Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob2673d568bcac286dc9f3cbdb8da9d3c5051ff7cc
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
34 * Link tuning handlers
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
38 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39 return;
42 * Reset link information.
43 * Both the currently active vgc level as well as
44 * the link tuner counter should be reset. Resetting
45 * the counter is important for devices where the
46 * device should only perform link tuning during the
47 * first minute after being enabled.
49 rt2x00dev->link.count = 0;
50 rt2x00dev->link.vgc_level = 0;
53 * Reset the link tuner.
55 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
61 * Clear all (possibly) pre-existing quality statistics.
63 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
66 * The RX and TX percentage should start at 50%
67 * this will assure we will get at least get some
68 * decent value when the link tuner starts.
69 * The value will be dropped and overwritten with
70 * the correct (measured )value anyway during the
71 * first run of the link tuner.
73 rt2x00dev->link.qual.rx_percentage = 50;
74 rt2x00dev->link.qual.tx_percentage = 50;
76 rt2x00lib_reset_link_tuner(rt2x00dev);
78 queue_delayed_work(rt2x00dev->hw->workqueue,
79 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
84 cancel_delayed_work_sync(&rt2x00dev->link.work);
88 * Radio control handlers.
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
92 int status;
95 * Don't enable the radio twice.
96 * And check if the hardware button has been disabled.
98 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100 return 0;
103 * Initialize all data queues.
105 rt2x00queue_init_rx(rt2x00dev);
106 rt2x00queue_init_tx(rt2x00dev);
109 * Enable radio.
111 status =
112 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
113 if (status)
114 return status;
116 rt2x00leds_led_radio(rt2x00dev, true);
117 rt2x00led_led_activity(rt2x00dev, true);
119 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
122 * Enable RX.
124 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
127 * Start the TX queues.
129 ieee80211_start_queues(rt2x00dev->hw);
131 return 0;
134 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
137 return;
140 * Stop all scheduled work.
142 if (work_pending(&rt2x00dev->intf_work))
143 cancel_work_sync(&rt2x00dev->intf_work);
144 if (work_pending(&rt2x00dev->filter_work))
145 cancel_work_sync(&rt2x00dev->filter_work);
148 * Stop the TX queues.
150 ieee80211_stop_queues(rt2x00dev->hw);
153 * Disable RX.
155 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
158 * Disable radio.
160 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
161 rt2x00led_led_activity(rt2x00dev, false);
162 rt2x00leds_led_radio(rt2x00dev, false);
165 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
168 * When we are disabling the RX, we should also stop the link tuner.
170 if (state == STATE_RADIO_RX_OFF)
171 rt2x00lib_stop_link_tuner(rt2x00dev);
173 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
176 * When we are enabling the RX, we should also start the link tuner.
178 if (state == STATE_RADIO_RX_ON &&
179 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
180 rt2x00lib_start_link_tuner(rt2x00dev);
183 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
185 enum antenna rx = rt2x00dev->link.ant.active.rx;
186 enum antenna tx = rt2x00dev->link.ant.active.tx;
187 int sample_a =
188 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
189 int sample_b =
190 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
193 * We are done sampling. Now we should evaluate the results.
195 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
198 * During the last period we have sampled the RSSI
199 * from both antenna's. It now is time to determine
200 * which antenna demonstrated the best performance.
201 * When we are already on the antenna with the best
202 * performance, then there really is nothing for us
203 * left to do.
205 if (sample_a == sample_b)
206 return;
208 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
209 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
211 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
212 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
214 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
217 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
219 enum antenna rx = rt2x00dev->link.ant.active.rx;
220 enum antenna tx = rt2x00dev->link.ant.active.tx;
221 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
222 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
225 * Legacy driver indicates that we should swap antenna's
226 * when the difference in RSSI is greater that 5. This
227 * also should be done when the RSSI was actually better
228 * then the previous sample.
229 * When the difference exceeds the threshold we should
230 * sample the rssi from the other antenna to make a valid
231 * comparison between the 2 antennas.
233 if (abs(rssi_curr - rssi_old) < 5)
234 return;
236 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
238 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
239 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
241 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
242 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
244 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
247 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
250 * Determine if software diversity is enabled for
251 * either the TX or RX antenna (or both).
252 * Always perform this check since within the link
253 * tuner interval the configuration might have changed.
255 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
256 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
258 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
259 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
260 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
261 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
262 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
263 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
265 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
266 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
267 rt2x00dev->link.ant.flags = 0;
268 return;
272 * If we have only sampled the data over the last period
273 * we should now harvest the data. Otherwise just evaluate
274 * the data. The latter should only be performed once
275 * every 2 seconds.
277 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
278 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
279 else if (rt2x00dev->link.count & 1)
280 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
283 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
285 int avg_rssi = rssi;
288 * Update global RSSI
290 if (link->qual.avg_rssi)
291 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
292 link->qual.avg_rssi = avg_rssi;
295 * Update antenna RSSI
297 if (link->ant.rssi_ant)
298 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
299 link->ant.rssi_ant = rssi;
302 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
304 if (qual->rx_failed || qual->rx_success)
305 qual->rx_percentage =
306 (qual->rx_success * 100) /
307 (qual->rx_failed + qual->rx_success);
308 else
309 qual->rx_percentage = 50;
311 if (qual->tx_failed || qual->tx_success)
312 qual->tx_percentage =
313 (qual->tx_success * 100) /
314 (qual->tx_failed + qual->tx_success);
315 else
316 qual->tx_percentage = 50;
318 qual->rx_success = 0;
319 qual->rx_failed = 0;
320 qual->tx_success = 0;
321 qual->tx_failed = 0;
324 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
325 int rssi)
327 int rssi_percentage = 0;
328 int signal;
331 * We need a positive value for the RSSI.
333 if (rssi < 0)
334 rssi += rt2x00dev->rssi_offset;
337 * Calculate the different percentages,
338 * which will be used for the signal.
340 if (rt2x00dev->rssi_offset)
341 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
344 * Add the individual percentages and use the WEIGHT
345 * defines to calculate the current link signal.
347 signal = ((WEIGHT_RSSI * rssi_percentage) +
348 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
349 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
351 return (signal > 100) ? 100 : signal;
354 static void rt2x00lib_link_tuner(struct work_struct *work)
356 struct rt2x00_dev *rt2x00dev =
357 container_of(work, struct rt2x00_dev, link.work.work);
360 * When the radio is shutting down we should
361 * immediately cease all link tuning.
363 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
364 return;
367 * Update statistics.
369 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
370 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
371 rt2x00dev->link.qual.rx_failed;
374 * Only perform the link tuning when Link tuning
375 * has been enabled (This could have been disabled from the EEPROM).
377 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
378 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
381 * Precalculate a portion of the link signal which is
382 * in based on the tx/rx success/failure counters.
384 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
387 * Send a signal to the led to update the led signal strength.
389 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
392 * Evaluate antenna setup, make this the last step since this could
393 * possibly reset some statistics.
395 rt2x00lib_evaluate_antenna(rt2x00dev);
398 * Increase tuner counter, and reschedule the next link tuner run.
400 rt2x00dev->link.count++;
401 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
402 LINK_TUNE_INTERVAL);
405 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
407 struct rt2x00_dev *rt2x00dev =
408 container_of(work, struct rt2x00_dev, filter_work);
410 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
413 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
414 struct ieee80211_vif *vif)
416 struct rt2x00_dev *rt2x00dev = data;
417 struct rt2x00_intf *intf = vif_to_intf(vif);
418 struct sk_buff *skb;
419 struct ieee80211_tx_control control;
420 struct ieee80211_bss_conf conf;
421 int delayed_flags;
424 * Copy all data we need during this action under the protection
425 * of a spinlock. Otherwise race conditions might occur which results
426 * into an invalid configuration.
428 spin_lock(&intf->lock);
430 memcpy(&conf, &intf->conf, sizeof(conf));
431 delayed_flags = intf->delayed_flags;
432 intf->delayed_flags = 0;
434 spin_unlock(&intf->lock);
436 if (delayed_flags & DELAYED_UPDATE_BEACON) {
437 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
438 if (skb && rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw,
439 skb, &control))
440 dev_kfree_skb(skb);
443 if (delayed_flags & DELAYED_CONFIG_ERP)
444 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
446 if (delayed_flags & DELAYED_LED_ASSOC)
447 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
450 static void rt2x00lib_intf_scheduled(struct work_struct *work)
452 struct rt2x00_dev *rt2x00dev =
453 container_of(work, struct rt2x00_dev, intf_work);
456 * Iterate over each interface and perform the
457 * requested configurations.
459 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
460 rt2x00lib_intf_scheduled_iter,
461 rt2x00dev);
465 * Interrupt context handlers.
467 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
468 struct ieee80211_vif *vif)
470 struct rt2x00_intf *intf = vif_to_intf(vif);
472 if (vif->type != IEEE80211_IF_TYPE_AP &&
473 vif->type != IEEE80211_IF_TYPE_IBSS)
474 return;
476 spin_lock(&intf->lock);
477 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
478 spin_unlock(&intf->lock);
481 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
483 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
484 return;
486 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
487 rt2x00lib_beacondone_iter,
488 rt2x00dev);
490 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
492 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
494 void rt2x00lib_txdone(struct queue_entry *entry,
495 struct txdone_entry_desc *txdesc)
497 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
498 struct skb_frame_desc *skbdesc;
499 struct ieee80211_tx_status tx_status;
500 int success = !!(txdesc->status == TX_SUCCESS ||
501 txdesc->status == TX_SUCCESS_RETRY);
502 int fail = !!(txdesc->status == TX_FAIL_RETRY ||
503 txdesc->status == TX_FAIL_INVALID ||
504 txdesc->status == TX_FAIL_OTHER);
507 * Update TX statistics.
509 rt2x00dev->link.qual.tx_success += success;
510 rt2x00dev->link.qual.tx_failed += fail;
513 * Initialize TX status
515 tx_status.flags = 0;
516 tx_status.ack_signal = 0;
517 tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
518 tx_status.retry_count = txdesc->retry;
519 memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
521 if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
522 if (success)
523 tx_status.flags |= IEEE80211_TX_STATUS_ACK;
524 else
525 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
528 tx_status.queue_length = entry->queue->limit;
529 tx_status.queue_number = tx_status.control.queue;
531 if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
532 if (success)
533 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
534 else
535 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
539 * Send the tx_status to debugfs. Only send the status report
540 * to mac80211 when the frame originated from there. If this was
541 * a extra frame coming through a mac80211 library call (RTS/CTS)
542 * then we should not send the status report back.
543 * If send to mac80211, mac80211 will clean up the skb structure,
544 * otherwise we have to do it ourself.
546 skbdesc = get_skb_frame_desc(entry->skb);
547 skbdesc->frame_type = DUMP_FRAME_TXDONE;
549 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
551 if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
552 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
553 entry->skb, &tx_status);
554 else
555 dev_kfree_skb(entry->skb);
556 entry->skb = NULL;
558 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
560 void rt2x00lib_rxdone(struct queue_entry *entry,
561 struct rxdone_entry_desc *rxdesc)
563 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
564 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
565 struct ieee80211_supported_band *sband;
566 struct ieee80211_hdr *hdr;
567 const struct rt2x00_rate *rate;
568 unsigned int i;
569 int idx = -1;
570 u16 fc;
573 * Update RX statistics.
575 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
576 for (i = 0; i < sband->n_bitrates; i++) {
577 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
579 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
580 (rate->plcp == rxdesc->signal)) ||
581 (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
582 (rate->bitrate == rxdesc->signal))) {
583 idx = i;
584 break;
588 if (idx < 0) {
589 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
590 "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
591 !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
592 idx = 0;
596 * Only update link status if this is a beacon frame carrying our bssid.
598 hdr = (struct ieee80211_hdr *)entry->skb->data;
599 fc = le16_to_cpu(hdr->frame_control);
600 if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
601 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
603 rt2x00dev->link.qual.rx_success++;
605 rx_status->rate_idx = idx;
606 rx_status->signal =
607 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
608 rx_status->ssi = rxdesc->rssi;
609 rx_status->flag = rxdesc->flags;
610 rx_status->antenna = rt2x00dev->link.ant.active.rx;
613 * Send frame to mac80211 & debugfs.
614 * mac80211 will clean up the skb structure.
616 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
617 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
618 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
619 entry->skb = NULL;
621 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
624 * TX descriptor initializer
626 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
627 struct sk_buff *skb,
628 struct ieee80211_tx_control *control)
630 struct txentry_desc txdesc;
631 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
632 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
633 const struct rt2x00_rate *rate;
634 int tx_rate;
635 int length;
636 int duration;
637 int residual;
638 u16 frame_control;
639 u16 seq_ctrl;
641 memset(&txdesc, 0, sizeof(txdesc));
643 txdesc.queue = skbdesc->entry->queue->qid;
644 txdesc.cw_min = skbdesc->entry->queue->cw_min;
645 txdesc.cw_max = skbdesc->entry->queue->cw_max;
646 txdesc.aifs = skbdesc->entry->queue->aifs;
649 * Read required fields from ieee80211 header.
651 frame_control = le16_to_cpu(hdr->frame_control);
652 seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
654 tx_rate = control->tx_rate->hw_value;
657 * Check whether this frame is to be acked
659 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
660 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
663 * Check if this is a RTS/CTS frame
665 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
666 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
667 if (is_rts_frame(frame_control)) {
668 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
669 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
670 } else
671 __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
672 if (control->rts_cts_rate)
673 tx_rate = control->rts_cts_rate->hw_value;
676 rate = rt2x00_get_rate(tx_rate);
679 * Check if more fragments are pending
681 if (ieee80211_get_morefrag(hdr)) {
682 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
683 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
687 * Beacons and probe responses require the tsf timestamp
688 * to be inserted into the frame.
690 if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
691 is_probe_resp(frame_control))
692 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
695 * Determine with what IFS priority this frame should be send.
696 * Set ifs to IFS_SIFS when the this is not the first fragment,
697 * or this fragment came after RTS/CTS.
699 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
700 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
701 txdesc.ifs = IFS_SIFS;
702 else
703 txdesc.ifs = IFS_BACKOFF;
706 * PLCP setup
707 * Length calculation depends on OFDM/CCK rate.
709 txdesc.signal = rate->plcp;
710 txdesc.service = 0x04;
712 length = skbdesc->data_len + FCS_LEN;
713 if (rate->flags & DEV_RATE_OFDM) {
714 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
716 txdesc.length_high = (length >> 6) & 0x3f;
717 txdesc.length_low = length & 0x3f;
718 } else {
720 * Convert length to microseconds.
722 residual = get_duration_res(length, rate->bitrate);
723 duration = get_duration(length, rate->bitrate);
725 if (residual != 0) {
726 duration++;
729 * Check if we need to set the Length Extension
731 if (rate->bitrate == 110 && residual <= 30)
732 txdesc.service |= 0x80;
735 txdesc.length_high = (duration >> 8) & 0xff;
736 txdesc.length_low = duration & 0xff;
739 * When preamble is enabled we should set the
740 * preamble bit for the signal.
742 if (rt2x00_get_rate_preamble(tx_rate))
743 txdesc.signal |= 0x08;
746 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
749 * Update queue entry.
751 skbdesc->entry->skb = skb;
754 * The frame has been completely initialized and ready
755 * for sending to the device. The caller will push the
756 * frame to the device, but we are going to push the
757 * frame to debugfs here.
759 skbdesc->frame_type = DUMP_FRAME_TX;
760 rt2x00debug_dump_frame(rt2x00dev, skb);
762 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
765 * Driver initialization handlers.
767 const struct rt2x00_rate rt2x00_supported_rates[12] = {
769 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
770 .bitrate = 10,
771 .ratemask = BIT(0),
772 .plcp = 0x00,
775 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
776 .bitrate = 20,
777 .ratemask = BIT(1),
778 .plcp = 0x01,
781 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
782 .bitrate = 55,
783 .ratemask = BIT(2),
784 .plcp = 0x02,
787 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
788 .bitrate = 110,
789 .ratemask = BIT(3),
790 .plcp = 0x03,
793 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
794 .bitrate = 60,
795 .ratemask = BIT(4),
796 .plcp = 0x0b,
799 .flags = DEV_RATE_OFDM,
800 .bitrate = 90,
801 .ratemask = BIT(5),
802 .plcp = 0x0f,
805 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
806 .bitrate = 120,
807 .ratemask = BIT(6),
808 .plcp = 0x0a,
811 .flags = DEV_RATE_OFDM,
812 .bitrate = 180,
813 .ratemask = BIT(7),
814 .plcp = 0x0e,
817 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
818 .bitrate = 240,
819 .ratemask = BIT(8),
820 .plcp = 0x09,
823 .flags = DEV_RATE_OFDM,
824 .bitrate = 360,
825 .ratemask = BIT(9),
826 .plcp = 0x0d,
829 .flags = DEV_RATE_OFDM,
830 .bitrate = 480,
831 .ratemask = BIT(10),
832 .plcp = 0x08,
835 .flags = DEV_RATE_OFDM,
836 .bitrate = 540,
837 .ratemask = BIT(11),
838 .plcp = 0x0c,
842 static void rt2x00lib_channel(struct ieee80211_channel *entry,
843 const int channel, const int tx_power,
844 const int value)
846 entry->center_freq = ieee80211_channel_to_frequency(channel);
847 entry->hw_value = value;
848 entry->max_power = tx_power;
849 entry->max_antenna_gain = 0xff;
852 static void rt2x00lib_rate(struct ieee80211_rate *entry,
853 const u16 index, const struct rt2x00_rate *rate)
855 entry->flags = 0;
856 entry->bitrate = rate->bitrate;
857 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
858 entry->hw_value_short = entry->hw_value;
860 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
861 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
862 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
866 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
867 struct hw_mode_spec *spec)
869 struct ieee80211_hw *hw = rt2x00dev->hw;
870 struct ieee80211_channel *channels;
871 struct ieee80211_rate *rates;
872 unsigned int num_rates;
873 unsigned int i;
874 unsigned char tx_power;
876 num_rates = 0;
877 if (spec->supported_rates & SUPPORT_RATE_CCK)
878 num_rates += 4;
879 if (spec->supported_rates & SUPPORT_RATE_OFDM)
880 num_rates += 8;
882 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
883 if (!channels)
884 return -ENOMEM;
886 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
887 if (!rates)
888 goto exit_free_channels;
891 * Initialize Rate list.
893 for (i = 0; i < num_rates; i++)
894 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
897 * Initialize Channel list.
899 for (i = 0; i < spec->num_channels; i++) {
900 if (spec->channels[i].channel <= 14) {
901 if (spec->tx_power_bg)
902 tx_power = spec->tx_power_bg[i];
903 else
904 tx_power = spec->tx_power_default;
905 } else {
906 if (spec->tx_power_a)
907 tx_power = spec->tx_power_a[i];
908 else
909 tx_power = spec->tx_power_default;
912 rt2x00lib_channel(&channels[i],
913 spec->channels[i].channel, tx_power, i);
917 * Intitialize 802.11b, 802.11g
918 * Rates: CCK, OFDM.
919 * Channels: 2.4 GHz
921 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
922 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
923 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
924 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
925 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
926 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
927 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
931 * Intitialize 802.11a
932 * Rates: OFDM.
933 * Channels: OFDM, UNII, HiperLAN2.
935 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
936 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
937 spec->num_channels - 14;
938 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
939 num_rates - 4;
940 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
941 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
942 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
943 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
946 return 0;
948 exit_free_channels:
949 kfree(channels);
950 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
951 return -ENOMEM;
954 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
956 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
957 ieee80211_unregister_hw(rt2x00dev->hw);
959 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
960 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
961 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
962 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
963 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
967 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
969 struct hw_mode_spec *spec = &rt2x00dev->spec;
970 int status;
973 * Initialize HW modes.
975 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
976 if (status)
977 return status;
980 * Register HW.
982 status = ieee80211_register_hw(rt2x00dev->hw);
983 if (status) {
984 rt2x00lib_remove_hw(rt2x00dev);
985 return status;
988 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
990 return 0;
994 * Initialization/uninitialization handlers.
996 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
998 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
999 return;
1002 * Unregister extra components.
1004 rt2x00rfkill_unregister(rt2x00dev);
1007 * Allow the HW to uninitialize.
1009 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1012 * Free allocated queue entries.
1014 rt2x00queue_uninitialize(rt2x00dev);
1017 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1019 int status;
1021 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1022 return 0;
1025 * Allocate all queue entries.
1027 status = rt2x00queue_initialize(rt2x00dev);
1028 if (status)
1029 return status;
1032 * Initialize the device.
1034 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1035 if (status) {
1036 rt2x00queue_uninitialize(rt2x00dev);
1037 return status;
1040 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1043 * Register the extra components.
1045 rt2x00rfkill_register(rt2x00dev);
1047 return 0;
1050 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1052 int retval;
1054 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1055 return 0;
1058 * If this is the first interface which is added,
1059 * we should load the firmware now.
1061 retval = rt2x00lib_load_firmware(rt2x00dev);
1062 if (retval)
1063 return retval;
1066 * Initialize the device.
1068 retval = rt2x00lib_initialize(rt2x00dev);
1069 if (retval)
1070 return retval;
1073 * Enable radio.
1075 retval = rt2x00lib_enable_radio(rt2x00dev);
1076 if (retval) {
1077 rt2x00lib_uninitialize(rt2x00dev);
1078 return retval;
1081 rt2x00dev->intf_ap_count = 0;
1082 rt2x00dev->intf_sta_count = 0;
1083 rt2x00dev->intf_associated = 0;
1085 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1087 return 0;
1090 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1092 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1093 return;
1096 * Perhaps we can add something smarter here,
1097 * but for now just disabling the radio should do.
1099 rt2x00lib_disable_radio(rt2x00dev);
1101 rt2x00dev->intf_ap_count = 0;
1102 rt2x00dev->intf_sta_count = 0;
1103 rt2x00dev->intf_associated = 0;
1105 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1109 * driver allocation handlers.
1111 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1113 int retval = -ENOMEM;
1116 * Make room for rt2x00_intf inside the per-interface
1117 * structure ieee80211_vif.
1119 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1122 * Let the driver probe the device to detect the capabilities.
1124 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1125 if (retval) {
1126 ERROR(rt2x00dev, "Failed to allocate device.\n");
1127 goto exit;
1131 * Initialize configuration work.
1133 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1134 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1135 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1138 * Allocate queue array.
1140 retval = rt2x00queue_allocate(rt2x00dev);
1141 if (retval)
1142 goto exit;
1145 * Initialize ieee80211 structure.
1147 retval = rt2x00lib_probe_hw(rt2x00dev);
1148 if (retval) {
1149 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1150 goto exit;
1154 * Register extra components.
1156 rt2x00leds_register(rt2x00dev);
1157 rt2x00rfkill_allocate(rt2x00dev);
1158 rt2x00debug_register(rt2x00dev);
1160 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1162 return 0;
1164 exit:
1165 rt2x00lib_remove_dev(rt2x00dev);
1167 return retval;
1169 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1171 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1173 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1176 * Disable radio.
1178 rt2x00lib_disable_radio(rt2x00dev);
1181 * Uninitialize device.
1183 rt2x00lib_uninitialize(rt2x00dev);
1186 * Free extra components
1188 rt2x00debug_deregister(rt2x00dev);
1189 rt2x00rfkill_free(rt2x00dev);
1190 rt2x00leds_unregister(rt2x00dev);
1193 * Free ieee80211_hw memory.
1195 rt2x00lib_remove_hw(rt2x00dev);
1198 * Free firmware image.
1200 rt2x00lib_free_firmware(rt2x00dev);
1203 * Free queue structures.
1205 rt2x00queue_free(rt2x00dev);
1207 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1210 * Device state handlers
1212 #ifdef CONFIG_PM
1213 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1215 int retval;
1217 NOTICE(rt2x00dev, "Going to sleep.\n");
1218 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1221 * Only continue if mac80211 has open interfaces.
1223 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1224 goto exit;
1225 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1228 * Disable radio.
1230 rt2x00lib_stop(rt2x00dev);
1231 rt2x00lib_uninitialize(rt2x00dev);
1234 * Suspend/disable extra components.
1236 rt2x00leds_suspend(rt2x00dev);
1237 rt2x00rfkill_suspend(rt2x00dev);
1238 rt2x00debug_deregister(rt2x00dev);
1240 exit:
1242 * Set device mode to sleep for power management,
1243 * on some hardware this call seems to consistently fail.
1244 * From the specifications it is hard to tell why it fails,
1245 * and if this is a "bad thing".
1246 * Overall it is safe to just ignore the failure and
1247 * continue suspending. The only downside is that the
1248 * device will not be in optimal power save mode, but with
1249 * the radio and the other components already disabled the
1250 * device is as good as disabled.
1252 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1253 if (retval)
1254 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1255 "continue suspending.\n");
1257 return 0;
1259 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1261 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1262 struct ieee80211_vif *vif)
1264 struct rt2x00_dev *rt2x00dev = data;
1265 struct rt2x00_intf *intf = vif_to_intf(vif);
1267 spin_lock(&intf->lock);
1269 rt2x00lib_config_intf(rt2x00dev, intf,
1270 vif->type, intf->mac, intf->bssid);
1274 * Master or Ad-hoc mode require a new beacon update.
1276 if (vif->type == IEEE80211_IF_TYPE_AP ||
1277 vif->type == IEEE80211_IF_TYPE_IBSS)
1278 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1280 spin_unlock(&intf->lock);
1283 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1285 int retval;
1287 NOTICE(rt2x00dev, "Waking up.\n");
1290 * Restore/enable extra components.
1292 rt2x00debug_register(rt2x00dev);
1293 rt2x00rfkill_resume(rt2x00dev);
1294 rt2x00leds_resume(rt2x00dev);
1297 * Only continue if mac80211 had open interfaces.
1299 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1300 return 0;
1303 * Reinitialize device and all active interfaces.
1305 retval = rt2x00lib_start(rt2x00dev);
1306 if (retval)
1307 goto exit;
1310 * Reconfigure device.
1312 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1313 if (!rt2x00dev->hw->conf.radio_enabled)
1314 rt2x00lib_disable_radio(rt2x00dev);
1317 * Iterator over each active interface to
1318 * reconfigure the hardware.
1320 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1321 rt2x00lib_resume_intf, rt2x00dev);
1324 * We are ready again to receive requests from mac80211.
1326 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1329 * It is possible that during that mac80211 has attempted
1330 * to send frames while we were suspending or resuming.
1331 * In that case we have disabled the TX queue and should
1332 * now enable it again
1334 ieee80211_start_queues(rt2x00dev->hw);
1337 * During interface iteration we might have changed the
1338 * delayed_flags, time to handles the event by calling
1339 * the work handler directly.
1341 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1343 return 0;
1345 exit:
1346 rt2x00lib_disable_radio(rt2x00dev);
1347 rt2x00lib_uninitialize(rt2x00dev);
1348 rt2x00debug_deregister(rt2x00dev);
1350 return retval;
1352 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1353 #endif /* CONFIG_PM */
1356 * rt2x00lib module information.
1358 MODULE_AUTHOR(DRV_PROJECT);
1359 MODULE_VERSION(DRV_VERSION);
1360 MODULE_DESCRIPTION("rt2x00 library");
1361 MODULE_LICENSE("GPL");