_objects,
1890 int max_order, int fract_leftover)
1892 int order;
1893 int rem;
1894 int min_order = slub_min_order;
1896 for (order = max(min_order,
1897 fls(min_objects * size - 1) - PAGE_SHIFT);
1898 order <= max_order; order++) {
1900 unsigned long slab_size = PAGE_SIZE << order;
1902 if (slab_size < min_objects * size)
1903 continue;
1905 rem = slab_size % size;
1907 if (rem <= slab_size / fract_leftover)
1908 break;
1912 return order;
1915 static inline int calculate_order(int size)
1917 int order;
1918 int min_objects;
1919 int fraction;
1922 * Attempt to find best configuration for a slab. This
1923 * works by first attempting to generate a layout with
1924 * the best configuration and backing off gradually.
1926 * First we reduce the acceptable waste in a slab. Then
1927 * we reduce the minimum objects required in a slab.
1929 min_objects = slub_min_objects;
1930 while (min_objects > 1) {
1931 fraction = 8;
1932 while (fraction >= 4) {
1933 order = slab_order(size, min_objects,
1934 slub_max_order, fraction);
1935 if (order <= slub_max_order)
1936 return order;
1937 fraction /= 2;
1939 min_objects /= 2;
1943 * We were unable to place multiple objects in a slab. Now
1944 * lets see if we can place a single object there.
1946 order = slab_order(size, 1, slub_max_order, 1);
1947 if (order <= slub_max_order)
1948 return order;
1951 * Doh this slab cannot be placed using slub_max_order.
1953 order = slab_order(size, 1, MAX_ORDER, 1);
1954 if (order <= MAX_ORDER)
1955 return order;
1956 return -ENOSYS;
1960 * Figure out what the alignment of the objects will be.
1962 static unsigned long calculate_alignment(unsigned long flags,
1963 unsigned long align, unsigned long size)
1966 * If the user wants hardware cache aligned objects then
1967 * follow that suggestion if the object is sufficiently
1968 * large.
1970 * The hardware cache alignment cannot override the
1971 * specified alignment though. If that is greater
1972 * then use it.
1974 if ((flags & SLAB_HWCACHE_ALIGN) &&
1975 size > cache_line_size() / 2)
1976 return max_t(unsigned long, align, cache_line_size());
1978 if (align < ARCH_SLAB_MINALIGN)
1979 return ARCH_SLAB_MINALIGN;
1981 return ALIGN(align, sizeof(void *));
1984 static void init_kmem_cache_cpu(struct kmem_cache *s,
1985 struct kmem_cache_cpu *c)
1987 c->page = NULL;
1988 c->freelist = (void *)PAGE_MAPPING_ANON;
1989 c->node = 0;
1990 c->offset = s->offset / sizeof(void *);
1991 c->objsize = s->objsize;
1994 static void init_kmem_cache_node(struct kmem_cache_node *n)
1996 n->nr_partial = 0;
1997 atomic_long_set(&n->nr_slabs, 0);
1998 spin_lock_init(&n->list_lock);
1999 INIT_LIST_HEAD(&n->partial);
2000 #ifdef CONFIG_SLUB_DEBUG
2001 INIT_LIST_HEAD(&n->full);
2002 #endif
2005 #ifdef CONFIG_SMP
2007 * Per cpu array for per cpu structures.
2009 * The per cpu array places all kmem_cache_cpu structures from one processor
2010 * close together meaning that it becomes possible that multiple per cpu
2011 * structures are contained in one cacheline. This may be particularly
2012 * beneficial for the kmalloc caches.
2014 * A desktop system typically has around 60-80 slabs. With 100 here we are
2015 * likely able to get per cpu structures for all caches from the array defined
2016 * here. We must be able to cover all kmalloc caches during bootstrap.
2018 * If the per cpu array is exhausted then fall back to kmalloc
2019 * of individual cachelines. No sharing is possible then.
2021 #define NR_KMEM_CACHE_CPU 100
2023 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2024 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2026 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2027 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
2029 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2030 int cpu, gfp_t flags)
2032 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2034 if (c)
2035 per_cpu(kmem_cache_cpu_free, cpu) =
2036 (void *)c->freelist;
2037 else {
2038 /* Table overflow: So allocate ourselves */
2039 c = kmalloc_node(
2040 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2041 flags, cpu_to_node(cpu));
2042 if (!c)
2043 return NULL;
2046 init_kmem_cache_cpu(s, c);
2047 return c;
2050 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2052 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2053 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2054 kfree(c);
2055 return;
2057 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2058 per_cpu(kmem_cache_cpu_free, cpu) = c;
2061 static void free_kmem_cache_cpus(struct kmem_cache *s)
2063 int cpu;
2065 for_each_online_cpu(cpu) {
2066 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2068 if (c) {
2069 s->cpu_slab[cpu] = NULL;
2070 free_kmem_cache_cpu(c, cpu);
2075 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2077 int cpu;
2079 for_each_online_cpu(cpu) {
2080 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2082 if (c)
2083 continue;
2085 c = alloc_kmem_cache_cpu(s, cpu, flags);
2086 if (!c) {
2087 free_kmem_cache_cpus(s);
2088 return 0;
2090 s->cpu_slab[cpu] = c;
2092 return 1;
2096 * Initialize the per cpu array.
2098 static void init_alloc_cpu_cpu(int cpu)
2100 int i;
2102 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2103 return;
2105 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2106 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2108 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2111 static void __init init_alloc_cpu(void)
2113 int cpu;
2115 for_each_online_cpu(cpu)
2116 init_alloc_cpu_cpu(cpu);
2119 #else
2120 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2121 static inline void init_alloc_cpu(void) {}
2123 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2125 init_kmem_cache_cpu(s, &s->cpu_slab);
2126 return 1;
2128 #endif
2130 #ifdef CONFIG_NUMA
2132 * No kmalloc_node yet so do it by hand. We know that this is the first
2133 * slab on the node for this slabcache. There are no concurrent accesses
2134 * possible.
2136 * Note that this function only works on the kmalloc_node_cache
2137 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2138 * memory on a fresh node that has no slab structures yet.
2140 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2141 int node)
2143 struct page *page;
2144 struct kmem_cache_node *n;
2145 unsigned long flags;
2147 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2149 page = new_slab(kmalloc_caches, gfpflags, node);
2151 BUG_ON(!page);
2152 if (page_to_nid(page) != node) {
2153 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2154 "node %d\n", node);
2155 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2156 "in order to be able to continue\n");
2159 n = page->freelist;
2160 BUG_ON(!n);
2161 page->freelist = get_freepointer(kmalloc_caches, n);
2162 page->inuse++;
2163 kmalloc_caches->node[node] = n;
2164 #ifdef CONFIG_SLUB_DEBUG
2165 init_object(kmalloc_caches, n, 1);
2166 init_tracking(kmalloc_caches, n);
2167 #endif
2168 init_kmem_cache_node(n);
2169 atomic_long_inc(&n->nr_slabs);
2171 * lockdep requires consistent irq usage for each lock
2172 * so even though there cannot be a race this early in
2173 * the boot sequence, we still disable irqs.
2175 local_irq_save(flags);
2176 add_partial(n, page, 0);
2177 local_irq_restore(flags);
2178 return n;
2181 static void free_kmem_cache_nodes(struct kmem_cache *s)
2183 int node;
2185 for_each_node_state(node, N_NORMAL_MEMORY) {
2186 struct kmem_cache_node *n = s->node[node];
2187 if (n && n != &s->local_node)
2188 kmem_cache_free(kmalloc_caches, n);
2189 s->node[node] = NULL;
2193 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2195 int node;
2196 int local_node;
2198 if (slab_state >= UP)
2199 local_node = page_to_nid(virt_to_page(s));
2200 else
2201 local_node = 0;
2203 for_each_node_state(node, N_NORMAL_MEMORY) {
2204 struct kmem_cache_node *n;
2206 if (local_node == node)
2207 n = &s->local_node;
2208 else {
2209 if (slab_state == DOWN) {
2210 n = early_kmem_cache_node_alloc(gfpflags,
2211 node);
2212 continue;
2214 n = kmem_cache_alloc_node(kmalloc_caches,
2215 gfpflags, node);
2217 if (!n) {
2218 free_kmem_cache_nodes(s);
2219 return 0;
2223 s->node[node] = n;
2224 init_kmem_cache_node(n);
2226 return 1;
2228 #else
2229 static void free_kmem_cache_nodes(struct kmem_cache *s)
2233 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2235 init_kmem_cache_node(&s->local_node);
2236 return 1;
2238 #endif
2241 * calculate_sizes() determines the order and the distribution of data within
2242 * a slab object.
2244 static int calculate_sizes(struct kmem_cache *s)
2246 unsigned long flags = s->flags;
2247 unsigned long size = s->objsize;
2248 unsigned long align = s->align;
2251 * Determine if we can poison the object itself. If the user of
2252 * the slab may touch the object after free or before allocation
2253 * then we should never poison the object itself.
2255 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2256 !s->ctor)
2257 s->flags |= __OBJECT_POISON;
2258 else
2259 s->flags &= ~__OBJECT_POISON;
2262 * Round up object size to the next word boundary. We can only
2263 * place the free pointer at word boundaries and this determines
2264 * the possible location of the free pointer.
2266 size = ALIGN(size, sizeof(void *));
2268 #ifdef CONFIG_SLUB_DEBUG
2270 * If we are Redzoning then check if there is some space between the
2271 * end of the object and the free pointer. If not then add an
2272 * additional word to have some bytes to store Redzone information.
2274 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2275 size += sizeof(void *);
2276 #endif
2279 * With that we have determined the number of bytes in actual use
2280 * by the object. This is the potential offset to the free pointer.
2282 s->inuse = size;
2284 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2285 s->ctor)) {
2287 * Relocate free pointer after the object if it is not
2288 * permitted to overwrite the first word of the object on
2289 * kmem_cache_free.
2291 * This is the case if we do RCU, have a constructor or
2292 * destructor or are poisoning the objects.
2294 s->offset = size;
2295 size += sizeof(void *);
2298 #ifdef CONFIG_SLUB_DEBUG
2299 if (flags & SLAB_STORE_USER)
2301 * Need to store information about allocs and frees after
2302 * the object.
2304 size += 2 * sizeof(struct track);
2306 if (flags & SLAB_RED_ZONE)
2308 * Add some empty padding so that we can catch
2309 * overwrites from earlier objects rather than let
2310 * tracking information or the free pointer be
2311 * corrupted if an user writes before the start
2312 * of the object.
2314 size += sizeof(void *);
2315 #endif
2318 * Determine the alignment based on various parameters that the
2319 * user specified and the dynamic determination of cache line size
2320 * on bootup.
2322 align = calculate_alignment(flags, align, s->objsize);
2325 * SLUB stores one object immediately after another beginning from
2326 * offset 0. In order to align the objects we have to simply size
2327 * each object to conform to the alignment.
2329 size = ALIGN(size, align);
2330 s->size = size;
2332 s->order = calculate_order(size);
2333 if (s->order < 0)
2334 return 0;
2337 * Determine the number of objects per slab
2339 s->objects = (PAGE_SIZE << s->order) / size;
2341 return !!s->objects;
2345 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2346 const char *name, size_t size,
2347 size_t align, unsigned long flags,
2348 void (*ctor)(struct kmem_cache *, void *))
2350 memset(s, 0, kmem_size);
2351 s->name = name;
2352 s->ctor = ctor;
2353 s->objsize = size;
2354 s->align = align;
2355 s->flags = kmem_cache_flags(size, flags, name, ctor);
2357 if (!calculate_sizes(s))
2358 goto error;
2360 s->refcount = 1;
2361 #ifdef CONFIG_NUMA
2362 s->remote_node_defrag_ratio = 100;
2363 #endif
2364 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2365 goto error;
2367 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2368 return 1;
2369 free_kmem_cache_nodes(s);
2370 error:
2371 if (flags & SLAB_PANIC)
2372 panic("Cannot create slab %s size=%lu realsize=%u "
2373 "order=%u offset=%u flags=%lx\n",
2374 s->name, (unsigned long)size, s->size, s->order,
2375 s->offset, flags);
2376 return 0;
2380 * Check if a given pointer is valid
2382 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2384 struct page *page;
2386 page = get_object_page(object);
2388 if (!page || s != page->slab)
2389 /* No slab or wrong slab */
2390 return 0;
2392 if (!check_valid_pointer(s, page, object))
2393 return 0;
2396 * We could also check if the object is on the slabs freelist.
2397 * But this would be too expensive and it seems that the main
2398 * purpose of kmem_ptr_valid is to check if the object belongs
2399 * to a certain slab.
2401 return 1;
2403 EXPORT_SYMBOL(kmem_ptr_validate);
2406 * Determine the size of a slab object
2408 unsigned int kmem_cache_size(struct kmem_cache *s)
2410 return s->objsize;
2412 EXPORT_SYMBOL(kmem_cache_size);
2414 const char *kmem_cache_name(struct kmem_cache *s)
2416 return s->name;
2418 EXPORT_SYMBOL(kmem_cache_name);
2421 * Attempt to free all slabs on a node. Return the number of slabs we
2422 * were unable to free.
2424 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2425 struct list_head *list)
2427 int slabs_inuse = 0;
2428 unsigned long flags;
2429 struct page *page, *h;
2431 spin_lock_irqsave(&n->list_lock, flags);
2432 list_for_each_entry_safe(page, h, list, lru)
2433 if (!page->inuse) {
2434 list_del(&page->lru);
2435 discard_slab(s, page);
2436 } else
2437 slabs_inuse++;
2438 spin_unlock_irqrestore(&n->list_lock, flags);
2439 return slabs_inuse;
2443 * Release all resources used by a slab cache.
2445 static inline int kmem_cache_close(struct kmem_cache *s)
2447 int node;
2449 flush_all(s);
2451 /* Attempt to free all objects */
2452 free_kmem_cache_cpus(s);
2453 for_each_node_state(node, N_NORMAL_MEMORY) {
2454 struct kmem_cache_node *n = get_node(s, node);
2456 n->nr_partial -= free_list(s, n, &n->partial);
2457 if (atomic_long_read(&n->nr_slabs))
2458 return 1;
2460 free_kmem_cache_nodes(s);
2461 return 0;
2465 * Close a cache and release the kmem_cache structure
2466 * (must be used for caches created using kmem_cache_create)
2468 void kmem_cache_destroy(struct kmem_cache *s)
2470 down_write(&slub_lock);
2471 s->refcount--;
2472 if (!s->refcount) {
2473 list_del(&s->list);
2474 up_write(&slub_lock);
2475 if (kmem_cache_close(s))
2476 WARN_ON(1);
2477 sysfs_slab_remove(s);
2478 } else
2479 up_write(&slub_lock);
2481 EXPORT_SYMBOL(kmem_cache_destroy);
2483 /********************************************************************
2484 * Kmalloc subsystem
2485 *******************************************************************/
2487 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2488 EXPORT_SYMBOL(kmalloc_caches);
2490 #ifdef CONFIG_ZONE_DMA
2491 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2492 #endif
2494 static int __init setup_slub_min_order(char *str)
2496 get_option(&str, &slub_min_order);
2498 return 1;
2501 __setup("slub_min_order=", setup_slub_min_order);
2503 static int __init setup_slub_max_order(char *str)
2505 get_option(&str, &slub_max_order);
2507 return 1;
2510 __setup("slub_max_order=", setup_slub_max_order);
2512 static int __init setup_slub_min_objects(char *str)
2514 get_option(&str, &slub_min_objects);
2516 return 1;
2519 __setup("slub_min_objects=", setup_slub_min_objects);
2521 static int __init setup_slub_nomerge(char *str)
2523 slub_nomerge = 1;
2524 return 1;
2527 __setup("slub_nomerge", setup_slub_nomerge);
2529 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2530 const char *name, int size, gfp_t gfp_flags)
2532 unsigned int flags = 0;
2534 if (gfp_flags & SLUB_DMA)
2535 flags = SLAB_CACHE_DMA;
2537 down_write(&slub_lock);
2538 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2539 flags, NULL))
2540 goto panic;
2542 list_add(&s->list, &slab_caches);
2543 up_write(&slub_lock);
2544 if (sysfs_slab_add(s))
2545 goto panic;
2546 return s;
2548 panic:
2549 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2552 #ifdef CONFIG_ZONE_DMA
2554 static void sysfs_add_func(struct work_struct *w)
2556 struct kmem_cache *s;
2558 down_write(&slub_lock);
2559 list_for_each_entry(s, &slab_caches, list) {
2560 if (s->flags & __SYSFS_ADD_DEFERRED) {
2561 s->flags &= ~__SYSFS_ADD_DEFERRED;
2562 sysfs_slab_add(s);
2565 up_write(&slub_lock);
2568 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2570 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2572 struct kmem_cache *s;
2573 char *text;
2574 size_t realsize;
2576 s = kmalloc_caches_dma[index];
2577 if (s)
2578 return s;
2580 /* Dynamically create dma cache */
2581 if (flags & __GFP_WAIT)
2582 down_write(&slub_lock);
2583 else {
2584 if (!down_write_trylock(&slub_lock))
2585 goto out;
2588 if (kmalloc_caches_dma[index])
2589 goto unlock_out;
2591 realsize = kmalloc_caches[index].objsize;
2592 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2593 (unsigned int)realsize);
2594 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2596 if (!s || !text || !kmem_cache_open(s, flags, text,
2597 realsize, ARCH_KMALLOC_MINALIGN,
2598 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2599 kfree(s);
2600 kfree(text);
2601 goto unlock_out;
2604 list_add(&s->list, &slab_caches);
2605 kmalloc_caches_dma[index] = s;
2607 schedule_work(&sysfs_add_work);
2609 unlock_out:
2610 up_write(&slub_lock);
2611 out:
2612 return kmalloc_caches_dma[index];
2614 #endif
2617 * Conversion table for small slabs sizes / 8 to the index in the
2618 * kmalloc array. This is necessary for slabs < 192 since we have non power
2619 * of two cache sizes there. The size of larger slabs can be determined using
2620 * fls.
2622 static s8 size_index[24] = {
2623 3, /* 8 */
2624 4, /* 16 */
2625 5, /* 24 */
2626 5, /* 32 */
2627 6, /* 40 */
2628 6, /* 48 */
2629 6, /* 56 */
2630 6, /* 64 */
2631 1, /* 72 */
2632 1, /* 80 */
2633 1, /* 88 */
2634 1, /* 96 */
2635 7, /* 104 */
2636 7, /* 112 */
2637 7, /* 120 */
2638 7, /* 128 */
2639 2, /* 136 */
2640 2, /* 144 */
2641 2, /* 152 */
2642 2, /* 160 */
2643 2, /* 168 */
2644 2, /* 176 */
2645 2, /* 184 */
2646 2 /* 192 */
2649 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2651 int index;
2653 if (size <= 192) {
2654 if (!size)
2655 return ZERO_SIZE_PTR;
2657 index = size_index[(size - 1) / 8];
2658 } else
2659 index = fls(size - 1);
2661 #ifdef CONFIG_ZONE_DMA
2662 if (unlikely((flags & SLUB_DMA)))
2663 return dma_kmalloc_cache(index, flags);
2665 #endif
2666 return &kmalloc_caches[index];
2669 void *__kmalloc(size_t size, gfp_t flags)
2671 struct kmem_cache *s;
2673 if (unlikely(size > PAGE_SIZE / 2))
2674 return (void *)__get_free_pages(flags | __GFP_COMP,
2675 get_order(size));
2677 s = get_slab(size, flags);
2679 if (unlikely(ZERO_OR_NULL_PTR(s)))
2680 return s;
2682 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2684 EXPORT_SYMBOL(__kmalloc);
2686 #ifdef CONFIG_NUMA
2687 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2689 struct kmem_cache *s;
2691 if (unlikely(size > PAGE_SIZE / 2))
2692 return (void *)__get_free_pages(flags | __GFP_COMP,
2693 get_order(size));
2695 s = get_slab(size, flags);
2697 if (unlikely(ZERO_OR_NULL_PTR(s)))
2698 return s;
2700 return slab_alloc(s, flags, node, __builtin_return_address(0));
2702 EXPORT_SYMBOL(__kmalloc_node);
2703 #endif
2705 size_t ksize(const void *object)
2707 struct page *page;
2708 struct kmem_cache *s;
2710 BUG_ON(!object);
2711 if (unlikely(object == ZERO_SIZE_PTR))
2712 return 0;
2714 page = virt_to_head_page(object);
2715 BUG_ON(!page);
2717 if (unlikely(!PageSlab(page)))
2718 return PAGE_SIZE << compound_order(page);
2720 s = page->slab;
2721 BUG_ON(!s);
2724 * Debugging requires use of the padding between object
2725 * and whatever may come after it.
2727 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2728 return s->objsize;
2731 * If we have the need to store the freelist pointer
2732 * back there or track user information then we can
2733 * only use the space before that information.
2735 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2736 return s->inuse;
2739 * Else we can use all the padding etc for the allocation
2741 return s->size;
2743 EXPORT_SYMBOL(ksize);
2745 void kfree(const void *x)
2747 struct page *page;
2748 void *object = (void *)x;
2750 if (unlikely(ZERO_OR_NULL_PTR(x)))
2751 return;
2753 page = virt_to_head_page(x);
2754 if (unlikely(!PageSlab(page))) {
2755 put_page(page);
2756 return;
2758 slab_free(page->slab, page, object, __builtin_return_address(0));
2760 EXPORT_SYMBOL(kfree);
2762 static unsigned long count_partial(struct kmem_cache_node *n)
2764 unsigned long flags;
2765 unsigned long x = 0;
2766 struct page *page;
2768 spin_lock_irqsave(&n->list_lock, flags);
2769 list_for_each_entry(page, &n->partial, lru)
2770 x += page->inuse;
2771 spin_unlock_irqrestore(&n->list_lock, flags);
2772 return x;
2776 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2777 * the remaining slabs by the number of items in use. The slabs with the
2778 * most items in use come first. New allocations will then fill those up
2779 * and thus they can be removed from the partial lists.
2781 * The slabs with the least items are placed last. This results in them
2782 * being allocated from last increasing the chance that the last objects
2783 * are freed in them.
2785 int kmem_cache_shrink(struct kmem_cache *s)
2787 int node;
2788 int i;
2789 struct kmem_cache_node *n;
2790 struct page *page;
2791 struct page *t;
2792 struct list_head *slabs_by_inuse =
2793 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2794 unsigned long flags;
2796 if (!slabs_by_inuse)
2797 return -ENOMEM;
2799 flush_all(s);
2800 for_each_node_state(node, N_NORMAL_MEMORY) {
2801 n = get_node(s, node);
2803 if (!n->nr_partial)
2804 continue;
2806 for (i = 0; i < s->objects; i++)
2807 INIT_LIST_HEAD(slabs_by_inuse + i);
2809 spin_lock_irqsave(&n->list_lock, flags);
2812 * Build lists indexed by the items in use in each slab.
2814 * Note that concurrent frees may occur while we hold the
2815 * list_lock. page->inuse here is the upper limit.
2817 list_for_each_entry_safe(page, t, &n->partial, lru) {
2818 if (!page->inuse && slab_trylock(page)) {
2820 * Must hold slab lock here because slab_free
2821 * may have freed the last object and be
2822 * waiting to release the slab.
2824 list_del(&page->lru);
2825 n->nr_partial--;
2826 slab_unlock(page);
2827 discard_slab(s, page);
2828 } else {
2829 list_move(&page->lru,
2830 slabs_by_inuse + page->inuse);
2835 * Rebuild the partial list with the slabs filled up most
2836 * first and the least used slabs at the end.
2838 for (i = s->objects - 1; i >= 0; i--)
2839 list_splice(slabs_by_inuse + i, n->partial.prev);
2841 spin_unlock_irqrestore(&n->list_lock, flags);
2844 kfree(slabs_by_inuse);
2845 return 0;
2847 EXPORT_SYMBOL(kmem_cache_shrink);
2849 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2850 static int slab_mem_going_offline_callback(void *arg)
2852 struct kmem_cache *s;
2854 down_read(&slub_lock);
2855 list_for_each_entry(s, &slab_caches, list)
2856 kmem_cache_shrink(s);
2857 up_read(&slub_lock);
2859 return 0;
2862 static void slab_mem_offline_callback(void *arg)
2864 struct kmem_cache_node *n;
2865 struct kmem_cache *s;
2866 struct memory_notify *marg = arg;
2867 int offline_node;
2869 offline_node = marg->status_change_nid;
2872 * If the node still has available memory. we need kmem_cache_node
2873 * for it yet.
2875 if (offline_node < 0)
2876 return;
2878 down_read(&slub_lock);
2879 list_for_each_entry(s, &slab_caches, list) {
2880 n = get_node(s, offline_node);
2881 if (n) {
2883 * if n->nr_slabs > 0, slabs still exist on the node
2884 * that is going down. We were unable to free them,
2885 * and offline_pages() function shoudn't call this
2886 * callback. So, we must fail.
2888 BUG_ON(atomic_long_read(&n->nr_slabs));
2890 s->node[offline_node] = NULL;
2891 kmem_cache_free(kmalloc_caches, n);
2894 up_read(&slub_lock);
2897 static int slab_mem_going_online_callback(void *arg)
2899 struct kmem_cache_node *n;
2900 struct kmem_cache *s;
2901 struct memory_notify *marg = arg;
2902 int nid = marg->status_change_nid;
2903 int ret = 0;
2906 * If the node's memory is already available, then kmem_cache_node is
2907 * already created. Nothing to do.
2909 if (nid < 0)
2910 return 0;
2913 * We are bringing a node online. No memory is availabe yet. We must
2914 * allocate a kmem_cache_node structure in order to bring the node
2915 * online.
2917 down_read(&slub_lock);
2918 list_for_each_entry(s, &slab_caches, list) {
2920 * XXX: kmem_cache_alloc_node will fallback to other nodes
2921 * since memory is not yet available from the node that
2922 * is brought up.
2924 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2925 if (!n) {
2926 ret = -ENOMEM;
2927 goto out;
2929 init_kmem_cache_node(n);
2930 s->node[nid] = n;
2932 out:
2933 up_read(&slub_lock);
2934 return ret;
2937 static int slab_memory_callback(struct notifier_block *self,
2938 unsigned long action, void *arg)
2940 int ret = 0;
2942 switch (action) {
2943 case MEM_GOING_ONLINE:
2944 ret = slab_mem_going_online_callback(arg);
2945 break;
2946 case MEM_GOING_OFFLINE:
2947 ret = slab_mem_going_offline_callback(arg);
2948 break;
2949 case MEM_OFFLINE:
2950 case MEM_CANCEL_ONLINE:
2951 slab_mem_offline_callback(arg);
2952 break;
2953 case MEM_ONLINE:
2954 case MEM_CANCEL_OFFLINE:
2955 break;
2958 ret = notifier_from_errno(ret);
2959 return ret;
2962 #endif /* CONFIG_MEMORY_HOTPLUG */
2964 /********************************************************************
2965 * Basic setup of slabs
2966 *******************************************************************/
2968 void __init kmem_cache_init(void)
2970 int i;
2971 int caches = 0;
2973 init_alloc_cpu();
2975 #ifdef CONFIG_NUMA
2977 * Must first have the slab cache available for the allocations of the
2978 * struct kmem_cache_node's. There is special bootstrap code in
2979 * kmem_cache_open for slab_state == DOWN.
2981 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2982 sizeof(struct kmem_cache_node), GFP_KERNEL);
2983 kmalloc_caches[0].refcount = -1;
2984 caches++;
2986 hotplug_memory_notifier(slab_memory_callback, 1);
2987 #endif
2989 /* Able to allocate the per node structures */
2990 slab_state = PARTIAL;
2992 /* Caches that are not of the two-to-the-power-of size */
2993 if (KMALLOC_MIN_SIZE <= 64) {
2994 create_kmalloc_cache(&kmalloc_caches[1],
2995 "kmalloc-96", 96, GFP_KERNEL);
2996 caches++;
2998 if (KMALLOC_MIN_SIZE <= 128) {
2999 create_kmalloc_cache(&kmalloc_caches[2],
3000 "kmalloc-192", 192, GFP_KERNEL);
3001 caches++;
3004 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
3005 create_kmalloc_cache(&kmalloc_caches[i],
3006 "kmalloc", 1 << i, GFP_KERNEL);
3007 caches++;
3012 * Patch up the size_index table if we have strange large alignment
3013 * requirements for the kmalloc array. This is only the case for
3014 * mips it seems. The standard arches will not generate any code here.
3016 * Largest permitted alignment is 256 bytes due to the way we
3017 * handle the index determination for the smaller caches.
3019 * Make sure that nothing crazy happens if someone starts tinkering
3020 * around with ARCH_KMALLOC_MINALIGN
3022 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3023 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3025 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3026 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3028 slab_state = UP;
3030 /* Provide the correct kmalloc names now that the caches are up */
3031 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
3032 kmalloc_caches[i]. name =
3033 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3035 #ifdef CONFIG_SMP
3036 register_cpu_notifier(&slab_notifier);
3037 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3038 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3039 #else
3040 kmem_size = sizeof(struct kmem_cache);
3041 #endif
3044 printk(KERN_INFO
3045 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3046 " CPUs=%d, Nodes=%d\n",
3047 caches, cache_line_size(),
3048 slub_min_order, slub_max_order, slub_min_objects,
3049 nr_cpu_ids, nr_node_ids);
3053 * Find a mergeable slab cache
3055 static int slab_unmergeable(struct kmem_cache *s)
3057 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3058 return 1;
3060 if (s->ctor)
3061 return 1;
3064 * We may have set a slab to be unmergeable during bootstrap.
3066 if (s->refcount < 0)
3067 return 1;
3069 return 0;
3072 static struct kmem_cache *find_mergeable(size_t size,
3073 size_t align, unsigned long flags, const char *name,
3074 void (*ctor)(struct kmem_cache *, void *))
3076 struct kmem_cache *s;
3078 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3079 return NULL;
3081 if (ctor)
3082 return NULL;
3084 size = ALIGN(size, sizeof(void *));
3085 align = calculate_alignment(flags, align, size);
3086 size = ALIGN(size, align);
3087 flags = kmem_cache_flags(size, flags, name, NULL);
3089 list_for_each_entry(s, &slab_caches, list) {
3090 if (slab_unmergeable(s))
3091 continue;
3093 if (size > s->size)
3094 continue;
3096 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3097 continue;
3099 * Check if alignment is compatible.
3100 * Courtesy of Adrian Drzewiecki
3102 if ((s->size & ~(align - 1)) != s->size)
3103 continue;
3105 if (s->size - size >= sizeof(void *))
3106 continue;
3108 return s;
3110 return NULL;
3113 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3114 size_t align, unsigned long flags,
3115 void (*ctor)(struct kmem_cache *, void *))
3117 struct kmem_cache *s;
3119 down_write(&slub_lock);
3120 s = find_mergeable(size, align, flags, name, ctor);
3121 if (s) {
3122 int cpu;
3124 s->refcount++;
3126 * Adjust the object sizes so that we clear
3127 * the complete object on kzalloc.
3129 s->objsize = max(s->objsize, (int)size);
3132 * And then we need to update the object size in the
3133 * per cpu structures
3135 for_each_online_cpu(cpu)
3136 get_cpu_slab(s, cpu)->objsize = s->objsize;
3137 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3138 up_write(&slub_lock);
3139 if (sysfs_slab_alias(s, name))
3140 goto err;
3141 return s;
3143 s = kmalloc(kmem_size, GFP_KERNEL);
3144 if (s) {
3145 if (kmem_cache_open(s, GFP_KERNEL, name,
3146 size, align, flags, ctor)) {
3147 list_add(&s->list, &slab_caches);
3148 up_write(&slub_lock);
3149 if (sysfs_slab_add(s))
3150 goto err;
3151 return s;
3153 kfree(s);
3155 up_write(&slub_lock);
3157 err:
3158 if (flags & SLAB_PANIC)
3159 panic("Cannot create slabcache %s\n", name);
3160 else
3161 s = NULL;
3162 return s;
3164 EXPORT_SYMBOL(kmem_cache_create);
3166 #ifdef CONFIG_SMP
3168 * Use the cpu notifier to insure that the cpu slabs are flushed when
3169 * necessary.
3171 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3172 unsigned long action, void *hcpu)
3174 long cpu = (long)hcpu;
3175 struct kmem_cache *s;
3176 unsigned long flags;
3178 switch (action) {
3179 case CPU_UP_PREPARE:
3180 case CPU_UP_PREPARE_FROZEN:
3181 init_alloc_cpu_cpu(cpu);
3182 down_read(&slub_lock);
3183 list_for_each_entry(s, &slab_caches, list)
3184 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3185 GFP_KERNEL);
3186 up_read(&slub_lock);
3187 break;
3189 case CPU_UP_CANCELED:
3190 case CPU_UP_CANCELED_FROZEN:
3191 case CPU_DEAD:
3192 case CPU_DEAD_FROZEN:
3193 down_read(&slub_lock);
3194 list_for_each_entry(s, &slab_caches, list) {
3195 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3197 local_irq_save(flags);
3198 __flush_cpu_slab(s, cpu);
3199 local_irq_restore(flags);
3200 free_kmem_cache_cpu(c, cpu);
3201 s->cpu_slab[cpu] = NULL;
3203 up_read(&slub_lock);
3204 break;
3205 default:
3206 break;
3208 return NOTIFY_OK;
3211 static struct notifier_block __cpuinitdata slab_notifier = {
3212 .notifier_call = slab_cpuup_callback
3215 #endif
3217 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3219 struct kmem_cache *s;
3221 if (unlikely(size > PAGE_SIZE / 2))
3222 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3223 get_order(size));
3224 s = get_slab(size, gfpflags);
3226 if (unlikely(ZERO_OR_NULL_PTR(s)))
3227 return s;
3229 return slab_alloc(s, gfpflags, -1, caller);
3232 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3233 int node, void *caller)
3235 struct kmem_cache *s;
3237 if (unlikely(size > PAGE_SIZE / 2))
3238 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3239 get_order(size));
3240 s = get_slab(size, gfpflags);
3242 if (unlikely(ZERO_OR_NULL_PTR(s)))
3243 return s;
3245 return slab_alloc(s, gfpflags, node, caller);
3248 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3249 static int validate_slab(struct kmem_cache *s, struct page *page,
3250 unsigned long *map)
3252 void *p;
3253 void *addr = slab_address(page);
3255 if (!check_slab(s, page) ||
3256 !on_freelist(s, page, NULL))
3257 return 0;
3259 /* Now we know that a valid freelist exists */
3260 bitmap_zero(map, s->objects);
3262 for_each_free_object(p, s, page->freelist) {
3263 set_bit(slab_index(p, s, addr), map);
3264 if (!check_object(s, page, p, 0))
3265 return 0;
3268 for_each_object(p, s, addr)
3269 if (!test_bit(slab_index(p, s, addr), map))
3270 if (!check_object(s, page, p, 1))
3271 return 0;
3272 return 1;
3275 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3276 unsigned long *map)
3278 if (slab_trylock(page)) {
3279 validate_slab(s, page, map);
3280 slab_unlock(page);
3281 } else
3282 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3283 s->name, page);
3285 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3286 if (!SlabDebug(page))
3287 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3288 "on slab 0x%p\n", s->name, page);
3289 } else {
3290 if (SlabDebug(page))
3291 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3292 "slab 0x%p\n", s->name, page);
3296 static int validate_slab_node(struct kmem_cache *s,
3297 struct kmem_cache_node *n, unsigned long *map)
3299 unsigned long count = 0;
3300 struct page *page;
3301 unsigned long flags;
3303 spin_lock_irqsave(&n->list_lock, flags);
3305 list_for_each_entry(page, &n->partial, lru) {
3306 validate_slab_slab(s, page, map);
3307 count++;
3309 if (count != n->nr_partial)
3310 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3311 "counter=%ld\n", s->name, count, n->nr_partial);
3313 if (!(s->flags & SLAB_STORE_USER))
3314 goto out;
3316 list_for_each_entry(page, &n->full, lru) {
3317 validate_slab_slab(s, page, map);
3318 count++;
3320 if (count != atomic_long_read(&n->nr_slabs))
3321 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3322 "counter=%ld\n", s->name, count,
3323 atomic_long_read(&n->nr_slabs));
3325 out:
3326 spin_unlock_irqrestore(&n->list_lock, flags);
3327 return count;
3330 static long validate_slab_cache(struct kmem_cache *s)
3332 int node;
3333 unsigned long count = 0;
3334 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3335 sizeof(unsigned long), GFP_KERNEL);
3337 if (!map)
3338 return -ENOMEM;
3340 flush_all(s);
3341 for_each_node_state(node, N_NORMAL_MEMORY) {
3342 struct kmem_cache_node *n = get_node(s, node);
3344 count += validate_slab_node(s, n, map);
3346 kfree(map);
3347 return count;
3350 #ifdef SLUB_RESILIENCY_TEST
3351 static void resiliency_test(void)
3353 u8 *p;
3355 printk(KERN_ERR "SLUB resiliency testing\n");
3356 printk(KERN_ERR "-----------------------\n");
3357 printk(KERN_ERR "A. Corruption after allocation\n");
3359 p = kzalloc(16, GFP_KERNEL);
3360 p[16] = 0x12;
3361 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3362 " 0x12->0x%p\n\n", p + 16);
3364 validate_slab_cache(kmalloc_caches + 4);
3366 /* Hmmm... The next two are dangerous */
3367 p = kzalloc(32, GFP_KERNEL);
3368 p[32 + sizeof(void *)] = 0x34;
3369 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3370 " 0x34 -> -0x%p\n", p);
3371 printk(KERN_ERR
3372 "If allocated object is overwritten then not detectable\n\n");
3374 validate_slab_cache(kmalloc_caches + 5);
3375 p = kzalloc(64, GFP_KERNEL);
3376 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3377 *p = 0x56;
3378 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3380 printk(KERN_ERR
3381 "If allocated object is overwritten then not detectable\n\n");
3382 validate_slab_cache(kmalloc_caches + 6);
3384 printk(KERN_ERR "\nB. Corruption after free\n");
3385 p = kzalloc(128, GFP_KERNEL);
3386 kfree(p);
3387 *p = 0x78;
3388 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3389 validate_slab_cache(kmalloc_caches + 7);
3391 p = kzalloc(256, GFP_KERNEL);
3392 kfree(p);
3393 p[50] = 0x9a;
3394 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3396 validate_slab_cache(kmalloc_caches + 8);
3398 p = kzalloc(512, GFP_KERNEL);
3399 kfree(p);
3400 p[512] = 0xab;
3401 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3402 validate_slab_cache(kmalloc_caches + 9);
3404 #else
3405 static void resiliency_test(void) {};
3406 #endif
3409 * Generate lists of code addresses where slabcache objects are allocated
3410 * and freed.
3413 struct location {
3414 unsigned long count;
3415 void *addr;
3416 long long sum_time;
3417 long min_time;
3418 long max_time;
3419 long min_pid;
3420 long max_pid;
3421 cpumask_t cpus;
3422 nodemask_t nodes;
3425 struct loc_track {
3426 unsigned long max;
3427 unsigned long count;
3428 struct location *loc;
3431 static void free_loc_track(struct loc_track *t)
3433 if (t->max)
3434 free_pages((unsigned long)t->loc,
3435 get_order(sizeof(struct location) * t->max));
3438 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3440 struct location *l;
3441 int order;
3443 order = get_order(sizeof(struct location) * max);
3445 l = (void *)__get_free_pages(flags, order);
3446 if (!l)
3447 return 0;
3449 if (t->count) {
3450 memcpy(l, t->loc, sizeof(struct location) * t->count);
3451 free_loc_track(t);
3453 t->max = max;
3454 t->loc = l;
3455 return 1;
3458 static int add_location(struct loc_track *t, struct kmem_cache *s,
3459 const struct track *track)
3461 long start, end, pos;
3462 struct location *l;
3463 void *caddr;
3464 unsigned long age = jiffies - track->when;
3466 start = -1;
3467 end = t->count;
3469 for ( ; ; ) {
3470 pos = start + (end - start + 1) / 2;
3473 * There is nothing at "end". If we end up there
3474 * we need to add something to before end.
3476 if (pos == end)
3477 break;
3479 caddr = t->loc[pos].addr;
3480 if (track->addr == caddr) {
3482 l = &t->loc[pos];
3483 l->count++;
3484 if (track->when) {
3485 l->sum_time += age;
3486 if (age < l->min_time)
3487 l->min_time = age;
3488 if (age > l->max_time)
3489 l->max_time = age;
3491 if (track->pid < l->min_pid)
3492 l->min_pid = track->pid;
3493 if (track->pid > l->max_pid)
3494 l->max_pid = track->pid;
3496 cpu_set(track->cpu, l->cpus);
3498 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3499 return 1;
3502 if (track->addr < caddr)
3503 end = pos;
3504 else
3505 start = pos;
3509 * Not found. Insert new tracking element.
3511 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3512 return 0;
3514 l = t->loc + pos;
3515 if (pos < t->count)
3516 memmove(l + 1, l,
3517 (t->count - pos) * sizeof(struct location));
3518 t->count++;
3519 l->count = 1;
3520 l->addr = track->addr;
3521 l->sum_time = age;
3522 l->min_time = age;
3523 l->max_time = age;
3524 l->min_pid = track->pid;
3525 l->max_pid = track->pid;
3526 cpus_clear(l->cpus);
3527 cpu_set(track->cpu, l->cpus);
3528 nodes_clear(l->nodes);
3529 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3530 return 1;
3533 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3534 struct page *page, enum track_item alloc)
3536 void *addr = slab_address(page);
3537 DECLARE_BITMAP(map, s->objects);
3538 void *p;
3540 bitmap_zero(map, s->objects);
3541 for_each_free_object(p, s, page->freelist)
3542 set_bit(slab_index(p, s, addr), map);
3544 for_each_object(p, s, addr)
3545 if (!test_bit(slab_index(p, s, addr), map))
3546 add_location(t, s, get_track(s, p, alloc));
3549 static int list_locations(struct kmem_cache *s, char *buf,
3550 enum track_item alloc)
3552 int len = 0;
3553 unsigned long i;
3554 struct loc_track t = { 0, 0, NULL };
3555 int node;
3557 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3558 GFP_TEMPORARY))
3559 return sprintf(buf, "Out of memory\n");
3561 /* Push back cpu slabs */
3562 flush_all(s);
3564 for_each_node_state(node, N_NORMAL_MEMORY) {
3565 struct kmem_cache_node *n = get_node(s, node);
3566 unsigned long flags;
3567 struct page *page;
3569 if (!atomic_long_read(&n->nr_slabs))
3570 continue;
3572 spin_lock_irqsave(&n->list_lock, flags);
3573 list_for_each_entry(page, &n->partial, lru)
3574 process_slab(&t, s, page, alloc);
3575 list_for_each_entry(page, &n->full, lru)
3576 process_slab(&t, s, page, alloc);
3577 spin_unlock_irqrestore(&n->list_lock, flags);
3580 for (i = 0; i < t.count; i++) {
3581 struct location *l = &t.loc[i];
3583 if (len > PAGE_SIZE - 100)
3584 break;
3585 len += sprintf(buf + len, "%7ld ", l->count);
3587 if (l->addr)
3588 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3589 else
3590 len += sprintf(buf + len, "<not-available>");
3592 if (l->sum_time != l->min_time) {
3593 unsigned long remainder;
3595 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3596 l->min_time,
3597 div_long_long_rem(l->sum_time, l->count, &remainder),
3598 l->max_time);
3599 } else
3600 len += sprintf(buf + len, " age=%ld",
3601 l->min_time);
3603 if (l->min_pid != l->max_pid)
3604 len += sprintf(buf + len, " pid=%ld-%ld",
3605 l->min_pid, l->max_pid);
3606 else
3607 len += sprintf(buf + len, " pid=%ld",
3608 l->min_pid);
3610 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3611 len < PAGE_SIZE - 60) {
3612 len += sprintf(buf + len, " cpus=");
3613 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3614 l->cpus);
3617 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3618 len < PAGE_SIZE - 60) {
3619 len += sprintf(buf + len, " nodes=");
3620 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3621 l->nodes);
3624 len += sprintf(buf + len, "\n");
3627 free_loc_track(&t);
3628 if (!t.count)
3629 len += sprintf(buf, "No data\n");
3630 return len;
3633 enum slab_stat_type {
3634 SL_FULL,
3635 SL_PARTIAL,
3636 SL_CPU,
3637 SL_OBJECTS
3640 #define SO_FULL (1 << SL_FULL)
3641 #define SO_PARTIAL (1 << SL_PARTIAL)
3642 #define SO_CPU (1 << SL_CPU)
3643 #define SO_OBJECTS (1 << SL_OBJECTS)
3645 static unsigned long slab_objects(struct kmem_cache *s,
3646 char *buf, unsigned long flags)
3648 unsigned long total = 0;
3649 int cpu;
3650 int node;
3651 int x;
3652 unsigned long *nodes;
3653 unsigned long *per_cpu;
3655 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3656 per_cpu = nodes + nr_node_ids;
3658 for_each_possible_cpu(cpu) {
3659 struct page *page;
3660 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3662 if (!c)
3663 continue;
3665 page = c->page;
3666 node = c->node;
3667 if (node < 0)
3668 continue;
3669 if (page) {
3670 if (flags & SO_CPU) {
3671 if (flags & SO_OBJECTS)
3672 x = page->inuse;
3673 else
3674 x = 1;
3675 total += x;
3676 nodes[node] += x;
3678 per_cpu[node]++;
3682 for_each_node_state(node, N_NORMAL_MEMORY) {
3683 struct kmem_cache_node *n = get_node(s, node);
3685 if (flags & SO_PARTIAL) {
3686 if (flags & SO_OBJECTS)
3687 x = count_partial(n);
3688 else
3689 x = n->nr_partial;
3690 total += x;
3691 nodes[node] += x;
3694 if (flags & SO_FULL) {
3695 int full_slabs = atomic_long_read(&n->nr_slabs)
3696 - per_cpu[node]
3697 - n->nr_partial;
3699 if (flags & SO_OBJECTS)
3700 x = full_slabs * s->objects;
3701 else
3702 x = full_slabs;
3703 total += x;
3704 nodes[node] += x;
3708 x = sprintf(buf, "%lu", total);
3709 #ifdef CONFIG_NUMA
3710 for_each_node_state(node, N_NORMAL_MEMORY)
3711 if (nodes[node])
3712 x += sprintf(buf + x, " N%d=%lu",
3713 node, nodes[node]);
3714 #endif
3715 kfree(nodes);
3716 return x + sprintf(buf + x, "\n");
3719 static int any_slab_objects(struct kmem_cache *s)
3721 int node;
3722 int cpu;
3724 for_each_possible_cpu(cpu) {
3725 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3727 if (c && c->page)
3728 return 1;
3731 for_each_online_node(node) {
3732 struct kmem_cache_node *n = get_node(s, node);
3734 if (!n)
3735 continue;
3737 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3738 return 1;
3740 return 0;
3743 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3744 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3746 struct slab_attribute {
3747 struct attribute attr;
3748 ssize_t (*show)(struct kmem_cache *s, char *buf);
3749 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3752 #define SLAB_ATTR_RO(_name) \
3753 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3755 #define SLAB_ATTR(_name) \
3756 static struct slab_attribute _name##_attr = \
3757 __ATTR(_name, 0644, _name##_show, _name##_store)
3759 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3761 return sprintf(buf, "%d\n", s->size);
3763 SLAB_ATTR_RO(slab_size);
3765 static ssize_t align_show(struct kmem_cache *s, char *buf)
3767 return sprintf(buf, "%d\n", s->align);
3769 SLAB_ATTR_RO(align);
3771 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3773 return sprintf(buf, "%d\n", s->objsize);
3775 SLAB_ATTR_RO(object_size);
3777 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3779 return sprintf(buf, "%d\n", s->objects);
3781 SLAB_ATTR_RO(objs_per_slab);
3783 static ssize_t order_show(struct kmem_cache *s, char *buf)
3785 return sprintf(buf, "%d\n", s->order);
3787 SLAB_ATTR_RO(order);
3789 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3791 if (s->ctor) {
3792 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3794 return n + sprintf(buf + n, "\n");
3796 return 0;
3798 SLAB_ATTR_RO(ctor);
3800 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3802 return sprintf(buf, "%d\n", s->refcount - 1);
3804 SLAB_ATTR_RO(aliases);
3806 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3808 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3810 SLAB_ATTR_RO(slabs);
3812 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3814 return slab_objects(s, buf, SO_PARTIAL);
3816 SLAB_ATTR_RO(partial);
3818 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3820 return slab_objects(s, buf, SO_CPU);
3822 SLAB_ATTR_RO(cpu_slabs);
3824 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3826 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3828 SLAB_ATTR_RO(objects);
3830 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3832 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3835 static ssize_t sanity_checks_store(struct kmem_cache *s,
3836 const char *buf, size_t length)
3838 s->flags &= ~SLAB_DEBUG_FREE;
3839 if (buf[0] == '1')
3840 s->flags |= SLAB_DEBUG_FREE;
3841 return length;
3843 SLAB_ATTR(sanity_checks);
3845 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3847 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3850 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3851 size_t length)
3853 s->flags &= ~SLAB_TRACE;
3854 if (buf[0] == '1')
3855 s->flags |= SLAB_TRACE;
3856 return length;
3858 SLAB_ATTR(trace);
3860 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3862 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3865 static ssize_t reclaim_account_store(struct kmem_cache *s,
3866 const char *buf, size_t length)
3868 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3869 if (buf[0] == '1')
3870 s->flags |= SLAB_RECLAIM_ACCOUNT;
3871 return length;
3873 SLAB_ATTR(reclaim_account);
3875 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3877 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3879 SLAB_ATTR_RO(hwcache_align);
3881 #ifdef CONFIG_ZONE_DMA
3882 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3884 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3886 SLAB_ATTR_RO(cache_dma);
3887 #endif
3889 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3891 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3893 SLAB_ATTR_RO(destroy_by_rcu);
3895 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3897 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3900 static ssize_t red_zone_store(struct kmem_cache *s,
3901 const char *buf, size_t length)
3903 if (any_slab_objects(s))
3904 return -EBUSY;
3906 s->flags &= ~SLAB_RED_ZONE;
3907 if (buf[0] == '1')
3908 s->flags |= SLAB_RED_ZONE;
3909 calculate_sizes(s);
3910 return length;
3912 SLAB_ATTR(red_zone);
3914 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3916 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3919 static ssize_t poison_store(struct kmem_cache *s,
3920 const char *buf, size_t length)
3922 if (any_slab_objects(s))
3923 return -EBUSY;
3925 s->flags &= ~SLAB_POISON;
3926 if (buf[0] == '1')
3927 s->flags |= SLAB_POISON;
3928 calculate_sizes(s);
3929 return length;
3931 SLAB_ATTR(poison);
3933 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3935 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3938 static ssize_t store_user_store(struct kmem_cache *s,
3939 const char *buf, size_t length)
3941 if (any_slab_objects(s))
3942 return -EBUSY;
3944 s->flags &= ~SLAB_STORE_USER;
3945 if (buf[0] == '1')
3946 s->flags |= SLAB_STORE_USER;
3947 calculate_sizes(s);
3948 return length;
3950 SLAB_ATTR(store_user);
3952 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3954 return 0;
3957 static ssize_t validate_store(struct kmem_cache *s,
3958 const char *buf, size_t length)
3960 int ret = -EINVAL;
3962 if (buf[0] == '1') {
3963 ret = validate_slab_cache(s);
3964 if (ret >= 0)
3965 ret = length;
3967 return ret;
3969 SLAB_ATTR(validate);
3971 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3973 return 0;
3976 static ssize_t shrink_store(struct kmem_cache *s,
3977 const char *buf, size_t length)
3979 if (buf[0] == '1') {
3980 int rc = kmem_cache_shrink(s);
3982 if (rc)
3983 return rc;
3984 } else
3985 return -EINVAL;
3986 return length;
3988 SLAB_ATTR(shrink);
3990 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3992 if (!(s->flags & SLAB_STORE_USER))
3993 return -ENOSYS;
3994 return list_locations(s, buf, TRACK_ALLOC);
3996 SLAB_ATTR_RO(alloc_calls);
3998 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4000 if (!(s->flags & SLAB_STORE_USER))
4001 return -ENOSYS;
4002 return list_locations(s, buf, TRACK_FREE);
4004 SLAB_ATTR_RO(free_calls);
4006 #ifdef CONFIG_NUMA
4007 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4009 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4012 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4013 const char *buf, size_t length)
4015 int n = simple_strtoul(buf, NULL, 10);
4017 if (n < 100)
4018 s->remote_node_defrag_ratio = n * 10;
4019 return length;
4021 SLAB_ATTR(remote_node_defrag_ratio);
4022 #endif
4024 #ifdef CONFIG_SLUB_STATS
4026 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4028 unsigned long sum = 0;
4029 int cpu;
4030 int len;
4031 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4033 if (!data)
4034 return -ENOMEM;
4036 for_each_online_cpu(cpu) {
4037 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4039 data[cpu] = x;
4040 sum += x;
4043 len = sprintf(buf, "%lu", sum);
4045 for_each_online_cpu(cpu) {
4046 if (data[cpu] && len < PAGE_SIZE - 20)
4047 len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
4049 kfree(data);
4050 return len + sprintf(buf + len, "\n");
4053 #define STAT_ATTR(si, text) \
4054 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4056 return show_stat(s, buf, si); \
4058 SLAB_ATTR_RO(text); \
4060 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4061 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4062 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4063 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4064 STAT_ATTR(FREE_FROZEN, free_frozen);
4065 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4066 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4067 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4068 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4069 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4070 STAT_ATTR(FREE_SLAB, free_slab);
4071 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4072 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4073 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4074 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4075 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4076 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4078 #endif
4080 static struct attribute *slab_attrs[] = {
4081 &slab_size_attr.attr,
4082 &object_size_attr.attr,
4083 &objs_per_slab_attr.attr,
4084 &order_attr.attr,
4085 &objects_attr.attr,
4086 &slabs_attr.attr,
4087 &partial_attr.attr,
4088 &cpu_slabs_attr.attr,
4089 &ctor_attr.attr,
4090 &aliases_attr.attr,
4091 &align_attr.attr,
4092 &sanity_checks_attr.attr,
4093 &trace_attr.attr,
4094 &hwcache_align_attr.attr,
4095 &reclaim_account_attr.attr,
4096 &destroy_by_rcu_attr.attr,
4097 &red_zone_attr.attr,
4098 &poison_attr.attr,
4099 &store_user_attr.attr,
4100 &validate_attr.attr,
4101 &shrink_attr.attr,
4102 &alloc_calls_attr.attr,
4103 &free_calls_attr.attr,
4104 #ifdef CONFIG_ZONE_DMA
4105 &cache_dma_attr.attr,
4106 #endif
4107 #ifdef CONFIG_NUMA
4108 &remote_node_defrag_ratio_attr.attr,
4109 #endif
4110 #ifdef CONFIG_SLUB_STATS
4111 &alloc_fastpath_attr.attr,
4112 &alloc_slowpath_attr.attr,
4113 &free_fastpath_attr.attr,
4114 &free_slowpath_attr.attr,
4115 &free_frozen_attr.attr,
4116 &free_add_partial_attr.attr,
4117 &free_remove_partial_attr.attr,
4118 &alloc_from_partial_attr.attr,
4119 &alloc_slab_attr.attr,
4120 &alloc_refill_attr.attr,
4121 &free_slab_attr.attr,
4122 &cpuslab_flush_attr.attr,
4123 &deactivate_full_attr.attr,
4124 &deactivate_empty_attr.attr,
4125 &deactivate_to_head_attr.attr,
4126 &deactivate_to_tail_attr.attr,
4127 &deactivate_remote_frees_attr.attr,
4128 #endif
4129 NULL
4132 static struct attribute_group slab_attr_group = {
4133 .attrs = slab_attrs,
4136 static ssize_t slab_attr_show(struct kobject *kobj,
4137 struct attribute *attr,
4138 char *buf)
4140 struct slab_attribute *attribute;
4141 struct kmem_cache *s;
4142 int err;
4144 attribute = to_slab_attr(attr);
4145 s = to_slab(kobj);
4147 if (!attribute->show)
4148 return -EIO;
4150 err = attribute->show(s, buf);
4152 return err;
4155 static ssize_t slab_attr_store(struct kobject *kobj,
4156 struct attribute *attr,
4157 const char *buf, size_t len)
4159 struct slab_attribute *attribute;
4160 struct kmem_cache *s;
4161 int err;
4163 attribute = to_slab_attr(attr);
4164 s = to_slab(kobj);
4166 if (!attribute->store)
4167 return -EIO;
4169 err = attribute->store(s, buf, len);
4171 return err;
4174 static void kmem_cache_release(struct kobject *kobj)
4176 struct kmem_cache *s = to_slab(kobj);
4178 kfree(s);
4181 static struct sysfs_ops slab_sysfs_ops = {
4182 .show = slab_attr_show,
4183 .store = slab_attr_store,
4186 static struct kobj_type slab_ktype = {
4187 .sysfs_ops = &slab_sysfs_ops,
4188 .release = kmem_cache_release
4191 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4193 struct kobj_type *ktype = get_ktype(kobj);
4195 if (ktype == &slab_ktype)
4196 return 1;
4197 return 0;
4200 static struct kset_uevent_ops slab_uevent_ops = {
4201 .filter = uevent_filter,
4204 static struct kset *slab_kset;
4206 #define ID_STR_LENGTH 64
4208 /* Create a unique string id for a slab cache:
4209 * format
4210 * :[flags-]size:[memory address of kmemcache]
4212 static char *create_unique_id(struct kmem_cache *s)
4214 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4215 char *p = name;
4217 BUG_ON(!name);
4219 *p++ = ':';
4221 * First flags affecting slabcache operations. We will only
4222 * get here for aliasable slabs so we do not need to support
4223 * too many flags. The flags here must cover all flags that
4224 * are matched during merging to guarantee that the id is
4225 * unique.
4227 if (s->flags & SLAB_CACHE_DMA)
4228 *p++ = 'd';
4229 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4230 *p++ = 'a';
4231 if (s->flags & SLAB_DEBUG_FREE)
4232 *p++ = 'F';
4233 if (p != name + 1)
4234 *p++ = '-';
4235 p += sprintf(p, "%07d", s->size);
4236 BUG_ON(p > name + ID_STR_LENGTH - 1);
4237 return name;
4240 static int sysfs_slab_add(struct kmem_cache *s)
4242 int err;
4243 const char *name;
4244 int unmergeable;
4246 if (slab_state < SYSFS)
4247 /* Defer until later */
4248 return 0;
4250 unmergeable = slab_unmergeable(s);
4251 if (unmergeable) {
4253 * Slabcache can never be merged so we can use the name proper.
4254 * This is typically the case for debug situations. In that
4255 * case we can catch duplicate names easily.
4257 sysfs_remove_link(&slab_kset->kobj, s->name);
4258 name = s->name;
4259 } else {
4261 * Create a unique name for the slab as a target
4262 * for the symlinks.
4264 name = create_unique_id(s);
4267 s->kobj.kset = slab_kset;
4268 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4269 if (err) {
4270 kobject_put(&s->kobj);
4271 return err;
4274 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4275 if (err)
4276 return err;
4277 kobject_uevent(&s->kobj, KOBJ_ADD);
4278 if (!unmergeable) {
4279 /* Setup first alias */
4280 sysfs_slab_alias(s, s->name);
4281 kfree(name);
4283 return 0;
4286 static void sysfs_slab_remove(struct kmem_cache *s)
4288 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4289 kobject_del(&s->kobj);
4290 kobject_put(&s->kobj);
4294 * Need to buffer aliases during bootup until sysfs becomes
4295 * available lest we loose that information.
4297 struct saved_alias {
4298 struct kmem_cache *s;
4299 const char *name;
4300 struct saved_alias *next;
4303 static struct saved_alias *alias_list;
4305 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4307 struct saved_alias *al;
4309 if (slab_state == SYSFS) {
4311 * If we have a leftover link then remove it.
4313 sysfs_remove_link(&slab_kset->kobj, name);
4314 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4317 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4318 if (!al)
4319 return -ENOMEM;
4321 al->s = s;
4322 al->name = name;
4323 al->next = alias_list;
4324 alias_list = al;
4325 return 0;
4328 static int __init slab_sysfs_init(void)
4330 struct kmem_cache *s;
4331 int err;
4333 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4334 if (!slab_kset) {
4335 printk(KERN_ERR "Cannot register slab subsystem.\n");
4336 return -ENOSYS;
4339 slab_state = SYSFS;
4341 list_for_each_entry(s, &slab_caches, list) {
4342 err = sysfs_slab_add(s);
4343 if (err)
4344 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4345 " to sysfs\n", s->name);
4348 while (alias_list) {
4349 struct saved_alias *al = alias_list;
4351 alias_list = alias_list->next;
4352 err = sysfs_slab_alias(al->s, al->name);
4353 if (err)
4354 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4355 " %s to sysfs\n", s->name);
4356 kfree(al);
4359 resiliency_test();
4360 return 0;
4363 __initcall(slab_sysfs_init);
4364 #endif
4367 * The /proc/slabinfo ABI
4369 #ifdef CONFIG_SLABINFO
4371 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4372 size_t count, loff_t *ppos)
4374 return -EINVAL;
4378 static void print_slabinfo_header(struct seq_file *m)
4380 seq_puts(m, "slabinfo - version: 2.1\n");
4381 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4382 "<objperslab> <pagesperslab>");
4383 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4384 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4385 seq_putc(m, '\n');
4388 static void *s_start(struct seq_file *m, loff_t *pos)
4390 loff_t n = *pos;
4392 down_read(&slub_lock);
4393 if (!n)
4394 print_slabinfo_header(m);
4396 return seq_list_start(&slab_caches, *pos);
4399 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4401 return seq_list_next(p, &slab_caches, pos);
4404 static void s_stop(struct seq_file *m, void *p)
4406 up_read(&slub_lock);
4409 static int s_show(struct seq_file *m, void *p)
4411 unsigned long nr_partials = 0;
4412 unsigned long nr_slabs = 0;
4413 unsigned long nr_inuse = 0;
4414 unsigned long nr_objs;
4415 struct kmem_cache *s;
4416 int node;
4418 s = list_entry(p, struct kmem_cache, list);
4420 for_each_online_node(node) {
4421 struct kmem_cache_node *n = get_node(s, node);
4423 if (!n)
4424 continue;
4426 nr_partials += n->nr_partial;
4427 nr_slabs += atomic_long_read(&n->nr_slabs);
4428 nr_inuse += count_partial(n);
4431 nr_objs = nr_slabs * s->objects;
4432 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4434 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4435 nr_objs, s->size, s->objects, (1 << s->order));
4436 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4437 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4438 0UL);
4439 seq_putc(m, '\n');
4440 return 0;
4443 const struct seq_operations slabinfo_op = {
4444 .start = s_start,
4445 .next = s_next,
4446 .stop = s_stop,
4447 .show = s_show,
4450 #endif /* CONFIG_SLABINFO */