afs: remove smp_prcessor_id() from debug macro
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / md / raid10.c
blob32389d2f18fcdfcadc87137936441e6d51560c05
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
28 * chunk_size
29 * raid_disks
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41 * drive.
42 * near_copies and far_copies must be at least one, and their product is at most
43 * raid_disks.
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
51 * Number of guaranteed r10bios in case of extreme VM load:
53 #define NR_RAID10_BIOS 256
55 static void unplug_slaves(mddev_t *mddev);
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
62 conf_t *conf = data;
63 r10bio_t *r10_bio;
64 int size = offsetof(struct r10bio_s, devs[conf->copies]);
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio = kzalloc(size, gfp_flags);
68 if (!r10_bio)
69 unplug_slaves(conf->mddev);
71 return r10_bio;
74 static void r10bio_pool_free(void *r10_bio, void *data)
76 kfree(r10_bio);
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
94 conf_t *conf = data;
95 struct page *page;
96 r10bio_t *r10_bio;
97 struct bio *bio;
98 int i, j;
99 int nalloc;
101 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 if (!r10_bio) {
103 unplug_slaves(conf->mddev);
104 return NULL;
107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 nalloc = conf->copies; /* resync */
109 else
110 nalloc = 2; /* recovery */
113 * Allocate bios.
115 for (j = nalloc ; j-- ; ) {
116 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
117 if (!bio)
118 goto out_free_bio;
119 r10_bio->devs[j].bio = bio;
122 * Allocate RESYNC_PAGES data pages and attach them
123 * where needed.
125 for (j = 0 ; j < nalloc; j++) {
126 bio = r10_bio->devs[j].bio;
127 for (i = 0; i < RESYNC_PAGES; i++) {
128 page = alloc_page(gfp_flags);
129 if (unlikely(!page))
130 goto out_free_pages;
132 bio->bi_io_vec[i].bv_page = page;
136 return r10_bio;
138 out_free_pages:
139 for ( ; i > 0 ; i--)
140 safe_put_page(bio->bi_io_vec[i-1].bv_page);
141 while (j--)
142 for (i = 0; i < RESYNC_PAGES ; i++)
143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
144 j = -1;
145 out_free_bio:
146 while ( ++j < nalloc )
147 bio_put(r10_bio->devs[j].bio);
148 r10bio_pool_free(r10_bio, conf);
149 return NULL;
152 static void r10buf_pool_free(void *__r10_bio, void *data)
154 int i;
155 conf_t *conf = data;
156 r10bio_t *r10bio = __r10_bio;
157 int j;
159 for (j=0; j < conf->copies; j++) {
160 struct bio *bio = r10bio->devs[j].bio;
161 if (bio) {
162 for (i = 0; i < RESYNC_PAGES; i++) {
163 safe_put_page(bio->bi_io_vec[i].bv_page);
164 bio->bi_io_vec[i].bv_page = NULL;
166 bio_put(bio);
169 r10bio_pool_free(r10bio, conf);
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
174 int i;
176 for (i = 0; i < conf->copies; i++) {
177 struct bio **bio = & r10_bio->devs[i].bio;
178 if (*bio && *bio != IO_BLOCKED)
179 bio_put(*bio);
180 *bio = NULL;
184 static void free_r10bio(r10bio_t *r10_bio)
186 conf_t *conf = mddev_to_conf(r10_bio->mddev);
189 * Wake up any possible resync thread that waits for the device
190 * to go idle.
192 allow_barrier(conf);
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
198 static void put_buf(r10bio_t *r10_bio)
200 conf_t *conf = mddev_to_conf(r10_bio->mddev);
202 mempool_free(r10_bio, conf->r10buf_pool);
204 lower_barrier(conf);
207 static void reschedule_retry(r10bio_t *r10_bio)
209 unsigned long flags;
210 mddev_t *mddev = r10_bio->mddev;
211 conf_t *conf = mddev_to_conf(mddev);
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
215 conf->nr_queued ++;
216 spin_unlock_irqrestore(&conf->device_lock, flags);
218 md_wakeup_thread(mddev->thread);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
224 * cache layer.
226 static void raid_end_bio_io(r10bio_t *r10_bio)
228 struct bio *bio = r10_bio->master_bio;
230 bio_endio(bio,
231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232 free_r10bio(r10_bio);
236 * Update disk head position estimator based on IRQ completion info.
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
240 conf_t *conf = mddev_to_conf(r10_bio->mddev);
242 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243 r10_bio->devs[slot].addr + (r10_bio->sectors);
246 static void raid10_end_read_request(struct bio *bio, int error)
248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
250 int slot, dev;
251 conf_t *conf = mddev_to_conf(r10_bio->mddev);
254 slot = r10_bio->read_slot;
255 dev = r10_bio->devs[slot].devnum;
257 * this branch is our 'one mirror IO has finished' event handler:
259 update_head_pos(slot, r10_bio);
261 if (uptodate) {
263 * Set R10BIO_Uptodate in our master bio, so that
264 * we will return a good error code to the higher
265 * levels even if IO on some other mirrored buffer fails.
267 * The 'master' represents the composite IO operation to
268 * user-side. So if something waits for IO, then it will
269 * wait for the 'master' bio.
271 set_bit(R10BIO_Uptodate, &r10_bio->state);
272 raid_end_bio_io(r10_bio);
273 } else {
275 * oops, read error:
277 char b[BDEVNAME_SIZE];
278 if (printk_ratelimit())
279 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
280 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
281 reschedule_retry(r10_bio);
284 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
287 static void raid10_end_write_request(struct bio *bio, int error)
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
291 int slot, dev;
292 conf_t *conf = mddev_to_conf(r10_bio->mddev);
294 for (slot = 0; slot < conf->copies; slot++)
295 if (r10_bio->devs[slot].bio == bio)
296 break;
297 dev = r10_bio->devs[slot].devnum;
300 * this branch is our 'one mirror IO has finished' event handler:
302 if (!uptodate) {
303 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
304 /* an I/O failed, we can't clear the bitmap */
305 set_bit(R10BIO_Degraded, &r10_bio->state);
306 } else
308 * Set R10BIO_Uptodate in our master bio, so that
309 * we will return a good error code for to the higher
310 * levels even if IO on some other mirrored buffer fails.
312 * The 'master' represents the composite IO operation to
313 * user-side. So if something waits for IO, then it will
314 * wait for the 'master' bio.
316 set_bit(R10BIO_Uptodate, &r10_bio->state);
318 update_head_pos(slot, r10_bio);
322 * Let's see if all mirrored write operations have finished
323 * already.
325 if (atomic_dec_and_test(&r10_bio->remaining)) {
326 /* clear the bitmap if all writes complete successfully */
327 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
328 r10_bio->sectors,
329 !test_bit(R10BIO_Degraded, &r10_bio->state),
331 md_write_end(r10_bio->mddev);
332 raid_end_bio_io(r10_bio);
335 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
340 * RAID10 layout manager
341 * Aswell as the chunksize and raid_disks count, there are two
342 * parameters: near_copies and far_copies.
343 * near_copies * far_copies must be <= raid_disks.
344 * Normally one of these will be 1.
345 * If both are 1, we get raid0.
346 * If near_copies == raid_disks, we get raid1.
348 * Chunks are layed out in raid0 style with near_copies copies of the
349 * first chunk, followed by near_copies copies of the next chunk and
350 * so on.
351 * If far_copies > 1, then after 1/far_copies of the array has been assigned
352 * as described above, we start again with a device offset of near_copies.
353 * So we effectively have another copy of the whole array further down all
354 * the drives, but with blocks on different drives.
355 * With this layout, and block is never stored twice on the one device.
357 * raid10_find_phys finds the sector offset of a given virtual sector
358 * on each device that it is on.
360 * raid10_find_virt does the reverse mapping, from a device and a
361 * sector offset to a virtual address
364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
366 int n,f;
367 sector_t sector;
368 sector_t chunk;
369 sector_t stripe;
370 int dev;
372 int slot = 0;
374 /* now calculate first sector/dev */
375 chunk = r10bio->sector >> conf->chunk_shift;
376 sector = r10bio->sector & conf->chunk_mask;
378 chunk *= conf->near_copies;
379 stripe = chunk;
380 dev = sector_div(stripe, conf->raid_disks);
381 if (conf->far_offset)
382 stripe *= conf->far_copies;
384 sector += stripe << conf->chunk_shift;
386 /* and calculate all the others */
387 for (n=0; n < conf->near_copies; n++) {
388 int d = dev;
389 sector_t s = sector;
390 r10bio->devs[slot].addr = sector;
391 r10bio->devs[slot].devnum = d;
392 slot++;
394 for (f = 1; f < conf->far_copies; f++) {
395 d += conf->near_copies;
396 if (d >= conf->raid_disks)
397 d -= conf->raid_disks;
398 s += conf->stride;
399 r10bio->devs[slot].devnum = d;
400 r10bio->devs[slot].addr = s;
401 slot++;
403 dev++;
404 if (dev >= conf->raid_disks) {
405 dev = 0;
406 sector += (conf->chunk_mask + 1);
409 BUG_ON(slot != conf->copies);
412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
414 sector_t offset, chunk, vchunk;
416 offset = sector & conf->chunk_mask;
417 if (conf->far_offset) {
418 int fc;
419 chunk = sector >> conf->chunk_shift;
420 fc = sector_div(chunk, conf->far_copies);
421 dev -= fc * conf->near_copies;
422 if (dev < 0)
423 dev += conf->raid_disks;
424 } else {
425 while (sector >= conf->stride) {
426 sector -= conf->stride;
427 if (dev < conf->near_copies)
428 dev += conf->raid_disks - conf->near_copies;
429 else
430 dev -= conf->near_copies;
432 chunk = sector >> conf->chunk_shift;
434 vchunk = chunk * conf->raid_disks + dev;
435 sector_div(vchunk, conf->near_copies);
436 return (vchunk << conf->chunk_shift) + offset;
440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
441 * @q: request queue
442 * @bio: the buffer head that's been built up so far
443 * @biovec: the request that could be merged to it.
445 * Return amount of bytes we can accept at this offset
446 * If near_copies == raid_disk, there are no striping issues,
447 * but in that case, the function isn't called at all.
449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio,
450 struct bio_vec *bio_vec)
452 mddev_t *mddev = q->queuedata;
453 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
454 int max;
455 unsigned int chunk_sectors = mddev->chunk_size >> 9;
456 unsigned int bio_sectors = bio->bi_size >> 9;
458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
459 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
460 if (max <= bio_vec->bv_len && bio_sectors == 0)
461 return bio_vec->bv_len;
462 else
463 return max;
467 * This routine returns the disk from which the requested read should
468 * be done. There is a per-array 'next expected sequential IO' sector
469 * number - if this matches on the next IO then we use the last disk.
470 * There is also a per-disk 'last know head position' sector that is
471 * maintained from IRQ contexts, both the normal and the resync IO
472 * completion handlers update this position correctly. If there is no
473 * perfect sequential match then we pick the disk whose head is closest.
475 * If there are 2 mirrors in the same 2 devices, performance degrades
476 * because position is mirror, not device based.
478 * The rdev for the device selected will have nr_pending incremented.
482 * FIXME: possibly should rethink readbalancing and do it differently
483 * depending on near_copies / far_copies geometry.
485 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
487 const unsigned long this_sector = r10_bio->sector;
488 int disk, slot, nslot;
489 const int sectors = r10_bio->sectors;
490 sector_t new_distance, current_distance;
491 mdk_rdev_t *rdev;
493 raid10_find_phys(conf, r10_bio);
494 rcu_read_lock();
496 * Check if we can balance. We can balance on the whole
497 * device if no resync is going on (recovery is ok), or below
498 * the resync window. We take the first readable disk when
499 * above the resync window.
501 if (conf->mddev->recovery_cp < MaxSector
502 && (this_sector + sectors >= conf->next_resync)) {
503 /* make sure that disk is operational */
504 slot = 0;
505 disk = r10_bio->devs[slot].devnum;
507 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
508 r10_bio->devs[slot].bio == IO_BLOCKED ||
509 !test_bit(In_sync, &rdev->flags)) {
510 slot++;
511 if (slot == conf->copies) {
512 slot = 0;
513 disk = -1;
514 break;
516 disk = r10_bio->devs[slot].devnum;
518 goto rb_out;
522 /* make sure the disk is operational */
523 slot = 0;
524 disk = r10_bio->devs[slot].devnum;
525 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
526 r10_bio->devs[slot].bio == IO_BLOCKED ||
527 !test_bit(In_sync, &rdev->flags)) {
528 slot ++;
529 if (slot == conf->copies) {
530 disk = -1;
531 goto rb_out;
533 disk = r10_bio->devs[slot].devnum;
537 current_distance = abs(r10_bio->devs[slot].addr -
538 conf->mirrors[disk].head_position);
540 /* Find the disk whose head is closest,
541 * or - for far > 1 - find the closest to partition beginning */
543 for (nslot = slot; nslot < conf->copies; nslot++) {
544 int ndisk = r10_bio->devs[nslot].devnum;
547 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
548 r10_bio->devs[nslot].bio == IO_BLOCKED ||
549 !test_bit(In_sync, &rdev->flags))
550 continue;
552 /* This optimisation is debatable, and completely destroys
553 * sequential read speed for 'far copies' arrays. So only
554 * keep it for 'near' arrays, and review those later.
556 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
557 disk = ndisk;
558 slot = nslot;
559 break;
562 /* for far > 1 always use the lowest address */
563 if (conf->far_copies > 1)
564 new_distance = r10_bio->devs[nslot].addr;
565 else
566 new_distance = abs(r10_bio->devs[nslot].addr -
567 conf->mirrors[ndisk].head_position);
568 if (new_distance < current_distance) {
569 current_distance = new_distance;
570 disk = ndisk;
571 slot = nslot;
575 rb_out:
576 r10_bio->read_slot = slot;
577 /* conf->next_seq_sect = this_sector + sectors;*/
579 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
580 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
581 else
582 disk = -1;
583 rcu_read_unlock();
585 return disk;
588 static void unplug_slaves(mddev_t *mddev)
590 conf_t *conf = mddev_to_conf(mddev);
591 int i;
593 rcu_read_lock();
594 for (i=0; i<mddev->raid_disks; i++) {
595 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
596 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
597 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
599 atomic_inc(&rdev->nr_pending);
600 rcu_read_unlock();
602 blk_unplug(r_queue);
604 rdev_dec_pending(rdev, mddev);
605 rcu_read_lock();
608 rcu_read_unlock();
611 static void raid10_unplug(struct request_queue *q)
613 mddev_t *mddev = q->queuedata;
615 unplug_slaves(q->queuedata);
616 md_wakeup_thread(mddev->thread);
619 static int raid10_congested(void *data, int bits)
621 mddev_t *mddev = data;
622 conf_t *conf = mddev_to_conf(mddev);
623 int i, ret = 0;
625 rcu_read_lock();
626 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
627 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
628 if (rdev && !test_bit(Faulty, &rdev->flags)) {
629 struct request_queue *q = bdev_get_queue(rdev->bdev);
631 ret |= bdi_congested(&q->backing_dev_info, bits);
634 rcu_read_unlock();
635 return ret;
638 static int flush_pending_writes(conf_t *conf)
640 /* Any writes that have been queued but are awaiting
641 * bitmap updates get flushed here.
642 * We return 1 if any requests were actually submitted.
644 int rv = 0;
646 spin_lock_irq(&conf->device_lock);
648 if (conf->pending_bio_list.head) {
649 struct bio *bio;
650 bio = bio_list_get(&conf->pending_bio_list);
651 blk_remove_plug(conf->mddev->queue);
652 spin_unlock_irq(&conf->device_lock);
653 /* flush any pending bitmap writes to disk
654 * before proceeding w/ I/O */
655 bitmap_unplug(conf->mddev->bitmap);
657 while (bio) { /* submit pending writes */
658 struct bio *next = bio->bi_next;
659 bio->bi_next = NULL;
660 generic_make_request(bio);
661 bio = next;
663 rv = 1;
664 } else
665 spin_unlock_irq(&conf->device_lock);
666 return rv;
668 /* Barriers....
669 * Sometimes we need to suspend IO while we do something else,
670 * either some resync/recovery, or reconfigure the array.
671 * To do this we raise a 'barrier'.
672 * The 'barrier' is a counter that can be raised multiple times
673 * to count how many activities are happening which preclude
674 * normal IO.
675 * We can only raise the barrier if there is no pending IO.
676 * i.e. if nr_pending == 0.
677 * We choose only to raise the barrier if no-one is waiting for the
678 * barrier to go down. This means that as soon as an IO request
679 * is ready, no other operations which require a barrier will start
680 * until the IO request has had a chance.
682 * So: regular IO calls 'wait_barrier'. When that returns there
683 * is no backgroup IO happening, It must arrange to call
684 * allow_barrier when it has finished its IO.
685 * backgroup IO calls must call raise_barrier. Once that returns
686 * there is no normal IO happeing. It must arrange to call
687 * lower_barrier when the particular background IO completes.
689 #define RESYNC_DEPTH 32
691 static void raise_barrier(conf_t *conf, int force)
693 BUG_ON(force && !conf->barrier);
694 spin_lock_irq(&conf->resync_lock);
696 /* Wait until no block IO is waiting (unless 'force') */
697 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
698 conf->resync_lock,
699 raid10_unplug(conf->mddev->queue));
701 /* block any new IO from starting */
702 conf->barrier++;
704 /* No wait for all pending IO to complete */
705 wait_event_lock_irq(conf->wait_barrier,
706 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
707 conf->resync_lock,
708 raid10_unplug(conf->mddev->queue));
710 spin_unlock_irq(&conf->resync_lock);
713 static void lower_barrier(conf_t *conf)
715 unsigned long flags;
716 spin_lock_irqsave(&conf->resync_lock, flags);
717 conf->barrier--;
718 spin_unlock_irqrestore(&conf->resync_lock, flags);
719 wake_up(&conf->wait_barrier);
722 static void wait_barrier(conf_t *conf)
724 spin_lock_irq(&conf->resync_lock);
725 if (conf->barrier) {
726 conf->nr_waiting++;
727 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
728 conf->resync_lock,
729 raid10_unplug(conf->mddev->queue));
730 conf->nr_waiting--;
732 conf->nr_pending++;
733 spin_unlock_irq(&conf->resync_lock);
736 static void allow_barrier(conf_t *conf)
738 unsigned long flags;
739 spin_lock_irqsave(&conf->resync_lock, flags);
740 conf->nr_pending--;
741 spin_unlock_irqrestore(&conf->resync_lock, flags);
742 wake_up(&conf->wait_barrier);
745 static void freeze_array(conf_t *conf)
747 /* stop syncio and normal IO and wait for everything to
748 * go quiet.
749 * We increment barrier and nr_waiting, and then
750 * wait until nr_pending match nr_queued+1
751 * This is called in the context of one normal IO request
752 * that has failed. Thus any sync request that might be pending
753 * will be blocked by nr_pending, and we need to wait for
754 * pending IO requests to complete or be queued for re-try.
755 * Thus the number queued (nr_queued) plus this request (1)
756 * must match the number of pending IOs (nr_pending) before
757 * we continue.
759 spin_lock_irq(&conf->resync_lock);
760 conf->barrier++;
761 conf->nr_waiting++;
762 wait_event_lock_irq(conf->wait_barrier,
763 conf->nr_pending == conf->nr_queued+1,
764 conf->resync_lock,
765 ({ flush_pending_writes(conf);
766 raid10_unplug(conf->mddev->queue); }));
767 spin_unlock_irq(&conf->resync_lock);
770 static void unfreeze_array(conf_t *conf)
772 /* reverse the effect of the freeze */
773 spin_lock_irq(&conf->resync_lock);
774 conf->barrier--;
775 conf->nr_waiting--;
776 wake_up(&conf->wait_barrier);
777 spin_unlock_irq(&conf->resync_lock);
780 static int make_request(struct request_queue *q, struct bio * bio)
782 mddev_t *mddev = q->queuedata;
783 conf_t *conf = mddev_to_conf(mddev);
784 mirror_info_t *mirror;
785 r10bio_t *r10_bio;
786 struct bio *read_bio;
787 int i;
788 int chunk_sects = conf->chunk_mask + 1;
789 const int rw = bio_data_dir(bio);
790 const int do_sync = bio_sync(bio);
791 struct bio_list bl;
792 unsigned long flags;
794 if (unlikely(bio_barrier(bio))) {
795 bio_endio(bio, -EOPNOTSUPP);
796 return 0;
799 /* If this request crosses a chunk boundary, we need to
800 * split it. This will only happen for 1 PAGE (or less) requests.
802 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
803 > chunk_sects &&
804 conf->near_copies < conf->raid_disks)) {
805 struct bio_pair *bp;
806 /* Sanity check -- queue functions should prevent this happening */
807 if (bio->bi_vcnt != 1 ||
808 bio->bi_idx != 0)
809 goto bad_map;
810 /* This is a one page bio that upper layers
811 * refuse to split for us, so we need to split it.
813 bp = bio_split(bio, bio_split_pool,
814 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
815 if (make_request(q, &bp->bio1))
816 generic_make_request(&bp->bio1);
817 if (make_request(q, &bp->bio2))
818 generic_make_request(&bp->bio2);
820 bio_pair_release(bp);
821 return 0;
822 bad_map:
823 printk("raid10_make_request bug: can't convert block across chunks"
824 " or bigger than %dk %llu %d\n", chunk_sects/2,
825 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
827 bio_io_error(bio);
828 return 0;
831 md_write_start(mddev, bio);
834 * Register the new request and wait if the reconstruction
835 * thread has put up a bar for new requests.
836 * Continue immediately if no resync is active currently.
838 wait_barrier(conf);
840 disk_stat_inc(mddev->gendisk, ios[rw]);
841 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
843 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
845 r10_bio->master_bio = bio;
846 r10_bio->sectors = bio->bi_size >> 9;
848 r10_bio->mddev = mddev;
849 r10_bio->sector = bio->bi_sector;
850 r10_bio->state = 0;
852 if (rw == READ) {
854 * read balancing logic:
856 int disk = read_balance(conf, r10_bio);
857 int slot = r10_bio->read_slot;
858 if (disk < 0) {
859 raid_end_bio_io(r10_bio);
860 return 0;
862 mirror = conf->mirrors + disk;
864 read_bio = bio_clone(bio, GFP_NOIO);
866 r10_bio->devs[slot].bio = read_bio;
868 read_bio->bi_sector = r10_bio->devs[slot].addr +
869 mirror->rdev->data_offset;
870 read_bio->bi_bdev = mirror->rdev->bdev;
871 read_bio->bi_end_io = raid10_end_read_request;
872 read_bio->bi_rw = READ | do_sync;
873 read_bio->bi_private = r10_bio;
875 generic_make_request(read_bio);
876 return 0;
880 * WRITE:
882 /* first select target devices under spinlock and
883 * inc refcount on their rdev. Record them by setting
884 * bios[x] to bio
886 raid10_find_phys(conf, r10_bio);
887 rcu_read_lock();
888 for (i = 0; i < conf->copies; i++) {
889 int d = r10_bio->devs[i].devnum;
890 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
891 if (rdev &&
892 !test_bit(Faulty, &rdev->flags)) {
893 atomic_inc(&rdev->nr_pending);
894 r10_bio->devs[i].bio = bio;
895 } else {
896 r10_bio->devs[i].bio = NULL;
897 set_bit(R10BIO_Degraded, &r10_bio->state);
900 rcu_read_unlock();
902 atomic_set(&r10_bio->remaining, 0);
904 bio_list_init(&bl);
905 for (i = 0; i < conf->copies; i++) {
906 struct bio *mbio;
907 int d = r10_bio->devs[i].devnum;
908 if (!r10_bio->devs[i].bio)
909 continue;
911 mbio = bio_clone(bio, GFP_NOIO);
912 r10_bio->devs[i].bio = mbio;
914 mbio->bi_sector = r10_bio->devs[i].addr+
915 conf->mirrors[d].rdev->data_offset;
916 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
917 mbio->bi_end_io = raid10_end_write_request;
918 mbio->bi_rw = WRITE | do_sync;
919 mbio->bi_private = r10_bio;
921 atomic_inc(&r10_bio->remaining);
922 bio_list_add(&bl, mbio);
925 if (unlikely(!atomic_read(&r10_bio->remaining))) {
926 /* the array is dead */
927 md_write_end(mddev);
928 raid_end_bio_io(r10_bio);
929 return 0;
932 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
933 spin_lock_irqsave(&conf->device_lock, flags);
934 bio_list_merge(&conf->pending_bio_list, &bl);
935 blk_plug_device(mddev->queue);
936 spin_unlock_irqrestore(&conf->device_lock, flags);
938 /* In case raid10d snuck in to freeze_array */
939 wake_up(&conf->wait_barrier);
941 if (do_sync)
942 md_wakeup_thread(mddev->thread);
944 return 0;
947 static void status(struct seq_file *seq, mddev_t *mddev)
949 conf_t *conf = mddev_to_conf(mddev);
950 int i;
952 if (conf->near_copies < conf->raid_disks)
953 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
954 if (conf->near_copies > 1)
955 seq_printf(seq, " %d near-copies", conf->near_copies);
956 if (conf->far_copies > 1) {
957 if (conf->far_offset)
958 seq_printf(seq, " %d offset-copies", conf->far_copies);
959 else
960 seq_printf(seq, " %d far-copies", conf->far_copies);
962 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
963 conf->raid_disks - mddev->degraded);
964 for (i = 0; i < conf->raid_disks; i++)
965 seq_printf(seq, "%s",
966 conf->mirrors[i].rdev &&
967 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
968 seq_printf(seq, "]");
971 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
973 char b[BDEVNAME_SIZE];
974 conf_t *conf = mddev_to_conf(mddev);
977 * If it is not operational, then we have already marked it as dead
978 * else if it is the last working disks, ignore the error, let the
979 * next level up know.
980 * else mark the drive as failed
982 if (test_bit(In_sync, &rdev->flags)
983 && conf->raid_disks-mddev->degraded == 1)
985 * Don't fail the drive, just return an IO error.
986 * The test should really be more sophisticated than
987 * "working_disks == 1", but it isn't critical, and
988 * can wait until we do more sophisticated "is the drive
989 * really dead" tests...
991 return;
992 if (test_and_clear_bit(In_sync, &rdev->flags)) {
993 unsigned long flags;
994 spin_lock_irqsave(&conf->device_lock, flags);
995 mddev->degraded++;
996 spin_unlock_irqrestore(&conf->device_lock, flags);
998 * if recovery is running, make sure it aborts.
1000 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1002 set_bit(Faulty, &rdev->flags);
1003 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1004 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
1005 " Operation continuing on %d devices\n",
1006 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1009 static void print_conf(conf_t *conf)
1011 int i;
1012 mirror_info_t *tmp;
1014 printk("RAID10 conf printout:\n");
1015 if (!conf) {
1016 printk("(!conf)\n");
1017 return;
1019 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1020 conf->raid_disks);
1022 for (i = 0; i < conf->raid_disks; i++) {
1023 char b[BDEVNAME_SIZE];
1024 tmp = conf->mirrors + i;
1025 if (tmp->rdev)
1026 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1027 i, !test_bit(In_sync, &tmp->rdev->flags),
1028 !test_bit(Faulty, &tmp->rdev->flags),
1029 bdevname(tmp->rdev->bdev,b));
1033 static void close_sync(conf_t *conf)
1035 wait_barrier(conf);
1036 allow_barrier(conf);
1038 mempool_destroy(conf->r10buf_pool);
1039 conf->r10buf_pool = NULL;
1042 /* check if there are enough drives for
1043 * every block to appear on atleast one
1045 static int enough(conf_t *conf)
1047 int first = 0;
1049 do {
1050 int n = conf->copies;
1051 int cnt = 0;
1052 while (n--) {
1053 if (conf->mirrors[first].rdev)
1054 cnt++;
1055 first = (first+1) % conf->raid_disks;
1057 if (cnt == 0)
1058 return 0;
1059 } while (first != 0);
1060 return 1;
1063 static int raid10_spare_active(mddev_t *mddev)
1065 int i;
1066 conf_t *conf = mddev->private;
1067 mirror_info_t *tmp;
1070 * Find all non-in_sync disks within the RAID10 configuration
1071 * and mark them in_sync
1073 for (i = 0; i < conf->raid_disks; i++) {
1074 tmp = conf->mirrors + i;
1075 if (tmp->rdev
1076 && !test_bit(Faulty, &tmp->rdev->flags)
1077 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1078 unsigned long flags;
1079 spin_lock_irqsave(&conf->device_lock, flags);
1080 mddev->degraded--;
1081 spin_unlock_irqrestore(&conf->device_lock, flags);
1085 print_conf(conf);
1086 return 0;
1090 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1092 conf_t *conf = mddev->private;
1093 int found = 0;
1094 int mirror;
1095 mirror_info_t *p;
1097 if (mddev->recovery_cp < MaxSector)
1098 /* only hot-add to in-sync arrays, as recovery is
1099 * very different from resync
1101 return 0;
1102 if (!enough(conf))
1103 return 0;
1105 if (rdev->saved_raid_disk >= 0 &&
1106 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1107 mirror = rdev->saved_raid_disk;
1108 else
1109 mirror = 0;
1110 for ( ; mirror < mddev->raid_disks; mirror++)
1111 if ( !(p=conf->mirrors+mirror)->rdev) {
1113 blk_queue_stack_limits(mddev->queue,
1114 rdev->bdev->bd_disk->queue);
1115 /* as we don't honour merge_bvec_fn, we must never risk
1116 * violating it, so limit ->max_sector to one PAGE, as
1117 * a one page request is never in violation.
1119 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1120 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1121 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1123 p->head_position = 0;
1124 rdev->raid_disk = mirror;
1125 found = 1;
1126 if (rdev->saved_raid_disk != mirror)
1127 conf->fullsync = 1;
1128 rcu_assign_pointer(p->rdev, rdev);
1129 break;
1132 print_conf(conf);
1133 return found;
1136 static int raid10_remove_disk(mddev_t *mddev, int number)
1138 conf_t *conf = mddev->private;
1139 int err = 0;
1140 mdk_rdev_t *rdev;
1141 mirror_info_t *p = conf->mirrors+ number;
1143 print_conf(conf);
1144 rdev = p->rdev;
1145 if (rdev) {
1146 if (test_bit(In_sync, &rdev->flags) ||
1147 atomic_read(&rdev->nr_pending)) {
1148 err = -EBUSY;
1149 goto abort;
1151 p->rdev = NULL;
1152 synchronize_rcu();
1153 if (atomic_read(&rdev->nr_pending)) {
1154 /* lost the race, try later */
1155 err = -EBUSY;
1156 p->rdev = rdev;
1159 abort:
1161 print_conf(conf);
1162 return err;
1166 static void end_sync_read(struct bio *bio, int error)
1168 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1169 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1170 int i,d;
1172 for (i=0; i<conf->copies; i++)
1173 if (r10_bio->devs[i].bio == bio)
1174 break;
1175 BUG_ON(i == conf->copies);
1176 update_head_pos(i, r10_bio);
1177 d = r10_bio->devs[i].devnum;
1179 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1180 set_bit(R10BIO_Uptodate, &r10_bio->state);
1181 else {
1182 atomic_add(r10_bio->sectors,
1183 &conf->mirrors[d].rdev->corrected_errors);
1184 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1185 md_error(r10_bio->mddev,
1186 conf->mirrors[d].rdev);
1189 /* for reconstruct, we always reschedule after a read.
1190 * for resync, only after all reads
1192 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1193 atomic_dec_and_test(&r10_bio->remaining)) {
1194 /* we have read all the blocks,
1195 * do the comparison in process context in raid10d
1197 reschedule_retry(r10_bio);
1199 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1202 static void end_sync_write(struct bio *bio, int error)
1204 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1205 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1206 mddev_t *mddev = r10_bio->mddev;
1207 conf_t *conf = mddev_to_conf(mddev);
1208 int i,d;
1210 for (i = 0; i < conf->copies; i++)
1211 if (r10_bio->devs[i].bio == bio)
1212 break;
1213 d = r10_bio->devs[i].devnum;
1215 if (!uptodate)
1216 md_error(mddev, conf->mirrors[d].rdev);
1217 update_head_pos(i, r10_bio);
1219 while (atomic_dec_and_test(&r10_bio->remaining)) {
1220 if (r10_bio->master_bio == NULL) {
1221 /* the primary of several recovery bios */
1222 md_done_sync(mddev, r10_bio->sectors, 1);
1223 put_buf(r10_bio);
1224 break;
1225 } else {
1226 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1227 put_buf(r10_bio);
1228 r10_bio = r10_bio2;
1231 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1235 * Note: sync and recover and handled very differently for raid10
1236 * This code is for resync.
1237 * For resync, we read through virtual addresses and read all blocks.
1238 * If there is any error, we schedule a write. The lowest numbered
1239 * drive is authoritative.
1240 * However requests come for physical address, so we need to map.
1241 * For every physical address there are raid_disks/copies virtual addresses,
1242 * which is always are least one, but is not necessarly an integer.
1243 * This means that a physical address can span multiple chunks, so we may
1244 * have to submit multiple io requests for a single sync request.
1247 * We check if all blocks are in-sync and only write to blocks that
1248 * aren't in sync
1250 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1252 conf_t *conf = mddev_to_conf(mddev);
1253 int i, first;
1254 struct bio *tbio, *fbio;
1256 atomic_set(&r10_bio->remaining, 1);
1258 /* find the first device with a block */
1259 for (i=0; i<conf->copies; i++)
1260 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1261 break;
1263 if (i == conf->copies)
1264 goto done;
1266 first = i;
1267 fbio = r10_bio->devs[i].bio;
1269 /* now find blocks with errors */
1270 for (i=0 ; i < conf->copies ; i++) {
1271 int j, d;
1272 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1274 tbio = r10_bio->devs[i].bio;
1276 if (tbio->bi_end_io != end_sync_read)
1277 continue;
1278 if (i == first)
1279 continue;
1280 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1281 /* We know that the bi_io_vec layout is the same for
1282 * both 'first' and 'i', so we just compare them.
1283 * All vec entries are PAGE_SIZE;
1285 for (j = 0; j < vcnt; j++)
1286 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1287 page_address(tbio->bi_io_vec[j].bv_page),
1288 PAGE_SIZE))
1289 break;
1290 if (j == vcnt)
1291 continue;
1292 mddev->resync_mismatches += r10_bio->sectors;
1294 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1295 /* Don't fix anything. */
1296 continue;
1297 /* Ok, we need to write this bio
1298 * First we need to fixup bv_offset, bv_len and
1299 * bi_vecs, as the read request might have corrupted these
1301 tbio->bi_vcnt = vcnt;
1302 tbio->bi_size = r10_bio->sectors << 9;
1303 tbio->bi_idx = 0;
1304 tbio->bi_phys_segments = 0;
1305 tbio->bi_hw_segments = 0;
1306 tbio->bi_hw_front_size = 0;
1307 tbio->bi_hw_back_size = 0;
1308 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1309 tbio->bi_flags |= 1 << BIO_UPTODATE;
1310 tbio->bi_next = NULL;
1311 tbio->bi_rw = WRITE;
1312 tbio->bi_private = r10_bio;
1313 tbio->bi_sector = r10_bio->devs[i].addr;
1315 for (j=0; j < vcnt ; j++) {
1316 tbio->bi_io_vec[j].bv_offset = 0;
1317 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1319 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1320 page_address(fbio->bi_io_vec[j].bv_page),
1321 PAGE_SIZE);
1323 tbio->bi_end_io = end_sync_write;
1325 d = r10_bio->devs[i].devnum;
1326 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1327 atomic_inc(&r10_bio->remaining);
1328 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1330 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1331 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1332 generic_make_request(tbio);
1335 done:
1336 if (atomic_dec_and_test(&r10_bio->remaining)) {
1337 md_done_sync(mddev, r10_bio->sectors, 1);
1338 put_buf(r10_bio);
1343 * Now for the recovery code.
1344 * Recovery happens across physical sectors.
1345 * We recover all non-is_sync drives by finding the virtual address of
1346 * each, and then choose a working drive that also has that virt address.
1347 * There is a separate r10_bio for each non-in_sync drive.
1348 * Only the first two slots are in use. The first for reading,
1349 * The second for writing.
1353 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1355 conf_t *conf = mddev_to_conf(mddev);
1356 int i, d;
1357 struct bio *bio, *wbio;
1360 /* move the pages across to the second bio
1361 * and submit the write request
1363 bio = r10_bio->devs[0].bio;
1364 wbio = r10_bio->devs[1].bio;
1365 for (i=0; i < wbio->bi_vcnt; i++) {
1366 struct page *p = bio->bi_io_vec[i].bv_page;
1367 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1368 wbio->bi_io_vec[i].bv_page = p;
1370 d = r10_bio->devs[1].devnum;
1372 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1373 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1374 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1375 generic_make_request(wbio);
1376 else
1377 bio_endio(wbio, -EIO);
1382 * This is a kernel thread which:
1384 * 1. Retries failed read operations on working mirrors.
1385 * 2. Updates the raid superblock when problems encounter.
1386 * 3. Performs writes following reads for array synchronising.
1389 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1391 int sect = 0; /* Offset from r10_bio->sector */
1392 int sectors = r10_bio->sectors;
1393 mdk_rdev_t*rdev;
1394 while(sectors) {
1395 int s = sectors;
1396 int sl = r10_bio->read_slot;
1397 int success = 0;
1398 int start;
1400 if (s > (PAGE_SIZE>>9))
1401 s = PAGE_SIZE >> 9;
1403 rcu_read_lock();
1404 do {
1405 int d = r10_bio->devs[sl].devnum;
1406 rdev = rcu_dereference(conf->mirrors[d].rdev);
1407 if (rdev &&
1408 test_bit(In_sync, &rdev->flags)) {
1409 atomic_inc(&rdev->nr_pending);
1410 rcu_read_unlock();
1411 success = sync_page_io(rdev->bdev,
1412 r10_bio->devs[sl].addr +
1413 sect + rdev->data_offset,
1414 s<<9,
1415 conf->tmppage, READ);
1416 rdev_dec_pending(rdev, mddev);
1417 rcu_read_lock();
1418 if (success)
1419 break;
1421 sl++;
1422 if (sl == conf->copies)
1423 sl = 0;
1424 } while (!success && sl != r10_bio->read_slot);
1425 rcu_read_unlock();
1427 if (!success) {
1428 /* Cannot read from anywhere -- bye bye array */
1429 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1430 md_error(mddev, conf->mirrors[dn].rdev);
1431 break;
1434 start = sl;
1435 /* write it back and re-read */
1436 rcu_read_lock();
1437 while (sl != r10_bio->read_slot) {
1438 int d;
1439 if (sl==0)
1440 sl = conf->copies;
1441 sl--;
1442 d = r10_bio->devs[sl].devnum;
1443 rdev = rcu_dereference(conf->mirrors[d].rdev);
1444 if (rdev &&
1445 test_bit(In_sync, &rdev->flags)) {
1446 atomic_inc(&rdev->nr_pending);
1447 rcu_read_unlock();
1448 atomic_add(s, &rdev->corrected_errors);
1449 if (sync_page_io(rdev->bdev,
1450 r10_bio->devs[sl].addr +
1451 sect + rdev->data_offset,
1452 s<<9, conf->tmppage, WRITE)
1453 == 0)
1454 /* Well, this device is dead */
1455 md_error(mddev, rdev);
1456 rdev_dec_pending(rdev, mddev);
1457 rcu_read_lock();
1460 sl = start;
1461 while (sl != r10_bio->read_slot) {
1462 int d;
1463 if (sl==0)
1464 sl = conf->copies;
1465 sl--;
1466 d = r10_bio->devs[sl].devnum;
1467 rdev = rcu_dereference(conf->mirrors[d].rdev);
1468 if (rdev &&
1469 test_bit(In_sync, &rdev->flags)) {
1470 char b[BDEVNAME_SIZE];
1471 atomic_inc(&rdev->nr_pending);
1472 rcu_read_unlock();
1473 if (sync_page_io(rdev->bdev,
1474 r10_bio->devs[sl].addr +
1475 sect + rdev->data_offset,
1476 s<<9, conf->tmppage, READ) == 0)
1477 /* Well, this device is dead */
1478 md_error(mddev, rdev);
1479 else
1480 printk(KERN_INFO
1481 "raid10:%s: read error corrected"
1482 " (%d sectors at %llu on %s)\n",
1483 mdname(mddev), s,
1484 (unsigned long long)(sect+
1485 rdev->data_offset),
1486 bdevname(rdev->bdev, b));
1488 rdev_dec_pending(rdev, mddev);
1489 rcu_read_lock();
1492 rcu_read_unlock();
1494 sectors -= s;
1495 sect += s;
1499 static void raid10d(mddev_t *mddev)
1501 r10bio_t *r10_bio;
1502 struct bio *bio;
1503 unsigned long flags;
1504 conf_t *conf = mddev_to_conf(mddev);
1505 struct list_head *head = &conf->retry_list;
1506 int unplug=0;
1507 mdk_rdev_t *rdev;
1509 md_check_recovery(mddev);
1511 for (;;) {
1512 char b[BDEVNAME_SIZE];
1514 unplug += flush_pending_writes(conf);
1516 spin_lock_irqsave(&conf->device_lock, flags);
1517 if (list_empty(head)) {
1518 spin_unlock_irqrestore(&conf->device_lock, flags);
1519 break;
1521 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1522 list_del(head->prev);
1523 conf->nr_queued--;
1524 spin_unlock_irqrestore(&conf->device_lock, flags);
1526 mddev = r10_bio->mddev;
1527 conf = mddev_to_conf(mddev);
1528 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1529 sync_request_write(mddev, r10_bio);
1530 unplug = 1;
1531 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1532 recovery_request_write(mddev, r10_bio);
1533 unplug = 1;
1534 } else {
1535 int mirror;
1536 /* we got a read error. Maybe the drive is bad. Maybe just
1537 * the block and we can fix it.
1538 * We freeze all other IO, and try reading the block from
1539 * other devices. When we find one, we re-write
1540 * and check it that fixes the read error.
1541 * This is all done synchronously while the array is
1542 * frozen.
1544 if (mddev->ro == 0) {
1545 freeze_array(conf);
1546 fix_read_error(conf, mddev, r10_bio);
1547 unfreeze_array(conf);
1550 bio = r10_bio->devs[r10_bio->read_slot].bio;
1551 r10_bio->devs[r10_bio->read_slot].bio =
1552 mddev->ro ? IO_BLOCKED : NULL;
1553 mirror = read_balance(conf, r10_bio);
1554 if (mirror == -1) {
1555 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1556 " read error for block %llu\n",
1557 bdevname(bio->bi_bdev,b),
1558 (unsigned long long)r10_bio->sector);
1559 raid_end_bio_io(r10_bio);
1560 bio_put(bio);
1561 } else {
1562 const int do_sync = bio_sync(r10_bio->master_bio);
1563 bio_put(bio);
1564 rdev = conf->mirrors[mirror].rdev;
1565 if (printk_ratelimit())
1566 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1567 " another mirror\n",
1568 bdevname(rdev->bdev,b),
1569 (unsigned long long)r10_bio->sector);
1570 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1571 r10_bio->devs[r10_bio->read_slot].bio = bio;
1572 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1573 + rdev->data_offset;
1574 bio->bi_bdev = rdev->bdev;
1575 bio->bi_rw = READ | do_sync;
1576 bio->bi_private = r10_bio;
1577 bio->bi_end_io = raid10_end_read_request;
1578 unplug = 1;
1579 generic_make_request(bio);
1583 if (unplug)
1584 unplug_slaves(mddev);
1588 static int init_resync(conf_t *conf)
1590 int buffs;
1592 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1593 BUG_ON(conf->r10buf_pool);
1594 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1595 if (!conf->r10buf_pool)
1596 return -ENOMEM;
1597 conf->next_resync = 0;
1598 return 0;
1602 * perform a "sync" on one "block"
1604 * We need to make sure that no normal I/O request - particularly write
1605 * requests - conflict with active sync requests.
1607 * This is achieved by tracking pending requests and a 'barrier' concept
1608 * that can be installed to exclude normal IO requests.
1610 * Resync and recovery are handled very differently.
1611 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1613 * For resync, we iterate over virtual addresses, read all copies,
1614 * and update if there are differences. If only one copy is live,
1615 * skip it.
1616 * For recovery, we iterate over physical addresses, read a good
1617 * value for each non-in_sync drive, and over-write.
1619 * So, for recovery we may have several outstanding complex requests for a
1620 * given address, one for each out-of-sync device. We model this by allocating
1621 * a number of r10_bio structures, one for each out-of-sync device.
1622 * As we setup these structures, we collect all bio's together into a list
1623 * which we then process collectively to add pages, and then process again
1624 * to pass to generic_make_request.
1626 * The r10_bio structures are linked using a borrowed master_bio pointer.
1627 * This link is counted in ->remaining. When the r10_bio that points to NULL
1628 * has its remaining count decremented to 0, the whole complex operation
1629 * is complete.
1633 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1635 conf_t *conf = mddev_to_conf(mddev);
1636 r10bio_t *r10_bio;
1637 struct bio *biolist = NULL, *bio;
1638 sector_t max_sector, nr_sectors;
1639 int disk;
1640 int i;
1641 int max_sync;
1642 int sync_blocks;
1644 sector_t sectors_skipped = 0;
1645 int chunks_skipped = 0;
1647 if (!conf->r10buf_pool)
1648 if (init_resync(conf))
1649 return 0;
1651 skipped:
1652 max_sector = mddev->size << 1;
1653 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1654 max_sector = mddev->resync_max_sectors;
1655 if (sector_nr >= max_sector) {
1656 /* If we aborted, we need to abort the
1657 * sync on the 'current' bitmap chucks (there can
1658 * be several when recovering multiple devices).
1659 * as we may have started syncing it but not finished.
1660 * We can find the current address in
1661 * mddev->curr_resync, but for recovery,
1662 * we need to convert that to several
1663 * virtual addresses.
1665 if (mddev->curr_resync < max_sector) { /* aborted */
1666 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1667 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1668 &sync_blocks, 1);
1669 else for (i=0; i<conf->raid_disks; i++) {
1670 sector_t sect =
1671 raid10_find_virt(conf, mddev->curr_resync, i);
1672 bitmap_end_sync(mddev->bitmap, sect,
1673 &sync_blocks, 1);
1675 } else /* completed sync */
1676 conf->fullsync = 0;
1678 bitmap_close_sync(mddev->bitmap);
1679 close_sync(conf);
1680 *skipped = 1;
1681 return sectors_skipped;
1683 if (chunks_skipped >= conf->raid_disks) {
1684 /* if there has been nothing to do on any drive,
1685 * then there is nothing to do at all..
1687 *skipped = 1;
1688 return (max_sector - sector_nr) + sectors_skipped;
1691 if (max_sector > mddev->resync_max)
1692 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1694 /* make sure whole request will fit in a chunk - if chunks
1695 * are meaningful
1697 if (conf->near_copies < conf->raid_disks &&
1698 max_sector > (sector_nr | conf->chunk_mask))
1699 max_sector = (sector_nr | conf->chunk_mask) + 1;
1701 * If there is non-resync activity waiting for us then
1702 * put in a delay to throttle resync.
1704 if (!go_faster && conf->nr_waiting)
1705 msleep_interruptible(1000);
1707 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1709 /* Again, very different code for resync and recovery.
1710 * Both must result in an r10bio with a list of bios that
1711 * have bi_end_io, bi_sector, bi_bdev set,
1712 * and bi_private set to the r10bio.
1713 * For recovery, we may actually create several r10bios
1714 * with 2 bios in each, that correspond to the bios in the main one.
1715 * In this case, the subordinate r10bios link back through a
1716 * borrowed master_bio pointer, and the counter in the master
1717 * includes a ref from each subordinate.
1719 /* First, we decide what to do and set ->bi_end_io
1720 * To end_sync_read if we want to read, and
1721 * end_sync_write if we will want to write.
1724 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1725 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1726 /* recovery... the complicated one */
1727 int i, j, k;
1728 r10_bio = NULL;
1730 for (i=0 ; i<conf->raid_disks; i++)
1731 if (conf->mirrors[i].rdev &&
1732 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1733 int still_degraded = 0;
1734 /* want to reconstruct this device */
1735 r10bio_t *rb2 = r10_bio;
1736 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1737 int must_sync;
1738 /* Unless we are doing a full sync, we only need
1739 * to recover the block if it is set in the bitmap
1741 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1742 &sync_blocks, 1);
1743 if (sync_blocks < max_sync)
1744 max_sync = sync_blocks;
1745 if (!must_sync &&
1746 !conf->fullsync) {
1747 /* yep, skip the sync_blocks here, but don't assume
1748 * that there will never be anything to do here
1750 chunks_skipped = -1;
1751 continue;
1754 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1755 raise_barrier(conf, rb2 != NULL);
1756 atomic_set(&r10_bio->remaining, 0);
1758 r10_bio->master_bio = (struct bio*)rb2;
1759 if (rb2)
1760 atomic_inc(&rb2->remaining);
1761 r10_bio->mddev = mddev;
1762 set_bit(R10BIO_IsRecover, &r10_bio->state);
1763 r10_bio->sector = sect;
1765 raid10_find_phys(conf, r10_bio);
1766 /* Need to check if this section will still be
1767 * degraded
1769 for (j=0; j<conf->copies;j++) {
1770 int d = r10_bio->devs[j].devnum;
1771 if (conf->mirrors[d].rdev == NULL ||
1772 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1773 still_degraded = 1;
1774 break;
1777 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1778 &sync_blocks, still_degraded);
1780 for (j=0; j<conf->copies;j++) {
1781 int d = r10_bio->devs[j].devnum;
1782 if (conf->mirrors[d].rdev &&
1783 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1784 /* This is where we read from */
1785 bio = r10_bio->devs[0].bio;
1786 bio->bi_next = biolist;
1787 biolist = bio;
1788 bio->bi_private = r10_bio;
1789 bio->bi_end_io = end_sync_read;
1790 bio->bi_rw = READ;
1791 bio->bi_sector = r10_bio->devs[j].addr +
1792 conf->mirrors[d].rdev->data_offset;
1793 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1794 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1795 atomic_inc(&r10_bio->remaining);
1796 /* and we write to 'i' */
1798 for (k=0; k<conf->copies; k++)
1799 if (r10_bio->devs[k].devnum == i)
1800 break;
1801 BUG_ON(k == conf->copies);
1802 bio = r10_bio->devs[1].bio;
1803 bio->bi_next = biolist;
1804 biolist = bio;
1805 bio->bi_private = r10_bio;
1806 bio->bi_end_io = end_sync_write;
1807 bio->bi_rw = WRITE;
1808 bio->bi_sector = r10_bio->devs[k].addr +
1809 conf->mirrors[i].rdev->data_offset;
1810 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1812 r10_bio->devs[0].devnum = d;
1813 r10_bio->devs[1].devnum = i;
1815 break;
1818 if (j == conf->copies) {
1819 /* Cannot recover, so abort the recovery */
1820 put_buf(r10_bio);
1821 if (rb2)
1822 atomic_dec(&rb2->remaining);
1823 r10_bio = rb2;
1824 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1825 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1826 mdname(mddev));
1827 break;
1830 if (biolist == NULL) {
1831 while (r10_bio) {
1832 r10bio_t *rb2 = r10_bio;
1833 r10_bio = (r10bio_t*) rb2->master_bio;
1834 rb2->master_bio = NULL;
1835 put_buf(rb2);
1837 goto giveup;
1839 } else {
1840 /* resync. Schedule a read for every block at this virt offset */
1841 int count = 0;
1843 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1844 &sync_blocks, mddev->degraded) &&
1845 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1846 /* We can skip this block */
1847 *skipped = 1;
1848 return sync_blocks + sectors_skipped;
1850 if (sync_blocks < max_sync)
1851 max_sync = sync_blocks;
1852 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1854 r10_bio->mddev = mddev;
1855 atomic_set(&r10_bio->remaining, 0);
1856 raise_barrier(conf, 0);
1857 conf->next_resync = sector_nr;
1859 r10_bio->master_bio = NULL;
1860 r10_bio->sector = sector_nr;
1861 set_bit(R10BIO_IsSync, &r10_bio->state);
1862 raid10_find_phys(conf, r10_bio);
1863 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1865 for (i=0; i<conf->copies; i++) {
1866 int d = r10_bio->devs[i].devnum;
1867 bio = r10_bio->devs[i].bio;
1868 bio->bi_end_io = NULL;
1869 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1870 if (conf->mirrors[d].rdev == NULL ||
1871 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1872 continue;
1873 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1874 atomic_inc(&r10_bio->remaining);
1875 bio->bi_next = biolist;
1876 biolist = bio;
1877 bio->bi_private = r10_bio;
1878 bio->bi_end_io = end_sync_read;
1879 bio->bi_rw = READ;
1880 bio->bi_sector = r10_bio->devs[i].addr +
1881 conf->mirrors[d].rdev->data_offset;
1882 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1883 count++;
1886 if (count < 2) {
1887 for (i=0; i<conf->copies; i++) {
1888 int d = r10_bio->devs[i].devnum;
1889 if (r10_bio->devs[i].bio->bi_end_io)
1890 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1892 put_buf(r10_bio);
1893 biolist = NULL;
1894 goto giveup;
1898 for (bio = biolist; bio ; bio=bio->bi_next) {
1900 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1901 if (bio->bi_end_io)
1902 bio->bi_flags |= 1 << BIO_UPTODATE;
1903 bio->bi_vcnt = 0;
1904 bio->bi_idx = 0;
1905 bio->bi_phys_segments = 0;
1906 bio->bi_hw_segments = 0;
1907 bio->bi_size = 0;
1910 nr_sectors = 0;
1911 if (sector_nr + max_sync < max_sector)
1912 max_sector = sector_nr + max_sync;
1913 do {
1914 struct page *page;
1915 int len = PAGE_SIZE;
1916 disk = 0;
1917 if (sector_nr + (len>>9) > max_sector)
1918 len = (max_sector - sector_nr) << 9;
1919 if (len == 0)
1920 break;
1921 for (bio= biolist ; bio ; bio=bio->bi_next) {
1922 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1923 if (bio_add_page(bio, page, len, 0) == 0) {
1924 /* stop here */
1925 struct bio *bio2;
1926 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1927 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1928 /* remove last page from this bio */
1929 bio2->bi_vcnt--;
1930 bio2->bi_size -= len;
1931 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1933 goto bio_full;
1935 disk = i;
1937 nr_sectors += len>>9;
1938 sector_nr += len>>9;
1939 } while (biolist->bi_vcnt < RESYNC_PAGES);
1940 bio_full:
1941 r10_bio->sectors = nr_sectors;
1943 while (biolist) {
1944 bio = biolist;
1945 biolist = biolist->bi_next;
1947 bio->bi_next = NULL;
1948 r10_bio = bio->bi_private;
1949 r10_bio->sectors = nr_sectors;
1951 if (bio->bi_end_io == end_sync_read) {
1952 md_sync_acct(bio->bi_bdev, nr_sectors);
1953 generic_make_request(bio);
1957 if (sectors_skipped)
1958 /* pretend they weren't skipped, it makes
1959 * no important difference in this case
1961 md_done_sync(mddev, sectors_skipped, 1);
1963 return sectors_skipped + nr_sectors;
1964 giveup:
1965 /* There is nowhere to write, so all non-sync
1966 * drives must be failed, so try the next chunk...
1969 sector_t sec = max_sector - sector_nr;
1970 sectors_skipped += sec;
1971 chunks_skipped ++;
1972 sector_nr = max_sector;
1973 goto skipped;
1977 static int run(mddev_t *mddev)
1979 conf_t *conf;
1980 int i, disk_idx;
1981 mirror_info_t *disk;
1982 mdk_rdev_t *rdev;
1983 struct list_head *tmp;
1984 int nc, fc, fo;
1985 sector_t stride, size;
1987 if (mddev->chunk_size == 0) {
1988 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
1989 return -EINVAL;
1992 nc = mddev->layout & 255;
1993 fc = (mddev->layout >> 8) & 255;
1994 fo = mddev->layout & (1<<16);
1995 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1996 (mddev->layout >> 17)) {
1997 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1998 mdname(mddev), mddev->layout);
1999 goto out;
2002 * copy the already verified devices into our private RAID10
2003 * bookkeeping area. [whatever we allocate in run(),
2004 * should be freed in stop()]
2006 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2007 mddev->private = conf;
2008 if (!conf) {
2009 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2010 mdname(mddev));
2011 goto out;
2013 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2014 GFP_KERNEL);
2015 if (!conf->mirrors) {
2016 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2017 mdname(mddev));
2018 goto out_free_conf;
2021 conf->tmppage = alloc_page(GFP_KERNEL);
2022 if (!conf->tmppage)
2023 goto out_free_conf;
2025 conf->mddev = mddev;
2026 conf->raid_disks = mddev->raid_disks;
2027 conf->near_copies = nc;
2028 conf->far_copies = fc;
2029 conf->copies = nc*fc;
2030 conf->far_offset = fo;
2031 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2032 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2033 size = mddev->size >> (conf->chunk_shift-1);
2034 sector_div(size, fc);
2035 size = size * conf->raid_disks;
2036 sector_div(size, nc);
2037 /* 'size' is now the number of chunks in the array */
2038 /* calculate "used chunks per device" in 'stride' */
2039 stride = size * conf->copies;
2041 /* We need to round up when dividing by raid_disks to
2042 * get the stride size.
2044 stride += conf->raid_disks - 1;
2045 sector_div(stride, conf->raid_disks);
2046 mddev->size = stride << (conf->chunk_shift-1);
2048 if (fo)
2049 stride = 1;
2050 else
2051 sector_div(stride, fc);
2052 conf->stride = stride << conf->chunk_shift;
2054 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2055 r10bio_pool_free, conf);
2056 if (!conf->r10bio_pool) {
2057 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2058 mdname(mddev));
2059 goto out_free_conf;
2062 rdev_for_each(rdev, tmp, mddev) {
2063 disk_idx = rdev->raid_disk;
2064 if (disk_idx >= mddev->raid_disks
2065 || disk_idx < 0)
2066 continue;
2067 disk = conf->mirrors + disk_idx;
2069 disk->rdev = rdev;
2071 blk_queue_stack_limits(mddev->queue,
2072 rdev->bdev->bd_disk->queue);
2073 /* as we don't honour merge_bvec_fn, we must never risk
2074 * violating it, so limit ->max_sector to one PAGE, as
2075 * a one page request is never in violation.
2077 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2078 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2079 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2081 disk->head_position = 0;
2083 spin_lock_init(&conf->device_lock);
2084 INIT_LIST_HEAD(&conf->retry_list);
2086 spin_lock_init(&conf->resync_lock);
2087 init_waitqueue_head(&conf->wait_barrier);
2089 /* need to check that every block has at least one working mirror */
2090 if (!enough(conf)) {
2091 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2092 mdname(mddev));
2093 goto out_free_conf;
2096 mddev->degraded = 0;
2097 for (i = 0; i < conf->raid_disks; i++) {
2099 disk = conf->mirrors + i;
2101 if (!disk->rdev ||
2102 !test_bit(In_sync, &disk->rdev->flags)) {
2103 disk->head_position = 0;
2104 mddev->degraded++;
2109 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2110 if (!mddev->thread) {
2111 printk(KERN_ERR
2112 "raid10: couldn't allocate thread for %s\n",
2113 mdname(mddev));
2114 goto out_free_conf;
2117 printk(KERN_INFO
2118 "raid10: raid set %s active with %d out of %d devices\n",
2119 mdname(mddev), mddev->raid_disks - mddev->degraded,
2120 mddev->raid_disks);
2122 * Ok, everything is just fine now
2124 mddev->array_size = size << (conf->chunk_shift-1);
2125 mddev->resync_max_sectors = size << conf->chunk_shift;
2127 mddev->queue->unplug_fn = raid10_unplug;
2128 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2129 mddev->queue->backing_dev_info.congested_data = mddev;
2131 /* Calculate max read-ahead size.
2132 * We need to readahead at least twice a whole stripe....
2133 * maybe...
2136 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2137 stripe /= conf->near_copies;
2138 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2139 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2142 if (conf->near_copies < mddev->raid_disks)
2143 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2144 return 0;
2146 out_free_conf:
2147 if (conf->r10bio_pool)
2148 mempool_destroy(conf->r10bio_pool);
2149 safe_put_page(conf->tmppage);
2150 kfree(conf->mirrors);
2151 kfree(conf);
2152 mddev->private = NULL;
2153 out:
2154 return -EIO;
2157 static int stop(mddev_t *mddev)
2159 conf_t *conf = mddev_to_conf(mddev);
2161 md_unregister_thread(mddev->thread);
2162 mddev->thread = NULL;
2163 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2164 if (conf->r10bio_pool)
2165 mempool_destroy(conf->r10bio_pool);
2166 kfree(conf->mirrors);
2167 kfree(conf);
2168 mddev->private = NULL;
2169 return 0;
2172 static void raid10_quiesce(mddev_t *mddev, int state)
2174 conf_t *conf = mddev_to_conf(mddev);
2176 switch(state) {
2177 case 1:
2178 raise_barrier(conf, 0);
2179 break;
2180 case 0:
2181 lower_barrier(conf);
2182 break;
2184 if (mddev->thread) {
2185 if (mddev->bitmap)
2186 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2187 else
2188 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2189 md_wakeup_thread(mddev->thread);
2193 static struct mdk_personality raid10_personality =
2195 .name = "raid10",
2196 .level = 10,
2197 .owner = THIS_MODULE,
2198 .make_request = make_request,
2199 .run = run,
2200 .stop = stop,
2201 .status = status,
2202 .error_handler = error,
2203 .hot_add_disk = raid10_add_disk,
2204 .hot_remove_disk= raid10_remove_disk,
2205 .spare_active = raid10_spare_active,
2206 .sync_request = sync_request,
2207 .quiesce = raid10_quiesce,
2210 static int __init raid_init(void)
2212 return register_md_personality(&raid10_personality);
2215 static void raid_exit(void)
2217 unregister_md_personality(&raid10_personality);
2220 module_init(raid_init);
2221 module_exit(raid_exit);
2222 MODULE_LICENSE("GPL");
2223 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2224 MODULE_ALIAS("md-raid10");
2225 MODULE_ALIAS("md-level-10");