2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
111 static inline int SlabFrozen(struct page
*page
)
113 return page
->flags
& FROZEN
;
116 static inline void SetSlabFrozen(struct page
*page
)
118 page
->flags
|= FROZEN
;
121 static inline void ClearSlabFrozen(struct page
*page
)
123 page
->flags
&= ~FROZEN
;
126 static inline int SlabDebug(struct page
*page
)
128 return page
->flags
& SLABDEBUG
;
131 static inline void SetSlabDebug(struct page
*page
)
133 page
->flags
|= SLABDEBUG
;
136 static inline void ClearSlabDebug(struct page
*page
)
138 page
->flags
&= ~SLABDEBUG
;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
153 * Currently fastpath is not supported if preemption is enabled.
155 #if defined(CONFIG_FAST_CMPXCHG_LOCAL) && !defined(CONFIG_PREEMPT)
156 #define SLUB_FASTPATH
162 * Small page size. Make sure that we do not fragment memory
164 #define DEFAULT_MAX_ORDER 1
165 #define DEFAULT_MIN_OBJECTS 4
170 * Large page machines are customarily able to handle larger
173 #define DEFAULT_MAX_ORDER 2
174 #define DEFAULT_MIN_OBJECTS 8
179 * Mininum number of partial slabs. These will be left on the partial
180 * lists even if they are empty. kmem_cache_shrink may reclaim them.
182 #define MIN_PARTIAL 5
185 * Maximum number of desirable partial slabs.
186 * The existence of more partial slabs makes kmem_cache_shrink
187 * sort the partial list by the number of objects in the.
189 #define MAX_PARTIAL 10
191 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
192 SLAB_POISON | SLAB_STORE_USER)
195 * Set of flags that will prevent slab merging
197 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
198 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
200 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
203 #ifndef ARCH_KMALLOC_MINALIGN
204 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
207 #ifndef ARCH_SLAB_MINALIGN
208 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
211 /* Internal SLUB flags */
212 #define __OBJECT_POISON 0x80000000 /* Poison object */
213 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
215 /* Not all arches define cache_line_size */
216 #ifndef cache_line_size
217 #define cache_line_size() L1_CACHE_BYTES
220 static int kmem_size
= sizeof(struct kmem_cache
);
223 static struct notifier_block slab_notifier
;
227 DOWN
, /* No slab functionality available */
228 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
229 UP
, /* Everything works but does not show up in sysfs */
233 /* A list of all slab caches on the system */
234 static DECLARE_RWSEM(slub_lock
);
235 static LIST_HEAD(slab_caches
);
238 * Tracking user of a slab.
241 void *addr
; /* Called from address */
242 int cpu
; /* Was running on cpu */
243 int pid
; /* Pid context */
244 unsigned long when
; /* When did the operation occur */
247 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
249 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
250 static int sysfs_slab_add(struct kmem_cache
*);
251 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
252 static void sysfs_slab_remove(struct kmem_cache
*);
255 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
256 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
258 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
265 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
267 #ifdef CONFIG_SLUB_STATS
272 /********************************************************************
273 * Core slab cache functions
274 *******************************************************************/
276 int slab_is_available(void)
278 return slab_state
>= UP
;
281 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
284 return s
->node
[node
];
286 return &s
->local_node
;
290 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
293 return s
->cpu_slab
[cpu
];
300 * The end pointer in a slab is special. It points to the first object in the
301 * slab but has bit 0 set to mark it.
303 * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
304 * in the mapping set.
306 static inline int is_end(void *addr
)
308 return (unsigned long)addr
& PAGE_MAPPING_ANON
;
311 void *slab_address(struct page
*page
)
313 return page
->end
- PAGE_MAPPING_ANON
;
316 static inline int check_valid_pointer(struct kmem_cache
*s
,
317 struct page
*page
, const void *object
)
321 if (object
== page
->end
)
324 base
= slab_address(page
);
325 if (object
< base
|| object
>= base
+ s
->objects
* s
->size
||
326 (object
- base
) % s
->size
) {
334 * Slow version of get and set free pointer.
336 * This version requires touching the cache lines of kmem_cache which
337 * we avoid to do in the fast alloc free paths. There we obtain the offset
338 * from the page struct.
340 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
342 return *(void **)(object
+ s
->offset
);
345 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
347 *(void **)(object
+ s
->offset
) = fp
;
350 /* Loop over all objects in a slab */
351 #define for_each_object(__p, __s, __addr) \
352 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
356 #define for_each_free_object(__p, __s, __free) \
357 for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
360 /* Determine object index from a given position */
361 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
363 return (p
- addr
) / s
->size
;
366 #ifdef CONFIG_SLUB_DEBUG
370 #ifdef CONFIG_SLUB_DEBUG_ON
371 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
373 static int slub_debug
;
376 static char *slub_debug_slabs
;
381 static void print_section(char *text
, u8
*addr
, unsigned int length
)
389 for (i
= 0; i
< length
; i
++) {
391 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
394 printk(KERN_CONT
" %02x", addr
[i
]);
396 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
398 printk(KERN_CONT
" %s\n", ascii
);
405 printk(KERN_CONT
" ");
409 printk(KERN_CONT
" %s\n", ascii
);
413 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
414 enum track_item alloc
)
419 p
= object
+ s
->offset
+ sizeof(void *);
421 p
= object
+ s
->inuse
;
426 static void set_track(struct kmem_cache
*s
, void *object
,
427 enum track_item alloc
, void *addr
)
432 p
= object
+ s
->offset
+ sizeof(void *);
434 p
= object
+ s
->inuse
;
439 p
->cpu
= smp_processor_id();
440 p
->pid
= current
? current
->pid
: -1;
443 memset(p
, 0, sizeof(struct track
));
446 static void init_tracking(struct kmem_cache
*s
, void *object
)
448 if (!(s
->flags
& SLAB_STORE_USER
))
451 set_track(s
, object
, TRACK_FREE
, NULL
);
452 set_track(s
, object
, TRACK_ALLOC
, NULL
);
455 static void print_track(const char *s
, struct track
*t
)
460 printk(KERN_ERR
"INFO: %s in ", s
);
461 __print_symbol("%s", (unsigned long)t
->addr
);
462 printk(" age=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
465 static void print_tracking(struct kmem_cache
*s
, void *object
)
467 if (!(s
->flags
& SLAB_STORE_USER
))
470 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
471 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
474 static void print_page_info(struct page
*page
)
476 printk(KERN_ERR
"INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
477 page
, page
->inuse
, page
->freelist
, page
->flags
);
481 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
487 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
489 printk(KERN_ERR
"========================================"
490 "=====================================\n");
491 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
492 printk(KERN_ERR
"----------------------------------------"
493 "-------------------------------------\n\n");
496 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
502 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
504 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
507 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
509 unsigned int off
; /* Offset of last byte */
510 u8
*addr
= slab_address(page
);
512 print_tracking(s
, p
);
514 print_page_info(page
);
516 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
517 p
, p
- addr
, get_freepointer(s
, p
));
520 print_section("Bytes b4", p
- 16, 16);
522 print_section("Object", p
, min(s
->objsize
, 128));
524 if (s
->flags
& SLAB_RED_ZONE
)
525 print_section("Redzone", p
+ s
->objsize
,
526 s
->inuse
- s
->objsize
);
529 off
= s
->offset
+ sizeof(void *);
533 if (s
->flags
& SLAB_STORE_USER
)
534 off
+= 2 * sizeof(struct track
);
537 /* Beginning of the filler is the free pointer */
538 print_section("Padding", p
+ off
, s
->size
- off
);
543 static void object_err(struct kmem_cache
*s
, struct page
*page
,
544 u8
*object
, char *reason
)
547 print_trailer(s
, page
, object
);
550 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
556 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
559 print_page_info(page
);
563 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
567 if (s
->flags
& __OBJECT_POISON
) {
568 memset(p
, POISON_FREE
, s
->objsize
- 1);
569 p
[s
->objsize
- 1] = POISON_END
;
572 if (s
->flags
& SLAB_RED_ZONE
)
573 memset(p
+ s
->objsize
,
574 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
575 s
->inuse
- s
->objsize
);
578 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
581 if (*start
!= (u8
)value
)
589 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
590 void *from
, void *to
)
592 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
593 memset(from
, data
, to
- from
);
596 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
597 u8
*object
, char *what
,
598 u8
*start
, unsigned int value
, unsigned int bytes
)
603 fault
= check_bytes(start
, value
, bytes
);
608 while (end
> fault
&& end
[-1] == value
)
611 slab_bug(s
, "%s overwritten", what
);
612 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
613 fault
, end
- 1, fault
[0], value
);
614 print_trailer(s
, page
, object
);
616 restore_bytes(s
, what
, value
, fault
, end
);
624 * Bytes of the object to be managed.
625 * If the freepointer may overlay the object then the free
626 * pointer is the first word of the object.
628 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
631 * object + s->objsize
632 * Padding to reach word boundary. This is also used for Redzoning.
633 * Padding is extended by another word if Redzoning is enabled and
636 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
637 * 0xcc (RED_ACTIVE) for objects in use.
640 * Meta data starts here.
642 * A. Free pointer (if we cannot overwrite object on free)
643 * B. Tracking data for SLAB_STORE_USER
644 * C. Padding to reach required alignment boundary or at mininum
645 * one word if debuggin is on to be able to detect writes
646 * before the word boundary.
648 * Padding is done using 0x5a (POISON_INUSE)
651 * Nothing is used beyond s->size.
653 * If slabcaches are merged then the objsize and inuse boundaries are mostly
654 * ignored. And therefore no slab options that rely on these boundaries
655 * may be used with merged slabcaches.
658 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
660 unsigned long off
= s
->inuse
; /* The end of info */
663 /* Freepointer is placed after the object. */
664 off
+= sizeof(void *);
666 if (s
->flags
& SLAB_STORE_USER
)
667 /* We also have user information there */
668 off
+= 2 * sizeof(struct track
);
673 return check_bytes_and_report(s
, page
, p
, "Object padding",
674 p
+ off
, POISON_INUSE
, s
->size
- off
);
677 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
685 if (!(s
->flags
& SLAB_POISON
))
688 start
= slab_address(page
);
689 end
= start
+ (PAGE_SIZE
<< s
->order
);
690 length
= s
->objects
* s
->size
;
691 remainder
= end
- (start
+ length
);
695 fault
= check_bytes(start
+ length
, POISON_INUSE
, remainder
);
698 while (end
> fault
&& end
[-1] == POISON_INUSE
)
701 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
702 print_section("Padding", start
, length
);
704 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
708 static int check_object(struct kmem_cache
*s
, struct page
*page
,
709 void *object
, int active
)
712 u8
*endobject
= object
+ s
->objsize
;
714 if (s
->flags
& SLAB_RED_ZONE
) {
716 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
718 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
719 endobject
, red
, s
->inuse
- s
->objsize
))
722 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
723 check_bytes_and_report(s
, page
, p
, "Alignment padding",
724 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
728 if (s
->flags
& SLAB_POISON
) {
729 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
730 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
731 POISON_FREE
, s
->objsize
- 1) ||
732 !check_bytes_and_report(s
, page
, p
, "Poison",
733 p
+ s
->objsize
- 1, POISON_END
, 1)))
736 * check_pad_bytes cleans up on its own.
738 check_pad_bytes(s
, page
, p
);
741 if (!s
->offset
&& active
)
743 * Object and freepointer overlap. Cannot check
744 * freepointer while object is allocated.
748 /* Check free pointer validity */
749 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
750 object_err(s
, page
, p
, "Freepointer corrupt");
752 * No choice but to zap it and thus loose the remainder
753 * of the free objects in this slab. May cause
754 * another error because the object count is now wrong.
756 set_freepointer(s
, p
, page
->end
);
762 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
764 VM_BUG_ON(!irqs_disabled());
766 if (!PageSlab(page
)) {
767 slab_err(s
, page
, "Not a valid slab page");
770 if (page
->inuse
> s
->objects
) {
771 slab_err(s
, page
, "inuse %u > max %u",
772 s
->name
, page
->inuse
, s
->objects
);
775 /* Slab_pad_check fixes things up after itself */
776 slab_pad_check(s
, page
);
781 * Determine if a certain object on a page is on the freelist. Must hold the
782 * slab lock to guarantee that the chains are in a consistent state.
784 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
787 void *fp
= page
->freelist
;
790 while (fp
!= page
->end
&& nr
<= s
->objects
) {
793 if (!check_valid_pointer(s
, page
, fp
)) {
795 object_err(s
, page
, object
,
796 "Freechain corrupt");
797 set_freepointer(s
, object
, page
->end
);
800 slab_err(s
, page
, "Freepointer corrupt");
801 page
->freelist
= page
->end
;
802 page
->inuse
= s
->objects
;
803 slab_fix(s
, "Freelist cleared");
809 fp
= get_freepointer(s
, object
);
813 if (page
->inuse
!= s
->objects
- nr
) {
814 slab_err(s
, page
, "Wrong object count. Counter is %d but "
815 "counted were %d", page
->inuse
, s
->objects
- nr
);
816 page
->inuse
= s
->objects
- nr
;
817 slab_fix(s
, "Object count adjusted.");
819 return search
== NULL
;
822 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
, int alloc
)
824 if (s
->flags
& SLAB_TRACE
) {
825 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
827 alloc
? "alloc" : "free",
832 print_section("Object", (void *)object
, s
->objsize
);
839 * Tracking of fully allocated slabs for debugging purposes.
841 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
843 spin_lock(&n
->list_lock
);
844 list_add(&page
->lru
, &n
->full
);
845 spin_unlock(&n
->list_lock
);
848 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
850 struct kmem_cache_node
*n
;
852 if (!(s
->flags
& SLAB_STORE_USER
))
855 n
= get_node(s
, page_to_nid(page
));
857 spin_lock(&n
->list_lock
);
858 list_del(&page
->lru
);
859 spin_unlock(&n
->list_lock
);
862 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
865 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
868 init_object(s
, object
, 0);
869 init_tracking(s
, object
);
872 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
873 void *object
, void *addr
)
875 if (!check_slab(s
, page
))
878 if (object
&& !on_freelist(s
, page
, object
)) {
879 object_err(s
, page
, object
, "Object already allocated");
883 if (!check_valid_pointer(s
, page
, object
)) {
884 object_err(s
, page
, object
, "Freelist Pointer check fails");
888 if (object
&& !check_object(s
, page
, object
, 0))
891 /* Success perform special debug activities for allocs */
892 if (s
->flags
& SLAB_STORE_USER
)
893 set_track(s
, object
, TRACK_ALLOC
, addr
);
894 trace(s
, page
, object
, 1);
895 init_object(s
, object
, 1);
899 if (PageSlab(page
)) {
901 * If this is a slab page then lets do the best we can
902 * to avoid issues in the future. Marking all objects
903 * as used avoids touching the remaining objects.
905 slab_fix(s
, "Marking all objects used");
906 page
->inuse
= s
->objects
;
907 page
->freelist
= page
->end
;
912 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
913 void *object
, void *addr
)
915 if (!check_slab(s
, page
))
918 if (!check_valid_pointer(s
, page
, object
)) {
919 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
923 if (on_freelist(s
, page
, object
)) {
924 object_err(s
, page
, object
, "Object already free");
928 if (!check_object(s
, page
, object
, 1))
931 if (unlikely(s
!= page
->slab
)) {
932 if (!PageSlab(page
)) {
933 slab_err(s
, page
, "Attempt to free object(0x%p) "
934 "outside of slab", object
);
935 } else if (!page
->slab
) {
937 "SLUB <none>: no slab for object 0x%p.\n",
941 object_err(s
, page
, object
,
942 "page slab pointer corrupt.");
946 /* Special debug activities for freeing objects */
947 if (!SlabFrozen(page
) && page
->freelist
== page
->end
)
948 remove_full(s
, page
);
949 if (s
->flags
& SLAB_STORE_USER
)
950 set_track(s
, object
, TRACK_FREE
, addr
);
951 trace(s
, page
, object
, 0);
952 init_object(s
, object
, 0);
956 slab_fix(s
, "Object at 0x%p not freed", object
);
960 static int __init
setup_slub_debug(char *str
)
962 slub_debug
= DEBUG_DEFAULT_FLAGS
;
963 if (*str
++ != '=' || !*str
)
965 * No options specified. Switch on full debugging.
971 * No options but restriction on slabs. This means full
972 * debugging for slabs matching a pattern.
979 * Switch off all debugging measures.
984 * Determine which debug features should be switched on
986 for (; *str
&& *str
!= ','; str
++) {
987 switch (tolower(*str
)) {
989 slub_debug
|= SLAB_DEBUG_FREE
;
992 slub_debug
|= SLAB_RED_ZONE
;
995 slub_debug
|= SLAB_POISON
;
998 slub_debug
|= SLAB_STORE_USER
;
1001 slub_debug
|= SLAB_TRACE
;
1004 printk(KERN_ERR
"slub_debug option '%c' "
1005 "unknown. skipped\n", *str
);
1011 slub_debug_slabs
= str
+ 1;
1016 __setup("slub_debug", setup_slub_debug
);
1018 static unsigned long kmem_cache_flags(unsigned long objsize
,
1019 unsigned long flags
, const char *name
,
1020 void (*ctor
)(struct kmem_cache
*, void *))
1023 * The page->offset field is only 16 bit wide. This is an offset
1024 * in units of words from the beginning of an object. If the slab
1025 * size is bigger then we cannot move the free pointer behind the
1028 * On 32 bit platforms the limit is 256k. On 64bit platforms
1029 * the limit is 512k.
1031 * Debugging or ctor may create a need to move the free
1032 * pointer. Fail if this happens.
1034 if (objsize
>= 65535 * sizeof(void *)) {
1035 BUG_ON(flags
& (SLAB_RED_ZONE
| SLAB_POISON
|
1036 SLAB_STORE_USER
| SLAB_DESTROY_BY_RCU
));
1040 * Enable debugging if selected on the kernel commandline.
1042 if (slub_debug
&& (!slub_debug_slabs
||
1043 strncmp(slub_debug_slabs
, name
,
1044 strlen(slub_debug_slabs
)) == 0))
1045 flags
|= slub_debug
;
1051 static inline void setup_object_debug(struct kmem_cache
*s
,
1052 struct page
*page
, void *object
) {}
1054 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1055 struct page
*page
, void *object
, void *addr
) { return 0; }
1057 static inline int free_debug_processing(struct kmem_cache
*s
,
1058 struct page
*page
, void *object
, void *addr
) { return 0; }
1060 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1062 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1063 void *object
, int active
) { return 1; }
1064 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1065 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1066 unsigned long flags
, const char *name
,
1067 void (*ctor
)(struct kmem_cache
*, void *))
1071 #define slub_debug 0
1074 * Slab allocation and freeing
1076 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1079 int pages
= 1 << s
->order
;
1082 flags
|= __GFP_COMP
;
1084 if (s
->flags
& SLAB_CACHE_DMA
)
1087 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
1088 flags
|= __GFP_RECLAIMABLE
;
1091 page
= alloc_pages(flags
, s
->order
);
1093 page
= alloc_pages_node(node
, flags
, s
->order
);
1098 mod_zone_page_state(page_zone(page
),
1099 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1100 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1106 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1109 setup_object_debug(s
, page
, object
);
1110 if (unlikely(s
->ctor
))
1114 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1117 struct kmem_cache_node
*n
;
1122 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1124 page
= allocate_slab(s
,
1125 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1129 n
= get_node(s
, page_to_nid(page
));
1131 atomic_long_inc(&n
->nr_slabs
);
1133 page
->flags
|= 1 << PG_slab
;
1134 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1135 SLAB_STORE_USER
| SLAB_TRACE
))
1138 start
= page_address(page
);
1139 page
->end
= start
+ 1;
1141 if (unlikely(s
->flags
& SLAB_POISON
))
1142 memset(start
, POISON_INUSE
, PAGE_SIZE
<< s
->order
);
1145 for_each_object(p
, s
, start
) {
1146 setup_object(s
, page
, last
);
1147 set_freepointer(s
, last
, p
);
1150 setup_object(s
, page
, last
);
1151 set_freepointer(s
, last
, page
->end
);
1153 page
->freelist
= start
;
1159 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1161 int pages
= 1 << s
->order
;
1163 if (unlikely(SlabDebug(page
))) {
1166 slab_pad_check(s
, page
);
1167 for_each_object(p
, s
, slab_address(page
))
1168 check_object(s
, page
, p
, 0);
1169 ClearSlabDebug(page
);
1172 mod_zone_page_state(page_zone(page
),
1173 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1174 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1177 page
->mapping
= NULL
;
1178 __free_pages(page
, s
->order
);
1181 static void rcu_free_slab(struct rcu_head
*h
)
1185 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1186 __free_slab(page
->slab
, page
);
1189 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1191 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1193 * RCU free overloads the RCU head over the LRU
1195 struct rcu_head
*head
= (void *)&page
->lru
;
1197 call_rcu(head
, rcu_free_slab
);
1199 __free_slab(s
, page
);
1202 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1204 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1206 atomic_long_dec(&n
->nr_slabs
);
1207 reset_page_mapcount(page
);
1208 __ClearPageSlab(page
);
1213 * Per slab locking using the pagelock
1215 static __always_inline
void slab_lock(struct page
*page
)
1217 bit_spin_lock(PG_locked
, &page
->flags
);
1220 static __always_inline
void slab_unlock(struct page
*page
)
1222 __bit_spin_unlock(PG_locked
, &page
->flags
);
1225 static __always_inline
int slab_trylock(struct page
*page
)
1229 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1234 * Management of partially allocated slabs
1236 static void add_partial(struct kmem_cache_node
*n
,
1237 struct page
*page
, int tail
)
1239 spin_lock(&n
->list_lock
);
1242 list_add_tail(&page
->lru
, &n
->partial
);
1244 list_add(&page
->lru
, &n
->partial
);
1245 spin_unlock(&n
->list_lock
);
1248 static void remove_partial(struct kmem_cache
*s
,
1251 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1253 spin_lock(&n
->list_lock
);
1254 list_del(&page
->lru
);
1256 spin_unlock(&n
->list_lock
);
1260 * Lock slab and remove from the partial list.
1262 * Must hold list_lock.
1264 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
, struct page
*page
)
1266 if (slab_trylock(page
)) {
1267 list_del(&page
->lru
);
1269 SetSlabFrozen(page
);
1276 * Try to allocate a partial slab from a specific node.
1278 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1283 * Racy check. If we mistakenly see no partial slabs then we
1284 * just allocate an empty slab. If we mistakenly try to get a
1285 * partial slab and there is none available then get_partials()
1288 if (!n
|| !n
->nr_partial
)
1291 spin_lock(&n
->list_lock
);
1292 list_for_each_entry(page
, &n
->partial
, lru
)
1293 if (lock_and_freeze_slab(n
, page
))
1297 spin_unlock(&n
->list_lock
);
1302 * Get a page from somewhere. Search in increasing NUMA distances.
1304 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1307 struct zonelist
*zonelist
;
1312 * The defrag ratio allows a configuration of the tradeoffs between
1313 * inter node defragmentation and node local allocations. A lower
1314 * defrag_ratio increases the tendency to do local allocations
1315 * instead of attempting to obtain partial slabs from other nodes.
1317 * If the defrag_ratio is set to 0 then kmalloc() always
1318 * returns node local objects. If the ratio is higher then kmalloc()
1319 * may return off node objects because partial slabs are obtained
1320 * from other nodes and filled up.
1322 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1323 * defrag_ratio = 1000) then every (well almost) allocation will
1324 * first attempt to defrag slab caches on other nodes. This means
1325 * scanning over all nodes to look for partial slabs which may be
1326 * expensive if we do it every time we are trying to find a slab
1327 * with available objects.
1329 if (!s
->remote_node_defrag_ratio
||
1330 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1333 zonelist
= &NODE_DATA(
1334 slab_node(current
->mempolicy
))->node_zonelists
[gfp_zone(flags
)];
1335 for (z
= zonelist
->zones
; *z
; z
++) {
1336 struct kmem_cache_node
*n
;
1338 n
= get_node(s
, zone_to_nid(*z
));
1340 if (n
&& cpuset_zone_allowed_hardwall(*z
, flags
) &&
1341 n
->nr_partial
> MIN_PARTIAL
) {
1342 page
= get_partial_node(n
);
1352 * Get a partial page, lock it and return it.
1354 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1357 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1359 page
= get_partial_node(get_node(s
, searchnode
));
1360 if (page
|| (flags
& __GFP_THISNODE
))
1363 return get_any_partial(s
, flags
);
1367 * Move a page back to the lists.
1369 * Must be called with the slab lock held.
1371 * On exit the slab lock will have been dropped.
1373 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1375 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1376 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1378 ClearSlabFrozen(page
);
1381 if (page
->freelist
!= page
->end
) {
1382 add_partial(n
, page
, tail
);
1383 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1385 stat(c
, DEACTIVATE_FULL
);
1386 if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1391 stat(c
, DEACTIVATE_EMPTY
);
1392 if (n
->nr_partial
< MIN_PARTIAL
) {
1394 * Adding an empty slab to the partial slabs in order
1395 * to avoid page allocator overhead. This slab needs
1396 * to come after the other slabs with objects in
1397 * order to fill them up. That way the size of the
1398 * partial list stays small. kmem_cache_shrink can
1399 * reclaim empty slabs from the partial list.
1401 add_partial(n
, page
, 1);
1405 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1406 discard_slab(s
, page
);
1412 * Remove the cpu slab
1414 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1416 struct page
*page
= c
->page
;
1420 stat(c
, DEACTIVATE_REMOTE_FREES
);
1422 * Merge cpu freelist into freelist. Typically we get here
1423 * because both freelists are empty. So this is unlikely
1426 * We need to use _is_end here because deactivate slab may
1427 * be called for a debug slab. Then c->freelist may contain
1430 while (unlikely(!is_end(c
->freelist
))) {
1433 tail
= 0; /* Hot objects. Put the slab first */
1435 /* Retrieve object from cpu_freelist */
1436 object
= c
->freelist
;
1437 c
->freelist
= c
->freelist
[c
->offset
];
1439 /* And put onto the regular freelist */
1440 object
[c
->offset
] = page
->freelist
;
1441 page
->freelist
= object
;
1445 unfreeze_slab(s
, page
, tail
);
1448 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1450 stat(c
, CPUSLAB_FLUSH
);
1452 deactivate_slab(s
, c
);
1457 * Called from IPI handler with interrupts disabled.
1459 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1461 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1463 if (likely(c
&& c
->page
))
1467 static void flush_cpu_slab(void *d
)
1469 struct kmem_cache
*s
= d
;
1471 __flush_cpu_slab(s
, smp_processor_id());
1474 static void flush_all(struct kmem_cache
*s
)
1477 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1479 unsigned long flags
;
1481 local_irq_save(flags
);
1483 local_irq_restore(flags
);
1488 * Check if the objects in a per cpu structure fit numa
1489 * locality expectations.
1491 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1494 if (node
!= -1 && c
->node
!= node
)
1501 * Slow path. The lockless freelist is empty or we need to perform
1504 * Interrupts are disabled.
1506 * Processing is still very fast if new objects have been freed to the
1507 * regular freelist. In that case we simply take over the regular freelist
1508 * as the lockless freelist and zap the regular freelist.
1510 * If that is not working then we fall back to the partial lists. We take the
1511 * first element of the freelist as the object to allocate now and move the
1512 * rest of the freelist to the lockless freelist.
1514 * And if we were unable to get a new slab from the partial slab lists then
1515 * we need to allocate a new slab. This is slowest path since we may sleep.
1517 static void *__slab_alloc(struct kmem_cache
*s
,
1518 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1522 #ifdef SLUB_FASTPATH
1523 unsigned long flags
;
1525 local_irq_save(flags
);
1531 if (unlikely(!node_match(c
, node
)))
1533 stat(c
, ALLOC_REFILL
);
1535 object
= c
->page
->freelist
;
1536 if (unlikely(object
== c
->page
->end
))
1538 if (unlikely(SlabDebug(c
->page
)))
1541 object
= c
->page
->freelist
;
1542 c
->freelist
= object
[c
->offset
];
1543 c
->page
->inuse
= s
->objects
;
1544 c
->page
->freelist
= c
->page
->end
;
1545 c
->node
= page_to_nid(c
->page
);
1547 slab_unlock(c
->page
);
1548 stat(c
, ALLOC_SLOWPATH
);
1550 #ifdef SLUB_FASTPATH
1551 local_irq_restore(flags
);
1556 deactivate_slab(s
, c
);
1559 new = get_partial(s
, gfpflags
, node
);
1562 stat(c
, ALLOC_FROM_PARTIAL
);
1566 if (gfpflags
& __GFP_WAIT
)
1569 new = new_slab(s
, gfpflags
, node
);
1571 if (gfpflags
& __GFP_WAIT
)
1572 local_irq_disable();
1575 c
= get_cpu_slab(s
, smp_processor_id());
1576 stat(c
, ALLOC_SLAB
);
1587 object
= c
->page
->freelist
;
1588 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1592 c
->page
->freelist
= object
[c
->offset
];
1598 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1599 * have the fastpath folded into their functions. So no function call
1600 * overhead for requests that can be satisfied on the fastpath.
1602 * The fastpath works by first checking if the lockless freelist can be used.
1603 * If not then __slab_alloc is called for slow processing.
1605 * Otherwise we can simply pick the next object from the lockless free list.
1607 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1608 gfp_t gfpflags
, int node
, void *addr
)
1611 struct kmem_cache_cpu
*c
;
1614 * The SLUB_FASTPATH path is provisional and is currently disabled if the
1615 * kernel is compiled with preemption or if the arch does not support
1616 * fast cmpxchg operations. There are a couple of coming changes that will
1617 * simplify matters and allow preemption. Ultimately we may end up making
1618 * SLUB_FASTPATH the default.
1620 * 1. The introduction of the per cpu allocator will avoid array lookups
1621 * through get_cpu_slab(). A special register can be used instead.
1623 * 2. The introduction of per cpu atomic operations (cpu_ops) means that
1624 * we can realize the logic here entirely with per cpu atomics. The
1625 * per cpu atomic ops will take care of the preemption issues.
1628 #ifdef SLUB_FASTPATH
1629 c
= get_cpu_slab(s
, raw_smp_processor_id());
1631 object
= c
->freelist
;
1632 if (unlikely(is_end(object
) || !node_match(c
, node
))) {
1633 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1636 stat(c
, ALLOC_FASTPATH
);
1637 } while (cmpxchg_local(&c
->freelist
, object
, object
[c
->offset
])
1640 unsigned long flags
;
1642 local_irq_save(flags
);
1643 c
= get_cpu_slab(s
, smp_processor_id());
1644 if (unlikely(is_end(c
->freelist
) || !node_match(c
, node
)))
1646 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1649 object
= c
->freelist
;
1650 c
->freelist
= object
[c
->offset
];
1651 stat(c
, ALLOC_FASTPATH
);
1653 local_irq_restore(flags
);
1656 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1657 memset(object
, 0, c
->objsize
);
1662 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1664 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1666 EXPORT_SYMBOL(kmem_cache_alloc
);
1669 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1671 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1673 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1677 * Slow patch handling. This may still be called frequently since objects
1678 * have a longer lifetime than the cpu slabs in most processing loads.
1680 * So we still attempt to reduce cache line usage. Just take the slab
1681 * lock and free the item. If there is no additional partial page
1682 * handling required then we can return immediately.
1684 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1685 void *x
, void *addr
, unsigned int offset
)
1688 void **object
= (void *)x
;
1689 struct kmem_cache_cpu
*c
;
1691 #ifdef SLUB_FASTPATH
1692 unsigned long flags
;
1694 local_irq_save(flags
);
1696 c
= get_cpu_slab(s
, raw_smp_processor_id());
1697 stat(c
, FREE_SLOWPATH
);
1700 if (unlikely(SlabDebug(page
)))
1703 prior
= object
[offset
] = page
->freelist
;
1704 page
->freelist
= object
;
1707 if (unlikely(SlabFrozen(page
))) {
1708 stat(c
, FREE_FROZEN
);
1712 if (unlikely(!page
->inuse
))
1716 * Objects left in the slab. If it
1717 * was not on the partial list before
1720 if (unlikely(prior
== page
->end
)) {
1721 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1722 stat(c
, FREE_ADD_PARTIAL
);
1727 #ifdef SLUB_FASTPATH
1728 local_irq_restore(flags
);
1733 if (prior
!= page
->end
) {
1735 * Slab still on the partial list.
1737 remove_partial(s
, page
);
1738 stat(c
, FREE_REMOVE_PARTIAL
);
1742 #ifdef SLUB_FASTPATH
1743 local_irq_restore(flags
);
1745 discard_slab(s
, page
);
1749 if (!free_debug_processing(s
, page
, x
, addr
))
1755 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1756 * can perform fastpath freeing without additional function calls.
1758 * The fastpath is only possible if we are freeing to the current cpu slab
1759 * of this processor. This typically the case if we have just allocated
1762 * If fastpath is not possible then fall back to __slab_free where we deal
1763 * with all sorts of special processing.
1765 static __always_inline
void slab_free(struct kmem_cache
*s
,
1766 struct page
*page
, void *x
, void *addr
)
1768 void **object
= (void *)x
;
1769 struct kmem_cache_cpu
*c
;
1771 #ifdef SLUB_FASTPATH
1774 c
= get_cpu_slab(s
, raw_smp_processor_id());
1775 debug_check_no_locks_freed(object
, s
->objsize
);
1777 freelist
= c
->freelist
;
1780 * If the compiler would reorder the retrieval of c->page to
1781 * come before c->freelist then an interrupt could
1782 * change the cpu slab before we retrieve c->freelist. We
1783 * could be matching on a page no longer active and put the
1784 * object onto the freelist of the wrong slab.
1786 * On the other hand: If we already have the freelist pointer
1787 * then any change of cpu_slab will cause the cmpxchg to fail
1788 * since the freelist pointers are unique per slab.
1790 if (unlikely(page
!= c
->page
|| c
->node
< 0)) {
1791 __slab_free(s
, page
, x
, addr
, c
->offset
);
1794 object
[c
->offset
] = freelist
;
1795 stat(c
, FREE_FASTPATH
);
1796 } while (cmpxchg_local(&c
->freelist
, freelist
, object
) != freelist
);
1798 unsigned long flags
;
1800 local_irq_save(flags
);
1801 debug_check_no_locks_freed(object
, s
->objsize
);
1802 c
= get_cpu_slab(s
, smp_processor_id());
1803 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1804 object
[c
->offset
] = c
->freelist
;
1805 c
->freelist
= object
;
1806 stat(c
, FREE_FASTPATH
);
1808 __slab_free(s
, page
, x
, addr
, c
->offset
);
1810 local_irq_restore(flags
);
1814 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1818 page
= virt_to_head_page(x
);
1820 slab_free(s
, page
, x
, __builtin_return_address(0));
1822 EXPORT_SYMBOL(kmem_cache_free
);
1824 /* Figure out on which slab object the object resides */
1825 static struct page
*get_object_page(const void *x
)
1827 struct page
*page
= virt_to_head_page(x
);
1829 if (!PageSlab(page
))
1836 * Object placement in a slab is made very easy because we always start at
1837 * offset 0. If we tune the size of the object to the alignment then we can
1838 * get the required alignment by putting one properly sized object after
1841 * Notice that the allocation order determines the sizes of the per cpu
1842 * caches. Each processor has always one slab available for allocations.
1843 * Increasing the allocation order reduces the number of times that slabs
1844 * must be moved on and off the partial lists and is therefore a factor in
1849 * Mininum / Maximum order of slab pages. This influences locking overhead
1850 * and slab fragmentation. A higher order reduces the number of partial slabs
1851 * and increases the number of allocations possible without having to
1852 * take the list_lock.
1854 static int slub_min_order
;
1855 static int slub_max_order
= DEFAULT_MAX_ORDER
;
1856 static int slub_min_objects
= DEFAULT_MIN_OBJECTS
;
1859 * Merge control. If this is set then no merging of slab caches will occur.
1860 * (Could be removed. This was introduced to pacify the merge skeptics.)
1862 static int slub_nomerge
;
1865 * Calculate the order of allocation given an slab object size.
1867 * The order of allocation has significant impact on performance and other
1868 * system components. Generally order 0 allocations should be preferred since
1869 * order 0 does not cause fragmentation in the page allocator. Larger objects
1870 * be problematic to put into order 0 slabs because there may be too much
1871 * unused space left. We go to a higher order if more than 1/8th of the slab
1874 * In order to reach satisfactory performance we must ensure that a minimum
1875 * number of objects is in one slab. Otherwise we may generate too much
1876 * activity on the partial lists which requires taking the list_lock. This is
1877 * less a concern for large slabs though which are rarely used.
1879 * slub_max_order specifies the order where we begin to stop considering the
1880 * number of objects in a slab as critical. If we reach slub_max_order then
1881 * we try to keep the page order as low as possible. So we accept more waste
1882 * of space in favor of a small page order.
1884 * Higher order allocations also allow the placement of more objects in a
1885 * slab and thereby reduce object handling overhead. If the user has
1886 * requested a higher mininum order then we start with that one instead of
1887 * the smallest order which will fit the object.
1889 static inline int slab_order(int size
, int min_objects
,
1890 int max_order
, int fract_leftover
)
1894 int min_order
= slub_min_order
;
1896 for (order
= max(min_order
,
1897 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1898 order
<= max_order
; order
++) {
1900 unsigned long slab_size
= PAGE_SIZE
<< order
;
1902 if (slab_size
< min_objects
* size
)
1905 rem
= slab_size
% size
;
1907 if (rem
<= slab_size
/ fract_leftover
)
1915 static inline int calculate_order(int size
)
1922 * Attempt to find best configuration for a slab. This
1923 * works by first attempting to generate a layout with
1924 * the best configuration and backing off gradually.
1926 * First we reduce the acceptable waste in a slab. Then
1927 * we reduce the minimum objects required in a slab.
1929 min_objects
= slub_min_objects
;
1930 while (min_objects
> 1) {
1932 while (fraction
>= 4) {
1933 order
= slab_order(size
, min_objects
,
1934 slub_max_order
, fraction
);
1935 if (order
<= slub_max_order
)
1943 * We were unable to place multiple objects in a slab. Now
1944 * lets see if we can place a single object there.
1946 order
= slab_order(size
, 1, slub_max_order
, 1);
1947 if (order
<= slub_max_order
)
1951 * Doh this slab cannot be placed using slub_max_order.
1953 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1954 if (order
<= MAX_ORDER
)
1960 * Figure out what the alignment of the objects will be.
1962 static unsigned long calculate_alignment(unsigned long flags
,
1963 unsigned long align
, unsigned long size
)
1966 * If the user wants hardware cache aligned objects then
1967 * follow that suggestion if the object is sufficiently
1970 * The hardware cache alignment cannot override the
1971 * specified alignment though. If that is greater
1974 if ((flags
& SLAB_HWCACHE_ALIGN
) &&
1975 size
> cache_line_size() / 2)
1976 return max_t(unsigned long, align
, cache_line_size());
1978 if (align
< ARCH_SLAB_MINALIGN
)
1979 return ARCH_SLAB_MINALIGN
;
1981 return ALIGN(align
, sizeof(void *));
1984 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1985 struct kmem_cache_cpu
*c
)
1988 c
->freelist
= (void *)PAGE_MAPPING_ANON
;
1990 c
->offset
= s
->offset
/ sizeof(void *);
1991 c
->objsize
= s
->objsize
;
1994 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1997 atomic_long_set(&n
->nr_slabs
, 0);
1998 spin_lock_init(&n
->list_lock
);
1999 INIT_LIST_HEAD(&n
->partial
);
2000 #ifdef CONFIG_SLUB_DEBUG
2001 INIT_LIST_HEAD(&n
->full
);
2007 * Per cpu array for per cpu structures.
2009 * The per cpu array places all kmem_cache_cpu structures from one processor
2010 * close together meaning that it becomes possible that multiple per cpu
2011 * structures are contained in one cacheline. This may be particularly
2012 * beneficial for the kmalloc caches.
2014 * A desktop system typically has around 60-80 slabs. With 100 here we are
2015 * likely able to get per cpu structures for all caches from the array defined
2016 * here. We must be able to cover all kmalloc caches during bootstrap.
2018 * If the per cpu array is exhausted then fall back to kmalloc
2019 * of individual cachelines. No sharing is possible then.
2021 #define NR_KMEM_CACHE_CPU 100
2023 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
2024 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
2026 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
2027 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
2029 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
2030 int cpu
, gfp_t flags
)
2032 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
2035 per_cpu(kmem_cache_cpu_free
, cpu
) =
2036 (void *)c
->freelist
;
2038 /* Table overflow: So allocate ourselves */
2040 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2041 flags
, cpu_to_node(cpu
));
2046 init_kmem_cache_cpu(s
, c
);
2050 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2052 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2053 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2057 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2058 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2061 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2065 for_each_online_cpu(cpu
) {
2066 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2069 s
->cpu_slab
[cpu
] = NULL
;
2070 free_kmem_cache_cpu(c
, cpu
);
2075 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2079 for_each_online_cpu(cpu
) {
2080 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2085 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2087 free_kmem_cache_cpus(s
);
2090 s
->cpu_slab
[cpu
] = c
;
2096 * Initialize the per cpu array.
2098 static void init_alloc_cpu_cpu(int cpu
)
2102 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
2105 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2106 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2108 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
2111 static void __init
init_alloc_cpu(void)
2115 for_each_online_cpu(cpu
)
2116 init_alloc_cpu_cpu(cpu
);
2120 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2121 static inline void init_alloc_cpu(void) {}
2123 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2125 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2132 * No kmalloc_node yet so do it by hand. We know that this is the first
2133 * slab on the node for this slabcache. There are no concurrent accesses
2136 * Note that this function only works on the kmalloc_node_cache
2137 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2138 * memory on a fresh node that has no slab structures yet.
2140 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2144 struct kmem_cache_node
*n
;
2145 unsigned long flags
;
2147 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2149 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2152 if (page_to_nid(page
) != node
) {
2153 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2155 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2156 "in order to be able to continue\n");
2161 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2163 kmalloc_caches
->node
[node
] = n
;
2164 #ifdef CONFIG_SLUB_DEBUG
2165 init_object(kmalloc_caches
, n
, 1);
2166 init_tracking(kmalloc_caches
, n
);
2168 init_kmem_cache_node(n
);
2169 atomic_long_inc(&n
->nr_slabs
);
2171 * lockdep requires consistent irq usage for each lock
2172 * so even though there cannot be a race this early in
2173 * the boot sequence, we still disable irqs.
2175 local_irq_save(flags
);
2176 add_partial(n
, page
, 0);
2177 local_irq_restore(flags
);
2181 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2185 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2186 struct kmem_cache_node
*n
= s
->node
[node
];
2187 if (n
&& n
!= &s
->local_node
)
2188 kmem_cache_free(kmalloc_caches
, n
);
2189 s
->node
[node
] = NULL
;
2193 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2198 if (slab_state
>= UP
)
2199 local_node
= page_to_nid(virt_to_page(s
));
2203 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2204 struct kmem_cache_node
*n
;
2206 if (local_node
== node
)
2209 if (slab_state
== DOWN
) {
2210 n
= early_kmem_cache_node_alloc(gfpflags
,
2214 n
= kmem_cache_alloc_node(kmalloc_caches
,
2218 free_kmem_cache_nodes(s
);
2224 init_kmem_cache_node(n
);
2229 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2233 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2235 init_kmem_cache_node(&s
->local_node
);
2241 * calculate_sizes() determines the order and the distribution of data within
2244 static int calculate_sizes(struct kmem_cache
*s
)
2246 unsigned long flags
= s
->flags
;
2247 unsigned long size
= s
->objsize
;
2248 unsigned long align
= s
->align
;
2251 * Determine if we can poison the object itself. If the user of
2252 * the slab may touch the object after free or before allocation
2253 * then we should never poison the object itself.
2255 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2257 s
->flags
|= __OBJECT_POISON
;
2259 s
->flags
&= ~__OBJECT_POISON
;
2262 * Round up object size to the next word boundary. We can only
2263 * place the free pointer at word boundaries and this determines
2264 * the possible location of the free pointer.
2266 size
= ALIGN(size
, sizeof(void *));
2268 #ifdef CONFIG_SLUB_DEBUG
2270 * If we are Redzoning then check if there is some space between the
2271 * end of the object and the free pointer. If not then add an
2272 * additional word to have some bytes to store Redzone information.
2274 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2275 size
+= sizeof(void *);
2279 * With that we have determined the number of bytes in actual use
2280 * by the object. This is the potential offset to the free pointer.
2284 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2287 * Relocate free pointer after the object if it is not
2288 * permitted to overwrite the first word of the object on
2291 * This is the case if we do RCU, have a constructor or
2292 * destructor or are poisoning the objects.
2295 size
+= sizeof(void *);
2298 #ifdef CONFIG_SLUB_DEBUG
2299 if (flags
& SLAB_STORE_USER
)
2301 * Need to store information about allocs and frees after
2304 size
+= 2 * sizeof(struct track
);
2306 if (flags
& SLAB_RED_ZONE
)
2308 * Add some empty padding so that we can catch
2309 * overwrites from earlier objects rather than let
2310 * tracking information or the free pointer be
2311 * corrupted if an user writes before the start
2314 size
+= sizeof(void *);
2318 * Determine the alignment based on various parameters that the
2319 * user specified and the dynamic determination of cache line size
2322 align
= calculate_alignment(flags
, align
, s
->objsize
);
2325 * SLUB stores one object immediately after another beginning from
2326 * offset 0. In order to align the objects we have to simply size
2327 * each object to conform to the alignment.
2329 size
= ALIGN(size
, align
);
2332 s
->order
= calculate_order(size
);
2337 * Determine the number of objects per slab
2339 s
->objects
= (PAGE_SIZE
<< s
->order
) / size
;
2341 return !!s
->objects
;
2345 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2346 const char *name
, size_t size
,
2347 size_t align
, unsigned long flags
,
2348 void (*ctor
)(struct kmem_cache
*, void *))
2350 memset(s
, 0, kmem_size
);
2355 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2357 if (!calculate_sizes(s
))
2362 s
->remote_node_defrag_ratio
= 100;
2364 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2367 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2369 free_kmem_cache_nodes(s
);
2371 if (flags
& SLAB_PANIC
)
2372 panic("Cannot create slab %s size=%lu realsize=%u "
2373 "order=%u offset=%u flags=%lx\n",
2374 s
->name
, (unsigned long)size
, s
->size
, s
->order
,
2380 * Check if a given pointer is valid
2382 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2386 page
= get_object_page(object
);
2388 if (!page
|| s
!= page
->slab
)
2389 /* No slab or wrong slab */
2392 if (!check_valid_pointer(s
, page
, object
))
2396 * We could also check if the object is on the slabs freelist.
2397 * But this would be too expensive and it seems that the main
2398 * purpose of kmem_ptr_valid is to check if the object belongs
2399 * to a certain slab.
2403 EXPORT_SYMBOL(kmem_ptr_validate
);
2406 * Determine the size of a slab object
2408 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2412 EXPORT_SYMBOL(kmem_cache_size
);
2414 const char *kmem_cache_name(struct kmem_cache
*s
)
2418 EXPORT_SYMBOL(kmem_cache_name
);
2421 * Attempt to free all slabs on a node. Return the number of slabs we
2422 * were unable to free.
2424 static int free_list(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
2425 struct list_head
*list
)
2427 int slabs_inuse
= 0;
2428 unsigned long flags
;
2429 struct page
*page
, *h
;
2431 spin_lock_irqsave(&n
->list_lock
, flags
);
2432 list_for_each_entry_safe(page
, h
, list
, lru
)
2434 list_del(&page
->lru
);
2435 discard_slab(s
, page
);
2438 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2443 * Release all resources used by a slab cache.
2445 static inline int kmem_cache_close(struct kmem_cache
*s
)
2451 /* Attempt to free all objects */
2452 free_kmem_cache_cpus(s
);
2453 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2454 struct kmem_cache_node
*n
= get_node(s
, node
);
2456 n
->nr_partial
-= free_list(s
, n
, &n
->partial
);
2457 if (atomic_long_read(&n
->nr_slabs
))
2460 free_kmem_cache_nodes(s
);
2465 * Close a cache and release the kmem_cache structure
2466 * (must be used for caches created using kmem_cache_create)
2468 void kmem_cache_destroy(struct kmem_cache
*s
)
2470 down_write(&slub_lock
);
2474 up_write(&slub_lock
);
2475 if (kmem_cache_close(s
))
2477 sysfs_slab_remove(s
);
2479 up_write(&slub_lock
);
2481 EXPORT_SYMBOL(kmem_cache_destroy
);
2483 /********************************************************************
2485 *******************************************************************/
2487 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
] __cacheline_aligned
;
2488 EXPORT_SYMBOL(kmalloc_caches
);
2490 #ifdef CONFIG_ZONE_DMA
2491 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
];
2494 static int __init
setup_slub_min_order(char *str
)
2496 get_option(&str
, &slub_min_order
);
2501 __setup("slub_min_order=", setup_slub_min_order
);
2503 static int __init
setup_slub_max_order(char *str
)
2505 get_option(&str
, &slub_max_order
);
2510 __setup("slub_max_order=", setup_slub_max_order
);
2512 static int __init
setup_slub_min_objects(char *str
)
2514 get_option(&str
, &slub_min_objects
);
2519 __setup("slub_min_objects=", setup_slub_min_objects
);
2521 static int __init
setup_slub_nomerge(char *str
)
2527 __setup("slub_nomerge", setup_slub_nomerge
);
2529 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2530 const char *name
, int size
, gfp_t gfp_flags
)
2532 unsigned int flags
= 0;
2534 if (gfp_flags
& SLUB_DMA
)
2535 flags
= SLAB_CACHE_DMA
;
2537 down_write(&slub_lock
);
2538 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2542 list_add(&s
->list
, &slab_caches
);
2543 up_write(&slub_lock
);
2544 if (sysfs_slab_add(s
))
2549 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2552 #ifdef CONFIG_ZONE_DMA
2554 static void sysfs_add_func(struct work_struct
*w
)
2556 struct kmem_cache
*s
;
2558 down_write(&slub_lock
);
2559 list_for_each_entry(s
, &slab_caches
, list
) {
2560 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2561 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2565 up_write(&slub_lock
);
2568 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2570 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2572 struct kmem_cache
*s
;
2576 s
= kmalloc_caches_dma
[index
];
2580 /* Dynamically create dma cache */
2581 if (flags
& __GFP_WAIT
)
2582 down_write(&slub_lock
);
2584 if (!down_write_trylock(&slub_lock
))
2588 if (kmalloc_caches_dma
[index
])
2591 realsize
= kmalloc_caches
[index
].objsize
;
2592 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2593 (unsigned int)realsize
);
2594 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2596 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2597 realsize
, ARCH_KMALLOC_MINALIGN
,
2598 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2604 list_add(&s
->list
, &slab_caches
);
2605 kmalloc_caches_dma
[index
] = s
;
2607 schedule_work(&sysfs_add_work
);
2610 up_write(&slub_lock
);
2612 return kmalloc_caches_dma
[index
];
2617 * Conversion table for small slabs sizes / 8 to the index in the
2618 * kmalloc array. This is necessary for slabs < 192 since we have non power
2619 * of two cache sizes there. The size of larger slabs can be determined using
2622 static s8 size_index
[24] = {
2649 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2655 return ZERO_SIZE_PTR
;
2657 index
= size_index
[(size
- 1) / 8];
2659 index
= fls(size
- 1);
2661 #ifdef CONFIG_ZONE_DMA
2662 if (unlikely((flags
& SLUB_DMA
)))
2663 return dma_kmalloc_cache(index
, flags
);
2666 return &kmalloc_caches
[index
];
2669 void *__kmalloc(size_t size
, gfp_t flags
)
2671 struct kmem_cache
*s
;
2673 if (unlikely(size
> PAGE_SIZE
/ 2))
2674 return (void *)__get_free_pages(flags
| __GFP_COMP
,
2677 s
= get_slab(size
, flags
);
2679 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2682 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2684 EXPORT_SYMBOL(__kmalloc
);
2687 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2689 struct kmem_cache
*s
;
2691 if (unlikely(size
> PAGE_SIZE
/ 2))
2692 return (void *)__get_free_pages(flags
| __GFP_COMP
,
2695 s
= get_slab(size
, flags
);
2697 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2700 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2702 EXPORT_SYMBOL(__kmalloc_node
);
2705 size_t ksize(const void *object
)
2708 struct kmem_cache
*s
;
2711 if (unlikely(object
== ZERO_SIZE_PTR
))
2714 page
= virt_to_head_page(object
);
2717 if (unlikely(!PageSlab(page
)))
2718 return PAGE_SIZE
<< compound_order(page
);
2724 * Debugging requires use of the padding between object
2725 * and whatever may come after it.
2727 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2731 * If we have the need to store the freelist pointer
2732 * back there or track user information then we can
2733 * only use the space before that information.
2735 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2739 * Else we can use all the padding etc for the allocation
2743 EXPORT_SYMBOL(ksize
);
2745 void kfree(const void *x
)
2748 void *object
= (void *)x
;
2750 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2753 page
= virt_to_head_page(x
);
2754 if (unlikely(!PageSlab(page
))) {
2758 slab_free(page
->slab
, page
, object
, __builtin_return_address(0));
2760 EXPORT_SYMBOL(kfree
);
2762 static unsigned long count_partial(struct kmem_cache_node
*n
)
2764 unsigned long flags
;
2765 unsigned long x
= 0;
2768 spin_lock_irqsave(&n
->list_lock
, flags
);
2769 list_for_each_entry(page
, &n
->partial
, lru
)
2771 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2776 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2777 * the remaining slabs by the number of items in use. The slabs with the
2778 * most items in use come first. New allocations will then fill those up
2779 * and thus they can be removed from the partial lists.
2781 * The slabs with the least items are placed last. This results in them
2782 * being allocated from last increasing the chance that the last objects
2783 * are freed in them.
2785 int kmem_cache_shrink(struct kmem_cache
*s
)
2789 struct kmem_cache_node
*n
;
2792 struct list_head
*slabs_by_inuse
=
2793 kmalloc(sizeof(struct list_head
) * s
->objects
, GFP_KERNEL
);
2794 unsigned long flags
;
2796 if (!slabs_by_inuse
)
2800 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2801 n
= get_node(s
, node
);
2806 for (i
= 0; i
< s
->objects
; i
++)
2807 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2809 spin_lock_irqsave(&n
->list_lock
, flags
);
2812 * Build lists indexed by the items in use in each slab.
2814 * Note that concurrent frees may occur while we hold the
2815 * list_lock. page->inuse here is the upper limit.
2817 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2818 if (!page
->inuse
&& slab_trylock(page
)) {
2820 * Must hold slab lock here because slab_free
2821 * may have freed the last object and be
2822 * waiting to release the slab.
2824 list_del(&page
->lru
);
2827 discard_slab(s
, page
);
2829 list_move(&page
->lru
,
2830 slabs_by_inuse
+ page
->inuse
);
2835 * Rebuild the partial list with the slabs filled up most
2836 * first and the least used slabs at the end.
2838 for (i
= s
->objects
- 1; i
>= 0; i
--)
2839 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2841 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2844 kfree(slabs_by_inuse
);
2847 EXPORT_SYMBOL(kmem_cache_shrink
);
2849 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2850 static int slab_mem_going_offline_callback(void *arg
)
2852 struct kmem_cache
*s
;
2854 down_read(&slub_lock
);
2855 list_for_each_entry(s
, &slab_caches
, list
)
2856 kmem_cache_shrink(s
);
2857 up_read(&slub_lock
);
2862 static void slab_mem_offline_callback(void *arg
)
2864 struct kmem_cache_node
*n
;
2865 struct kmem_cache
*s
;
2866 struct memory_notify
*marg
= arg
;
2869 offline_node
= marg
->status_change_nid
;
2872 * If the node still has available memory. we need kmem_cache_node
2875 if (offline_node
< 0)
2878 down_read(&slub_lock
);
2879 list_for_each_entry(s
, &slab_caches
, list
) {
2880 n
= get_node(s
, offline_node
);
2883 * if n->nr_slabs > 0, slabs still exist on the node
2884 * that is going down. We were unable to free them,
2885 * and offline_pages() function shoudn't call this
2886 * callback. So, we must fail.
2888 BUG_ON(atomic_long_read(&n
->nr_slabs
));
2890 s
->node
[offline_node
] = NULL
;
2891 kmem_cache_free(kmalloc_caches
, n
);
2894 up_read(&slub_lock
);
2897 static int slab_mem_going_online_callback(void *arg
)
2899 struct kmem_cache_node
*n
;
2900 struct kmem_cache
*s
;
2901 struct memory_notify
*marg
= arg
;
2902 int nid
= marg
->status_change_nid
;
2906 * If the node's memory is already available, then kmem_cache_node is
2907 * already created. Nothing to do.
2913 * We are bringing a node online. No memory is availabe yet. We must
2914 * allocate a kmem_cache_node structure in order to bring the node
2917 down_read(&slub_lock
);
2918 list_for_each_entry(s
, &slab_caches
, list
) {
2920 * XXX: kmem_cache_alloc_node will fallback to other nodes
2921 * since memory is not yet available from the node that
2924 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2929 init_kmem_cache_node(n
);
2933 up_read(&slub_lock
);
2937 static int slab_memory_callback(struct notifier_block
*self
,
2938 unsigned long action
, void *arg
)
2943 case MEM_GOING_ONLINE
:
2944 ret
= slab_mem_going_online_callback(arg
);
2946 case MEM_GOING_OFFLINE
:
2947 ret
= slab_mem_going_offline_callback(arg
);
2950 case MEM_CANCEL_ONLINE
:
2951 slab_mem_offline_callback(arg
);
2954 case MEM_CANCEL_OFFLINE
:
2958 ret
= notifier_from_errno(ret
);
2962 #endif /* CONFIG_MEMORY_HOTPLUG */
2964 /********************************************************************
2965 * Basic setup of slabs
2966 *******************************************************************/
2968 void __init
kmem_cache_init(void)
2977 * Must first have the slab cache available for the allocations of the
2978 * struct kmem_cache_node's. There is special bootstrap code in
2979 * kmem_cache_open for slab_state == DOWN.
2981 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2982 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2983 kmalloc_caches
[0].refcount
= -1;
2986 hotplug_memory_notifier(slab_memory_callback
, 1);
2989 /* Able to allocate the per node structures */
2990 slab_state
= PARTIAL
;
2992 /* Caches that are not of the two-to-the-power-of size */
2993 if (KMALLOC_MIN_SIZE
<= 64) {
2994 create_kmalloc_cache(&kmalloc_caches
[1],
2995 "kmalloc-96", 96, GFP_KERNEL
);
2998 if (KMALLOC_MIN_SIZE
<= 128) {
2999 create_kmalloc_cache(&kmalloc_caches
[2],
3000 "kmalloc-192", 192, GFP_KERNEL
);
3004 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++) {
3005 create_kmalloc_cache(&kmalloc_caches
[i
],
3006 "kmalloc", 1 << i
, GFP_KERNEL
);
3012 * Patch up the size_index table if we have strange large alignment
3013 * requirements for the kmalloc array. This is only the case for
3014 * mips it seems. The standard arches will not generate any code here.
3016 * Largest permitted alignment is 256 bytes due to the way we
3017 * handle the index determination for the smaller caches.
3019 * Make sure that nothing crazy happens if someone starts tinkering
3020 * around with ARCH_KMALLOC_MINALIGN
3022 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3023 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3025 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3026 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3030 /* Provide the correct kmalloc names now that the caches are up */
3031 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++)
3032 kmalloc_caches
[i
]. name
=
3033 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3036 register_cpu_notifier(&slab_notifier
);
3037 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3038 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3040 kmem_size
= sizeof(struct kmem_cache
);
3045 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3046 " CPUs=%d, Nodes=%d\n",
3047 caches
, cache_line_size(),
3048 slub_min_order
, slub_max_order
, slub_min_objects
,
3049 nr_cpu_ids
, nr_node_ids
);
3053 * Find a mergeable slab cache
3055 static int slab_unmergeable(struct kmem_cache
*s
)
3057 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3064 * We may have set a slab to be unmergeable during bootstrap.
3066 if (s
->refcount
< 0)
3072 static struct kmem_cache
*find_mergeable(size_t size
,
3073 size_t align
, unsigned long flags
, const char *name
,
3074 void (*ctor
)(struct kmem_cache
*, void *))
3076 struct kmem_cache
*s
;
3078 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3084 size
= ALIGN(size
, sizeof(void *));
3085 align
= calculate_alignment(flags
, align
, size
);
3086 size
= ALIGN(size
, align
);
3087 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3089 list_for_each_entry(s
, &slab_caches
, list
) {
3090 if (slab_unmergeable(s
))
3096 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3099 * Check if alignment is compatible.
3100 * Courtesy of Adrian Drzewiecki
3102 if ((s
->size
& ~(align
- 1)) != s
->size
)
3105 if (s
->size
- size
>= sizeof(void *))
3113 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3114 size_t align
, unsigned long flags
,
3115 void (*ctor
)(struct kmem_cache
*, void *))
3117 struct kmem_cache
*s
;
3119 down_write(&slub_lock
);
3120 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3126 * Adjust the object sizes so that we clear
3127 * the complete object on kzalloc.
3129 s
->objsize
= max(s
->objsize
, (int)size
);
3132 * And then we need to update the object size in the
3133 * per cpu structures
3135 for_each_online_cpu(cpu
)
3136 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3137 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3138 up_write(&slub_lock
);
3139 if (sysfs_slab_alias(s
, name
))
3143 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3145 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3146 size
, align
, flags
, ctor
)) {
3147 list_add(&s
->list
, &slab_caches
);
3148 up_write(&slub_lock
);
3149 if (sysfs_slab_add(s
))
3155 up_write(&slub_lock
);
3158 if (flags
& SLAB_PANIC
)
3159 panic("Cannot create slabcache %s\n", name
);
3164 EXPORT_SYMBOL(kmem_cache_create
);
3168 * Use the cpu notifier to insure that the cpu slabs are flushed when
3171 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3172 unsigned long action
, void *hcpu
)
3174 long cpu
= (long)hcpu
;
3175 struct kmem_cache
*s
;
3176 unsigned long flags
;
3179 case CPU_UP_PREPARE
:
3180 case CPU_UP_PREPARE_FROZEN
:
3181 init_alloc_cpu_cpu(cpu
);
3182 down_read(&slub_lock
);
3183 list_for_each_entry(s
, &slab_caches
, list
)
3184 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3186 up_read(&slub_lock
);
3189 case CPU_UP_CANCELED
:
3190 case CPU_UP_CANCELED_FROZEN
:
3192 case CPU_DEAD_FROZEN
:
3193 down_read(&slub_lock
);
3194 list_for_each_entry(s
, &slab_caches
, list
) {
3195 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3197 local_irq_save(flags
);
3198 __flush_cpu_slab(s
, cpu
);
3199 local_irq_restore(flags
);
3200 free_kmem_cache_cpu(c
, cpu
);
3201 s
->cpu_slab
[cpu
] = NULL
;
3203 up_read(&slub_lock
);
3211 static struct notifier_block __cpuinitdata slab_notifier
= {
3212 .notifier_call
= slab_cpuup_callback
3217 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3219 struct kmem_cache
*s
;
3221 if (unlikely(size
> PAGE_SIZE
/ 2))
3222 return (void *)__get_free_pages(gfpflags
| __GFP_COMP
,
3224 s
= get_slab(size
, gfpflags
);
3226 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3229 return slab_alloc(s
, gfpflags
, -1, caller
);
3232 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3233 int node
, void *caller
)
3235 struct kmem_cache
*s
;
3237 if (unlikely(size
> PAGE_SIZE
/ 2))
3238 return (void *)__get_free_pages(gfpflags
| __GFP_COMP
,
3240 s
= get_slab(size
, gfpflags
);
3242 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3245 return slab_alloc(s
, gfpflags
, node
, caller
);
3248 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3249 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3253 void *addr
= slab_address(page
);
3255 if (!check_slab(s
, page
) ||
3256 !on_freelist(s
, page
, NULL
))
3259 /* Now we know that a valid freelist exists */
3260 bitmap_zero(map
, s
->objects
);
3262 for_each_free_object(p
, s
, page
->freelist
) {
3263 set_bit(slab_index(p
, s
, addr
), map
);
3264 if (!check_object(s
, page
, p
, 0))
3268 for_each_object(p
, s
, addr
)
3269 if (!test_bit(slab_index(p
, s
, addr
), map
))
3270 if (!check_object(s
, page
, p
, 1))
3275 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3278 if (slab_trylock(page
)) {
3279 validate_slab(s
, page
, map
);
3282 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3285 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3286 if (!SlabDebug(page
))
3287 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3288 "on slab 0x%p\n", s
->name
, page
);
3290 if (SlabDebug(page
))
3291 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3292 "slab 0x%p\n", s
->name
, page
);
3296 static int validate_slab_node(struct kmem_cache
*s
,
3297 struct kmem_cache_node
*n
, unsigned long *map
)
3299 unsigned long count
= 0;
3301 unsigned long flags
;
3303 spin_lock_irqsave(&n
->list_lock
, flags
);
3305 list_for_each_entry(page
, &n
->partial
, lru
) {
3306 validate_slab_slab(s
, page
, map
);
3309 if (count
!= n
->nr_partial
)
3310 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3311 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3313 if (!(s
->flags
& SLAB_STORE_USER
))
3316 list_for_each_entry(page
, &n
->full
, lru
) {
3317 validate_slab_slab(s
, page
, map
);
3320 if (count
!= atomic_long_read(&n
->nr_slabs
))
3321 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3322 "counter=%ld\n", s
->name
, count
,
3323 atomic_long_read(&n
->nr_slabs
));
3326 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3330 static long validate_slab_cache(struct kmem_cache
*s
)
3333 unsigned long count
= 0;
3334 unsigned long *map
= kmalloc(BITS_TO_LONGS(s
->objects
) *
3335 sizeof(unsigned long), GFP_KERNEL
);
3341 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3342 struct kmem_cache_node
*n
= get_node(s
, node
);
3344 count
+= validate_slab_node(s
, n
, map
);
3350 #ifdef SLUB_RESILIENCY_TEST
3351 static void resiliency_test(void)
3355 printk(KERN_ERR
"SLUB resiliency testing\n");
3356 printk(KERN_ERR
"-----------------------\n");
3357 printk(KERN_ERR
"A. Corruption after allocation\n");
3359 p
= kzalloc(16, GFP_KERNEL
);
3361 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3362 " 0x12->0x%p\n\n", p
+ 16);
3364 validate_slab_cache(kmalloc_caches
+ 4);
3366 /* Hmmm... The next two are dangerous */
3367 p
= kzalloc(32, GFP_KERNEL
);
3368 p
[32 + sizeof(void *)] = 0x34;
3369 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3370 " 0x34 -> -0x%p\n", p
);
3372 "If allocated object is overwritten then not detectable\n\n");
3374 validate_slab_cache(kmalloc_caches
+ 5);
3375 p
= kzalloc(64, GFP_KERNEL
);
3376 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3378 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3381 "If allocated object is overwritten then not detectable\n\n");
3382 validate_slab_cache(kmalloc_caches
+ 6);
3384 printk(KERN_ERR
"\nB. Corruption after free\n");
3385 p
= kzalloc(128, GFP_KERNEL
);
3388 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3389 validate_slab_cache(kmalloc_caches
+ 7);
3391 p
= kzalloc(256, GFP_KERNEL
);
3394 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3396 validate_slab_cache(kmalloc_caches
+ 8);
3398 p
= kzalloc(512, GFP_KERNEL
);
3401 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3402 validate_slab_cache(kmalloc_caches
+ 9);
3405 static void resiliency_test(void) {};
3409 * Generate lists of code addresses where slabcache objects are allocated
3414 unsigned long count
;
3427 unsigned long count
;
3428 struct location
*loc
;
3431 static void free_loc_track(struct loc_track
*t
)
3434 free_pages((unsigned long)t
->loc
,
3435 get_order(sizeof(struct location
) * t
->max
));
3438 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3443 order
= get_order(sizeof(struct location
) * max
);
3445 l
= (void *)__get_free_pages(flags
, order
);
3450 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3458 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3459 const struct track
*track
)
3461 long start
, end
, pos
;
3464 unsigned long age
= jiffies
- track
->when
;
3470 pos
= start
+ (end
- start
+ 1) / 2;
3473 * There is nothing at "end". If we end up there
3474 * we need to add something to before end.
3479 caddr
= t
->loc
[pos
].addr
;
3480 if (track
->addr
== caddr
) {
3486 if (age
< l
->min_time
)
3488 if (age
> l
->max_time
)
3491 if (track
->pid
< l
->min_pid
)
3492 l
->min_pid
= track
->pid
;
3493 if (track
->pid
> l
->max_pid
)
3494 l
->max_pid
= track
->pid
;
3496 cpu_set(track
->cpu
, l
->cpus
);
3498 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3502 if (track
->addr
< caddr
)
3509 * Not found. Insert new tracking element.
3511 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3517 (t
->count
- pos
) * sizeof(struct location
));
3520 l
->addr
= track
->addr
;
3524 l
->min_pid
= track
->pid
;
3525 l
->max_pid
= track
->pid
;
3526 cpus_clear(l
->cpus
);
3527 cpu_set(track
->cpu
, l
->cpus
);
3528 nodes_clear(l
->nodes
);
3529 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3533 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3534 struct page
*page
, enum track_item alloc
)
3536 void *addr
= slab_address(page
);
3537 DECLARE_BITMAP(map
, s
->objects
);
3540 bitmap_zero(map
, s
->objects
);
3541 for_each_free_object(p
, s
, page
->freelist
)
3542 set_bit(slab_index(p
, s
, addr
), map
);
3544 for_each_object(p
, s
, addr
)
3545 if (!test_bit(slab_index(p
, s
, addr
), map
))
3546 add_location(t
, s
, get_track(s
, p
, alloc
));
3549 static int list_locations(struct kmem_cache
*s
, char *buf
,
3550 enum track_item alloc
)
3554 struct loc_track t
= { 0, 0, NULL
};
3557 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3559 return sprintf(buf
, "Out of memory\n");
3561 /* Push back cpu slabs */
3564 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3565 struct kmem_cache_node
*n
= get_node(s
, node
);
3566 unsigned long flags
;
3569 if (!atomic_long_read(&n
->nr_slabs
))
3572 spin_lock_irqsave(&n
->list_lock
, flags
);
3573 list_for_each_entry(page
, &n
->partial
, lru
)
3574 process_slab(&t
, s
, page
, alloc
);
3575 list_for_each_entry(page
, &n
->full
, lru
)
3576 process_slab(&t
, s
, page
, alloc
);
3577 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3580 for (i
= 0; i
< t
.count
; i
++) {
3581 struct location
*l
= &t
.loc
[i
];
3583 if (len
> PAGE_SIZE
- 100)
3585 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3588 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3590 len
+= sprintf(buf
+ len
, "<not-available>");
3592 if (l
->sum_time
!= l
->min_time
) {
3593 unsigned long remainder
;
3595 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3597 div_long_long_rem(l
->sum_time
, l
->count
, &remainder
),
3600 len
+= sprintf(buf
+ len
, " age=%ld",
3603 if (l
->min_pid
!= l
->max_pid
)
3604 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3605 l
->min_pid
, l
->max_pid
);
3607 len
+= sprintf(buf
+ len
, " pid=%ld",
3610 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3611 len
< PAGE_SIZE
- 60) {
3612 len
+= sprintf(buf
+ len
, " cpus=");
3613 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3617 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3618 len
< PAGE_SIZE
- 60) {
3619 len
+= sprintf(buf
+ len
, " nodes=");
3620 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3624 len
+= sprintf(buf
+ len
, "\n");
3629 len
+= sprintf(buf
, "No data\n");
3633 enum slab_stat_type
{
3640 #define SO_FULL (1 << SL_FULL)
3641 #define SO_PARTIAL (1 << SL_PARTIAL)
3642 #define SO_CPU (1 << SL_CPU)
3643 #define SO_OBJECTS (1 << SL_OBJECTS)
3645 static unsigned long slab_objects(struct kmem_cache
*s
,
3646 char *buf
, unsigned long flags
)
3648 unsigned long total
= 0;
3652 unsigned long *nodes
;
3653 unsigned long *per_cpu
;
3655 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3656 per_cpu
= nodes
+ nr_node_ids
;
3658 for_each_possible_cpu(cpu
) {
3660 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3670 if (flags
& SO_CPU
) {
3671 if (flags
& SO_OBJECTS
)
3682 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3683 struct kmem_cache_node
*n
= get_node(s
, node
);
3685 if (flags
& SO_PARTIAL
) {
3686 if (flags
& SO_OBJECTS
)
3687 x
= count_partial(n
);
3694 if (flags
& SO_FULL
) {
3695 int full_slabs
= atomic_long_read(&n
->nr_slabs
)
3699 if (flags
& SO_OBJECTS
)
3700 x
= full_slabs
* s
->objects
;
3708 x
= sprintf(buf
, "%lu", total
);
3710 for_each_node_state(node
, N_NORMAL_MEMORY
)
3712 x
+= sprintf(buf
+ x
, " N%d=%lu",
3716 return x
+ sprintf(buf
+ x
, "\n");
3719 static int any_slab_objects(struct kmem_cache
*s
)
3724 for_each_possible_cpu(cpu
) {
3725 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3731 for_each_online_node(node
) {
3732 struct kmem_cache_node
*n
= get_node(s
, node
);
3737 if (n
->nr_partial
|| atomic_long_read(&n
->nr_slabs
))
3743 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3744 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3746 struct slab_attribute
{
3747 struct attribute attr
;
3748 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3749 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3752 #define SLAB_ATTR_RO(_name) \
3753 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3755 #define SLAB_ATTR(_name) \
3756 static struct slab_attribute _name##_attr = \
3757 __ATTR(_name, 0644, _name##_show, _name##_store)
3759 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3761 return sprintf(buf
, "%d\n", s
->size
);
3763 SLAB_ATTR_RO(slab_size
);
3765 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3767 return sprintf(buf
, "%d\n", s
->align
);
3769 SLAB_ATTR_RO(align
);
3771 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3773 return sprintf(buf
, "%d\n", s
->objsize
);
3775 SLAB_ATTR_RO(object_size
);
3777 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3779 return sprintf(buf
, "%d\n", s
->objects
);
3781 SLAB_ATTR_RO(objs_per_slab
);
3783 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3785 return sprintf(buf
, "%d\n", s
->order
);
3787 SLAB_ATTR_RO(order
);
3789 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3792 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3794 return n
+ sprintf(buf
+ n
, "\n");
3800 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3802 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3804 SLAB_ATTR_RO(aliases
);
3806 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3808 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
);
3810 SLAB_ATTR_RO(slabs
);
3812 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3814 return slab_objects(s
, buf
, SO_PARTIAL
);
3816 SLAB_ATTR_RO(partial
);
3818 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3820 return slab_objects(s
, buf
, SO_CPU
);
3822 SLAB_ATTR_RO(cpu_slabs
);
3824 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3826 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
|SO_OBJECTS
);
3828 SLAB_ATTR_RO(objects
);
3830 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3832 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3835 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3836 const char *buf
, size_t length
)
3838 s
->flags
&= ~SLAB_DEBUG_FREE
;
3840 s
->flags
|= SLAB_DEBUG_FREE
;
3843 SLAB_ATTR(sanity_checks
);
3845 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3847 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3850 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3853 s
->flags
&= ~SLAB_TRACE
;
3855 s
->flags
|= SLAB_TRACE
;
3860 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3862 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3865 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3866 const char *buf
, size_t length
)
3868 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3870 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3873 SLAB_ATTR(reclaim_account
);
3875 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3877 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3879 SLAB_ATTR_RO(hwcache_align
);
3881 #ifdef CONFIG_ZONE_DMA
3882 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3884 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3886 SLAB_ATTR_RO(cache_dma
);
3889 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3891 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3893 SLAB_ATTR_RO(destroy_by_rcu
);
3895 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3897 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3900 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3901 const char *buf
, size_t length
)
3903 if (any_slab_objects(s
))
3906 s
->flags
&= ~SLAB_RED_ZONE
;
3908 s
->flags
|= SLAB_RED_ZONE
;
3912 SLAB_ATTR(red_zone
);
3914 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3916 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3919 static ssize_t
poison_store(struct kmem_cache
*s
,
3920 const char *buf
, size_t length
)
3922 if (any_slab_objects(s
))
3925 s
->flags
&= ~SLAB_POISON
;
3927 s
->flags
|= SLAB_POISON
;
3933 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3935 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3938 static ssize_t
store_user_store(struct kmem_cache
*s
,
3939 const char *buf
, size_t length
)
3941 if (any_slab_objects(s
))
3944 s
->flags
&= ~SLAB_STORE_USER
;
3946 s
->flags
|= SLAB_STORE_USER
;
3950 SLAB_ATTR(store_user
);
3952 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
3957 static ssize_t
validate_store(struct kmem_cache
*s
,
3958 const char *buf
, size_t length
)
3962 if (buf
[0] == '1') {
3963 ret
= validate_slab_cache(s
);
3969 SLAB_ATTR(validate
);
3971 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
3976 static ssize_t
shrink_store(struct kmem_cache
*s
,
3977 const char *buf
, size_t length
)
3979 if (buf
[0] == '1') {
3980 int rc
= kmem_cache_shrink(s
);
3990 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
3992 if (!(s
->flags
& SLAB_STORE_USER
))
3994 return list_locations(s
, buf
, TRACK_ALLOC
);
3996 SLAB_ATTR_RO(alloc_calls
);
3998 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4000 if (!(s
->flags
& SLAB_STORE_USER
))
4002 return list_locations(s
, buf
, TRACK_FREE
);
4004 SLAB_ATTR_RO(free_calls
);
4007 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4009 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4012 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4013 const char *buf
, size_t length
)
4015 int n
= simple_strtoul(buf
, NULL
, 10);
4018 s
->remote_node_defrag_ratio
= n
* 10;
4021 SLAB_ATTR(remote_node_defrag_ratio
);
4024 #ifdef CONFIG_SLUB_STATS
4026 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4028 unsigned long sum
= 0;
4031 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4036 for_each_online_cpu(cpu
) {
4037 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4043 len
= sprintf(buf
, "%lu", sum
);
4045 for_each_online_cpu(cpu
) {
4046 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4047 len
+= sprintf(buf
+ len
, " c%d=%u", cpu
, data
[cpu
]);
4050 return len
+ sprintf(buf
+ len
, "\n");
4053 #define STAT_ATTR(si, text) \
4054 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4056 return show_stat(s, buf, si); \
4058 SLAB_ATTR_RO(text); \
4060 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4061 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4062 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4063 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4064 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4065 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4066 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4067 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4068 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4069 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4070 STAT_ATTR(FREE_SLAB
, free_slab
);
4071 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4072 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4073 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4074 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4075 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4076 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4080 static struct attribute
*slab_attrs
[] = {
4081 &slab_size_attr
.attr
,
4082 &object_size_attr
.attr
,
4083 &objs_per_slab_attr
.attr
,
4088 &cpu_slabs_attr
.attr
,
4092 &sanity_checks_attr
.attr
,
4094 &hwcache_align_attr
.attr
,
4095 &reclaim_account_attr
.attr
,
4096 &destroy_by_rcu_attr
.attr
,
4097 &red_zone_attr
.attr
,
4099 &store_user_attr
.attr
,
4100 &validate_attr
.attr
,
4102 &alloc_calls_attr
.attr
,
4103 &free_calls_attr
.attr
,
4104 #ifdef CONFIG_ZONE_DMA
4105 &cache_dma_attr
.attr
,
4108 &remote_node_defrag_ratio_attr
.attr
,
4110 #ifdef CONFIG_SLUB_STATS
4111 &alloc_fastpath_attr
.attr
,
4112 &alloc_slowpath_attr
.attr
,
4113 &free_fastpath_attr
.attr
,
4114 &free_slowpath_attr
.attr
,
4115 &free_frozen_attr
.attr
,
4116 &free_add_partial_attr
.attr
,
4117 &free_remove_partial_attr
.attr
,
4118 &alloc_from_partial_attr
.attr
,
4119 &alloc_slab_attr
.attr
,
4120 &alloc_refill_attr
.attr
,
4121 &free_slab_attr
.attr
,
4122 &cpuslab_flush_attr
.attr
,
4123 &deactivate_full_attr
.attr
,
4124 &deactivate_empty_attr
.attr
,
4125 &deactivate_to_head_attr
.attr
,
4126 &deactivate_to_tail_attr
.attr
,
4127 &deactivate_remote_frees_attr
.attr
,
4132 static struct attribute_group slab_attr_group
= {
4133 .attrs
= slab_attrs
,
4136 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4137 struct attribute
*attr
,
4140 struct slab_attribute
*attribute
;
4141 struct kmem_cache
*s
;
4144 attribute
= to_slab_attr(attr
);
4147 if (!attribute
->show
)
4150 err
= attribute
->show(s
, buf
);
4155 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4156 struct attribute
*attr
,
4157 const char *buf
, size_t len
)
4159 struct slab_attribute
*attribute
;
4160 struct kmem_cache
*s
;
4163 attribute
= to_slab_attr(attr
);
4166 if (!attribute
->store
)
4169 err
= attribute
->store(s
, buf
, len
);
4174 static void kmem_cache_release(struct kobject
*kobj
)
4176 struct kmem_cache
*s
= to_slab(kobj
);
4181 static struct sysfs_ops slab_sysfs_ops
= {
4182 .show
= slab_attr_show
,
4183 .store
= slab_attr_store
,
4186 static struct kobj_type slab_ktype
= {
4187 .sysfs_ops
= &slab_sysfs_ops
,
4188 .release
= kmem_cache_release
4191 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4193 struct kobj_type
*ktype
= get_ktype(kobj
);
4195 if (ktype
== &slab_ktype
)
4200 static struct kset_uevent_ops slab_uevent_ops
= {
4201 .filter
= uevent_filter
,
4204 static struct kset
*slab_kset
;
4206 #define ID_STR_LENGTH 64
4208 /* Create a unique string id for a slab cache:
4210 * :[flags-]size:[memory address of kmemcache]
4212 static char *create_unique_id(struct kmem_cache
*s
)
4214 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4221 * First flags affecting slabcache operations. We will only
4222 * get here for aliasable slabs so we do not need to support
4223 * too many flags. The flags here must cover all flags that
4224 * are matched during merging to guarantee that the id is
4227 if (s
->flags
& SLAB_CACHE_DMA
)
4229 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4231 if (s
->flags
& SLAB_DEBUG_FREE
)
4235 p
+= sprintf(p
, "%07d", s
->size
);
4236 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4240 static int sysfs_slab_add(struct kmem_cache
*s
)
4246 if (slab_state
< SYSFS
)
4247 /* Defer until later */
4250 unmergeable
= slab_unmergeable(s
);
4253 * Slabcache can never be merged so we can use the name proper.
4254 * This is typically the case for debug situations. In that
4255 * case we can catch duplicate names easily.
4257 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4261 * Create a unique name for the slab as a target
4264 name
= create_unique_id(s
);
4267 s
->kobj
.kset
= slab_kset
;
4268 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4270 kobject_put(&s
->kobj
);
4274 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4277 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4279 /* Setup first alias */
4280 sysfs_slab_alias(s
, s
->name
);
4286 static void sysfs_slab_remove(struct kmem_cache
*s
)
4288 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4289 kobject_del(&s
->kobj
);
4290 kobject_put(&s
->kobj
);
4294 * Need to buffer aliases during bootup until sysfs becomes
4295 * available lest we loose that information.
4297 struct saved_alias
{
4298 struct kmem_cache
*s
;
4300 struct saved_alias
*next
;
4303 static struct saved_alias
*alias_list
;
4305 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4307 struct saved_alias
*al
;
4309 if (slab_state
== SYSFS
) {
4311 * If we have a leftover link then remove it.
4313 sysfs_remove_link(&slab_kset
->kobj
, name
);
4314 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4317 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4323 al
->next
= alias_list
;
4328 static int __init
slab_sysfs_init(void)
4330 struct kmem_cache
*s
;
4333 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4335 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4341 list_for_each_entry(s
, &slab_caches
, list
) {
4342 err
= sysfs_slab_add(s
);
4344 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4345 " to sysfs\n", s
->name
);
4348 while (alias_list
) {
4349 struct saved_alias
*al
= alias_list
;
4351 alias_list
= alias_list
->next
;
4352 err
= sysfs_slab_alias(al
->s
, al
->name
);
4354 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4355 " %s to sysfs\n", s
->name
);
4363 __initcall(slab_sysfs_init
);
4367 * The /proc/slabinfo ABI
4369 #ifdef CONFIG_SLABINFO
4371 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4372 size_t count
, loff_t
*ppos
)
4378 static void print_slabinfo_header(struct seq_file
*m
)
4380 seq_puts(m
, "slabinfo - version: 2.1\n");
4381 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4382 "<objperslab> <pagesperslab>");
4383 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4384 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4388 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4392 down_read(&slub_lock
);
4394 print_slabinfo_header(m
);
4396 return seq_list_start(&slab_caches
, *pos
);
4399 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4401 return seq_list_next(p
, &slab_caches
, pos
);
4404 static void s_stop(struct seq_file
*m
, void *p
)
4406 up_read(&slub_lock
);
4409 static int s_show(struct seq_file
*m
, void *p
)
4411 unsigned long nr_partials
= 0;
4412 unsigned long nr_slabs
= 0;
4413 unsigned long nr_inuse
= 0;
4414 unsigned long nr_objs
;
4415 struct kmem_cache
*s
;
4418 s
= list_entry(p
, struct kmem_cache
, list
);
4420 for_each_online_node(node
) {
4421 struct kmem_cache_node
*n
= get_node(s
, node
);
4426 nr_partials
+= n
->nr_partial
;
4427 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4428 nr_inuse
+= count_partial(n
);
4431 nr_objs
= nr_slabs
* s
->objects
;
4432 nr_inuse
+= (nr_slabs
- nr_partials
) * s
->objects
;
4434 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4435 nr_objs
, s
->size
, s
->objects
, (1 << s
->order
));
4436 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4437 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4443 const struct seq_operations slabinfo_op
= {
4450 #endif /* CONFIG_SLABINFO */