e1000: Remove DISABLE_MULR debug code
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / e1000 / e1000_main.c
blob35d6d080522f8b0d2264a2eef4139bebcccbc283
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.9-k4"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1049),
76 INTEL_E1000_ETHERNET_DEVICE(0x104A),
77 INTEL_E1000_ETHERNET_DEVICE(0x104B),
78 INTEL_E1000_ETHERNET_DEVICE(0x104C),
79 INTEL_E1000_ETHERNET_DEVICE(0x104D),
80 INTEL_E1000_ETHERNET_DEVICE(0x105E),
81 INTEL_E1000_ETHERNET_DEVICE(0x105F),
82 INTEL_E1000_ETHERNET_DEVICE(0x1060),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x107D),
92 INTEL_E1000_ETHERNET_DEVICE(0x107E),
93 INTEL_E1000_ETHERNET_DEVICE(0x107F),
94 INTEL_E1000_ETHERNET_DEVICE(0x108A),
95 INTEL_E1000_ETHERNET_DEVICE(0x108B),
96 INTEL_E1000_ETHERNET_DEVICE(0x108C),
97 INTEL_E1000_ETHERNET_DEVICE(0x1096),
98 INTEL_E1000_ETHERNET_DEVICE(0x1098),
99 INTEL_E1000_ETHERNET_DEVICE(0x1099),
100 INTEL_E1000_ETHERNET_DEVICE(0x109A),
101 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106 /* required last entry */
107 {0,}
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122 struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124 struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158 struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162 struct e1000_rx_ring *rx_ring,
163 int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165 struct e1000_rx_ring *rx_ring,
166 int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171 struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174 struct e1000_rx_ring *rx_ring,
175 int cleaned_count);
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177 struct e1000_rx_ring *rx_ring,
178 int cleaned_count);
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
181 int cmd);
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189 struct sk_buff *skb);
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
197 #ifdef CONFIG_PM
198 static int e1000_resume(struct pci_dev *pdev);
199 #endif
200 static void e1000_shutdown(struct pci_dev *pdev);
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
205 #endif
207 extern void e1000_check_options(struct e1000_adapter *adapter);
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210 pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
214 static struct pci_error_handlers e1000_err_handler = {
215 .error_detected = e1000_io_error_detected,
216 .slot_reset = e1000_io_slot_reset,
217 .resume = e1000_io_resume,
220 static struct pci_driver e1000_driver = {
221 .name = e1000_driver_name,
222 .id_table = e1000_pci_tbl,
223 .probe = e1000_probe,
224 .remove = __devexit_p(e1000_remove),
225 #ifdef CONFIG_PM
226 /* Power Managment Hooks */
227 .suspend = e1000_suspend,
228 .resume = e1000_resume,
229 #endif
230 .shutdown = e1000_shutdown,
231 .err_handler = &e1000_err_handler
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
244 * e1000_init_module - Driver Registration Routine
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
250 static int __init
251 e1000_init_module(void)
253 int ret;
254 printk(KERN_INFO "%s - version %s\n",
255 e1000_driver_string, e1000_driver_version);
257 printk(KERN_INFO "%s\n", e1000_copyright);
259 ret = pci_register_driver(&e1000_driver);
261 return ret;
264 module_init(e1000_init_module);
267 * e1000_exit_module - Driver Exit Cleanup Routine
269 * e1000_exit_module is called just before the driver is removed
270 * from memory.
273 static void __exit
274 e1000_exit_module(void)
276 pci_unregister_driver(&e1000_driver);
279 module_exit(e1000_exit_module);
281 static int e1000_request_irq(struct e1000_adapter *adapter)
283 struct net_device *netdev = adapter->netdev;
284 int flags, err = 0;
286 flags = IRQF_SHARED;
287 #ifdef CONFIG_PCI_MSI
288 if (adapter->hw.mac_type > e1000_82547_rev_2) {
289 adapter->have_msi = TRUE;
290 if ((err = pci_enable_msi(adapter->pdev))) {
291 DPRINTK(PROBE, ERR,
292 "Unable to allocate MSI interrupt Error: %d\n", err);
293 adapter->have_msi = FALSE;
296 if (adapter->have_msi)
297 flags &= ~IRQF_SHARED;
298 #endif
299 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300 netdev->name, netdev)))
301 DPRINTK(PROBE, ERR,
302 "Unable to allocate interrupt Error: %d\n", err);
304 return err;
307 static void e1000_free_irq(struct e1000_adapter *adapter)
309 struct net_device *netdev = adapter->netdev;
311 free_irq(adapter->pdev->irq, netdev);
313 #ifdef CONFIG_PCI_MSI
314 if (adapter->have_msi)
315 pci_disable_msi(adapter->pdev);
316 #endif
320 * e1000_irq_disable - Mask off interrupt generation on the NIC
321 * @adapter: board private structure
324 static void
325 e1000_irq_disable(struct e1000_adapter *adapter)
327 atomic_inc(&adapter->irq_sem);
328 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329 E1000_WRITE_FLUSH(&adapter->hw);
330 synchronize_irq(adapter->pdev->irq);
334 * e1000_irq_enable - Enable default interrupt generation settings
335 * @adapter: board private structure
338 static void
339 e1000_irq_enable(struct e1000_adapter *adapter)
341 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343 E1000_WRITE_FLUSH(&adapter->hw);
347 static void
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
350 struct net_device *netdev = adapter->netdev;
351 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352 uint16_t old_vid = adapter->mng_vlan_id;
353 if (adapter->vlgrp) {
354 if (!adapter->vlgrp->vlan_devices[vid]) {
355 if (adapter->hw.mng_cookie.status &
356 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357 e1000_vlan_rx_add_vid(netdev, vid);
358 adapter->mng_vlan_id = vid;
359 } else
360 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
362 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
363 (vid != old_vid) &&
364 !adapter->vlgrp->vlan_devices[old_vid])
365 e1000_vlan_rx_kill_vid(netdev, old_vid);
366 } else
367 adapter->mng_vlan_id = vid;
372 * e1000_release_hw_control - release control of the h/w to f/w
373 * @adapter: address of board private structure
375 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376 * For ASF and Pass Through versions of f/w this means that the
377 * driver is no longer loaded. For AMT version (only with 82573) i
378 * of the f/w this means that the network i/f is closed.
382 static void
383 e1000_release_hw_control(struct e1000_adapter *adapter)
385 uint32_t ctrl_ext;
386 uint32_t swsm;
387 uint32_t extcnf;
389 /* Let firmware taken over control of h/w */
390 switch (adapter->hw.mac_type) {
391 case e1000_82571:
392 case e1000_82572:
393 case e1000_80003es2lan:
394 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
397 break;
398 case e1000_82573:
399 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400 E1000_WRITE_REG(&adapter->hw, SWSM,
401 swsm & ~E1000_SWSM_DRV_LOAD);
402 case e1000_ich8lan:
403 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
406 break;
407 default:
408 break;
413 * e1000_get_hw_control - get control of the h/w from f/w
414 * @adapter: address of board private structure
416 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417 * For ASF and Pass Through versions of f/w this means that
418 * the driver is loaded. For AMT version (only with 82573)
419 * of the f/w this means that the network i/f is open.
423 static void
424 e1000_get_hw_control(struct e1000_adapter *adapter)
426 uint32_t ctrl_ext;
427 uint32_t swsm;
428 uint32_t extcnf;
430 /* Let firmware know the driver has taken over */
431 switch (adapter->hw.mac_type) {
432 case e1000_82571:
433 case e1000_82572:
434 case e1000_80003es2lan:
435 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
436 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
437 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
438 break;
439 case e1000_82573:
440 swsm = E1000_READ_REG(&adapter->hw, SWSM);
441 E1000_WRITE_REG(&adapter->hw, SWSM,
442 swsm | E1000_SWSM_DRV_LOAD);
443 break;
444 case e1000_ich8lan:
445 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
446 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
447 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
448 break;
449 default:
450 break;
455 e1000_up(struct e1000_adapter *adapter)
457 struct net_device *netdev = adapter->netdev;
458 int i;
460 /* hardware has been reset, we need to reload some things */
462 e1000_set_multi(netdev);
464 e1000_restore_vlan(adapter);
466 e1000_configure_tx(adapter);
467 e1000_setup_rctl(adapter);
468 e1000_configure_rx(adapter);
469 /* call E1000_DESC_UNUSED which always leaves
470 * at least 1 descriptor unused to make sure
471 * next_to_use != next_to_clean */
472 for (i = 0; i < adapter->num_rx_queues; i++) {
473 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
474 adapter->alloc_rx_buf(adapter, ring,
475 E1000_DESC_UNUSED(ring));
478 adapter->tx_queue_len = netdev->tx_queue_len;
480 #ifdef CONFIG_E1000_NAPI
481 netif_poll_enable(netdev);
482 #endif
483 e1000_irq_enable(adapter);
485 clear_bit(__E1000_DOWN, &adapter->flags);
487 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
488 return 0;
492 * e1000_power_up_phy - restore link in case the phy was powered down
493 * @adapter: address of board private structure
495 * The phy may be powered down to save power and turn off link when the
496 * driver is unloaded and wake on lan is not enabled (among others)
497 * *** this routine MUST be followed by a call to e1000_reset ***
501 void e1000_power_up_phy(struct e1000_adapter *adapter)
503 uint16_t mii_reg = 0;
505 /* Just clear the power down bit to wake the phy back up */
506 if (adapter->hw.media_type == e1000_media_type_copper) {
507 /* according to the manual, the phy will retain its
508 * settings across a power-down/up cycle */
509 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
510 mii_reg &= ~MII_CR_POWER_DOWN;
511 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
515 static void e1000_power_down_phy(struct e1000_adapter *adapter)
517 /* Power down the PHY so no link is implied when interface is down *
518 * The PHY cannot be powered down if any of the following is TRUE *
519 * (a) WoL is enabled
520 * (b) AMT is active
521 * (c) SoL/IDER session is active */
522 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
523 adapter->hw.media_type == e1000_media_type_copper) {
524 uint16_t mii_reg = 0;
526 switch (adapter->hw.mac_type) {
527 case e1000_82540:
528 case e1000_82545:
529 case e1000_82545_rev_3:
530 case e1000_82546:
531 case e1000_82546_rev_3:
532 case e1000_82541:
533 case e1000_82541_rev_2:
534 case e1000_82547:
535 case e1000_82547_rev_2:
536 if (E1000_READ_REG(&adapter->hw, MANC) &
537 E1000_MANC_SMBUS_EN)
538 goto out;
539 break;
540 case e1000_82571:
541 case e1000_82572:
542 case e1000_82573:
543 case e1000_80003es2lan:
544 case e1000_ich8lan:
545 if (e1000_check_mng_mode(&adapter->hw) ||
546 e1000_check_phy_reset_block(&adapter->hw))
547 goto out;
548 break;
549 default:
550 goto out;
552 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
553 mii_reg |= MII_CR_POWER_DOWN;
554 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
555 mdelay(1);
557 out:
558 return;
561 void
562 e1000_down(struct e1000_adapter *adapter)
564 struct net_device *netdev = adapter->netdev;
566 /* signal that we're down so the interrupt handler does not
567 * reschedule our watchdog timer */
568 set_bit(__E1000_DOWN, &adapter->flags);
570 e1000_irq_disable(adapter);
572 del_timer_sync(&adapter->tx_fifo_stall_timer);
573 del_timer_sync(&adapter->watchdog_timer);
574 del_timer_sync(&adapter->phy_info_timer);
576 #ifdef CONFIG_E1000_NAPI
577 netif_poll_disable(netdev);
578 #endif
579 netdev->tx_queue_len = adapter->tx_queue_len;
580 adapter->link_speed = 0;
581 adapter->link_duplex = 0;
582 netif_carrier_off(netdev);
583 netif_stop_queue(netdev);
585 e1000_reset(adapter);
586 e1000_clean_all_tx_rings(adapter);
587 e1000_clean_all_rx_rings(adapter);
590 void
591 e1000_reinit_locked(struct e1000_adapter *adapter)
593 WARN_ON(in_interrupt());
594 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
595 msleep(1);
596 e1000_down(adapter);
597 e1000_up(adapter);
598 clear_bit(__E1000_RESETTING, &adapter->flags);
601 void
602 e1000_reset(struct e1000_adapter *adapter)
604 uint32_t pba, manc;
605 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
607 /* Repartition Pba for greater than 9k mtu
608 * To take effect CTRL.RST is required.
611 switch (adapter->hw.mac_type) {
612 case e1000_82547:
613 case e1000_82547_rev_2:
614 pba = E1000_PBA_30K;
615 break;
616 case e1000_82571:
617 case e1000_82572:
618 case e1000_80003es2lan:
619 pba = E1000_PBA_38K;
620 break;
621 case e1000_82573:
622 pba = E1000_PBA_12K;
623 break;
624 case e1000_ich8lan:
625 pba = E1000_PBA_8K;
626 break;
627 default:
628 pba = E1000_PBA_48K;
629 break;
632 if ((adapter->hw.mac_type != e1000_82573) &&
633 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
634 pba -= 8; /* allocate more FIFO for Tx */
637 if (adapter->hw.mac_type == e1000_82547) {
638 adapter->tx_fifo_head = 0;
639 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
640 adapter->tx_fifo_size =
641 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
642 atomic_set(&adapter->tx_fifo_stall, 0);
645 E1000_WRITE_REG(&adapter->hw, PBA, pba);
647 /* flow control settings */
648 /* Set the FC high water mark to 90% of the FIFO size.
649 * Required to clear last 3 LSB */
650 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
651 /* We can't use 90% on small FIFOs because the remainder
652 * would be less than 1 full frame. In this case, we size
653 * it to allow at least a full frame above the high water
654 * mark. */
655 if (pba < E1000_PBA_16K)
656 fc_high_water_mark = (pba * 1024) - 1600;
658 adapter->hw.fc_high_water = fc_high_water_mark;
659 adapter->hw.fc_low_water = fc_high_water_mark - 8;
660 if (adapter->hw.mac_type == e1000_80003es2lan)
661 adapter->hw.fc_pause_time = 0xFFFF;
662 else
663 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
664 adapter->hw.fc_send_xon = 1;
665 adapter->hw.fc = adapter->hw.original_fc;
667 /* Allow time for pending master requests to run */
668 e1000_reset_hw(&adapter->hw);
669 if (adapter->hw.mac_type >= e1000_82544)
670 E1000_WRITE_REG(&adapter->hw, WUC, 0);
672 if (e1000_init_hw(&adapter->hw))
673 DPRINTK(PROBE, ERR, "Hardware Error\n");
674 e1000_update_mng_vlan(adapter);
675 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
676 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
678 e1000_reset_adaptive(&adapter->hw);
679 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
681 if (!adapter->smart_power_down &&
682 (adapter->hw.mac_type == e1000_82571 ||
683 adapter->hw.mac_type == e1000_82572)) {
684 uint16_t phy_data = 0;
685 /* speed up time to link by disabling smart power down, ignore
686 * the return value of this function because there is nothing
687 * different we would do if it failed */
688 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
689 &phy_data);
690 phy_data &= ~IGP02E1000_PM_SPD;
691 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
692 phy_data);
695 if ((adapter->en_mng_pt) &&
696 (adapter->hw.mac_type >= e1000_82540) &&
697 (adapter->hw.mac_type < e1000_82571) &&
698 (adapter->hw.media_type == e1000_media_type_copper)) {
699 manc = E1000_READ_REG(&adapter->hw, MANC);
700 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
701 E1000_WRITE_REG(&adapter->hw, MANC, manc);
706 * e1000_probe - Device Initialization Routine
707 * @pdev: PCI device information struct
708 * @ent: entry in e1000_pci_tbl
710 * Returns 0 on success, negative on failure
712 * e1000_probe initializes an adapter identified by a pci_dev structure.
713 * The OS initialization, configuring of the adapter private structure,
714 * and a hardware reset occur.
717 static int __devinit
718 e1000_probe(struct pci_dev *pdev,
719 const struct pci_device_id *ent)
721 struct net_device *netdev;
722 struct e1000_adapter *adapter;
723 unsigned long mmio_start, mmio_len;
724 unsigned long flash_start, flash_len;
726 static int cards_found = 0;
727 static int global_quad_port_a = 0; /* global ksp3 port a indication */
728 int i, err, pci_using_dac;
729 uint16_t eeprom_data = 0;
730 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
731 if ((err = pci_enable_device(pdev)))
732 return err;
734 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
735 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
736 pci_using_dac = 1;
737 } else {
738 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
739 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
740 E1000_ERR("No usable DMA configuration, aborting\n");
741 goto err_dma;
743 pci_using_dac = 0;
746 if ((err = pci_request_regions(pdev, e1000_driver_name)))
747 goto err_pci_reg;
749 pci_set_master(pdev);
751 err = -ENOMEM;
752 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
753 if (!netdev)
754 goto err_alloc_etherdev;
756 SET_MODULE_OWNER(netdev);
757 SET_NETDEV_DEV(netdev, &pdev->dev);
759 pci_set_drvdata(pdev, netdev);
760 adapter = netdev_priv(netdev);
761 adapter->netdev = netdev;
762 adapter->pdev = pdev;
763 adapter->hw.back = adapter;
764 adapter->msg_enable = (1 << debug) - 1;
766 mmio_start = pci_resource_start(pdev, BAR_0);
767 mmio_len = pci_resource_len(pdev, BAR_0);
769 err = -EIO;
770 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
771 if (!adapter->hw.hw_addr)
772 goto err_ioremap;
774 for (i = BAR_1; i <= BAR_5; i++) {
775 if (pci_resource_len(pdev, i) == 0)
776 continue;
777 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
778 adapter->hw.io_base = pci_resource_start(pdev, i);
779 break;
783 netdev->open = &e1000_open;
784 netdev->stop = &e1000_close;
785 netdev->hard_start_xmit = &e1000_xmit_frame;
786 netdev->get_stats = &e1000_get_stats;
787 netdev->set_multicast_list = &e1000_set_multi;
788 netdev->set_mac_address = &e1000_set_mac;
789 netdev->change_mtu = &e1000_change_mtu;
790 netdev->do_ioctl = &e1000_ioctl;
791 e1000_set_ethtool_ops(netdev);
792 netdev->tx_timeout = &e1000_tx_timeout;
793 netdev->watchdog_timeo = 5 * HZ;
794 #ifdef CONFIG_E1000_NAPI
795 netdev->poll = &e1000_clean;
796 netdev->weight = 64;
797 #endif
798 netdev->vlan_rx_register = e1000_vlan_rx_register;
799 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
800 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
801 #ifdef CONFIG_NET_POLL_CONTROLLER
802 netdev->poll_controller = e1000_netpoll;
803 #endif
804 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
806 netdev->mem_start = mmio_start;
807 netdev->mem_end = mmio_start + mmio_len;
808 netdev->base_addr = adapter->hw.io_base;
810 adapter->bd_number = cards_found;
812 /* setup the private structure */
814 if ((err = e1000_sw_init(adapter)))
815 goto err_sw_init;
817 err = -EIO;
818 /* Flash BAR mapping must happen after e1000_sw_init
819 * because it depends on mac_type */
820 if ((adapter->hw.mac_type == e1000_ich8lan) &&
821 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
822 flash_start = pci_resource_start(pdev, 1);
823 flash_len = pci_resource_len(pdev, 1);
824 adapter->hw.flash_address = ioremap(flash_start, flash_len);
825 if (!adapter->hw.flash_address)
826 goto err_flashmap;
829 if (e1000_check_phy_reset_block(&adapter->hw))
830 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
832 if (adapter->hw.mac_type >= e1000_82543) {
833 netdev->features = NETIF_F_SG |
834 NETIF_F_HW_CSUM |
835 NETIF_F_HW_VLAN_TX |
836 NETIF_F_HW_VLAN_RX |
837 NETIF_F_HW_VLAN_FILTER;
838 if (adapter->hw.mac_type == e1000_ich8lan)
839 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
842 #ifdef NETIF_F_TSO
843 if ((adapter->hw.mac_type >= e1000_82544) &&
844 (adapter->hw.mac_type != e1000_82547))
845 netdev->features |= NETIF_F_TSO;
847 #ifdef NETIF_F_TSO_IPV6
848 if (adapter->hw.mac_type > e1000_82547_rev_2)
849 netdev->features |= NETIF_F_TSO_IPV6;
850 #endif
851 #endif
852 if (pci_using_dac)
853 netdev->features |= NETIF_F_HIGHDMA;
855 netdev->features |= NETIF_F_LLTX;
857 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
859 /* initialize eeprom parameters */
861 if (e1000_init_eeprom_params(&adapter->hw)) {
862 E1000_ERR("EEPROM initialization failed\n");
863 goto err_eeprom;
866 /* before reading the EEPROM, reset the controller to
867 * put the device in a known good starting state */
869 e1000_reset_hw(&adapter->hw);
871 /* make sure the EEPROM is good */
873 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
874 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
875 goto err_eeprom;
878 /* copy the MAC address out of the EEPROM */
880 if (e1000_read_mac_addr(&adapter->hw))
881 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
882 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
883 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
885 if (!is_valid_ether_addr(netdev->perm_addr)) {
886 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
887 goto err_eeprom;
890 e1000_get_bus_info(&adapter->hw);
892 init_timer(&adapter->tx_fifo_stall_timer);
893 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
894 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
896 init_timer(&adapter->watchdog_timer);
897 adapter->watchdog_timer.function = &e1000_watchdog;
898 adapter->watchdog_timer.data = (unsigned long) adapter;
900 init_timer(&adapter->phy_info_timer);
901 adapter->phy_info_timer.function = &e1000_update_phy_info;
902 adapter->phy_info_timer.data = (unsigned long) adapter;
904 INIT_WORK(&adapter->reset_task,
905 (void (*)(void *))e1000_reset_task, netdev);
907 e1000_check_options(adapter);
909 /* Initial Wake on LAN setting
910 * If APM wake is enabled in the EEPROM,
911 * enable the ACPI Magic Packet filter
914 switch (adapter->hw.mac_type) {
915 case e1000_82542_rev2_0:
916 case e1000_82542_rev2_1:
917 case e1000_82543:
918 break;
919 case e1000_82544:
920 e1000_read_eeprom(&adapter->hw,
921 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
922 eeprom_apme_mask = E1000_EEPROM_82544_APM;
923 break;
924 case e1000_ich8lan:
925 e1000_read_eeprom(&adapter->hw,
926 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
927 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
928 break;
929 case e1000_82546:
930 case e1000_82546_rev_3:
931 case e1000_82571:
932 case e1000_80003es2lan:
933 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
934 e1000_read_eeprom(&adapter->hw,
935 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
936 break;
938 /* Fall Through */
939 default:
940 e1000_read_eeprom(&adapter->hw,
941 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
942 break;
944 if (eeprom_data & eeprom_apme_mask)
945 adapter->eeprom_wol |= E1000_WUFC_MAG;
947 /* now that we have the eeprom settings, apply the special cases
948 * where the eeprom may be wrong or the board simply won't support
949 * wake on lan on a particular port */
950 switch (pdev->device) {
951 case E1000_DEV_ID_82546GB_PCIE:
952 adapter->eeprom_wol = 0;
953 break;
954 case E1000_DEV_ID_82546EB_FIBER:
955 case E1000_DEV_ID_82546GB_FIBER:
956 case E1000_DEV_ID_82571EB_FIBER:
957 /* Wake events only supported on port A for dual fiber
958 * regardless of eeprom setting */
959 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
960 adapter->eeprom_wol = 0;
961 break;
962 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
963 case E1000_DEV_ID_82571EB_QUAD_COPPER:
964 /* if quad port adapter, disable WoL on all but port A */
965 if (global_quad_port_a != 0)
966 adapter->eeprom_wol = 0;
967 else
968 adapter->quad_port_a = 1;
969 /* Reset for multiple quad port adapters */
970 if (++global_quad_port_a == 4)
971 global_quad_port_a = 0;
972 break;
975 /* initialize the wol settings based on the eeprom settings */
976 adapter->wol = adapter->eeprom_wol;
978 /* print bus type/speed/width info */
980 struct e1000_hw *hw = &adapter->hw;
981 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
982 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
983 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
984 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
985 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
986 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
987 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
988 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
989 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
990 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
991 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
992 "32-bit"));
995 for (i = 0; i < 6; i++)
996 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
998 /* reset the hardware with the new settings */
999 e1000_reset(adapter);
1001 /* If the controller is 82573 and f/w is AMT, do not set
1002 * DRV_LOAD until the interface is up. For all other cases,
1003 * let the f/w know that the h/w is now under the control
1004 * of the driver. */
1005 if (adapter->hw.mac_type != e1000_82573 ||
1006 !e1000_check_mng_mode(&adapter->hw))
1007 e1000_get_hw_control(adapter);
1009 strcpy(netdev->name, "eth%d");
1010 if ((err = register_netdev(netdev)))
1011 goto err_register;
1013 /* tell the stack to leave us alone until e1000_open() is called */
1014 netif_carrier_off(netdev);
1015 netif_stop_queue(netdev);
1017 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1019 cards_found++;
1020 return 0;
1022 err_register:
1023 e1000_release_hw_control(adapter);
1024 err_eeprom:
1025 if (!e1000_check_phy_reset_block(&adapter->hw))
1026 e1000_phy_hw_reset(&adapter->hw);
1028 if (adapter->hw.flash_address)
1029 iounmap(adapter->hw.flash_address);
1030 err_flashmap:
1031 #ifdef CONFIG_E1000_NAPI
1032 for (i = 0; i < adapter->num_rx_queues; i++)
1033 dev_put(&adapter->polling_netdev[i]);
1034 #endif
1036 kfree(adapter->tx_ring);
1037 kfree(adapter->rx_ring);
1038 #ifdef CONFIG_E1000_NAPI
1039 kfree(adapter->polling_netdev);
1040 #endif
1041 err_sw_init:
1042 iounmap(adapter->hw.hw_addr);
1043 err_ioremap:
1044 free_netdev(netdev);
1045 err_alloc_etherdev:
1046 pci_release_regions(pdev);
1047 err_pci_reg:
1048 err_dma:
1049 pci_disable_device(pdev);
1050 return err;
1054 * e1000_remove - Device Removal Routine
1055 * @pdev: PCI device information struct
1057 * e1000_remove is called by the PCI subsystem to alert the driver
1058 * that it should release a PCI device. The could be caused by a
1059 * Hot-Plug event, or because the driver is going to be removed from
1060 * memory.
1063 static void __devexit
1064 e1000_remove(struct pci_dev *pdev)
1066 struct net_device *netdev = pci_get_drvdata(pdev);
1067 struct e1000_adapter *adapter = netdev_priv(netdev);
1068 uint32_t manc;
1069 #ifdef CONFIG_E1000_NAPI
1070 int i;
1071 #endif
1073 flush_scheduled_work();
1075 if (adapter->hw.mac_type >= e1000_82540 &&
1076 adapter->hw.mac_type < e1000_82571 &&
1077 adapter->hw.media_type == e1000_media_type_copper) {
1078 manc = E1000_READ_REG(&adapter->hw, MANC);
1079 if (manc & E1000_MANC_SMBUS_EN) {
1080 manc |= E1000_MANC_ARP_EN;
1081 E1000_WRITE_REG(&adapter->hw, MANC, manc);
1085 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1086 * would have already happened in close and is redundant. */
1087 e1000_release_hw_control(adapter);
1089 unregister_netdev(netdev);
1090 #ifdef CONFIG_E1000_NAPI
1091 for (i = 0; i < adapter->num_rx_queues; i++)
1092 dev_put(&adapter->polling_netdev[i]);
1093 #endif
1095 if (!e1000_check_phy_reset_block(&adapter->hw))
1096 e1000_phy_hw_reset(&adapter->hw);
1098 kfree(adapter->tx_ring);
1099 kfree(adapter->rx_ring);
1100 #ifdef CONFIG_E1000_NAPI
1101 kfree(adapter->polling_netdev);
1102 #endif
1104 iounmap(adapter->hw.hw_addr);
1105 if (adapter->hw.flash_address)
1106 iounmap(adapter->hw.flash_address);
1107 pci_release_regions(pdev);
1109 free_netdev(netdev);
1111 pci_disable_device(pdev);
1115 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1116 * @adapter: board private structure to initialize
1118 * e1000_sw_init initializes the Adapter private data structure.
1119 * Fields are initialized based on PCI device information and
1120 * OS network device settings (MTU size).
1123 static int __devinit
1124 e1000_sw_init(struct e1000_adapter *adapter)
1126 struct e1000_hw *hw = &adapter->hw;
1127 struct net_device *netdev = adapter->netdev;
1128 struct pci_dev *pdev = adapter->pdev;
1129 #ifdef CONFIG_E1000_NAPI
1130 int i;
1131 #endif
1133 /* PCI config space info */
1135 hw->vendor_id = pdev->vendor;
1136 hw->device_id = pdev->device;
1137 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1138 hw->subsystem_id = pdev->subsystem_device;
1140 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1142 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1144 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1145 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1146 hw->max_frame_size = netdev->mtu +
1147 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1148 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1150 /* identify the MAC */
1152 if (e1000_set_mac_type(hw)) {
1153 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1154 return -EIO;
1157 switch (hw->mac_type) {
1158 default:
1159 break;
1160 case e1000_82541:
1161 case e1000_82547:
1162 case e1000_82541_rev_2:
1163 case e1000_82547_rev_2:
1164 hw->phy_init_script = 1;
1165 break;
1168 e1000_set_media_type(hw);
1170 hw->wait_autoneg_complete = FALSE;
1171 hw->tbi_compatibility_en = TRUE;
1172 hw->adaptive_ifs = TRUE;
1174 /* Copper options */
1176 if (hw->media_type == e1000_media_type_copper) {
1177 hw->mdix = AUTO_ALL_MODES;
1178 hw->disable_polarity_correction = FALSE;
1179 hw->master_slave = E1000_MASTER_SLAVE;
1182 adapter->num_tx_queues = 1;
1183 adapter->num_rx_queues = 1;
1185 if (e1000_alloc_queues(adapter)) {
1186 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1187 return -ENOMEM;
1190 #ifdef CONFIG_E1000_NAPI
1191 for (i = 0; i < adapter->num_rx_queues; i++) {
1192 adapter->polling_netdev[i].priv = adapter;
1193 adapter->polling_netdev[i].poll = &e1000_clean;
1194 adapter->polling_netdev[i].weight = 64;
1195 dev_hold(&adapter->polling_netdev[i]);
1196 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1198 spin_lock_init(&adapter->tx_queue_lock);
1199 #endif
1201 atomic_set(&adapter->irq_sem, 1);
1202 spin_lock_init(&adapter->stats_lock);
1204 set_bit(__E1000_DOWN, &adapter->flags);
1206 return 0;
1210 * e1000_alloc_queues - Allocate memory for all rings
1211 * @adapter: board private structure to initialize
1213 * We allocate one ring per queue at run-time since we don't know the
1214 * number of queues at compile-time. The polling_netdev array is
1215 * intended for Multiqueue, but should work fine with a single queue.
1218 static int __devinit
1219 e1000_alloc_queues(struct e1000_adapter *adapter)
1221 int size;
1223 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1224 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1225 if (!adapter->tx_ring)
1226 return -ENOMEM;
1227 memset(adapter->tx_ring, 0, size);
1229 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1230 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1231 if (!adapter->rx_ring) {
1232 kfree(adapter->tx_ring);
1233 return -ENOMEM;
1235 memset(adapter->rx_ring, 0, size);
1237 #ifdef CONFIG_E1000_NAPI
1238 size = sizeof(struct net_device) * adapter->num_rx_queues;
1239 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1240 if (!adapter->polling_netdev) {
1241 kfree(adapter->tx_ring);
1242 kfree(adapter->rx_ring);
1243 return -ENOMEM;
1245 memset(adapter->polling_netdev, 0, size);
1246 #endif
1248 return E1000_SUCCESS;
1252 * e1000_open - Called when a network interface is made active
1253 * @netdev: network interface device structure
1255 * Returns 0 on success, negative value on failure
1257 * The open entry point is called when a network interface is made
1258 * active by the system (IFF_UP). At this point all resources needed
1259 * for transmit and receive operations are allocated, the interrupt
1260 * handler is registered with the OS, the watchdog timer is started,
1261 * and the stack is notified that the interface is ready.
1264 static int
1265 e1000_open(struct net_device *netdev)
1267 struct e1000_adapter *adapter = netdev_priv(netdev);
1268 int err;
1270 /* disallow open during test */
1271 if (test_bit(__E1000_TESTING, &adapter->flags))
1272 return -EBUSY;
1274 /* allocate transmit descriptors */
1275 if ((err = e1000_setup_all_tx_resources(adapter)))
1276 goto err_setup_tx;
1278 /* allocate receive descriptors */
1279 if ((err = e1000_setup_all_rx_resources(adapter)))
1280 goto err_setup_rx;
1282 err = e1000_request_irq(adapter);
1283 if (err)
1284 goto err_req_irq;
1286 e1000_power_up_phy(adapter);
1288 if ((err = e1000_up(adapter)))
1289 goto err_up;
1290 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1291 if ((adapter->hw.mng_cookie.status &
1292 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1293 e1000_update_mng_vlan(adapter);
1296 /* If AMT is enabled, let the firmware know that the network
1297 * interface is now open */
1298 if (adapter->hw.mac_type == e1000_82573 &&
1299 e1000_check_mng_mode(&adapter->hw))
1300 e1000_get_hw_control(adapter);
1302 return E1000_SUCCESS;
1304 err_up:
1305 e1000_power_down_phy(adapter);
1306 e1000_free_irq(adapter);
1307 err_req_irq:
1308 e1000_free_all_rx_resources(adapter);
1309 err_setup_rx:
1310 e1000_free_all_tx_resources(adapter);
1311 err_setup_tx:
1312 e1000_reset(adapter);
1314 return err;
1318 * e1000_close - Disables a network interface
1319 * @netdev: network interface device structure
1321 * Returns 0, this is not allowed to fail
1323 * The close entry point is called when an interface is de-activated
1324 * by the OS. The hardware is still under the drivers control, but
1325 * needs to be disabled. A global MAC reset is issued to stop the
1326 * hardware, and all transmit and receive resources are freed.
1329 static int
1330 e1000_close(struct net_device *netdev)
1332 struct e1000_adapter *adapter = netdev_priv(netdev);
1334 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1335 e1000_down(adapter);
1336 e1000_power_down_phy(adapter);
1337 e1000_free_irq(adapter);
1339 e1000_free_all_tx_resources(adapter);
1340 e1000_free_all_rx_resources(adapter);
1342 /* kill manageability vlan ID if supported, but not if a vlan with
1343 * the same ID is registered on the host OS (let 8021q kill it) */
1344 if ((adapter->hw.mng_cookie.status &
1345 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1346 !(adapter->vlgrp &&
1347 adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1348 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1351 /* If AMT is enabled, let the firmware know that the network
1352 * interface is now closed */
1353 if (adapter->hw.mac_type == e1000_82573 &&
1354 e1000_check_mng_mode(&adapter->hw))
1355 e1000_release_hw_control(adapter);
1357 return 0;
1361 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1362 * @adapter: address of board private structure
1363 * @start: address of beginning of memory
1364 * @len: length of memory
1366 static boolean_t
1367 e1000_check_64k_bound(struct e1000_adapter *adapter,
1368 void *start, unsigned long len)
1370 unsigned long begin = (unsigned long) start;
1371 unsigned long end = begin + len;
1373 /* First rev 82545 and 82546 need to not allow any memory
1374 * write location to cross 64k boundary due to errata 23 */
1375 if (adapter->hw.mac_type == e1000_82545 ||
1376 adapter->hw.mac_type == e1000_82546) {
1377 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1380 return TRUE;
1384 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1385 * @adapter: board private structure
1386 * @txdr: tx descriptor ring (for a specific queue) to setup
1388 * Return 0 on success, negative on failure
1391 static int
1392 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1393 struct e1000_tx_ring *txdr)
1395 struct pci_dev *pdev = adapter->pdev;
1396 int size;
1398 size = sizeof(struct e1000_buffer) * txdr->count;
1399 txdr->buffer_info = vmalloc(size);
1400 if (!txdr->buffer_info) {
1401 DPRINTK(PROBE, ERR,
1402 "Unable to allocate memory for the transmit descriptor ring\n");
1403 return -ENOMEM;
1405 memset(txdr->buffer_info, 0, size);
1407 /* round up to nearest 4K */
1409 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1410 E1000_ROUNDUP(txdr->size, 4096);
1412 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1413 if (!txdr->desc) {
1414 setup_tx_desc_die:
1415 vfree(txdr->buffer_info);
1416 DPRINTK(PROBE, ERR,
1417 "Unable to allocate memory for the transmit descriptor ring\n");
1418 return -ENOMEM;
1421 /* Fix for errata 23, can't cross 64kB boundary */
1422 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1423 void *olddesc = txdr->desc;
1424 dma_addr_t olddma = txdr->dma;
1425 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1426 "at %p\n", txdr->size, txdr->desc);
1427 /* Try again, without freeing the previous */
1428 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1429 /* Failed allocation, critical failure */
1430 if (!txdr->desc) {
1431 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1432 goto setup_tx_desc_die;
1435 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1436 /* give up */
1437 pci_free_consistent(pdev, txdr->size, txdr->desc,
1438 txdr->dma);
1439 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1440 DPRINTK(PROBE, ERR,
1441 "Unable to allocate aligned memory "
1442 "for the transmit descriptor ring\n");
1443 vfree(txdr->buffer_info);
1444 return -ENOMEM;
1445 } else {
1446 /* Free old allocation, new allocation was successful */
1447 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1450 memset(txdr->desc, 0, txdr->size);
1452 txdr->next_to_use = 0;
1453 txdr->next_to_clean = 0;
1454 spin_lock_init(&txdr->tx_lock);
1456 return 0;
1460 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1461 * (Descriptors) for all queues
1462 * @adapter: board private structure
1464 * Return 0 on success, negative on failure
1468 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1470 int i, err = 0;
1472 for (i = 0; i < adapter->num_tx_queues; i++) {
1473 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1474 if (err) {
1475 DPRINTK(PROBE, ERR,
1476 "Allocation for Tx Queue %u failed\n", i);
1477 for (i-- ; i >= 0; i--)
1478 e1000_free_tx_resources(adapter,
1479 &adapter->tx_ring[i]);
1480 break;
1484 return err;
1488 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1489 * @adapter: board private structure
1491 * Configure the Tx unit of the MAC after a reset.
1494 static void
1495 e1000_configure_tx(struct e1000_adapter *adapter)
1497 uint64_t tdba;
1498 struct e1000_hw *hw = &adapter->hw;
1499 uint32_t tdlen, tctl, tipg, tarc;
1500 uint32_t ipgr1, ipgr2;
1502 /* Setup the HW Tx Head and Tail descriptor pointers */
1504 switch (adapter->num_tx_queues) {
1505 case 1:
1506 default:
1507 tdba = adapter->tx_ring[0].dma;
1508 tdlen = adapter->tx_ring[0].count *
1509 sizeof(struct e1000_tx_desc);
1510 E1000_WRITE_REG(hw, TDLEN, tdlen);
1511 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1512 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1513 E1000_WRITE_REG(hw, TDT, 0);
1514 E1000_WRITE_REG(hw, TDH, 0);
1515 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1516 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1517 break;
1520 /* Set the default values for the Tx Inter Packet Gap timer */
1522 if (hw->media_type == e1000_media_type_fiber ||
1523 hw->media_type == e1000_media_type_internal_serdes)
1524 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1525 else
1526 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1528 switch (hw->mac_type) {
1529 case e1000_82542_rev2_0:
1530 case e1000_82542_rev2_1:
1531 tipg = DEFAULT_82542_TIPG_IPGT;
1532 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1533 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1534 break;
1535 case e1000_80003es2lan:
1536 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1537 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1538 break;
1539 default:
1540 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1541 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1542 break;
1544 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1545 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1546 E1000_WRITE_REG(hw, TIPG, tipg);
1548 /* Set the Tx Interrupt Delay register */
1550 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1551 if (hw->mac_type >= e1000_82540)
1552 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1554 /* Program the Transmit Control Register */
1556 tctl = E1000_READ_REG(hw, TCTL);
1557 tctl &= ~E1000_TCTL_CT;
1558 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1559 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1561 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1562 tarc = E1000_READ_REG(hw, TARC0);
1563 /* set the speed mode bit, we'll clear it if we're not at
1564 * gigabit link later */
1565 tarc |= (1 << 21);
1566 E1000_WRITE_REG(hw, TARC0, tarc);
1567 } else if (hw->mac_type == e1000_80003es2lan) {
1568 tarc = E1000_READ_REG(hw, TARC0);
1569 tarc |= 1;
1570 E1000_WRITE_REG(hw, TARC0, tarc);
1571 tarc = E1000_READ_REG(hw, TARC1);
1572 tarc |= 1;
1573 E1000_WRITE_REG(hw, TARC1, tarc);
1576 e1000_config_collision_dist(hw);
1578 /* Setup Transmit Descriptor Settings for eop descriptor */
1579 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1580 E1000_TXD_CMD_IFCS;
1582 if (hw->mac_type < e1000_82543)
1583 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1584 else
1585 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1587 /* Cache if we're 82544 running in PCI-X because we'll
1588 * need this to apply a workaround later in the send path. */
1589 if (hw->mac_type == e1000_82544 &&
1590 hw->bus_type == e1000_bus_type_pcix)
1591 adapter->pcix_82544 = 1;
1593 E1000_WRITE_REG(hw, TCTL, tctl);
1598 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1599 * @adapter: board private structure
1600 * @rxdr: rx descriptor ring (for a specific queue) to setup
1602 * Returns 0 on success, negative on failure
1605 static int
1606 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1607 struct e1000_rx_ring *rxdr)
1609 struct pci_dev *pdev = adapter->pdev;
1610 int size, desc_len;
1612 size = sizeof(struct e1000_buffer) * rxdr->count;
1613 rxdr->buffer_info = vmalloc(size);
1614 if (!rxdr->buffer_info) {
1615 DPRINTK(PROBE, ERR,
1616 "Unable to allocate memory for the receive descriptor ring\n");
1617 return -ENOMEM;
1619 memset(rxdr->buffer_info, 0, size);
1621 size = sizeof(struct e1000_ps_page) * rxdr->count;
1622 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1623 if (!rxdr->ps_page) {
1624 vfree(rxdr->buffer_info);
1625 DPRINTK(PROBE, ERR,
1626 "Unable to allocate memory for the receive descriptor ring\n");
1627 return -ENOMEM;
1629 memset(rxdr->ps_page, 0, size);
1631 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1632 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1633 if (!rxdr->ps_page_dma) {
1634 vfree(rxdr->buffer_info);
1635 kfree(rxdr->ps_page);
1636 DPRINTK(PROBE, ERR,
1637 "Unable to allocate memory for the receive descriptor ring\n");
1638 return -ENOMEM;
1640 memset(rxdr->ps_page_dma, 0, size);
1642 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1643 desc_len = sizeof(struct e1000_rx_desc);
1644 else
1645 desc_len = sizeof(union e1000_rx_desc_packet_split);
1647 /* Round up to nearest 4K */
1649 rxdr->size = rxdr->count * desc_len;
1650 E1000_ROUNDUP(rxdr->size, 4096);
1652 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1654 if (!rxdr->desc) {
1655 DPRINTK(PROBE, ERR,
1656 "Unable to allocate memory for the receive descriptor ring\n");
1657 setup_rx_desc_die:
1658 vfree(rxdr->buffer_info);
1659 kfree(rxdr->ps_page);
1660 kfree(rxdr->ps_page_dma);
1661 return -ENOMEM;
1664 /* Fix for errata 23, can't cross 64kB boundary */
1665 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1666 void *olddesc = rxdr->desc;
1667 dma_addr_t olddma = rxdr->dma;
1668 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1669 "at %p\n", rxdr->size, rxdr->desc);
1670 /* Try again, without freeing the previous */
1671 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1672 /* Failed allocation, critical failure */
1673 if (!rxdr->desc) {
1674 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1675 DPRINTK(PROBE, ERR,
1676 "Unable to allocate memory "
1677 "for the receive descriptor ring\n");
1678 goto setup_rx_desc_die;
1681 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1682 /* give up */
1683 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1684 rxdr->dma);
1685 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1686 DPRINTK(PROBE, ERR,
1687 "Unable to allocate aligned memory "
1688 "for the receive descriptor ring\n");
1689 goto setup_rx_desc_die;
1690 } else {
1691 /* Free old allocation, new allocation was successful */
1692 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1695 memset(rxdr->desc, 0, rxdr->size);
1697 rxdr->next_to_clean = 0;
1698 rxdr->next_to_use = 0;
1700 return 0;
1704 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1705 * (Descriptors) for all queues
1706 * @adapter: board private structure
1708 * Return 0 on success, negative on failure
1712 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1714 int i, err = 0;
1716 for (i = 0; i < adapter->num_rx_queues; i++) {
1717 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1718 if (err) {
1719 DPRINTK(PROBE, ERR,
1720 "Allocation for Rx Queue %u failed\n", i);
1721 for (i-- ; i >= 0; i--)
1722 e1000_free_rx_resources(adapter,
1723 &adapter->rx_ring[i]);
1724 break;
1728 return err;
1732 * e1000_setup_rctl - configure the receive control registers
1733 * @adapter: Board private structure
1735 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1736 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1737 static void
1738 e1000_setup_rctl(struct e1000_adapter *adapter)
1740 uint32_t rctl, rfctl;
1741 uint32_t psrctl = 0;
1742 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1743 uint32_t pages = 0;
1744 #endif
1746 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1748 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1750 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1751 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1752 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1754 if (adapter->hw.tbi_compatibility_on == 1)
1755 rctl |= E1000_RCTL_SBP;
1756 else
1757 rctl &= ~E1000_RCTL_SBP;
1759 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1760 rctl &= ~E1000_RCTL_LPE;
1761 else
1762 rctl |= E1000_RCTL_LPE;
1764 /* Setup buffer sizes */
1765 rctl &= ~E1000_RCTL_SZ_4096;
1766 rctl |= E1000_RCTL_BSEX;
1767 switch (adapter->rx_buffer_len) {
1768 case E1000_RXBUFFER_256:
1769 rctl |= E1000_RCTL_SZ_256;
1770 rctl &= ~E1000_RCTL_BSEX;
1771 break;
1772 case E1000_RXBUFFER_512:
1773 rctl |= E1000_RCTL_SZ_512;
1774 rctl &= ~E1000_RCTL_BSEX;
1775 break;
1776 case E1000_RXBUFFER_1024:
1777 rctl |= E1000_RCTL_SZ_1024;
1778 rctl &= ~E1000_RCTL_BSEX;
1779 break;
1780 case E1000_RXBUFFER_2048:
1781 default:
1782 rctl |= E1000_RCTL_SZ_2048;
1783 rctl &= ~E1000_RCTL_BSEX;
1784 break;
1785 case E1000_RXBUFFER_4096:
1786 rctl |= E1000_RCTL_SZ_4096;
1787 break;
1788 case E1000_RXBUFFER_8192:
1789 rctl |= E1000_RCTL_SZ_8192;
1790 break;
1791 case E1000_RXBUFFER_16384:
1792 rctl |= E1000_RCTL_SZ_16384;
1793 break;
1796 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1797 /* 82571 and greater support packet-split where the protocol
1798 * header is placed in skb->data and the packet data is
1799 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1800 * In the case of a non-split, skb->data is linearly filled,
1801 * followed by the page buffers. Therefore, skb->data is
1802 * sized to hold the largest protocol header.
1804 /* allocations using alloc_page take too long for regular MTU
1805 * so only enable packet split for jumbo frames */
1806 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1807 if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1808 PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1809 adapter->rx_ps_pages = pages;
1810 else
1811 adapter->rx_ps_pages = 0;
1812 #endif
1813 if (adapter->rx_ps_pages) {
1814 /* Configure extra packet-split registers */
1815 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1816 rfctl |= E1000_RFCTL_EXTEN;
1817 /* disable IPv6 packet split support */
1818 rfctl |= E1000_RFCTL_IPV6_DIS;
1819 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1821 rctl |= E1000_RCTL_DTYP_PS;
1823 psrctl |= adapter->rx_ps_bsize0 >>
1824 E1000_PSRCTL_BSIZE0_SHIFT;
1826 switch (adapter->rx_ps_pages) {
1827 case 3:
1828 psrctl |= PAGE_SIZE <<
1829 E1000_PSRCTL_BSIZE3_SHIFT;
1830 case 2:
1831 psrctl |= PAGE_SIZE <<
1832 E1000_PSRCTL_BSIZE2_SHIFT;
1833 case 1:
1834 psrctl |= PAGE_SIZE >>
1835 E1000_PSRCTL_BSIZE1_SHIFT;
1836 break;
1839 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1842 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1846 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1847 * @adapter: board private structure
1849 * Configure the Rx unit of the MAC after a reset.
1852 static void
1853 e1000_configure_rx(struct e1000_adapter *adapter)
1855 uint64_t rdba;
1856 struct e1000_hw *hw = &adapter->hw;
1857 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1859 if (adapter->rx_ps_pages) {
1860 /* this is a 32 byte descriptor */
1861 rdlen = adapter->rx_ring[0].count *
1862 sizeof(union e1000_rx_desc_packet_split);
1863 adapter->clean_rx = e1000_clean_rx_irq_ps;
1864 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1865 } else {
1866 rdlen = adapter->rx_ring[0].count *
1867 sizeof(struct e1000_rx_desc);
1868 adapter->clean_rx = e1000_clean_rx_irq;
1869 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872 /* disable receives while setting up the descriptors */
1873 rctl = E1000_READ_REG(hw, RCTL);
1874 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1876 /* set the Receive Delay Timer Register */
1877 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1879 if (hw->mac_type >= e1000_82540) {
1880 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1881 if (adapter->itr > 1)
1882 E1000_WRITE_REG(hw, ITR,
1883 1000000000 / (adapter->itr * 256));
1886 if (hw->mac_type >= e1000_82571) {
1887 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1888 /* Reset delay timers after every interrupt */
1889 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1890 #ifdef CONFIG_E1000_NAPI
1891 /* Auto-Mask interrupts upon ICR read. */
1892 ctrl_ext |= E1000_CTRL_EXT_IAME;
1893 #endif
1894 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1895 E1000_WRITE_REG(hw, IAM, ~0);
1896 E1000_WRITE_FLUSH(hw);
1899 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1900 * the Base and Length of the Rx Descriptor Ring */
1901 switch (adapter->num_rx_queues) {
1902 case 1:
1903 default:
1904 rdba = adapter->rx_ring[0].dma;
1905 E1000_WRITE_REG(hw, RDLEN, rdlen);
1906 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1907 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1908 E1000_WRITE_REG(hw, RDT, 0);
1909 E1000_WRITE_REG(hw, RDH, 0);
1910 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1911 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1912 break;
1915 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1916 if (hw->mac_type >= e1000_82543) {
1917 rxcsum = E1000_READ_REG(hw, RXCSUM);
1918 if (adapter->rx_csum == TRUE) {
1919 rxcsum |= E1000_RXCSUM_TUOFL;
1921 /* Enable 82571 IPv4 payload checksum for UDP fragments
1922 * Must be used in conjunction with packet-split. */
1923 if ((hw->mac_type >= e1000_82571) &&
1924 (adapter->rx_ps_pages)) {
1925 rxcsum |= E1000_RXCSUM_IPPCSE;
1927 } else {
1928 rxcsum &= ~E1000_RXCSUM_TUOFL;
1929 /* don't need to clear IPPCSE as it defaults to 0 */
1931 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1934 /* Enable Receives */
1935 E1000_WRITE_REG(hw, RCTL, rctl);
1939 * e1000_free_tx_resources - Free Tx Resources per Queue
1940 * @adapter: board private structure
1941 * @tx_ring: Tx descriptor ring for a specific queue
1943 * Free all transmit software resources
1946 static void
1947 e1000_free_tx_resources(struct e1000_adapter *adapter,
1948 struct e1000_tx_ring *tx_ring)
1950 struct pci_dev *pdev = adapter->pdev;
1952 e1000_clean_tx_ring(adapter, tx_ring);
1954 vfree(tx_ring->buffer_info);
1955 tx_ring->buffer_info = NULL;
1957 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1959 tx_ring->desc = NULL;
1963 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1964 * @adapter: board private structure
1966 * Free all transmit software resources
1969 void
1970 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1972 int i;
1974 for (i = 0; i < adapter->num_tx_queues; i++)
1975 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1978 static void
1979 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1980 struct e1000_buffer *buffer_info)
1982 if (buffer_info->dma) {
1983 pci_unmap_page(adapter->pdev,
1984 buffer_info->dma,
1985 buffer_info->length,
1986 PCI_DMA_TODEVICE);
1988 if (buffer_info->skb)
1989 dev_kfree_skb_any(buffer_info->skb);
1990 memset(buffer_info, 0, sizeof(struct e1000_buffer));
1994 * e1000_clean_tx_ring - Free Tx Buffers
1995 * @adapter: board private structure
1996 * @tx_ring: ring to be cleaned
1999 static void
2000 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2001 struct e1000_tx_ring *tx_ring)
2003 struct e1000_buffer *buffer_info;
2004 unsigned long size;
2005 unsigned int i;
2007 /* Free all the Tx ring sk_buffs */
2009 for (i = 0; i < tx_ring->count; i++) {
2010 buffer_info = &tx_ring->buffer_info[i];
2011 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2014 size = sizeof(struct e1000_buffer) * tx_ring->count;
2015 memset(tx_ring->buffer_info, 0, size);
2017 /* Zero out the descriptor ring */
2019 memset(tx_ring->desc, 0, tx_ring->size);
2021 tx_ring->next_to_use = 0;
2022 tx_ring->next_to_clean = 0;
2023 tx_ring->last_tx_tso = 0;
2025 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2026 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2030 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2031 * @adapter: board private structure
2034 static void
2035 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2037 int i;
2039 for (i = 0; i < adapter->num_tx_queues; i++)
2040 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2044 * e1000_free_rx_resources - Free Rx Resources
2045 * @adapter: board private structure
2046 * @rx_ring: ring to clean the resources from
2048 * Free all receive software resources
2051 static void
2052 e1000_free_rx_resources(struct e1000_adapter *adapter,
2053 struct e1000_rx_ring *rx_ring)
2055 struct pci_dev *pdev = adapter->pdev;
2057 e1000_clean_rx_ring(adapter, rx_ring);
2059 vfree(rx_ring->buffer_info);
2060 rx_ring->buffer_info = NULL;
2061 kfree(rx_ring->ps_page);
2062 rx_ring->ps_page = NULL;
2063 kfree(rx_ring->ps_page_dma);
2064 rx_ring->ps_page_dma = NULL;
2066 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2068 rx_ring->desc = NULL;
2072 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2073 * @adapter: board private structure
2075 * Free all receive software resources
2078 void
2079 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2081 int i;
2083 for (i = 0; i < adapter->num_rx_queues; i++)
2084 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2088 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2089 * @adapter: board private structure
2090 * @rx_ring: ring to free buffers from
2093 static void
2094 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2095 struct e1000_rx_ring *rx_ring)
2097 struct e1000_buffer *buffer_info;
2098 struct e1000_ps_page *ps_page;
2099 struct e1000_ps_page_dma *ps_page_dma;
2100 struct pci_dev *pdev = adapter->pdev;
2101 unsigned long size;
2102 unsigned int i, j;
2104 /* Free all the Rx ring sk_buffs */
2105 for (i = 0; i < rx_ring->count; i++) {
2106 buffer_info = &rx_ring->buffer_info[i];
2107 if (buffer_info->skb) {
2108 pci_unmap_single(pdev,
2109 buffer_info->dma,
2110 buffer_info->length,
2111 PCI_DMA_FROMDEVICE);
2113 dev_kfree_skb(buffer_info->skb);
2114 buffer_info->skb = NULL;
2116 ps_page = &rx_ring->ps_page[i];
2117 ps_page_dma = &rx_ring->ps_page_dma[i];
2118 for (j = 0; j < adapter->rx_ps_pages; j++) {
2119 if (!ps_page->ps_page[j]) break;
2120 pci_unmap_page(pdev,
2121 ps_page_dma->ps_page_dma[j],
2122 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2123 ps_page_dma->ps_page_dma[j] = 0;
2124 put_page(ps_page->ps_page[j]);
2125 ps_page->ps_page[j] = NULL;
2129 size = sizeof(struct e1000_buffer) * rx_ring->count;
2130 memset(rx_ring->buffer_info, 0, size);
2131 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2132 memset(rx_ring->ps_page, 0, size);
2133 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2134 memset(rx_ring->ps_page_dma, 0, size);
2136 /* Zero out the descriptor ring */
2138 memset(rx_ring->desc, 0, rx_ring->size);
2140 rx_ring->next_to_clean = 0;
2141 rx_ring->next_to_use = 0;
2143 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2144 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2148 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2149 * @adapter: board private structure
2152 static void
2153 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2155 int i;
2157 for (i = 0; i < adapter->num_rx_queues; i++)
2158 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2161 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2162 * and memory write and invalidate disabled for certain operations
2164 static void
2165 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2167 struct net_device *netdev = adapter->netdev;
2168 uint32_t rctl;
2170 e1000_pci_clear_mwi(&adapter->hw);
2172 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2173 rctl |= E1000_RCTL_RST;
2174 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2175 E1000_WRITE_FLUSH(&adapter->hw);
2176 mdelay(5);
2178 if (netif_running(netdev))
2179 e1000_clean_all_rx_rings(adapter);
2182 static void
2183 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2185 struct net_device *netdev = adapter->netdev;
2186 uint32_t rctl;
2188 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2189 rctl &= ~E1000_RCTL_RST;
2190 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2191 E1000_WRITE_FLUSH(&adapter->hw);
2192 mdelay(5);
2194 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2195 e1000_pci_set_mwi(&adapter->hw);
2197 if (netif_running(netdev)) {
2198 /* No need to loop, because 82542 supports only 1 queue */
2199 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2200 e1000_configure_rx(adapter);
2201 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2206 * e1000_set_mac - Change the Ethernet Address of the NIC
2207 * @netdev: network interface device structure
2208 * @p: pointer to an address structure
2210 * Returns 0 on success, negative on failure
2213 static int
2214 e1000_set_mac(struct net_device *netdev, void *p)
2216 struct e1000_adapter *adapter = netdev_priv(netdev);
2217 struct sockaddr *addr = p;
2219 if (!is_valid_ether_addr(addr->sa_data))
2220 return -EADDRNOTAVAIL;
2222 /* 82542 2.0 needs to be in reset to write receive address registers */
2224 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2225 e1000_enter_82542_rst(adapter);
2227 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2228 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2230 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2232 /* With 82571 controllers, LAA may be overwritten (with the default)
2233 * due to controller reset from the other port. */
2234 if (adapter->hw.mac_type == e1000_82571) {
2235 /* activate the work around */
2236 adapter->hw.laa_is_present = 1;
2238 /* Hold a copy of the LAA in RAR[14] This is done so that
2239 * between the time RAR[0] gets clobbered and the time it
2240 * gets fixed (in e1000_watchdog), the actual LAA is in one
2241 * of the RARs and no incoming packets directed to this port
2242 * are dropped. Eventaully the LAA will be in RAR[0] and
2243 * RAR[14] */
2244 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2245 E1000_RAR_ENTRIES - 1);
2248 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2249 e1000_leave_82542_rst(adapter);
2251 return 0;
2255 * e1000_set_multi - Multicast and Promiscuous mode set
2256 * @netdev: network interface device structure
2258 * The set_multi entry point is called whenever the multicast address
2259 * list or the network interface flags are updated. This routine is
2260 * responsible for configuring the hardware for proper multicast,
2261 * promiscuous mode, and all-multi behavior.
2264 static void
2265 e1000_set_multi(struct net_device *netdev)
2267 struct e1000_adapter *adapter = netdev_priv(netdev);
2268 struct e1000_hw *hw = &adapter->hw;
2269 struct dev_mc_list *mc_ptr;
2270 uint32_t rctl;
2271 uint32_t hash_value;
2272 int i, rar_entries = E1000_RAR_ENTRIES;
2273 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2274 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2275 E1000_NUM_MTA_REGISTERS;
2277 if (adapter->hw.mac_type == e1000_ich8lan)
2278 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2280 /* reserve RAR[14] for LAA over-write work-around */
2281 if (adapter->hw.mac_type == e1000_82571)
2282 rar_entries--;
2284 /* Check for Promiscuous and All Multicast modes */
2286 rctl = E1000_READ_REG(hw, RCTL);
2288 if (netdev->flags & IFF_PROMISC) {
2289 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2290 } else if (netdev->flags & IFF_ALLMULTI) {
2291 rctl |= E1000_RCTL_MPE;
2292 rctl &= ~E1000_RCTL_UPE;
2293 } else {
2294 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2297 E1000_WRITE_REG(hw, RCTL, rctl);
2299 /* 82542 2.0 needs to be in reset to write receive address registers */
2301 if (hw->mac_type == e1000_82542_rev2_0)
2302 e1000_enter_82542_rst(adapter);
2304 /* load the first 14 multicast address into the exact filters 1-14
2305 * RAR 0 is used for the station MAC adddress
2306 * if there are not 14 addresses, go ahead and clear the filters
2307 * -- with 82571 controllers only 0-13 entries are filled here
2309 mc_ptr = netdev->mc_list;
2311 for (i = 1; i < rar_entries; i++) {
2312 if (mc_ptr) {
2313 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2314 mc_ptr = mc_ptr->next;
2315 } else {
2316 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2317 E1000_WRITE_FLUSH(hw);
2318 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2319 E1000_WRITE_FLUSH(hw);
2323 /* clear the old settings from the multicast hash table */
2325 for (i = 0; i < mta_reg_count; i++) {
2326 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2327 E1000_WRITE_FLUSH(hw);
2330 /* load any remaining addresses into the hash table */
2332 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2333 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2334 e1000_mta_set(hw, hash_value);
2337 if (hw->mac_type == e1000_82542_rev2_0)
2338 e1000_leave_82542_rst(adapter);
2341 /* Need to wait a few seconds after link up to get diagnostic information from
2342 * the phy */
2344 static void
2345 e1000_update_phy_info(unsigned long data)
2347 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2348 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2352 * e1000_82547_tx_fifo_stall - Timer Call-back
2353 * @data: pointer to adapter cast into an unsigned long
2356 static void
2357 e1000_82547_tx_fifo_stall(unsigned long data)
2359 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2360 struct net_device *netdev = adapter->netdev;
2361 uint32_t tctl;
2363 if (atomic_read(&adapter->tx_fifo_stall)) {
2364 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2365 E1000_READ_REG(&adapter->hw, TDH)) &&
2366 (E1000_READ_REG(&adapter->hw, TDFT) ==
2367 E1000_READ_REG(&adapter->hw, TDFH)) &&
2368 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2369 E1000_READ_REG(&adapter->hw, TDFHS))) {
2370 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2371 E1000_WRITE_REG(&adapter->hw, TCTL,
2372 tctl & ~E1000_TCTL_EN);
2373 E1000_WRITE_REG(&adapter->hw, TDFT,
2374 adapter->tx_head_addr);
2375 E1000_WRITE_REG(&adapter->hw, TDFH,
2376 adapter->tx_head_addr);
2377 E1000_WRITE_REG(&adapter->hw, TDFTS,
2378 adapter->tx_head_addr);
2379 E1000_WRITE_REG(&adapter->hw, TDFHS,
2380 adapter->tx_head_addr);
2381 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2382 E1000_WRITE_FLUSH(&adapter->hw);
2384 adapter->tx_fifo_head = 0;
2385 atomic_set(&adapter->tx_fifo_stall, 0);
2386 netif_wake_queue(netdev);
2387 } else {
2388 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2394 * e1000_watchdog - Timer Call-back
2395 * @data: pointer to adapter cast into an unsigned long
2397 static void
2398 e1000_watchdog(unsigned long data)
2400 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2401 struct net_device *netdev = adapter->netdev;
2402 struct e1000_tx_ring *txdr = adapter->tx_ring;
2403 uint32_t link, tctl;
2404 int32_t ret_val;
2406 ret_val = e1000_check_for_link(&adapter->hw);
2407 if ((ret_val == E1000_ERR_PHY) &&
2408 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2409 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2410 /* See e1000_kumeran_lock_loss_workaround() */
2411 DPRINTK(LINK, INFO,
2412 "Gigabit has been disabled, downgrading speed\n");
2415 if (adapter->hw.mac_type == e1000_82573) {
2416 e1000_enable_tx_pkt_filtering(&adapter->hw);
2417 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2418 e1000_update_mng_vlan(adapter);
2421 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2422 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2423 link = !adapter->hw.serdes_link_down;
2424 else
2425 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2427 if (link) {
2428 if (!netif_carrier_ok(netdev)) {
2429 boolean_t txb2b = 1;
2430 e1000_get_speed_and_duplex(&adapter->hw,
2431 &adapter->link_speed,
2432 &adapter->link_duplex);
2434 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2435 adapter->link_speed,
2436 adapter->link_duplex == FULL_DUPLEX ?
2437 "Full Duplex" : "Half Duplex");
2439 /* tweak tx_queue_len according to speed/duplex
2440 * and adjust the timeout factor */
2441 netdev->tx_queue_len = adapter->tx_queue_len;
2442 adapter->tx_timeout_factor = 1;
2443 switch (adapter->link_speed) {
2444 case SPEED_10:
2445 txb2b = 0;
2446 netdev->tx_queue_len = 10;
2447 adapter->tx_timeout_factor = 8;
2448 break;
2449 case SPEED_100:
2450 txb2b = 0;
2451 netdev->tx_queue_len = 100;
2452 /* maybe add some timeout factor ? */
2453 break;
2456 if ((adapter->hw.mac_type == e1000_82571 ||
2457 adapter->hw.mac_type == e1000_82572) &&
2458 txb2b == 0) {
2459 uint32_t tarc0;
2460 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2461 tarc0 &= ~(1 << 21);
2462 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2465 #ifdef NETIF_F_TSO
2466 /* disable TSO for pcie and 10/100 speeds, to avoid
2467 * some hardware issues */
2468 if (!adapter->tso_force &&
2469 adapter->hw.bus_type == e1000_bus_type_pci_express){
2470 switch (adapter->link_speed) {
2471 case SPEED_10:
2472 case SPEED_100:
2473 DPRINTK(PROBE,INFO,
2474 "10/100 speed: disabling TSO\n");
2475 netdev->features &= ~NETIF_F_TSO;
2476 break;
2477 case SPEED_1000:
2478 netdev->features |= NETIF_F_TSO;
2479 break;
2480 default:
2481 /* oops */
2482 break;
2485 #endif
2487 /* enable transmits in the hardware, need to do this
2488 * after setting TARC0 */
2489 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2490 tctl |= E1000_TCTL_EN;
2491 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2493 netif_carrier_on(netdev);
2494 netif_wake_queue(netdev);
2495 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2496 adapter->smartspeed = 0;
2498 } else {
2499 if (netif_carrier_ok(netdev)) {
2500 adapter->link_speed = 0;
2501 adapter->link_duplex = 0;
2502 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2503 netif_carrier_off(netdev);
2504 netif_stop_queue(netdev);
2505 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2507 /* 80003ES2LAN workaround--
2508 * For packet buffer work-around on link down event;
2509 * disable receives in the ISR and
2510 * reset device here in the watchdog
2512 if (adapter->hw.mac_type == e1000_80003es2lan)
2513 /* reset device */
2514 schedule_work(&adapter->reset_task);
2517 e1000_smartspeed(adapter);
2520 e1000_update_stats(adapter);
2522 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2523 adapter->tpt_old = adapter->stats.tpt;
2524 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2525 adapter->colc_old = adapter->stats.colc;
2527 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2528 adapter->gorcl_old = adapter->stats.gorcl;
2529 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2530 adapter->gotcl_old = adapter->stats.gotcl;
2532 e1000_update_adaptive(&adapter->hw);
2534 if (!netif_carrier_ok(netdev)) {
2535 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2536 /* We've lost link, so the controller stops DMA,
2537 * but we've got queued Tx work that's never going
2538 * to get done, so reset controller to flush Tx.
2539 * (Do the reset outside of interrupt context). */
2540 adapter->tx_timeout_count++;
2541 schedule_work(&adapter->reset_task);
2545 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2546 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2547 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2548 * asymmetrical Tx or Rx gets ITR=8000; everyone
2549 * else is between 2000-8000. */
2550 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2551 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2552 adapter->gotcl - adapter->gorcl :
2553 adapter->gorcl - adapter->gotcl) / 10000;
2554 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2555 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2558 /* Cause software interrupt to ensure rx ring is cleaned */
2559 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2561 /* Force detection of hung controller every watchdog period */
2562 adapter->detect_tx_hung = TRUE;
2564 /* With 82571 controllers, LAA may be overwritten due to controller
2565 * reset from the other port. Set the appropriate LAA in RAR[0] */
2566 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2567 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2569 /* Reset the timer */
2570 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2573 #define E1000_TX_FLAGS_CSUM 0x00000001
2574 #define E1000_TX_FLAGS_VLAN 0x00000002
2575 #define E1000_TX_FLAGS_TSO 0x00000004
2576 #define E1000_TX_FLAGS_IPV4 0x00000008
2577 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2578 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2580 static int
2581 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2582 struct sk_buff *skb)
2584 #ifdef NETIF_F_TSO
2585 struct e1000_context_desc *context_desc;
2586 struct e1000_buffer *buffer_info;
2587 unsigned int i;
2588 uint32_t cmd_length = 0;
2589 uint16_t ipcse = 0, tucse, mss;
2590 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2591 int err;
2593 if (skb_is_gso(skb)) {
2594 if (skb_header_cloned(skb)) {
2595 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2596 if (err)
2597 return err;
2600 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2601 mss = skb_shinfo(skb)->gso_size;
2602 if (skb->protocol == htons(ETH_P_IP)) {
2603 skb->nh.iph->tot_len = 0;
2604 skb->nh.iph->check = 0;
2605 skb->h.th->check =
2606 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2607 skb->nh.iph->daddr,
2609 IPPROTO_TCP,
2611 cmd_length = E1000_TXD_CMD_IP;
2612 ipcse = skb->h.raw - skb->data - 1;
2613 #ifdef NETIF_F_TSO_IPV6
2614 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2615 skb->nh.ipv6h->payload_len = 0;
2616 skb->h.th->check =
2617 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2618 &skb->nh.ipv6h->daddr,
2620 IPPROTO_TCP,
2622 ipcse = 0;
2623 #endif
2625 ipcss = skb->nh.raw - skb->data;
2626 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2627 tucss = skb->h.raw - skb->data;
2628 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2629 tucse = 0;
2631 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2632 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2634 i = tx_ring->next_to_use;
2635 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2636 buffer_info = &tx_ring->buffer_info[i];
2638 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2639 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2640 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2641 context_desc->upper_setup.tcp_fields.tucss = tucss;
2642 context_desc->upper_setup.tcp_fields.tucso = tucso;
2643 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2644 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2645 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2646 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2648 buffer_info->time_stamp = jiffies;
2650 if (++i == tx_ring->count) i = 0;
2651 tx_ring->next_to_use = i;
2653 return TRUE;
2655 #endif
2657 return FALSE;
2660 static boolean_t
2661 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2662 struct sk_buff *skb)
2664 struct e1000_context_desc *context_desc;
2665 struct e1000_buffer *buffer_info;
2666 unsigned int i;
2667 uint8_t css;
2669 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2670 css = skb->h.raw - skb->data;
2672 i = tx_ring->next_to_use;
2673 buffer_info = &tx_ring->buffer_info[i];
2674 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2676 context_desc->upper_setup.tcp_fields.tucss = css;
2677 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2678 context_desc->upper_setup.tcp_fields.tucse = 0;
2679 context_desc->tcp_seg_setup.data = 0;
2680 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2682 buffer_info->time_stamp = jiffies;
2684 if (unlikely(++i == tx_ring->count)) i = 0;
2685 tx_ring->next_to_use = i;
2687 return TRUE;
2690 return FALSE;
2693 #define E1000_MAX_TXD_PWR 12
2694 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2696 static int
2697 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2698 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2699 unsigned int nr_frags, unsigned int mss)
2701 struct e1000_buffer *buffer_info;
2702 unsigned int len = skb->len;
2703 unsigned int offset = 0, size, count = 0, i;
2704 unsigned int f;
2705 len -= skb->data_len;
2707 i = tx_ring->next_to_use;
2709 while (len) {
2710 buffer_info = &tx_ring->buffer_info[i];
2711 size = min(len, max_per_txd);
2712 #ifdef NETIF_F_TSO
2713 /* Workaround for Controller erratum --
2714 * descriptor for non-tso packet in a linear SKB that follows a
2715 * tso gets written back prematurely before the data is fully
2716 * DMA'd to the controller */
2717 if (!skb->data_len && tx_ring->last_tx_tso &&
2718 !skb_is_gso(skb)) {
2719 tx_ring->last_tx_tso = 0;
2720 size -= 4;
2723 /* Workaround for premature desc write-backs
2724 * in TSO mode. Append 4-byte sentinel desc */
2725 if (unlikely(mss && !nr_frags && size == len && size > 8))
2726 size -= 4;
2727 #endif
2728 /* work-around for errata 10 and it applies
2729 * to all controllers in PCI-X mode
2730 * The fix is to make sure that the first descriptor of a
2731 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2733 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2734 (size > 2015) && count == 0))
2735 size = 2015;
2737 /* Workaround for potential 82544 hang in PCI-X. Avoid
2738 * terminating buffers within evenly-aligned dwords. */
2739 if (unlikely(adapter->pcix_82544 &&
2740 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2741 size > 4))
2742 size -= 4;
2744 buffer_info->length = size;
2745 buffer_info->dma =
2746 pci_map_single(adapter->pdev,
2747 skb->data + offset,
2748 size,
2749 PCI_DMA_TODEVICE);
2750 buffer_info->time_stamp = jiffies;
2752 len -= size;
2753 offset += size;
2754 count++;
2755 if (unlikely(++i == tx_ring->count)) i = 0;
2758 for (f = 0; f < nr_frags; f++) {
2759 struct skb_frag_struct *frag;
2761 frag = &skb_shinfo(skb)->frags[f];
2762 len = frag->size;
2763 offset = frag->page_offset;
2765 while (len) {
2766 buffer_info = &tx_ring->buffer_info[i];
2767 size = min(len, max_per_txd);
2768 #ifdef NETIF_F_TSO
2769 /* Workaround for premature desc write-backs
2770 * in TSO mode. Append 4-byte sentinel desc */
2771 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2772 size -= 4;
2773 #endif
2774 /* Workaround for potential 82544 hang in PCI-X.
2775 * Avoid terminating buffers within evenly-aligned
2776 * dwords. */
2777 if (unlikely(adapter->pcix_82544 &&
2778 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2779 size > 4))
2780 size -= 4;
2782 buffer_info->length = size;
2783 buffer_info->dma =
2784 pci_map_page(adapter->pdev,
2785 frag->page,
2786 offset,
2787 size,
2788 PCI_DMA_TODEVICE);
2789 buffer_info->time_stamp = jiffies;
2791 len -= size;
2792 offset += size;
2793 count++;
2794 if (unlikely(++i == tx_ring->count)) i = 0;
2798 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2799 tx_ring->buffer_info[i].skb = skb;
2800 tx_ring->buffer_info[first].next_to_watch = i;
2802 return count;
2805 static void
2806 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2807 int tx_flags, int count)
2809 struct e1000_tx_desc *tx_desc = NULL;
2810 struct e1000_buffer *buffer_info;
2811 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2812 unsigned int i;
2814 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2815 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2816 E1000_TXD_CMD_TSE;
2817 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2819 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2820 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2823 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2824 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2825 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2828 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2829 txd_lower |= E1000_TXD_CMD_VLE;
2830 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2833 i = tx_ring->next_to_use;
2835 while (count--) {
2836 buffer_info = &tx_ring->buffer_info[i];
2837 tx_desc = E1000_TX_DESC(*tx_ring, i);
2838 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2839 tx_desc->lower.data =
2840 cpu_to_le32(txd_lower | buffer_info->length);
2841 tx_desc->upper.data = cpu_to_le32(txd_upper);
2842 if (unlikely(++i == tx_ring->count)) i = 0;
2845 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2847 /* Force memory writes to complete before letting h/w
2848 * know there are new descriptors to fetch. (Only
2849 * applicable for weak-ordered memory model archs,
2850 * such as IA-64). */
2851 wmb();
2853 tx_ring->next_to_use = i;
2854 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2858 * 82547 workaround to avoid controller hang in half-duplex environment.
2859 * The workaround is to avoid queuing a large packet that would span
2860 * the internal Tx FIFO ring boundary by notifying the stack to resend
2861 * the packet at a later time. This gives the Tx FIFO an opportunity to
2862 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2863 * to the beginning of the Tx FIFO.
2866 #define E1000_FIFO_HDR 0x10
2867 #define E1000_82547_PAD_LEN 0x3E0
2869 static int
2870 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2872 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2873 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2875 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2877 if (adapter->link_duplex != HALF_DUPLEX)
2878 goto no_fifo_stall_required;
2880 if (atomic_read(&adapter->tx_fifo_stall))
2881 return 1;
2883 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2884 atomic_set(&adapter->tx_fifo_stall, 1);
2885 return 1;
2888 no_fifo_stall_required:
2889 adapter->tx_fifo_head += skb_fifo_len;
2890 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2891 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2892 return 0;
2895 #define MINIMUM_DHCP_PACKET_SIZE 282
2896 static int
2897 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2899 struct e1000_hw *hw = &adapter->hw;
2900 uint16_t length, offset;
2901 if (vlan_tx_tag_present(skb)) {
2902 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2903 ( adapter->hw.mng_cookie.status &
2904 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2905 return 0;
2907 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2908 struct ethhdr *eth = (struct ethhdr *) skb->data;
2909 if ((htons(ETH_P_IP) == eth->h_proto)) {
2910 const struct iphdr *ip =
2911 (struct iphdr *)((uint8_t *)skb->data+14);
2912 if (IPPROTO_UDP == ip->protocol) {
2913 struct udphdr *udp =
2914 (struct udphdr *)((uint8_t *)ip +
2915 (ip->ihl << 2));
2916 if (ntohs(udp->dest) == 67) {
2917 offset = (uint8_t *)udp + 8 - skb->data;
2918 length = skb->len - offset;
2920 return e1000_mng_write_dhcp_info(hw,
2921 (uint8_t *)udp + 8,
2922 length);
2927 return 0;
2930 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2932 struct e1000_adapter *adapter = netdev_priv(netdev);
2933 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2935 netif_stop_queue(netdev);
2936 /* Herbert's original patch had:
2937 * smp_mb__after_netif_stop_queue();
2938 * but since that doesn't exist yet, just open code it. */
2939 smp_mb();
2941 /* We need to check again in a case another CPU has just
2942 * made room available. */
2943 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2944 return -EBUSY;
2946 /* A reprieve! */
2947 netif_start_queue(netdev);
2948 return 0;
2951 static int e1000_maybe_stop_tx(struct net_device *netdev,
2952 struct e1000_tx_ring *tx_ring, int size)
2954 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2955 return 0;
2956 return __e1000_maybe_stop_tx(netdev, size);
2959 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2960 static int
2961 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2963 struct e1000_adapter *adapter = netdev_priv(netdev);
2964 struct e1000_tx_ring *tx_ring;
2965 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2966 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2967 unsigned int tx_flags = 0;
2968 unsigned int len = skb->len;
2969 unsigned long flags;
2970 unsigned int nr_frags = 0;
2971 unsigned int mss = 0;
2972 int count = 0;
2973 int tso;
2974 unsigned int f;
2975 len -= skb->data_len;
2977 /* This goes back to the question of how to logically map a tx queue
2978 * to a flow. Right now, performance is impacted slightly negatively
2979 * if using multiple tx queues. If the stack breaks away from a
2980 * single qdisc implementation, we can look at this again. */
2981 tx_ring = adapter->tx_ring;
2983 if (unlikely(skb->len <= 0)) {
2984 dev_kfree_skb_any(skb);
2985 return NETDEV_TX_OK;
2988 /* 82571 and newer doesn't need the workaround that limited descriptor
2989 * length to 4kB */
2990 if (adapter->hw.mac_type >= e1000_82571)
2991 max_per_txd = 8192;
2993 #ifdef NETIF_F_TSO
2994 mss = skb_shinfo(skb)->gso_size;
2995 /* The controller does a simple calculation to
2996 * make sure there is enough room in the FIFO before
2997 * initiating the DMA for each buffer. The calc is:
2998 * 4 = ceil(buffer len/mss). To make sure we don't
2999 * overrun the FIFO, adjust the max buffer len if mss
3000 * drops. */
3001 if (mss) {
3002 uint8_t hdr_len;
3003 max_per_txd = min(mss << 2, max_per_txd);
3004 max_txd_pwr = fls(max_per_txd) - 1;
3006 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3007 * points to just header, pull a few bytes of payload from
3008 * frags into skb->data */
3009 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3010 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3011 switch (adapter->hw.mac_type) {
3012 unsigned int pull_size;
3013 case e1000_82571:
3014 case e1000_82572:
3015 case e1000_82573:
3016 case e1000_ich8lan:
3017 pull_size = min((unsigned int)4, skb->data_len);
3018 if (!__pskb_pull_tail(skb, pull_size)) {
3019 DPRINTK(DRV, ERR,
3020 "__pskb_pull_tail failed.\n");
3021 dev_kfree_skb_any(skb);
3022 return NETDEV_TX_OK;
3024 len = skb->len - skb->data_len;
3025 break;
3026 default:
3027 /* do nothing */
3028 break;
3033 /* reserve a descriptor for the offload context */
3034 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3035 count++;
3036 count++;
3037 #else
3038 if (skb->ip_summed == CHECKSUM_PARTIAL)
3039 count++;
3040 #endif
3042 #ifdef NETIF_F_TSO
3043 /* Controller Erratum workaround */
3044 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3045 count++;
3046 #endif
3048 count += TXD_USE_COUNT(len, max_txd_pwr);
3050 if (adapter->pcix_82544)
3051 count++;
3053 /* work-around for errata 10 and it applies to all controllers
3054 * in PCI-X mode, so add one more descriptor to the count
3056 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3057 (len > 2015)))
3058 count++;
3060 nr_frags = skb_shinfo(skb)->nr_frags;
3061 for (f = 0; f < nr_frags; f++)
3062 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3063 max_txd_pwr);
3064 if (adapter->pcix_82544)
3065 count += nr_frags;
3068 if (adapter->hw.tx_pkt_filtering &&
3069 (adapter->hw.mac_type == e1000_82573))
3070 e1000_transfer_dhcp_info(adapter, skb);
3072 local_irq_save(flags);
3073 if (!spin_trylock(&tx_ring->tx_lock)) {
3074 /* Collision - tell upper layer to requeue */
3075 local_irq_restore(flags);
3076 return NETDEV_TX_LOCKED;
3079 /* need: count + 2 desc gap to keep tail from touching
3080 * head, otherwise try next time */
3081 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3082 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3083 return NETDEV_TX_BUSY;
3086 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3087 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3088 netif_stop_queue(netdev);
3089 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3090 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3091 return NETDEV_TX_BUSY;
3095 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3096 tx_flags |= E1000_TX_FLAGS_VLAN;
3097 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3100 first = tx_ring->next_to_use;
3102 tso = e1000_tso(adapter, tx_ring, skb);
3103 if (tso < 0) {
3104 dev_kfree_skb_any(skb);
3105 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3106 return NETDEV_TX_OK;
3109 if (likely(tso)) {
3110 tx_ring->last_tx_tso = 1;
3111 tx_flags |= E1000_TX_FLAGS_TSO;
3112 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3113 tx_flags |= E1000_TX_FLAGS_CSUM;
3115 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3116 * 82571 hardware supports TSO capabilities for IPv6 as well...
3117 * no longer assume, we must. */
3118 if (likely(skb->protocol == htons(ETH_P_IP)))
3119 tx_flags |= E1000_TX_FLAGS_IPV4;
3121 e1000_tx_queue(adapter, tx_ring, tx_flags,
3122 e1000_tx_map(adapter, tx_ring, skb, first,
3123 max_per_txd, nr_frags, mss));
3125 netdev->trans_start = jiffies;
3127 /* Make sure there is space in the ring for the next send. */
3128 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3130 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3131 return NETDEV_TX_OK;
3135 * e1000_tx_timeout - Respond to a Tx Hang
3136 * @netdev: network interface device structure
3139 static void
3140 e1000_tx_timeout(struct net_device *netdev)
3142 struct e1000_adapter *adapter = netdev_priv(netdev);
3144 /* Do the reset outside of interrupt context */
3145 adapter->tx_timeout_count++;
3146 schedule_work(&adapter->reset_task);
3149 static void
3150 e1000_reset_task(struct net_device *netdev)
3152 struct e1000_adapter *adapter = netdev_priv(netdev);
3154 e1000_reinit_locked(adapter);
3158 * e1000_get_stats - Get System Network Statistics
3159 * @netdev: network interface device structure
3161 * Returns the address of the device statistics structure.
3162 * The statistics are actually updated from the timer callback.
3165 static struct net_device_stats *
3166 e1000_get_stats(struct net_device *netdev)
3168 struct e1000_adapter *adapter = netdev_priv(netdev);
3170 /* only return the current stats */
3171 return &adapter->net_stats;
3175 * e1000_change_mtu - Change the Maximum Transfer Unit
3176 * @netdev: network interface device structure
3177 * @new_mtu: new value for maximum frame size
3179 * Returns 0 on success, negative on failure
3182 static int
3183 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3185 struct e1000_adapter *adapter = netdev_priv(netdev);
3186 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3187 uint16_t eeprom_data = 0;
3189 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3190 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3191 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3192 return -EINVAL;
3195 /* Adapter-specific max frame size limits. */
3196 switch (adapter->hw.mac_type) {
3197 case e1000_undefined ... e1000_82542_rev2_1:
3198 case e1000_ich8lan:
3199 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3200 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3201 return -EINVAL;
3203 break;
3204 case e1000_82573:
3205 /* Jumbo Frames not supported if:
3206 * - this is not an 82573L device
3207 * - ASPM is enabled in any way (0x1A bits 3:2) */
3208 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3209 &eeprom_data);
3210 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3211 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3212 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3213 DPRINTK(PROBE, ERR,
3214 "Jumbo Frames not supported.\n");
3215 return -EINVAL;
3217 break;
3219 /* ERT will be enabled later to enable wire speed receives */
3221 /* fall through to get support */
3222 case e1000_82571:
3223 case e1000_82572:
3224 case e1000_80003es2lan:
3225 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3226 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3227 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3228 return -EINVAL;
3230 break;
3231 default:
3232 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3233 break;
3236 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3237 * means we reserve 2 more, this pushes us to allocate from the next
3238 * larger slab size
3239 * i.e. RXBUFFER_2048 --> size-4096 slab */
3241 if (max_frame <= E1000_RXBUFFER_256)
3242 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3243 else if (max_frame <= E1000_RXBUFFER_512)
3244 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3245 else if (max_frame <= E1000_RXBUFFER_1024)
3246 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3247 else if (max_frame <= E1000_RXBUFFER_2048)
3248 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3249 else if (max_frame <= E1000_RXBUFFER_4096)
3250 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3251 else if (max_frame <= E1000_RXBUFFER_8192)
3252 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3253 else if (max_frame <= E1000_RXBUFFER_16384)
3254 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3256 /* adjust allocation if LPE protects us, and we aren't using SBP */
3257 if (!adapter->hw.tbi_compatibility_on &&
3258 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3259 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3260 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3262 netdev->mtu = new_mtu;
3264 if (netif_running(netdev))
3265 e1000_reinit_locked(adapter);
3267 adapter->hw.max_frame_size = max_frame;
3269 return 0;
3273 * e1000_update_stats - Update the board statistics counters
3274 * @adapter: board private structure
3277 void
3278 e1000_update_stats(struct e1000_adapter *adapter)
3280 struct e1000_hw *hw = &adapter->hw;
3281 struct pci_dev *pdev = adapter->pdev;
3282 unsigned long flags;
3283 uint16_t phy_tmp;
3285 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3288 * Prevent stats update while adapter is being reset, or if the pci
3289 * connection is down.
3291 if (adapter->link_speed == 0)
3292 return;
3293 if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3294 return;
3296 spin_lock_irqsave(&adapter->stats_lock, flags);
3298 /* these counters are modified from e1000_adjust_tbi_stats,
3299 * called from the interrupt context, so they must only
3300 * be written while holding adapter->stats_lock
3303 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3304 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3305 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3306 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3307 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3308 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3309 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3311 if (adapter->hw.mac_type != e1000_ich8lan) {
3312 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3313 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3314 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3315 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3316 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3317 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3320 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3321 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3322 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3323 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3324 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3325 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3326 adapter->stats.dc += E1000_READ_REG(hw, DC);
3327 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3328 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3329 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3330 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3331 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3332 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3333 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3334 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3335 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3336 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3337 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3338 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3339 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3340 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3341 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3342 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3343 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3344 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3345 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3347 if (adapter->hw.mac_type != e1000_ich8lan) {
3348 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3349 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3350 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3351 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3352 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3353 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3356 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3357 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3359 /* used for adaptive IFS */
3361 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3362 adapter->stats.tpt += hw->tx_packet_delta;
3363 hw->collision_delta = E1000_READ_REG(hw, COLC);
3364 adapter->stats.colc += hw->collision_delta;
3366 if (hw->mac_type >= e1000_82543) {
3367 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3368 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3369 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3370 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3371 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3372 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3374 if (hw->mac_type > e1000_82547_rev_2) {
3375 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3376 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3378 if (adapter->hw.mac_type != e1000_ich8lan) {
3379 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3380 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3381 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3382 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3383 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3384 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3385 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3389 /* Fill out the OS statistics structure */
3390 adapter->net_stats.rx_packets = adapter->stats.gprc;
3391 adapter->net_stats.tx_packets = adapter->stats.gptc;
3392 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3393 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3394 adapter->net_stats.multicast = adapter->stats.mprc;
3395 adapter->net_stats.collisions = adapter->stats.colc;
3397 /* Rx Errors */
3399 /* RLEC on some newer hardware can be incorrect so build
3400 * our own version based on RUC and ROC */
3401 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3402 adapter->stats.crcerrs + adapter->stats.algnerrc +
3403 adapter->stats.ruc + adapter->stats.roc +
3404 adapter->stats.cexterr;
3405 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3406 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3407 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3408 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3409 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3411 /* Tx Errors */
3412 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3413 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3414 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3415 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3416 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3418 /* Tx Dropped needs to be maintained elsewhere */
3420 /* Phy Stats */
3421 if (hw->media_type == e1000_media_type_copper) {
3422 if ((adapter->link_speed == SPEED_1000) &&
3423 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3424 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3425 adapter->phy_stats.idle_errors += phy_tmp;
3428 if ((hw->mac_type <= e1000_82546) &&
3429 (hw->phy_type == e1000_phy_m88) &&
3430 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3431 adapter->phy_stats.receive_errors += phy_tmp;
3434 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3438 * e1000_intr - Interrupt Handler
3439 * @irq: interrupt number
3440 * @data: pointer to a network interface device structure
3443 static irqreturn_t
3444 e1000_intr(int irq, void *data)
3446 struct net_device *netdev = data;
3447 struct e1000_adapter *adapter = netdev_priv(netdev);
3448 struct e1000_hw *hw = &adapter->hw;
3449 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3450 #ifndef CONFIG_E1000_NAPI
3451 int i;
3452 #else
3453 /* Interrupt Auto-Mask...upon reading ICR,
3454 * interrupts are masked. No need for the
3455 * IMC write, but it does mean we should
3456 * account for it ASAP. */
3457 if (likely(hw->mac_type >= e1000_82571))
3458 atomic_inc(&adapter->irq_sem);
3459 #endif
3461 if (unlikely(!icr)) {
3462 #ifdef CONFIG_E1000_NAPI
3463 if (hw->mac_type >= e1000_82571)
3464 e1000_irq_enable(adapter);
3465 #endif
3466 return IRQ_NONE; /* Not our interrupt */
3469 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3470 hw->get_link_status = 1;
3471 /* 80003ES2LAN workaround--
3472 * For packet buffer work-around on link down event;
3473 * disable receives here in the ISR and
3474 * reset adapter in watchdog
3476 if (netif_carrier_ok(netdev) &&
3477 (adapter->hw.mac_type == e1000_80003es2lan)) {
3478 /* disable receives */
3479 rctl = E1000_READ_REG(hw, RCTL);
3480 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3482 /* guard against interrupt when we're going down */
3483 if (!test_bit(__E1000_DOWN, &adapter->flags))
3484 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3487 #ifdef CONFIG_E1000_NAPI
3488 if (unlikely(hw->mac_type < e1000_82571)) {
3489 atomic_inc(&adapter->irq_sem);
3490 E1000_WRITE_REG(hw, IMC, ~0);
3491 E1000_WRITE_FLUSH(hw);
3493 if (likely(netif_rx_schedule_prep(netdev)))
3494 __netif_rx_schedule(netdev);
3495 else
3496 /* this really should not happen! if it does it is basically a
3497 * bug, but not a hard error, so enable ints and continue */
3498 e1000_irq_enable(adapter);
3499 #else
3500 /* Writing IMC and IMS is needed for 82547.
3501 * Due to Hub Link bus being occupied, an interrupt
3502 * de-assertion message is not able to be sent.
3503 * When an interrupt assertion message is generated later,
3504 * two messages are re-ordered and sent out.
3505 * That causes APIC to think 82547 is in de-assertion
3506 * state, while 82547 is in assertion state, resulting
3507 * in dead lock. Writing IMC forces 82547 into
3508 * de-assertion state.
3510 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3511 atomic_inc(&adapter->irq_sem);
3512 E1000_WRITE_REG(hw, IMC, ~0);
3515 for (i = 0; i < E1000_MAX_INTR; i++)
3516 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3517 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3518 break;
3520 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3521 e1000_irq_enable(adapter);
3523 #endif
3524 return IRQ_HANDLED;
3527 #ifdef CONFIG_E1000_NAPI
3529 * e1000_clean - NAPI Rx polling callback
3530 * @adapter: board private structure
3533 static int
3534 e1000_clean(struct net_device *poll_dev, int *budget)
3536 struct e1000_adapter *adapter;
3537 int work_to_do = min(*budget, poll_dev->quota);
3538 int tx_cleaned = 0, work_done = 0;
3540 /* Must NOT use netdev_priv macro here. */
3541 adapter = poll_dev->priv;
3543 /* Keep link state information with original netdev */
3544 if (!netif_carrier_ok(poll_dev))
3545 goto quit_polling;
3547 /* e1000_clean is called per-cpu. This lock protects
3548 * tx_ring[0] from being cleaned by multiple cpus
3549 * simultaneously. A failure obtaining the lock means
3550 * tx_ring[0] is currently being cleaned anyway. */
3551 if (spin_trylock(&adapter->tx_queue_lock)) {
3552 tx_cleaned = e1000_clean_tx_irq(adapter,
3553 &adapter->tx_ring[0]);
3554 spin_unlock(&adapter->tx_queue_lock);
3557 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3558 &work_done, work_to_do);
3560 *budget -= work_done;
3561 poll_dev->quota -= work_done;
3563 /* If no Tx and not enough Rx work done, exit the polling mode */
3564 if ((!tx_cleaned && (work_done == 0)) ||
3565 !netif_running(poll_dev)) {
3566 quit_polling:
3567 netif_rx_complete(poll_dev);
3568 e1000_irq_enable(adapter);
3569 return 0;
3572 return 1;
3575 #endif
3577 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3578 * @adapter: board private structure
3581 static boolean_t
3582 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3583 struct e1000_tx_ring *tx_ring)
3585 struct net_device *netdev = adapter->netdev;
3586 struct e1000_tx_desc *tx_desc, *eop_desc;
3587 struct e1000_buffer *buffer_info;
3588 unsigned int i, eop;
3589 #ifdef CONFIG_E1000_NAPI
3590 unsigned int count = 0;
3591 #endif
3592 boolean_t cleaned = FALSE;
3594 i = tx_ring->next_to_clean;
3595 eop = tx_ring->buffer_info[i].next_to_watch;
3596 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3598 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3599 for (cleaned = FALSE; !cleaned; ) {
3600 tx_desc = E1000_TX_DESC(*tx_ring, i);
3601 buffer_info = &tx_ring->buffer_info[i];
3602 cleaned = (i == eop);
3604 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3605 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3607 if (unlikely(++i == tx_ring->count)) i = 0;
3610 eop = tx_ring->buffer_info[i].next_to_watch;
3611 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3612 #ifdef CONFIG_E1000_NAPI
3613 #define E1000_TX_WEIGHT 64
3614 /* weight of a sort for tx, to avoid endless transmit cleanup */
3615 if (count++ == E1000_TX_WEIGHT) break;
3616 #endif
3619 tx_ring->next_to_clean = i;
3621 #define TX_WAKE_THRESHOLD 32
3622 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3623 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3624 /* Make sure that anybody stopping the queue after this
3625 * sees the new next_to_clean.
3627 smp_mb();
3628 if (netif_queue_stopped(netdev))
3629 netif_wake_queue(netdev);
3632 if (adapter->detect_tx_hung) {
3633 /* Detect a transmit hang in hardware, this serializes the
3634 * check with the clearing of time_stamp and movement of i */
3635 adapter->detect_tx_hung = FALSE;
3636 if (tx_ring->buffer_info[eop].dma &&
3637 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3638 (adapter->tx_timeout_factor * HZ))
3639 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3640 E1000_STATUS_TXOFF)) {
3642 /* detected Tx unit hang */
3643 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3644 " Tx Queue <%lu>\n"
3645 " TDH <%x>\n"
3646 " TDT <%x>\n"
3647 " next_to_use <%x>\n"
3648 " next_to_clean <%x>\n"
3649 "buffer_info[next_to_clean]\n"
3650 " time_stamp <%lx>\n"
3651 " next_to_watch <%x>\n"
3652 " jiffies <%lx>\n"
3653 " next_to_watch.status <%x>\n",
3654 (unsigned long)((tx_ring - adapter->tx_ring) /
3655 sizeof(struct e1000_tx_ring)),
3656 readl(adapter->hw.hw_addr + tx_ring->tdh),
3657 readl(adapter->hw.hw_addr + tx_ring->tdt),
3658 tx_ring->next_to_use,
3659 tx_ring->next_to_clean,
3660 tx_ring->buffer_info[eop].time_stamp,
3661 eop,
3662 jiffies,
3663 eop_desc->upper.fields.status);
3664 netif_stop_queue(netdev);
3667 return cleaned;
3671 * e1000_rx_checksum - Receive Checksum Offload for 82543
3672 * @adapter: board private structure
3673 * @status_err: receive descriptor status and error fields
3674 * @csum: receive descriptor csum field
3675 * @sk_buff: socket buffer with received data
3678 static void
3679 e1000_rx_checksum(struct e1000_adapter *adapter,
3680 uint32_t status_err, uint32_t csum,
3681 struct sk_buff *skb)
3683 uint16_t status = (uint16_t)status_err;
3684 uint8_t errors = (uint8_t)(status_err >> 24);
3685 skb->ip_summed = CHECKSUM_NONE;
3687 /* 82543 or newer only */
3688 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3689 /* Ignore Checksum bit is set */
3690 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3691 /* TCP/UDP checksum error bit is set */
3692 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3693 /* let the stack verify checksum errors */
3694 adapter->hw_csum_err++;
3695 return;
3697 /* TCP/UDP Checksum has not been calculated */
3698 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3699 if (!(status & E1000_RXD_STAT_TCPCS))
3700 return;
3701 } else {
3702 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3703 return;
3705 /* It must be a TCP or UDP packet with a valid checksum */
3706 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3707 /* TCP checksum is good */
3708 skb->ip_summed = CHECKSUM_UNNECESSARY;
3709 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3710 /* IP fragment with UDP payload */
3711 /* Hardware complements the payload checksum, so we undo it
3712 * and then put the value in host order for further stack use.
3714 csum = ntohl(csum ^ 0xFFFF);
3715 skb->csum = csum;
3716 skb->ip_summed = CHECKSUM_COMPLETE;
3718 adapter->hw_csum_good++;
3722 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3723 * @adapter: board private structure
3726 static boolean_t
3727 #ifdef CONFIG_E1000_NAPI
3728 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3729 struct e1000_rx_ring *rx_ring,
3730 int *work_done, int work_to_do)
3731 #else
3732 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3733 struct e1000_rx_ring *rx_ring)
3734 #endif
3736 struct net_device *netdev = adapter->netdev;
3737 struct pci_dev *pdev = adapter->pdev;
3738 struct e1000_rx_desc *rx_desc, *next_rxd;
3739 struct e1000_buffer *buffer_info, *next_buffer;
3740 unsigned long flags;
3741 uint32_t length;
3742 uint8_t last_byte;
3743 unsigned int i;
3744 int cleaned_count = 0;
3745 boolean_t cleaned = FALSE;
3747 i = rx_ring->next_to_clean;
3748 rx_desc = E1000_RX_DESC(*rx_ring, i);
3749 buffer_info = &rx_ring->buffer_info[i];
3751 while (rx_desc->status & E1000_RXD_STAT_DD) {
3752 struct sk_buff *skb;
3753 u8 status;
3755 #ifdef CONFIG_E1000_NAPI
3756 if (*work_done >= work_to_do)
3757 break;
3758 (*work_done)++;
3759 #endif
3760 status = rx_desc->status;
3761 skb = buffer_info->skb;
3762 buffer_info->skb = NULL;
3764 prefetch(skb->data - NET_IP_ALIGN);
3766 if (++i == rx_ring->count) i = 0;
3767 next_rxd = E1000_RX_DESC(*rx_ring, i);
3768 prefetch(next_rxd);
3770 next_buffer = &rx_ring->buffer_info[i];
3772 cleaned = TRUE;
3773 cleaned_count++;
3774 pci_unmap_single(pdev,
3775 buffer_info->dma,
3776 buffer_info->length,
3777 PCI_DMA_FROMDEVICE);
3779 length = le16_to_cpu(rx_desc->length);
3781 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3782 /* All receives must fit into a single buffer */
3783 E1000_DBG("%s: Receive packet consumed multiple"
3784 " buffers\n", netdev->name);
3785 /* recycle */
3786 buffer_info->skb = skb;
3787 goto next_desc;
3790 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3791 last_byte = *(skb->data + length - 1);
3792 if (TBI_ACCEPT(&adapter->hw, status,
3793 rx_desc->errors, length, last_byte)) {
3794 spin_lock_irqsave(&adapter->stats_lock, flags);
3795 e1000_tbi_adjust_stats(&adapter->hw,
3796 &adapter->stats,
3797 length, skb->data);
3798 spin_unlock_irqrestore(&adapter->stats_lock,
3799 flags);
3800 length--;
3801 } else {
3802 /* recycle */
3803 buffer_info->skb = skb;
3804 goto next_desc;
3808 /* adjust length to remove Ethernet CRC, this must be
3809 * done after the TBI_ACCEPT workaround above */
3810 length -= 4;
3812 /* code added for copybreak, this should improve
3813 * performance for small packets with large amounts
3814 * of reassembly being done in the stack */
3815 #define E1000_CB_LENGTH 256
3816 if (length < E1000_CB_LENGTH) {
3817 struct sk_buff *new_skb =
3818 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3819 if (new_skb) {
3820 skb_reserve(new_skb, NET_IP_ALIGN);
3821 memcpy(new_skb->data - NET_IP_ALIGN,
3822 skb->data - NET_IP_ALIGN,
3823 length + NET_IP_ALIGN);
3824 /* save the skb in buffer_info as good */
3825 buffer_info->skb = skb;
3826 skb = new_skb;
3827 skb_put(skb, length);
3829 } else
3830 skb_put(skb, length);
3832 /* end copybreak code */
3834 /* Receive Checksum Offload */
3835 e1000_rx_checksum(adapter,
3836 (uint32_t)(status) |
3837 ((uint32_t)(rx_desc->errors) << 24),
3838 le16_to_cpu(rx_desc->csum), skb);
3840 skb->protocol = eth_type_trans(skb, netdev);
3841 #ifdef CONFIG_E1000_NAPI
3842 if (unlikely(adapter->vlgrp &&
3843 (status & E1000_RXD_STAT_VP))) {
3844 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3845 le16_to_cpu(rx_desc->special) &
3846 E1000_RXD_SPC_VLAN_MASK);
3847 } else {
3848 netif_receive_skb(skb);
3850 #else /* CONFIG_E1000_NAPI */
3851 if (unlikely(adapter->vlgrp &&
3852 (status & E1000_RXD_STAT_VP))) {
3853 vlan_hwaccel_rx(skb, adapter->vlgrp,
3854 le16_to_cpu(rx_desc->special) &
3855 E1000_RXD_SPC_VLAN_MASK);
3856 } else {
3857 netif_rx(skb);
3859 #endif /* CONFIG_E1000_NAPI */
3860 netdev->last_rx = jiffies;
3862 next_desc:
3863 rx_desc->status = 0;
3865 /* return some buffers to hardware, one at a time is too slow */
3866 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3867 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3868 cleaned_count = 0;
3871 /* use prefetched values */
3872 rx_desc = next_rxd;
3873 buffer_info = next_buffer;
3875 rx_ring->next_to_clean = i;
3877 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3878 if (cleaned_count)
3879 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3881 return cleaned;
3885 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3886 * @adapter: board private structure
3889 static boolean_t
3890 #ifdef CONFIG_E1000_NAPI
3891 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3892 struct e1000_rx_ring *rx_ring,
3893 int *work_done, int work_to_do)
3894 #else
3895 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3896 struct e1000_rx_ring *rx_ring)
3897 #endif
3899 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3900 struct net_device *netdev = adapter->netdev;
3901 struct pci_dev *pdev = adapter->pdev;
3902 struct e1000_buffer *buffer_info, *next_buffer;
3903 struct e1000_ps_page *ps_page;
3904 struct e1000_ps_page_dma *ps_page_dma;
3905 struct sk_buff *skb;
3906 unsigned int i, j;
3907 uint32_t length, staterr;
3908 int cleaned_count = 0;
3909 boolean_t cleaned = FALSE;
3911 i = rx_ring->next_to_clean;
3912 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3913 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3914 buffer_info = &rx_ring->buffer_info[i];
3916 while (staterr & E1000_RXD_STAT_DD) {
3917 ps_page = &rx_ring->ps_page[i];
3918 ps_page_dma = &rx_ring->ps_page_dma[i];
3919 #ifdef CONFIG_E1000_NAPI
3920 if (unlikely(*work_done >= work_to_do))
3921 break;
3922 (*work_done)++;
3923 #endif
3924 skb = buffer_info->skb;
3926 /* in the packet split case this is header only */
3927 prefetch(skb->data - NET_IP_ALIGN);
3929 if (++i == rx_ring->count) i = 0;
3930 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3931 prefetch(next_rxd);
3933 next_buffer = &rx_ring->buffer_info[i];
3935 cleaned = TRUE;
3936 cleaned_count++;
3937 pci_unmap_single(pdev, buffer_info->dma,
3938 buffer_info->length,
3939 PCI_DMA_FROMDEVICE);
3941 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3942 E1000_DBG("%s: Packet Split buffers didn't pick up"
3943 " the full packet\n", netdev->name);
3944 dev_kfree_skb_irq(skb);
3945 goto next_desc;
3948 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3949 dev_kfree_skb_irq(skb);
3950 goto next_desc;
3953 length = le16_to_cpu(rx_desc->wb.middle.length0);
3955 if (unlikely(!length)) {
3956 E1000_DBG("%s: Last part of the packet spanning"
3957 " multiple descriptors\n", netdev->name);
3958 dev_kfree_skb_irq(skb);
3959 goto next_desc;
3962 /* Good Receive */
3963 skb_put(skb, length);
3966 /* this looks ugly, but it seems compiler issues make it
3967 more efficient than reusing j */
3968 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3970 /* page alloc/put takes too long and effects small packet
3971 * throughput, so unsplit small packets and save the alloc/put*/
3972 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3973 u8 *vaddr;
3974 /* there is no documentation about how to call
3975 * kmap_atomic, so we can't hold the mapping
3976 * very long */
3977 pci_dma_sync_single_for_cpu(pdev,
3978 ps_page_dma->ps_page_dma[0],
3979 PAGE_SIZE,
3980 PCI_DMA_FROMDEVICE);
3981 vaddr = kmap_atomic(ps_page->ps_page[0],
3982 KM_SKB_DATA_SOFTIRQ);
3983 memcpy(skb->tail, vaddr, l1);
3984 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3985 pci_dma_sync_single_for_device(pdev,
3986 ps_page_dma->ps_page_dma[0],
3987 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3988 /* remove the CRC */
3989 l1 -= 4;
3990 skb_put(skb, l1);
3991 goto copydone;
3992 } /* if */
3995 for (j = 0; j < adapter->rx_ps_pages; j++) {
3996 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3997 break;
3998 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3999 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4000 ps_page_dma->ps_page_dma[j] = 0;
4001 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4002 length);
4003 ps_page->ps_page[j] = NULL;
4004 skb->len += length;
4005 skb->data_len += length;
4006 skb->truesize += length;
4009 /* strip the ethernet crc, problem is we're using pages now so
4010 * this whole operation can get a little cpu intensive */
4011 pskb_trim(skb, skb->len - 4);
4013 copydone:
4014 e1000_rx_checksum(adapter, staterr,
4015 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4016 skb->protocol = eth_type_trans(skb, netdev);
4018 if (likely(rx_desc->wb.upper.header_status &
4019 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4020 adapter->rx_hdr_split++;
4021 #ifdef CONFIG_E1000_NAPI
4022 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4023 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4024 le16_to_cpu(rx_desc->wb.middle.vlan) &
4025 E1000_RXD_SPC_VLAN_MASK);
4026 } else {
4027 netif_receive_skb(skb);
4029 #else /* CONFIG_E1000_NAPI */
4030 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4031 vlan_hwaccel_rx(skb, adapter->vlgrp,
4032 le16_to_cpu(rx_desc->wb.middle.vlan) &
4033 E1000_RXD_SPC_VLAN_MASK);
4034 } else {
4035 netif_rx(skb);
4037 #endif /* CONFIG_E1000_NAPI */
4038 netdev->last_rx = jiffies;
4040 next_desc:
4041 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4042 buffer_info->skb = NULL;
4044 /* return some buffers to hardware, one at a time is too slow */
4045 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4046 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4047 cleaned_count = 0;
4050 /* use prefetched values */
4051 rx_desc = next_rxd;
4052 buffer_info = next_buffer;
4054 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4056 rx_ring->next_to_clean = i;
4058 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4059 if (cleaned_count)
4060 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4062 return cleaned;
4066 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4067 * @adapter: address of board private structure
4070 static void
4071 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4072 struct e1000_rx_ring *rx_ring,
4073 int cleaned_count)
4075 struct net_device *netdev = adapter->netdev;
4076 struct pci_dev *pdev = adapter->pdev;
4077 struct e1000_rx_desc *rx_desc;
4078 struct e1000_buffer *buffer_info;
4079 struct sk_buff *skb;
4080 unsigned int i;
4081 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4083 i = rx_ring->next_to_use;
4084 buffer_info = &rx_ring->buffer_info[i];
4086 while (cleaned_count--) {
4087 skb = buffer_info->skb;
4088 if (skb) {
4089 skb_trim(skb, 0);
4090 goto map_skb;
4093 skb = netdev_alloc_skb(netdev, bufsz);
4094 if (unlikely(!skb)) {
4095 /* Better luck next round */
4096 adapter->alloc_rx_buff_failed++;
4097 break;
4100 /* Fix for errata 23, can't cross 64kB boundary */
4101 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4102 struct sk_buff *oldskb = skb;
4103 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4104 "at %p\n", bufsz, skb->data);
4105 /* Try again, without freeing the previous */
4106 skb = netdev_alloc_skb(netdev, bufsz);
4107 /* Failed allocation, critical failure */
4108 if (!skb) {
4109 dev_kfree_skb(oldskb);
4110 break;
4113 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4114 /* give up */
4115 dev_kfree_skb(skb);
4116 dev_kfree_skb(oldskb);
4117 break; /* while !buffer_info->skb */
4120 /* Use new allocation */
4121 dev_kfree_skb(oldskb);
4123 /* Make buffer alignment 2 beyond a 16 byte boundary
4124 * this will result in a 16 byte aligned IP header after
4125 * the 14 byte MAC header is removed
4127 skb_reserve(skb, NET_IP_ALIGN);
4129 buffer_info->skb = skb;
4130 buffer_info->length = adapter->rx_buffer_len;
4131 map_skb:
4132 buffer_info->dma = pci_map_single(pdev,
4133 skb->data,
4134 adapter->rx_buffer_len,
4135 PCI_DMA_FROMDEVICE);
4137 /* Fix for errata 23, can't cross 64kB boundary */
4138 if (!e1000_check_64k_bound(adapter,
4139 (void *)(unsigned long)buffer_info->dma,
4140 adapter->rx_buffer_len)) {
4141 DPRINTK(RX_ERR, ERR,
4142 "dma align check failed: %u bytes at %p\n",
4143 adapter->rx_buffer_len,
4144 (void *)(unsigned long)buffer_info->dma);
4145 dev_kfree_skb(skb);
4146 buffer_info->skb = NULL;
4148 pci_unmap_single(pdev, buffer_info->dma,
4149 adapter->rx_buffer_len,
4150 PCI_DMA_FROMDEVICE);
4152 break; /* while !buffer_info->skb */
4154 rx_desc = E1000_RX_DESC(*rx_ring, i);
4155 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4157 if (unlikely(++i == rx_ring->count))
4158 i = 0;
4159 buffer_info = &rx_ring->buffer_info[i];
4162 if (likely(rx_ring->next_to_use != i)) {
4163 rx_ring->next_to_use = i;
4164 if (unlikely(i-- == 0))
4165 i = (rx_ring->count - 1);
4167 /* Force memory writes to complete before letting h/w
4168 * know there are new descriptors to fetch. (Only
4169 * applicable for weak-ordered memory model archs,
4170 * such as IA-64). */
4171 wmb();
4172 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4177 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4178 * @adapter: address of board private structure
4181 static void
4182 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4183 struct e1000_rx_ring *rx_ring,
4184 int cleaned_count)
4186 struct net_device *netdev = adapter->netdev;
4187 struct pci_dev *pdev = adapter->pdev;
4188 union e1000_rx_desc_packet_split *rx_desc;
4189 struct e1000_buffer *buffer_info;
4190 struct e1000_ps_page *ps_page;
4191 struct e1000_ps_page_dma *ps_page_dma;
4192 struct sk_buff *skb;
4193 unsigned int i, j;
4195 i = rx_ring->next_to_use;
4196 buffer_info = &rx_ring->buffer_info[i];
4197 ps_page = &rx_ring->ps_page[i];
4198 ps_page_dma = &rx_ring->ps_page_dma[i];
4200 while (cleaned_count--) {
4201 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4203 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4204 if (j < adapter->rx_ps_pages) {
4205 if (likely(!ps_page->ps_page[j])) {
4206 ps_page->ps_page[j] =
4207 alloc_page(GFP_ATOMIC);
4208 if (unlikely(!ps_page->ps_page[j])) {
4209 adapter->alloc_rx_buff_failed++;
4210 goto no_buffers;
4212 ps_page_dma->ps_page_dma[j] =
4213 pci_map_page(pdev,
4214 ps_page->ps_page[j],
4215 0, PAGE_SIZE,
4216 PCI_DMA_FROMDEVICE);
4218 /* Refresh the desc even if buffer_addrs didn't
4219 * change because each write-back erases
4220 * this info.
4222 rx_desc->read.buffer_addr[j+1] =
4223 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4224 } else
4225 rx_desc->read.buffer_addr[j+1] = ~0;
4228 skb = netdev_alloc_skb(netdev,
4229 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4231 if (unlikely(!skb)) {
4232 adapter->alloc_rx_buff_failed++;
4233 break;
4236 /* Make buffer alignment 2 beyond a 16 byte boundary
4237 * this will result in a 16 byte aligned IP header after
4238 * the 14 byte MAC header is removed
4240 skb_reserve(skb, NET_IP_ALIGN);
4242 buffer_info->skb = skb;
4243 buffer_info->length = adapter->rx_ps_bsize0;
4244 buffer_info->dma = pci_map_single(pdev, skb->data,
4245 adapter->rx_ps_bsize0,
4246 PCI_DMA_FROMDEVICE);
4248 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4250 if (unlikely(++i == rx_ring->count)) i = 0;
4251 buffer_info = &rx_ring->buffer_info[i];
4252 ps_page = &rx_ring->ps_page[i];
4253 ps_page_dma = &rx_ring->ps_page_dma[i];
4256 no_buffers:
4257 if (likely(rx_ring->next_to_use != i)) {
4258 rx_ring->next_to_use = i;
4259 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4261 /* Force memory writes to complete before letting h/w
4262 * know there are new descriptors to fetch. (Only
4263 * applicable for weak-ordered memory model archs,
4264 * such as IA-64). */
4265 wmb();
4266 /* Hardware increments by 16 bytes, but packet split
4267 * descriptors are 32 bytes...so we increment tail
4268 * twice as much.
4270 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4275 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4276 * @adapter:
4279 static void
4280 e1000_smartspeed(struct e1000_adapter *adapter)
4282 uint16_t phy_status;
4283 uint16_t phy_ctrl;
4285 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4286 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4287 return;
4289 if (adapter->smartspeed == 0) {
4290 /* If Master/Slave config fault is asserted twice,
4291 * we assume back-to-back */
4292 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4293 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4294 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4295 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4296 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4297 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4298 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4299 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4300 phy_ctrl);
4301 adapter->smartspeed++;
4302 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4303 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4304 &phy_ctrl)) {
4305 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4306 MII_CR_RESTART_AUTO_NEG);
4307 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4308 phy_ctrl);
4311 return;
4312 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4313 /* If still no link, perhaps using 2/3 pair cable */
4314 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4315 phy_ctrl |= CR_1000T_MS_ENABLE;
4316 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4317 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4318 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4319 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4320 MII_CR_RESTART_AUTO_NEG);
4321 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4324 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4325 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4326 adapter->smartspeed = 0;
4330 * e1000_ioctl -
4331 * @netdev:
4332 * @ifreq:
4333 * @cmd:
4336 static int
4337 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4339 switch (cmd) {
4340 case SIOCGMIIPHY:
4341 case SIOCGMIIREG:
4342 case SIOCSMIIREG:
4343 return e1000_mii_ioctl(netdev, ifr, cmd);
4344 default:
4345 return -EOPNOTSUPP;
4350 * e1000_mii_ioctl -
4351 * @netdev:
4352 * @ifreq:
4353 * @cmd:
4356 static int
4357 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4359 struct e1000_adapter *adapter = netdev_priv(netdev);
4360 struct mii_ioctl_data *data = if_mii(ifr);
4361 int retval;
4362 uint16_t mii_reg;
4363 uint16_t spddplx;
4364 unsigned long flags;
4366 if (adapter->hw.media_type != e1000_media_type_copper)
4367 return -EOPNOTSUPP;
4369 switch (cmd) {
4370 case SIOCGMIIPHY:
4371 data->phy_id = adapter->hw.phy_addr;
4372 break;
4373 case SIOCGMIIREG:
4374 if (!capable(CAP_NET_ADMIN))
4375 return -EPERM;
4376 spin_lock_irqsave(&adapter->stats_lock, flags);
4377 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4378 &data->val_out)) {
4379 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4380 return -EIO;
4382 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4383 break;
4384 case SIOCSMIIREG:
4385 if (!capable(CAP_NET_ADMIN))
4386 return -EPERM;
4387 if (data->reg_num & ~(0x1F))
4388 return -EFAULT;
4389 mii_reg = data->val_in;
4390 spin_lock_irqsave(&adapter->stats_lock, flags);
4391 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4392 mii_reg)) {
4393 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4394 return -EIO;
4396 if (adapter->hw.media_type == e1000_media_type_copper) {
4397 switch (data->reg_num) {
4398 case PHY_CTRL:
4399 if (mii_reg & MII_CR_POWER_DOWN)
4400 break;
4401 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4402 adapter->hw.autoneg = 1;
4403 adapter->hw.autoneg_advertised = 0x2F;
4404 } else {
4405 if (mii_reg & 0x40)
4406 spddplx = SPEED_1000;
4407 else if (mii_reg & 0x2000)
4408 spddplx = SPEED_100;
4409 else
4410 spddplx = SPEED_10;
4411 spddplx += (mii_reg & 0x100)
4412 ? DUPLEX_FULL :
4413 DUPLEX_HALF;
4414 retval = e1000_set_spd_dplx(adapter,
4415 spddplx);
4416 if (retval) {
4417 spin_unlock_irqrestore(
4418 &adapter->stats_lock,
4419 flags);
4420 return retval;
4423 if (netif_running(adapter->netdev))
4424 e1000_reinit_locked(adapter);
4425 else
4426 e1000_reset(adapter);
4427 break;
4428 case M88E1000_PHY_SPEC_CTRL:
4429 case M88E1000_EXT_PHY_SPEC_CTRL:
4430 if (e1000_phy_reset(&adapter->hw)) {
4431 spin_unlock_irqrestore(
4432 &adapter->stats_lock, flags);
4433 return -EIO;
4435 break;
4437 } else {
4438 switch (data->reg_num) {
4439 case PHY_CTRL:
4440 if (mii_reg & MII_CR_POWER_DOWN)
4441 break;
4442 if (netif_running(adapter->netdev))
4443 e1000_reinit_locked(adapter);
4444 else
4445 e1000_reset(adapter);
4446 break;
4449 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4450 break;
4451 default:
4452 return -EOPNOTSUPP;
4454 return E1000_SUCCESS;
4457 void
4458 e1000_pci_set_mwi(struct e1000_hw *hw)
4460 struct e1000_adapter *adapter = hw->back;
4461 int ret_val = pci_set_mwi(adapter->pdev);
4463 if (ret_val)
4464 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4467 void
4468 e1000_pci_clear_mwi(struct e1000_hw *hw)
4470 struct e1000_adapter *adapter = hw->back;
4472 pci_clear_mwi(adapter->pdev);
4475 void
4476 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4478 struct e1000_adapter *adapter = hw->back;
4480 pci_read_config_word(adapter->pdev, reg, value);
4483 void
4484 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4486 struct e1000_adapter *adapter = hw->back;
4488 pci_write_config_word(adapter->pdev, reg, *value);
4491 int32_t
4492 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4494 struct e1000_adapter *adapter = hw->back;
4495 uint16_t cap_offset;
4497 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4498 if (!cap_offset)
4499 return -E1000_ERR_CONFIG;
4501 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4503 return E1000_SUCCESS;
4506 void
4507 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4509 outl(value, port);
4512 static void
4513 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4515 struct e1000_adapter *adapter = netdev_priv(netdev);
4516 uint32_t ctrl, rctl;
4518 e1000_irq_disable(adapter);
4519 adapter->vlgrp = grp;
4521 if (grp) {
4522 /* enable VLAN tag insert/strip */
4523 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4524 ctrl |= E1000_CTRL_VME;
4525 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4527 if (adapter->hw.mac_type != e1000_ich8lan) {
4528 /* enable VLAN receive filtering */
4529 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4530 rctl |= E1000_RCTL_VFE;
4531 rctl &= ~E1000_RCTL_CFIEN;
4532 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4533 e1000_update_mng_vlan(adapter);
4535 } else {
4536 /* disable VLAN tag insert/strip */
4537 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4538 ctrl &= ~E1000_CTRL_VME;
4539 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4541 if (adapter->hw.mac_type != e1000_ich8lan) {
4542 /* disable VLAN filtering */
4543 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4544 rctl &= ~E1000_RCTL_VFE;
4545 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4546 if (adapter->mng_vlan_id !=
4547 (uint16_t)E1000_MNG_VLAN_NONE) {
4548 e1000_vlan_rx_kill_vid(netdev,
4549 adapter->mng_vlan_id);
4550 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4555 e1000_irq_enable(adapter);
4558 static void
4559 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4561 struct e1000_adapter *adapter = netdev_priv(netdev);
4562 uint32_t vfta, index;
4564 if ((adapter->hw.mng_cookie.status &
4565 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4566 (vid == adapter->mng_vlan_id))
4567 return;
4568 /* add VID to filter table */
4569 index = (vid >> 5) & 0x7F;
4570 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4571 vfta |= (1 << (vid & 0x1F));
4572 e1000_write_vfta(&adapter->hw, index, vfta);
4575 static void
4576 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4578 struct e1000_adapter *adapter = netdev_priv(netdev);
4579 uint32_t vfta, index;
4581 e1000_irq_disable(adapter);
4583 if (adapter->vlgrp)
4584 adapter->vlgrp->vlan_devices[vid] = NULL;
4586 e1000_irq_enable(adapter);
4588 if ((adapter->hw.mng_cookie.status &
4589 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4590 (vid == adapter->mng_vlan_id)) {
4591 /* release control to f/w */
4592 e1000_release_hw_control(adapter);
4593 return;
4596 /* remove VID from filter table */
4597 index = (vid >> 5) & 0x7F;
4598 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4599 vfta &= ~(1 << (vid & 0x1F));
4600 e1000_write_vfta(&adapter->hw, index, vfta);
4603 static void
4604 e1000_restore_vlan(struct e1000_adapter *adapter)
4606 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4608 if (adapter->vlgrp) {
4609 uint16_t vid;
4610 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4611 if (!adapter->vlgrp->vlan_devices[vid])
4612 continue;
4613 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4619 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4621 adapter->hw.autoneg = 0;
4623 /* Fiber NICs only allow 1000 gbps Full duplex */
4624 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4625 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4626 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4627 return -EINVAL;
4630 switch (spddplx) {
4631 case SPEED_10 + DUPLEX_HALF:
4632 adapter->hw.forced_speed_duplex = e1000_10_half;
4633 break;
4634 case SPEED_10 + DUPLEX_FULL:
4635 adapter->hw.forced_speed_duplex = e1000_10_full;
4636 break;
4637 case SPEED_100 + DUPLEX_HALF:
4638 adapter->hw.forced_speed_duplex = e1000_100_half;
4639 break;
4640 case SPEED_100 + DUPLEX_FULL:
4641 adapter->hw.forced_speed_duplex = e1000_100_full;
4642 break;
4643 case SPEED_1000 + DUPLEX_FULL:
4644 adapter->hw.autoneg = 1;
4645 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4646 break;
4647 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4648 default:
4649 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4650 return -EINVAL;
4652 return 0;
4655 #ifdef CONFIG_PM
4656 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4657 * bus we're on (PCI(X) vs. PCI-E)
4659 #define PCIE_CONFIG_SPACE_LEN 256
4660 #define PCI_CONFIG_SPACE_LEN 64
4661 static int
4662 e1000_pci_save_state(struct e1000_adapter *adapter)
4664 struct pci_dev *dev = adapter->pdev;
4665 int size;
4666 int i;
4668 if (adapter->hw.mac_type >= e1000_82571)
4669 size = PCIE_CONFIG_SPACE_LEN;
4670 else
4671 size = PCI_CONFIG_SPACE_LEN;
4673 WARN_ON(adapter->config_space != NULL);
4675 adapter->config_space = kmalloc(size, GFP_KERNEL);
4676 if (!adapter->config_space) {
4677 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4678 return -ENOMEM;
4680 for (i = 0; i < (size / 4); i++)
4681 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4682 return 0;
4685 static void
4686 e1000_pci_restore_state(struct e1000_adapter *adapter)
4688 struct pci_dev *dev = adapter->pdev;
4689 int size;
4690 int i;
4692 if (adapter->config_space == NULL)
4693 return;
4695 if (adapter->hw.mac_type >= e1000_82571)
4696 size = PCIE_CONFIG_SPACE_LEN;
4697 else
4698 size = PCI_CONFIG_SPACE_LEN;
4699 for (i = 0; i < (size / 4); i++)
4700 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4701 kfree(adapter->config_space);
4702 adapter->config_space = NULL;
4703 return;
4705 #endif /* CONFIG_PM */
4707 static int
4708 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4710 struct net_device *netdev = pci_get_drvdata(pdev);
4711 struct e1000_adapter *adapter = netdev_priv(netdev);
4712 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4713 uint32_t wufc = adapter->wol;
4714 #ifdef CONFIG_PM
4715 int retval = 0;
4716 #endif
4718 netif_device_detach(netdev);
4720 if (netif_running(netdev)) {
4721 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4722 e1000_down(adapter);
4725 #ifdef CONFIG_PM
4726 /* Implement our own version of pci_save_state(pdev) because pci-
4727 * express adapters have 256-byte config spaces. */
4728 retval = e1000_pci_save_state(adapter);
4729 if (retval)
4730 return retval;
4731 #endif
4733 status = E1000_READ_REG(&adapter->hw, STATUS);
4734 if (status & E1000_STATUS_LU)
4735 wufc &= ~E1000_WUFC_LNKC;
4737 if (wufc) {
4738 e1000_setup_rctl(adapter);
4739 e1000_set_multi(netdev);
4741 /* turn on all-multi mode if wake on multicast is enabled */
4742 if (wufc & E1000_WUFC_MC) {
4743 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4744 rctl |= E1000_RCTL_MPE;
4745 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4748 if (adapter->hw.mac_type >= e1000_82540) {
4749 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4750 /* advertise wake from D3Cold */
4751 #define E1000_CTRL_ADVD3WUC 0x00100000
4752 /* phy power management enable */
4753 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4754 ctrl |= E1000_CTRL_ADVD3WUC |
4755 E1000_CTRL_EN_PHY_PWR_MGMT;
4756 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4759 if (adapter->hw.media_type == e1000_media_type_fiber ||
4760 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4761 /* keep the laser running in D3 */
4762 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4763 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4764 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4767 /* Allow time for pending master requests to run */
4768 e1000_disable_pciex_master(&adapter->hw);
4770 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4771 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4772 pci_enable_wake(pdev, PCI_D3hot, 1);
4773 pci_enable_wake(pdev, PCI_D3cold, 1);
4774 } else {
4775 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4776 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4777 pci_enable_wake(pdev, PCI_D3hot, 0);
4778 pci_enable_wake(pdev, PCI_D3cold, 0);
4781 if (adapter->hw.mac_type >= e1000_82540 &&
4782 adapter->hw.mac_type < e1000_82571 &&
4783 adapter->hw.media_type == e1000_media_type_copper) {
4784 manc = E1000_READ_REG(&adapter->hw, MANC);
4785 if (manc & E1000_MANC_SMBUS_EN) {
4786 manc |= E1000_MANC_ARP_EN;
4787 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4788 pci_enable_wake(pdev, PCI_D3hot, 1);
4789 pci_enable_wake(pdev, PCI_D3cold, 1);
4793 if (adapter->hw.phy_type == e1000_phy_igp_3)
4794 e1000_phy_powerdown_workaround(&adapter->hw);
4796 if (netif_running(netdev))
4797 e1000_free_irq(adapter);
4799 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4800 * would have already happened in close and is redundant. */
4801 e1000_release_hw_control(adapter);
4803 pci_disable_device(pdev);
4805 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4807 return 0;
4810 #ifdef CONFIG_PM
4811 static int
4812 e1000_resume(struct pci_dev *pdev)
4814 struct net_device *netdev = pci_get_drvdata(pdev);
4815 struct e1000_adapter *adapter = netdev_priv(netdev);
4816 uint32_t manc, err;
4818 pci_set_power_state(pdev, PCI_D0);
4819 e1000_pci_restore_state(adapter);
4820 if ((err = pci_enable_device(pdev))) {
4821 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4822 return err;
4824 pci_set_master(pdev);
4826 pci_enable_wake(pdev, PCI_D3hot, 0);
4827 pci_enable_wake(pdev, PCI_D3cold, 0);
4829 if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
4830 return err;
4832 e1000_power_up_phy(adapter);
4833 e1000_reset(adapter);
4834 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4836 if (netif_running(netdev))
4837 e1000_up(adapter);
4839 netif_device_attach(netdev);
4841 if (adapter->hw.mac_type >= e1000_82540 &&
4842 adapter->hw.mac_type < e1000_82571 &&
4843 adapter->hw.media_type == e1000_media_type_copper) {
4844 manc = E1000_READ_REG(&adapter->hw, MANC);
4845 manc &= ~(E1000_MANC_ARP_EN);
4846 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4849 /* If the controller is 82573 and f/w is AMT, do not set
4850 * DRV_LOAD until the interface is up. For all other cases,
4851 * let the f/w know that the h/w is now under the control
4852 * of the driver. */
4853 if (adapter->hw.mac_type != e1000_82573 ||
4854 !e1000_check_mng_mode(&adapter->hw))
4855 e1000_get_hw_control(adapter);
4857 return 0;
4859 #endif
4861 static void e1000_shutdown(struct pci_dev *pdev)
4863 e1000_suspend(pdev, PMSG_SUSPEND);
4866 #ifdef CONFIG_NET_POLL_CONTROLLER
4868 * Polling 'interrupt' - used by things like netconsole to send skbs
4869 * without having to re-enable interrupts. It's not called while
4870 * the interrupt routine is executing.
4872 static void
4873 e1000_netpoll(struct net_device *netdev)
4875 struct e1000_adapter *adapter = netdev_priv(netdev);
4877 disable_irq(adapter->pdev->irq);
4878 e1000_intr(adapter->pdev->irq, netdev);
4879 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4880 #ifndef CONFIG_E1000_NAPI
4881 adapter->clean_rx(adapter, adapter->rx_ring);
4882 #endif
4883 enable_irq(adapter->pdev->irq);
4885 #endif
4888 * e1000_io_error_detected - called when PCI error is detected
4889 * @pdev: Pointer to PCI device
4890 * @state: The current pci conneection state
4892 * This function is called after a PCI bus error affecting
4893 * this device has been detected.
4895 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4897 struct net_device *netdev = pci_get_drvdata(pdev);
4898 struct e1000_adapter *adapter = netdev->priv;
4900 netif_device_detach(netdev);
4902 if (netif_running(netdev))
4903 e1000_down(adapter);
4904 pci_disable_device(pdev);
4906 /* Request a slot slot reset. */
4907 return PCI_ERS_RESULT_NEED_RESET;
4911 * e1000_io_slot_reset - called after the pci bus has been reset.
4912 * @pdev: Pointer to PCI device
4914 * Restart the card from scratch, as if from a cold-boot. Implementation
4915 * resembles the first-half of the e1000_resume routine.
4917 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4919 struct net_device *netdev = pci_get_drvdata(pdev);
4920 struct e1000_adapter *adapter = netdev->priv;
4922 if (pci_enable_device(pdev)) {
4923 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4924 return PCI_ERS_RESULT_DISCONNECT;
4926 pci_set_master(pdev);
4928 pci_enable_wake(pdev, PCI_D3hot, 0);
4929 pci_enable_wake(pdev, PCI_D3cold, 0);
4931 e1000_reset(adapter);
4932 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4934 return PCI_ERS_RESULT_RECOVERED;
4938 * e1000_io_resume - called when traffic can start flowing again.
4939 * @pdev: Pointer to PCI device
4941 * This callback is called when the error recovery driver tells us that
4942 * its OK to resume normal operation. Implementation resembles the
4943 * second-half of the e1000_resume routine.
4945 static void e1000_io_resume(struct pci_dev *pdev)
4947 struct net_device *netdev = pci_get_drvdata(pdev);
4948 struct e1000_adapter *adapter = netdev->priv;
4949 uint32_t manc, swsm;
4951 if (netif_running(netdev)) {
4952 if (e1000_up(adapter)) {
4953 printk("e1000: can't bring device back up after reset\n");
4954 return;
4958 netif_device_attach(netdev);
4960 if (adapter->hw.mac_type >= e1000_82540 &&
4961 adapter->hw.mac_type < e1000_82571 &&
4962 adapter->hw.media_type == e1000_media_type_copper) {
4963 manc = E1000_READ_REG(&adapter->hw, MANC);
4964 manc &= ~(E1000_MANC_ARP_EN);
4965 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4968 switch (adapter->hw.mac_type) {
4969 case e1000_82573:
4970 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4971 E1000_WRITE_REG(&adapter->hw, SWSM,
4972 swsm | E1000_SWSM_DRV_LOAD);
4973 break;
4974 default:
4975 break;
4978 if (netif_running(netdev))
4979 mod_timer(&adapter->watchdog_timer, jiffies);
4982 /* e1000_main.c */