Merge branch 'upstream' of git://electric-eye.fr.zoreil.com/home/romieu/linux-2.6...
[linux-2.6/openmoko-kernel/knife-kernel.git] / arch / i386 / mm / fault.c
blob7f0fcf219a26e4cec52d2e5bbd729601c356d261
1 /*
2 * linux/arch/i386/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 */
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/smp_lock.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/tty.h>
21 #include <linux/vt_kern.h> /* For unblank_screen() */
22 #include <linux/highmem.h>
23 #include <linux/module.h>
24 #include <linux/kprobes.h>
26 #include <asm/system.h>
27 #include <asm/uaccess.h>
28 #include <asm/desc.h>
29 #include <asm/kdebug.h>
31 extern void die(const char *,struct pt_regs *,long);
34 * Unlock any spinlocks which will prevent us from getting the
35 * message out
37 void bust_spinlocks(int yes)
39 int loglevel_save = console_loglevel;
41 if (yes) {
42 oops_in_progress = 1;
43 return;
45 #ifdef CONFIG_VT
46 unblank_screen();
47 #endif
48 oops_in_progress = 0;
50 * OK, the message is on the console. Now we call printk()
51 * without oops_in_progress set so that printk will give klogd
52 * a poke. Hold onto your hats...
54 console_loglevel = 15; /* NMI oopser may have shut the console up */
55 printk(" ");
56 console_loglevel = loglevel_save;
60 * Return EIP plus the CS segment base. The segment limit is also
61 * adjusted, clamped to the kernel/user address space (whichever is
62 * appropriate), and returned in *eip_limit.
64 * The segment is checked, because it might have been changed by another
65 * task between the original faulting instruction and here.
67 * If CS is no longer a valid code segment, or if EIP is beyond the
68 * limit, or if it is a kernel address when CS is not a kernel segment,
69 * then the returned value will be greater than *eip_limit.
71 * This is slow, but is very rarely executed.
73 static inline unsigned long get_segment_eip(struct pt_regs *regs,
74 unsigned long *eip_limit)
76 unsigned long eip = regs->eip;
77 unsigned seg = regs->xcs & 0xffff;
78 u32 seg_ar, seg_limit, base, *desc;
80 /* The standard kernel/user address space limit. */
81 *eip_limit = (seg & 3) ? USER_DS.seg : KERNEL_DS.seg;
83 /* Unlikely, but must come before segment checks. */
84 if (unlikely((regs->eflags & VM_MASK) != 0))
85 return eip + (seg << 4);
87 /* By far the most common cases. */
88 if (likely(seg == __USER_CS || seg == __KERNEL_CS))
89 return eip;
91 /* Check the segment exists, is within the current LDT/GDT size,
92 that kernel/user (ring 0..3) has the appropriate privilege,
93 that it's a code segment, and get the limit. */
94 __asm__ ("larl %3,%0; lsll %3,%1"
95 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
96 if ((~seg_ar & 0x9800) || eip > seg_limit) {
97 *eip_limit = 0;
98 return 1; /* So that returned eip > *eip_limit. */
101 /* Get the GDT/LDT descriptor base.
102 When you look for races in this code remember that
103 LDT and other horrors are only used in user space. */
104 if (seg & (1<<2)) {
105 /* Must lock the LDT while reading it. */
106 down(&current->mm->context.sem);
107 desc = current->mm->context.ldt;
108 desc = (void *)desc + (seg & ~7);
109 } else {
110 /* Must disable preemption while reading the GDT. */
111 desc = (u32 *)get_cpu_gdt_table(get_cpu());
112 desc = (void *)desc + (seg & ~7);
115 /* Decode the code segment base from the descriptor */
116 base = get_desc_base((unsigned long *)desc);
118 if (seg & (1<<2)) {
119 up(&current->mm->context.sem);
120 } else
121 put_cpu();
123 /* Adjust EIP and segment limit, and clamp at the kernel limit.
124 It's legitimate for segments to wrap at 0xffffffff. */
125 seg_limit += base;
126 if (seg_limit < *eip_limit && seg_limit >= base)
127 *eip_limit = seg_limit;
128 return eip + base;
132 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
133 * Check that here and ignore it.
135 static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
137 unsigned long limit;
138 unsigned long instr = get_segment_eip (regs, &limit);
139 int scan_more = 1;
140 int prefetch = 0;
141 int i;
143 for (i = 0; scan_more && i < 15; i++) {
144 unsigned char opcode;
145 unsigned char instr_hi;
146 unsigned char instr_lo;
148 if (instr > limit)
149 break;
150 if (__get_user(opcode, (unsigned char __user *) instr))
151 break;
153 instr_hi = opcode & 0xf0;
154 instr_lo = opcode & 0x0f;
155 instr++;
157 switch (instr_hi) {
158 case 0x20:
159 case 0x30:
160 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
161 scan_more = ((instr_lo & 7) == 0x6);
162 break;
164 case 0x60:
165 /* 0x64 thru 0x67 are valid prefixes in all modes. */
166 scan_more = (instr_lo & 0xC) == 0x4;
167 break;
168 case 0xF0:
169 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
170 scan_more = !instr_lo || (instr_lo>>1) == 1;
171 break;
172 case 0x00:
173 /* Prefetch instruction is 0x0F0D or 0x0F18 */
174 scan_more = 0;
175 if (instr > limit)
176 break;
177 if (__get_user(opcode, (unsigned char __user *) instr))
178 break;
179 prefetch = (instr_lo == 0xF) &&
180 (opcode == 0x0D || opcode == 0x18);
181 break;
182 default:
183 scan_more = 0;
184 break;
187 return prefetch;
190 static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
191 unsigned long error_code)
193 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
194 boot_cpu_data.x86 >= 6)) {
195 /* Catch an obscure case of prefetch inside an NX page. */
196 if (nx_enabled && (error_code & 16))
197 return 0;
198 return __is_prefetch(regs, addr);
200 return 0;
203 static noinline void force_sig_info_fault(int si_signo, int si_code,
204 unsigned long address, struct task_struct *tsk)
206 siginfo_t info;
208 info.si_signo = si_signo;
209 info.si_errno = 0;
210 info.si_code = si_code;
211 info.si_addr = (void __user *)address;
212 force_sig_info(si_signo, &info, tsk);
215 fastcall void do_invalid_op(struct pt_regs *, unsigned long);
217 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
219 unsigned index = pgd_index(address);
220 pgd_t *pgd_k;
221 pud_t *pud, *pud_k;
222 pmd_t *pmd, *pmd_k;
224 pgd += index;
225 pgd_k = init_mm.pgd + index;
227 if (!pgd_present(*pgd_k))
228 return NULL;
231 * set_pgd(pgd, *pgd_k); here would be useless on PAE
232 * and redundant with the set_pmd() on non-PAE. As would
233 * set_pud.
236 pud = pud_offset(pgd, address);
237 pud_k = pud_offset(pgd_k, address);
238 if (!pud_present(*pud_k))
239 return NULL;
241 pmd = pmd_offset(pud, address);
242 pmd_k = pmd_offset(pud_k, address);
243 if (!pmd_present(*pmd_k))
244 return NULL;
245 if (!pmd_present(*pmd))
246 set_pmd(pmd, *pmd_k);
247 else
248 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
249 return pmd_k;
253 * Handle a fault on the vmalloc or module mapping area
255 * This assumes no large pages in there.
257 static inline int vmalloc_fault(unsigned long address)
259 unsigned long pgd_paddr;
260 pmd_t *pmd_k;
261 pte_t *pte_k;
263 * Synchronize this task's top level page-table
264 * with the 'reference' page table.
266 * Do _not_ use "current" here. We might be inside
267 * an interrupt in the middle of a task switch..
269 pgd_paddr = read_cr3();
270 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
271 if (!pmd_k)
272 return -1;
273 pte_k = pte_offset_kernel(pmd_k, address);
274 if (!pte_present(*pte_k))
275 return -1;
276 return 0;
280 * This routine handles page faults. It determines the address,
281 * and the problem, and then passes it off to one of the appropriate
282 * routines.
284 * error_code:
285 * bit 0 == 0 means no page found, 1 means protection fault
286 * bit 1 == 0 means read, 1 means write
287 * bit 2 == 0 means kernel, 1 means user-mode
288 * bit 3 == 1 means use of reserved bit detected
289 * bit 4 == 1 means fault was an instruction fetch
291 fastcall void __kprobes do_page_fault(struct pt_regs *regs,
292 unsigned long error_code)
294 struct task_struct *tsk;
295 struct mm_struct *mm;
296 struct vm_area_struct * vma;
297 unsigned long address;
298 unsigned long page;
299 int write, si_code;
301 /* get the address */
302 address = read_cr2();
304 tsk = current;
306 si_code = SEGV_MAPERR;
309 * We fault-in kernel-space virtual memory on-demand. The
310 * 'reference' page table is init_mm.pgd.
312 * NOTE! We MUST NOT take any locks for this case. We may
313 * be in an interrupt or a critical region, and should
314 * only copy the information from the master page table,
315 * nothing more.
317 * This verifies that the fault happens in kernel space
318 * (error_code & 4) == 0, and that the fault was not a
319 * protection error (error_code & 9) == 0.
321 if (unlikely(address >= TASK_SIZE)) {
322 if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
323 return;
324 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
325 SIGSEGV) == NOTIFY_STOP)
326 return;
328 * Don't take the mm semaphore here. If we fixup a prefetch
329 * fault we could otherwise deadlock.
331 goto bad_area_nosemaphore;
334 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
335 SIGSEGV) == NOTIFY_STOP)
336 return;
338 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
339 fault has been handled. */
340 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
341 local_irq_enable();
343 mm = tsk->mm;
346 * If we're in an interrupt, have no user context or are running in an
347 * atomic region then we must not take the fault..
349 if (in_atomic() || !mm)
350 goto bad_area_nosemaphore;
352 /* When running in the kernel we expect faults to occur only to
353 * addresses in user space. All other faults represent errors in the
354 * kernel and should generate an OOPS. Unfortunatly, in the case of an
355 * erroneous fault occuring in a code path which already holds mmap_sem
356 * we will deadlock attempting to validate the fault against the
357 * address space. Luckily the kernel only validly references user
358 * space from well defined areas of code, which are listed in the
359 * exceptions table.
361 * As the vast majority of faults will be valid we will only perform
362 * the source reference check when there is a possibilty of a deadlock.
363 * Attempt to lock the address space, if we cannot we then validate the
364 * source. If this is invalid we can skip the address space check,
365 * thus avoiding the deadlock.
367 if (!down_read_trylock(&mm->mmap_sem)) {
368 if ((error_code & 4) == 0 &&
369 !search_exception_tables(regs->eip))
370 goto bad_area_nosemaphore;
371 down_read(&mm->mmap_sem);
374 vma = find_vma(mm, address);
375 if (!vma)
376 goto bad_area;
377 if (vma->vm_start <= address)
378 goto good_area;
379 if (!(vma->vm_flags & VM_GROWSDOWN))
380 goto bad_area;
381 if (error_code & 4) {
383 * accessing the stack below %esp is always a bug.
384 * The "+ 32" is there due to some instructions (like
385 * pusha) doing post-decrement on the stack and that
386 * doesn't show up until later..
388 if (address + 32 < regs->esp)
389 goto bad_area;
391 if (expand_stack(vma, address))
392 goto bad_area;
394 * Ok, we have a good vm_area for this memory access, so
395 * we can handle it..
397 good_area:
398 si_code = SEGV_ACCERR;
399 write = 0;
400 switch (error_code & 3) {
401 default: /* 3: write, present */
402 #ifdef TEST_VERIFY_AREA
403 if (regs->cs == KERNEL_CS)
404 printk("WP fault at %08lx\n", regs->eip);
405 #endif
406 /* fall through */
407 case 2: /* write, not present */
408 if (!(vma->vm_flags & VM_WRITE))
409 goto bad_area;
410 write++;
411 break;
412 case 1: /* read, present */
413 goto bad_area;
414 case 0: /* read, not present */
415 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
416 goto bad_area;
419 survive:
421 * If for any reason at all we couldn't handle the fault,
422 * make sure we exit gracefully rather than endlessly redo
423 * the fault.
425 switch (handle_mm_fault(mm, vma, address, write)) {
426 case VM_FAULT_MINOR:
427 tsk->min_flt++;
428 break;
429 case VM_FAULT_MAJOR:
430 tsk->maj_flt++;
431 break;
432 case VM_FAULT_SIGBUS:
433 goto do_sigbus;
434 case VM_FAULT_OOM:
435 goto out_of_memory;
436 default:
437 BUG();
441 * Did it hit the DOS screen memory VA from vm86 mode?
443 if (regs->eflags & VM_MASK) {
444 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
445 if (bit < 32)
446 tsk->thread.screen_bitmap |= 1 << bit;
448 up_read(&mm->mmap_sem);
449 return;
452 * Something tried to access memory that isn't in our memory map..
453 * Fix it, but check if it's kernel or user first..
455 bad_area:
456 up_read(&mm->mmap_sem);
458 bad_area_nosemaphore:
459 /* User mode accesses just cause a SIGSEGV */
460 if (error_code & 4) {
462 * Valid to do another page fault here because this one came
463 * from user space.
465 if (is_prefetch(regs, address, error_code))
466 return;
468 tsk->thread.cr2 = address;
469 /* Kernel addresses are always protection faults */
470 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
471 tsk->thread.trap_no = 14;
472 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
473 return;
476 #ifdef CONFIG_X86_F00F_BUG
478 * Pentium F0 0F C7 C8 bug workaround.
480 if (boot_cpu_data.f00f_bug) {
481 unsigned long nr;
483 nr = (address - idt_descr.address) >> 3;
485 if (nr == 6) {
486 do_invalid_op(regs, 0);
487 return;
490 #endif
492 no_context:
493 /* Are we prepared to handle this kernel fault? */
494 if (fixup_exception(regs))
495 return;
498 * Valid to do another page fault here, because if this fault
499 * had been triggered by is_prefetch fixup_exception would have
500 * handled it.
502 if (is_prefetch(regs, address, error_code))
503 return;
506 * Oops. The kernel tried to access some bad page. We'll have to
507 * terminate things with extreme prejudice.
510 bust_spinlocks(1);
512 if (oops_may_print()) {
513 #ifdef CONFIG_X86_PAE
514 if (error_code & 16) {
515 pte_t *pte = lookup_address(address);
517 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
518 printk(KERN_CRIT "kernel tried to execute "
519 "NX-protected page - exploit attempt? "
520 "(uid: %d)\n", current->uid);
522 #endif
523 if (address < PAGE_SIZE)
524 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
525 "pointer dereference");
526 else
527 printk(KERN_ALERT "BUG: unable to handle kernel paging"
528 " request");
529 printk(" at virtual address %08lx\n",address);
530 printk(KERN_ALERT " printing eip:\n");
531 printk("%08lx\n", regs->eip);
533 page = read_cr3();
534 page = ((unsigned long *) __va(page))[address >> 22];
535 if (oops_may_print())
536 printk(KERN_ALERT "*pde = %08lx\n", page);
538 * We must not directly access the pte in the highpte
539 * case, the page table might be allocated in highmem.
540 * And lets rather not kmap-atomic the pte, just in case
541 * it's allocated already.
543 #ifndef CONFIG_HIGHPTE
544 if ((page & 1) && oops_may_print()) {
545 page &= PAGE_MASK;
546 address &= 0x003ff000;
547 page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
548 printk(KERN_ALERT "*pte = %08lx\n", page);
550 #endif
551 tsk->thread.cr2 = address;
552 tsk->thread.trap_no = 14;
553 tsk->thread.error_code = error_code;
554 die("Oops", regs, error_code);
555 bust_spinlocks(0);
556 do_exit(SIGKILL);
559 * We ran out of memory, or some other thing happened to us that made
560 * us unable to handle the page fault gracefully.
562 out_of_memory:
563 up_read(&mm->mmap_sem);
564 if (tsk->pid == 1) {
565 yield();
566 down_read(&mm->mmap_sem);
567 goto survive;
569 printk("VM: killing process %s\n", tsk->comm);
570 if (error_code & 4)
571 do_exit(SIGKILL);
572 goto no_context;
574 do_sigbus:
575 up_read(&mm->mmap_sem);
577 /* Kernel mode? Handle exceptions or die */
578 if (!(error_code & 4))
579 goto no_context;
581 /* User space => ok to do another page fault */
582 if (is_prefetch(regs, address, error_code))
583 return;
585 tsk->thread.cr2 = address;
586 tsk->thread.error_code = error_code;
587 tsk->thread.trap_no = 14;
588 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
591 #ifndef CONFIG_X86_PAE
592 void vmalloc_sync_all(void)
595 * Note that races in the updates of insync and start aren't
596 * problematic: insync can only get set bits added, and updates to
597 * start are only improving performance (without affecting correctness
598 * if undone).
600 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
601 static unsigned long start = TASK_SIZE;
602 unsigned long address;
604 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
605 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
606 if (!test_bit(pgd_index(address), insync)) {
607 unsigned long flags;
608 struct page *page;
610 spin_lock_irqsave(&pgd_lock, flags);
611 for (page = pgd_list; page; page =
612 (struct page *)page->index)
613 if (!vmalloc_sync_one(page_address(page),
614 address)) {
615 BUG_ON(page != pgd_list);
616 break;
618 spin_unlock_irqrestore(&pgd_lock, flags);
619 if (!page)
620 set_bit(pgd_index(address), insync);
622 if (address == start && test_bit(pgd_index(address), insync))
623 start = address + PGDIR_SIZE;
626 #endif