2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/version.h>
44 #include <linux/module.h>
45 #include <linux/delay.h>
47 #include <linux/netdevice.h>
48 #include <linux/cache.h>
49 #include <linux/pci.h>
50 #include <linux/ethtool.h>
51 #include <linux/uaccess.h>
53 #include <net/ieee80211_radiotap.h>
55 #include <asm/unaligned.h>
66 static int ath5k_calinterval
= 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
74 MODULE_AUTHOR("Jiri Slaby");
75 MODULE_AUTHOR("Nick Kossifidis");
76 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
77 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
78 MODULE_LICENSE("Dual BSD/GPL");
79 MODULE_VERSION("0.5.0 (EXPERIMENTAL)");
83 static struct pci_device_id ath5k_pci_id_table
[] __devinitdata
= {
84 { PCI_VDEVICE(ATHEROS
, 0x0207), .driver_data
= AR5K_AR5210
}, /* 5210 early */
85 { PCI_VDEVICE(ATHEROS
, 0x0007), .driver_data
= AR5K_AR5210
}, /* 5210 */
86 { PCI_VDEVICE(ATHEROS
, 0x0011), .driver_data
= AR5K_AR5211
}, /* 5311 - this is on AHB bus !*/
87 { PCI_VDEVICE(ATHEROS
, 0x0012), .driver_data
= AR5K_AR5211
}, /* 5211 */
88 { PCI_VDEVICE(ATHEROS
, 0x0013), .driver_data
= AR5K_AR5212
}, /* 5212 */
89 { PCI_VDEVICE(3COM_2
, 0x0013), .driver_data
= AR5K_AR5212
}, /* 3com 5212 */
90 { PCI_VDEVICE(3COM
, 0x0013), .driver_data
= AR5K_AR5212
}, /* 3com 3CRDAG675 5212 */
91 { PCI_VDEVICE(ATHEROS
, 0x1014), .driver_data
= AR5K_AR5212
}, /* IBM minipci 5212 */
92 { PCI_VDEVICE(ATHEROS
, 0x0014), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
93 { PCI_VDEVICE(ATHEROS
, 0x0015), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
94 { PCI_VDEVICE(ATHEROS
, 0x0016), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
95 { PCI_VDEVICE(ATHEROS
, 0x0017), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
96 { PCI_VDEVICE(ATHEROS
, 0x0018), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
97 { PCI_VDEVICE(ATHEROS
, 0x0019), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
98 { PCI_VDEVICE(ATHEROS
, 0x001a), .driver_data
= AR5K_AR5212
}, /* 2413 Griffin-lite */
99 { PCI_VDEVICE(ATHEROS
, 0x001b), .driver_data
= AR5K_AR5212
}, /* 5413 Eagle */
100 { PCI_VDEVICE(ATHEROS
, 0x001c), .driver_data
= AR5K_AR5212
}, /* 5424 Condor (PCI-E)*/
101 { PCI_VDEVICE(ATHEROS
, 0x0023), .driver_data
= AR5K_AR5212
}, /* 5416 */
102 { PCI_VDEVICE(ATHEROS
, 0x0024), .driver_data
= AR5K_AR5212
}, /* 5418 */
105 MODULE_DEVICE_TABLE(pci
, ath5k_pci_id_table
);
108 static struct ath5k_srev_name srev_names
[] = {
109 { "5210", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5210
},
110 { "5311", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5311
},
111 { "5311A", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5311A
},
112 { "5311B", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5311B
},
113 { "5211", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5211
},
114 { "5212", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5212
},
115 { "5213", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5213
},
116 { "5213A", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5213A
},
117 { "2413", AR5K_VERSION_VER
, AR5K_SREV_VER_AR2413
},
118 { "2414", AR5K_VERSION_VER
, AR5K_SREV_VER_AR2414
},
119 { "2424", AR5K_VERSION_VER
, AR5K_SREV_VER_AR2424
},
120 { "5424", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5424
},
121 { "5413", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5413
},
122 { "5414", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5414
},
123 { "5416", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5416
},
124 { "5418", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5418
},
125 { "2425", AR5K_VERSION_VER
, AR5K_SREV_VER_AR2425
},
126 { "xxxxx", AR5K_VERSION_VER
, AR5K_SREV_UNKNOWN
},
127 { "5110", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5110
},
128 { "5111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111
},
129 { "2111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2111
},
130 { "5112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112
},
131 { "5112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112A
},
132 { "2112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112
},
133 { "2112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112A
},
134 { "SChip", AR5K_VERSION_RAD
, AR5K_SREV_RAD_SC0
},
135 { "SChip", AR5K_VERSION_RAD
, AR5K_SREV_RAD_SC1
},
136 { "SChip", AR5K_VERSION_RAD
, AR5K_SREV_RAD_SC2
},
137 { "5133", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5133
},
138 { "xxxxx", AR5K_VERSION_RAD
, AR5K_SREV_UNKNOWN
},
142 * Prototypes - PCI stack related functions
144 static int __devinit
ath5k_pci_probe(struct pci_dev
*pdev
,
145 const struct pci_device_id
*id
);
146 static void __devexit
ath5k_pci_remove(struct pci_dev
*pdev
);
148 static int ath5k_pci_suspend(struct pci_dev
*pdev
,
150 static int ath5k_pci_resume(struct pci_dev
*pdev
);
152 #define ath5k_pci_suspend NULL
153 #define ath5k_pci_resume NULL
154 #endif /* CONFIG_PM */
156 static struct pci_driver ath5k_pci_driver
= {
158 .id_table
= ath5k_pci_id_table
,
159 .probe
= ath5k_pci_probe
,
160 .remove
= __devexit_p(ath5k_pci_remove
),
161 .suspend
= ath5k_pci_suspend
,
162 .resume
= ath5k_pci_resume
,
168 * Prototypes - MAC 802.11 stack related functions
170 static int ath5k_tx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
171 struct ieee80211_tx_control
*ctl
);
172 static int ath5k_reset(struct ieee80211_hw
*hw
);
173 static int ath5k_start(struct ieee80211_hw
*hw
);
174 static void ath5k_stop(struct ieee80211_hw
*hw
);
175 static int ath5k_add_interface(struct ieee80211_hw
*hw
,
176 struct ieee80211_if_init_conf
*conf
);
177 static void ath5k_remove_interface(struct ieee80211_hw
*hw
,
178 struct ieee80211_if_init_conf
*conf
);
179 static int ath5k_config(struct ieee80211_hw
*hw
,
180 struct ieee80211_conf
*conf
);
181 static int ath5k_config_interface(struct ieee80211_hw
*hw
,
182 struct ieee80211_vif
*vif
,
183 struct ieee80211_if_conf
*conf
);
184 static void ath5k_configure_filter(struct ieee80211_hw
*hw
,
185 unsigned int changed_flags
,
186 unsigned int *new_flags
,
187 int mc_count
, struct dev_mc_list
*mclist
);
188 static int ath5k_set_key(struct ieee80211_hw
*hw
,
189 enum set_key_cmd cmd
,
190 const u8
*local_addr
, const u8
*addr
,
191 struct ieee80211_key_conf
*key
);
192 static int ath5k_get_stats(struct ieee80211_hw
*hw
,
193 struct ieee80211_low_level_stats
*stats
);
194 static int ath5k_get_tx_stats(struct ieee80211_hw
*hw
,
195 struct ieee80211_tx_queue_stats
*stats
);
196 static u64
ath5k_get_tsf(struct ieee80211_hw
*hw
);
197 static void ath5k_reset_tsf(struct ieee80211_hw
*hw
);
198 static int ath5k_beacon_update(struct ieee80211_hw
*hw
,
200 struct ieee80211_tx_control
*ctl
);
202 static struct ieee80211_ops ath5k_hw_ops
= {
204 .start
= ath5k_start
,
206 .add_interface
= ath5k_add_interface
,
207 .remove_interface
= ath5k_remove_interface
,
208 .config
= ath5k_config
,
209 .config_interface
= ath5k_config_interface
,
210 .configure_filter
= ath5k_configure_filter
,
211 .set_key
= ath5k_set_key
,
212 .get_stats
= ath5k_get_stats
,
214 .get_tx_stats
= ath5k_get_tx_stats
,
215 .get_tsf
= ath5k_get_tsf
,
216 .reset_tsf
= ath5k_reset_tsf
,
217 .beacon_update
= ath5k_beacon_update
,
221 * Prototypes - Internal functions
224 static int ath5k_attach(struct pci_dev
*pdev
,
225 struct ieee80211_hw
*hw
);
226 static void ath5k_detach(struct pci_dev
*pdev
,
227 struct ieee80211_hw
*hw
);
228 /* Channel/mode setup */
229 static inline short ath5k_ieee2mhz(short chan
);
230 static unsigned int ath5k_copy_rates(struct ieee80211_rate
*rates
,
231 const struct ath5k_rate_table
*rt
,
233 static unsigned int ath5k_copy_channels(struct ath5k_hw
*ah
,
234 struct ieee80211_channel
*channels
,
237 static int ath5k_getchannels(struct ieee80211_hw
*hw
);
238 static int ath5k_chan_set(struct ath5k_softc
*sc
,
239 struct ieee80211_channel
*chan
);
240 static void ath5k_setcurmode(struct ath5k_softc
*sc
,
242 static void ath5k_mode_setup(struct ath5k_softc
*sc
);
243 static void ath5k_set_total_hw_rates(struct ath5k_softc
*sc
);
245 /* Descriptor setup */
246 static int ath5k_desc_alloc(struct ath5k_softc
*sc
,
247 struct pci_dev
*pdev
);
248 static void ath5k_desc_free(struct ath5k_softc
*sc
,
249 struct pci_dev
*pdev
);
251 static int ath5k_rxbuf_setup(struct ath5k_softc
*sc
,
252 struct ath5k_buf
*bf
);
253 static int ath5k_txbuf_setup(struct ath5k_softc
*sc
,
254 struct ath5k_buf
*bf
,
255 struct ieee80211_tx_control
*ctl
);
257 static inline void ath5k_txbuf_free(struct ath5k_softc
*sc
,
258 struct ath5k_buf
*bf
)
263 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, bf
->skb
->len
,
265 dev_kfree_skb(bf
->skb
);
270 static struct ath5k_txq
*ath5k_txq_setup(struct ath5k_softc
*sc
,
271 int qtype
, int subtype
);
272 static int ath5k_beaconq_setup(struct ath5k_hw
*ah
);
273 static int ath5k_beaconq_config(struct ath5k_softc
*sc
);
274 static void ath5k_txq_drainq(struct ath5k_softc
*sc
,
275 struct ath5k_txq
*txq
);
276 static void ath5k_txq_cleanup(struct ath5k_softc
*sc
);
277 static void ath5k_txq_release(struct ath5k_softc
*sc
);
279 static int ath5k_rx_start(struct ath5k_softc
*sc
);
280 static void ath5k_rx_stop(struct ath5k_softc
*sc
);
281 static unsigned int ath5k_rx_decrypted(struct ath5k_softc
*sc
,
282 struct ath5k_desc
*ds
,
284 struct ath5k_rx_status
*rs
);
285 static void ath5k_tasklet_rx(unsigned long data
);
287 static void ath5k_tx_processq(struct ath5k_softc
*sc
,
288 struct ath5k_txq
*txq
);
289 static void ath5k_tasklet_tx(unsigned long data
);
290 /* Beacon handling */
291 static int ath5k_beacon_setup(struct ath5k_softc
*sc
,
292 struct ath5k_buf
*bf
,
293 struct ieee80211_tx_control
*ctl
);
294 static void ath5k_beacon_send(struct ath5k_softc
*sc
);
295 static void ath5k_beacon_config(struct ath5k_softc
*sc
);
296 static void ath5k_beacon_update_timers(struct ath5k_softc
*sc
, u64 bc_tsf
);
298 static inline u64
ath5k_extend_tsf(struct ath5k_hw
*ah
, u32 rstamp
)
300 u64 tsf
= ath5k_hw_get_tsf64(ah
);
302 if ((tsf
& 0x7fff) < rstamp
)
305 return (tsf
& ~0x7fff) | rstamp
;
308 /* Interrupt handling */
309 static int ath5k_init(struct ath5k_softc
*sc
);
310 static int ath5k_stop_locked(struct ath5k_softc
*sc
);
311 static int ath5k_stop_hw(struct ath5k_softc
*sc
);
312 static irqreturn_t
ath5k_intr(int irq
, void *dev_id
);
313 static void ath5k_tasklet_reset(unsigned long data
);
315 static void ath5k_calibrate(unsigned long data
);
317 static void ath5k_led_off(unsigned long data
);
318 static void ath5k_led_blink(struct ath5k_softc
*sc
,
321 static void ath5k_led_event(struct ath5k_softc
*sc
,
326 * Module init/exit functions
335 ret
= pci_register_driver(&ath5k_pci_driver
);
337 printk(KERN_ERR
"ath5k_pci: can't register pci driver\n");
347 pci_unregister_driver(&ath5k_pci_driver
);
349 ath5k_debug_finish();
352 module_init(init_ath5k_pci
);
353 module_exit(exit_ath5k_pci
);
356 /********************\
357 * PCI Initialization *
358 \********************/
361 ath5k_chip_name(enum ath5k_srev_type type
, u_int16_t val
)
363 const char *name
= "xxxxx";
366 for (i
= 0; i
< ARRAY_SIZE(srev_names
); i
++) {
367 if (srev_names
[i
].sr_type
!= type
)
369 if ((val
& 0xff) < srev_names
[i
+ 1].sr_val
) {
370 name
= srev_names
[i
].sr_name
;
379 ath5k_pci_probe(struct pci_dev
*pdev
,
380 const struct pci_device_id
*id
)
383 struct ath5k_softc
*sc
;
384 struct ieee80211_hw
*hw
;
388 ret
= pci_enable_device(pdev
);
390 dev_err(&pdev
->dev
, "can't enable device\n");
394 /* XXX 32-bit addressing only */
395 ret
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
397 dev_err(&pdev
->dev
, "32-bit DMA not available\n");
402 * Cache line size is used to size and align various
403 * structures used to communicate with the hardware.
405 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &csz
);
408 * Linux 2.4.18 (at least) writes the cache line size
409 * register as a 16-bit wide register which is wrong.
410 * We must have this setup properly for rx buffer
411 * DMA to work so force a reasonable value here if it
414 csz
= L1_CACHE_BYTES
/ sizeof(u32
);
415 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, csz
);
418 * The default setting of latency timer yields poor results,
419 * set it to the value used by other systems. It may be worth
420 * tweaking this setting more.
422 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xa8);
424 /* Enable bus mastering */
425 pci_set_master(pdev
);
428 * Disable the RETRY_TIMEOUT register (0x41) to keep
429 * PCI Tx retries from interfering with C3 CPU state.
431 pci_write_config_byte(pdev
, 0x41, 0);
433 ret
= pci_request_region(pdev
, 0, "ath5k");
435 dev_err(&pdev
->dev
, "cannot reserve PCI memory region\n");
439 mem
= pci_iomap(pdev
, 0, 0);
441 dev_err(&pdev
->dev
, "cannot remap PCI memory region\n") ;
447 * Allocate hw (mac80211 main struct)
448 * and hw->priv (driver private data)
450 hw
= ieee80211_alloc_hw(sizeof(*sc
), &ath5k_hw_ops
);
452 dev_err(&pdev
->dev
, "cannot allocate ieee80211_hw\n");
457 dev_info(&pdev
->dev
, "registered as '%s'\n", wiphy_name(hw
->wiphy
));
459 /* Initialize driver private data */
460 SET_IEEE80211_DEV(hw
, &pdev
->dev
);
461 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
;
462 hw
->extra_tx_headroom
= 2;
463 hw
->channel_change_time
= 5000;
464 /* these names are misleading */
465 hw
->max_rssi
= -110; /* signal in dBm */
466 hw
->max_noise
= -110; /* noise in dBm */
467 hw
->max_signal
= 100; /* we will provide a percentage based on rssi */
472 ath5k_debug_init_device(sc
);
475 * Mark the device as detached to avoid processing
476 * interrupts until setup is complete.
478 __set_bit(ATH_STAT_INVALID
, sc
->status
);
480 sc
->iobase
= mem
; /* So we can unmap it on detach */
481 sc
->cachelsz
= csz
* sizeof(u32
); /* convert to bytes */
482 sc
->opmode
= IEEE80211_IF_TYPE_STA
;
483 mutex_init(&sc
->lock
);
484 spin_lock_init(&sc
->rxbuflock
);
485 spin_lock_init(&sc
->txbuflock
);
487 /* Set private data */
488 pci_set_drvdata(pdev
, hw
);
490 /* Enable msi for devices that support it */
491 pci_enable_msi(pdev
);
493 /* Setup interrupt handler */
494 ret
= request_irq(pdev
->irq
, ath5k_intr
, IRQF_SHARED
, "ath", sc
);
496 ATH5K_ERR(sc
, "request_irq failed\n");
500 /* Initialize device */
501 sc
->ah
= ath5k_hw_attach(sc
, id
->driver_data
);
502 if (IS_ERR(sc
->ah
)) {
503 ret
= PTR_ERR(sc
->ah
);
507 /* Finish private driver data initialization */
508 ret
= ath5k_attach(pdev
, hw
);
512 ATH5K_INFO(sc
, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
513 ath5k_chip_name(AR5K_VERSION_VER
,sc
->ah
->ah_mac_srev
),
515 sc
->ah
->ah_phy_revision
);
517 if (!sc
->ah
->ah_single_chip
) {
518 /* Single chip radio (!RF5111) */
519 if (sc
->ah
->ah_radio_5ghz_revision
&&
520 !sc
->ah
->ah_radio_2ghz_revision
) {
521 /* No 5GHz support -> report 2GHz radio */
522 if (!test_bit(AR5K_MODE_11A
,
523 sc
->ah
->ah_capabilities
.cap_mode
)) {
524 ATH5K_INFO(sc
, "RF%s 2GHz radio found (0x%x)\n",
525 ath5k_chip_name(AR5K_VERSION_RAD
,
526 sc
->ah
->ah_radio_5ghz_revision
),
527 sc
->ah
->ah_radio_5ghz_revision
);
528 /* No 2GHz support (5110 and some
529 * 5Ghz only cards) -> report 5Ghz radio */
530 } else if (!test_bit(AR5K_MODE_11B
,
531 sc
->ah
->ah_capabilities
.cap_mode
)) {
532 ATH5K_INFO(sc
, "RF%s 5GHz radio found (0x%x)\n",
533 ath5k_chip_name(AR5K_VERSION_RAD
,
534 sc
->ah
->ah_radio_5ghz_revision
),
535 sc
->ah
->ah_radio_5ghz_revision
);
536 /* Multiband radio */
538 ATH5K_INFO(sc
, "RF%s multiband radio found"
540 ath5k_chip_name(AR5K_VERSION_RAD
,
541 sc
->ah
->ah_radio_5ghz_revision
),
542 sc
->ah
->ah_radio_5ghz_revision
);
545 /* Multi chip radio (RF5111 - RF2111) ->
546 * report both 2GHz/5GHz radios */
547 else if (sc
->ah
->ah_radio_5ghz_revision
&&
548 sc
->ah
->ah_radio_2ghz_revision
){
549 ATH5K_INFO(sc
, "RF%s 5GHz radio found (0x%x)\n",
550 ath5k_chip_name(AR5K_VERSION_RAD
,
551 sc
->ah
->ah_radio_5ghz_revision
),
552 sc
->ah
->ah_radio_5ghz_revision
);
553 ATH5K_INFO(sc
, "RF%s 2GHz radio found (0x%x)\n",
554 ath5k_chip_name(AR5K_VERSION_RAD
,
555 sc
->ah
->ah_radio_2ghz_revision
),
556 sc
->ah
->ah_radio_2ghz_revision
);
561 /* ready to process interrupts */
562 __clear_bit(ATH_STAT_INVALID
, sc
->status
);
566 ath5k_hw_detach(sc
->ah
);
568 free_irq(pdev
->irq
, sc
);
570 pci_disable_msi(pdev
);
571 ieee80211_free_hw(hw
);
573 pci_iounmap(pdev
, mem
);
575 pci_release_region(pdev
, 0);
577 pci_disable_device(pdev
);
582 static void __devexit
583 ath5k_pci_remove(struct pci_dev
*pdev
)
585 struct ieee80211_hw
*hw
= pci_get_drvdata(pdev
);
586 struct ath5k_softc
*sc
= hw
->priv
;
588 ath5k_debug_finish_device(sc
);
589 ath5k_detach(pdev
, hw
);
590 ath5k_hw_detach(sc
->ah
);
591 free_irq(pdev
->irq
, sc
);
592 pci_disable_msi(pdev
);
593 pci_iounmap(pdev
, sc
->iobase
);
594 pci_release_region(pdev
, 0);
595 pci_disable_device(pdev
);
596 ieee80211_free_hw(hw
);
601 ath5k_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
603 struct ieee80211_hw
*hw
= pci_get_drvdata(pdev
);
604 struct ath5k_softc
*sc
= hw
->priv
;
606 if (test_bit(ATH_STAT_LEDSOFT
, sc
->status
))
607 ath5k_hw_set_gpio(sc
->ah
, sc
->led_pin
, 1);
610 pci_save_state(pdev
);
611 pci_disable_device(pdev
);
612 pci_set_power_state(pdev
, PCI_D3hot
);
618 ath5k_pci_resume(struct pci_dev
*pdev
)
620 struct ieee80211_hw
*hw
= pci_get_drvdata(pdev
);
621 struct ath5k_softc
*sc
= hw
->priv
;
622 struct ath5k_hw
*ah
= sc
->ah
;
625 err
= pci_set_power_state(pdev
, PCI_D0
);
629 err
= pci_enable_device(pdev
);
633 pci_restore_state(pdev
);
635 * Suspend/Resume resets the PCI configuration space, so we have to
636 * re-disable the RETRY_TIMEOUT register (0x41) to keep
637 * PCI Tx retries from interfering with C3 CPU state
639 pci_write_config_byte(pdev
, 0x41, 0);
642 if (test_bit(ATH_STAT_LEDSOFT
, sc
->status
)) {
643 ath5k_hw_set_gpio_output(ah
, sc
->led_pin
);
644 ath5k_hw_set_gpio(ah
, sc
->led_pin
, 0);
648 * Reset the key cache since some parts do not
649 * reset the contents on initial power up or resume.
651 * FIXME: This may need to be revisited when mac80211 becomes
652 * aware of suspend/resume.
654 for (i
= 0; i
< AR5K_KEYTABLE_SIZE
; i
++)
655 ath5k_hw_reset_key(ah
, i
);
659 #endif /* CONFIG_PM */
663 /***********************\
664 * Driver Initialization *
665 \***********************/
668 ath5k_attach(struct pci_dev
*pdev
, struct ieee80211_hw
*hw
)
670 struct ath5k_softc
*sc
= hw
->priv
;
671 struct ath5k_hw
*ah
= sc
->ah
;
676 ATH5K_DBG(sc
, ATH5K_DEBUG_ANY
, "devid 0x%x\n", pdev
->device
);
679 * Check if the MAC has multi-rate retry support.
680 * We do this by trying to setup a fake extended
681 * descriptor. MAC's that don't have support will
682 * return false w/o doing anything. MAC's that do
683 * support it will return true w/o doing anything.
685 ret
= ah
->ah_setup_xtx_desc(ah
, NULL
, 0, 0, 0, 0, 0, 0);
689 __set_bit(ATH_STAT_MRRETRY
, sc
->status
);
692 * Reset the key cache since some parts do not
693 * reset the contents on initial power up.
695 for (i
= 0; i
< AR5K_KEYTABLE_SIZE
; i
++)
696 ath5k_hw_reset_key(ah
, i
);
699 * Collect the channel list. The 802.11 layer
700 * is resposible for filtering this list based
701 * on settings like the phy mode and regulatory
702 * domain restrictions.
704 ret
= ath5k_getchannels(hw
);
706 ATH5K_ERR(sc
, "can't get channels\n");
710 /* Set *_rates so we can map hw rate index */
711 ath5k_set_total_hw_rates(sc
);
713 /* NB: setup here so ath5k_rate_update is happy */
714 if (test_bit(AR5K_MODE_11A
, ah
->ah_modes
))
715 ath5k_setcurmode(sc
, AR5K_MODE_11A
);
717 ath5k_setcurmode(sc
, AR5K_MODE_11B
);
720 * Allocate tx+rx descriptors and populate the lists.
722 ret
= ath5k_desc_alloc(sc
, pdev
);
724 ATH5K_ERR(sc
, "can't allocate descriptors\n");
729 * Allocate hardware transmit queues: one queue for
730 * beacon frames and one data queue for each QoS
731 * priority. Note that hw functions handle reseting
732 * these queues at the needed time.
734 ret
= ath5k_beaconq_setup(ah
);
736 ATH5K_ERR(sc
, "can't setup a beacon xmit queue\n");
741 sc
->txq
= ath5k_txq_setup(sc
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BK
);
742 if (IS_ERR(sc
->txq
)) {
743 ATH5K_ERR(sc
, "can't setup xmit queue\n");
744 ret
= PTR_ERR(sc
->txq
);
748 tasklet_init(&sc
->rxtq
, ath5k_tasklet_rx
, (unsigned long)sc
);
749 tasklet_init(&sc
->txtq
, ath5k_tasklet_tx
, (unsigned long)sc
);
750 tasklet_init(&sc
->restq
, ath5k_tasklet_reset
, (unsigned long)sc
);
751 setup_timer(&sc
->calib_tim
, ath5k_calibrate
, (unsigned long)sc
);
752 setup_timer(&sc
->led_tim
, ath5k_led_off
, (unsigned long)sc
);
754 sc
->led_on
= 0; /* low true */
756 * Auto-enable soft led processing for IBM cards and for
757 * 5211 minipci cards.
759 if (pdev
->device
== PCI_DEVICE_ID_ATHEROS_AR5212_IBM
||
760 pdev
->device
== PCI_DEVICE_ID_ATHEROS_AR5211
) {
761 __set_bit(ATH_STAT_LEDSOFT
, sc
->status
);
764 /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */
765 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_COMPAQ
) {
766 __set_bit(ATH_STAT_LEDSOFT
, sc
->status
);
769 if (test_bit(ATH_STAT_LEDSOFT
, sc
->status
)) {
770 ath5k_hw_set_gpio_output(ah
, sc
->led_pin
);
771 ath5k_hw_set_gpio(ah
, sc
->led_pin
, !sc
->led_on
);
774 ath5k_hw_get_lladdr(ah
, mac
);
775 SET_IEEE80211_PERM_ADDR(hw
, mac
);
776 /* All MAC address bits matter for ACKs */
777 memset(sc
->bssidmask
, 0xff, ETH_ALEN
);
778 ath5k_hw_set_bssid_mask(sc
->ah
, sc
->bssidmask
);
780 ret
= ieee80211_register_hw(hw
);
782 ATH5K_ERR(sc
, "can't register ieee80211 hw\n");
788 ath5k_txq_release(sc
);
790 ath5k_hw_release_tx_queue(ah
, sc
->bhalq
);
792 ath5k_desc_free(sc
, pdev
);
798 ath5k_detach(struct pci_dev
*pdev
, struct ieee80211_hw
*hw
)
800 struct ath5k_softc
*sc
= hw
->priv
;
803 * NB: the order of these is important:
804 * o call the 802.11 layer before detaching ath5k_hw to
805 * insure callbacks into the driver to delete global
806 * key cache entries can be handled
807 * o reclaim the tx queue data structures after calling
808 * the 802.11 layer as we'll get called back to reclaim
809 * node state and potentially want to use them
810 * o to cleanup the tx queues the hal is called, so detach
812 * XXX: ??? detach ath5k_hw ???
813 * Other than that, it's straightforward...
815 ieee80211_unregister_hw(hw
);
816 ath5k_desc_free(sc
, pdev
);
817 ath5k_txq_release(sc
);
818 ath5k_hw_release_tx_queue(sc
->ah
, sc
->bhalq
);
821 * NB: can't reclaim these until after ieee80211_ifdetach
822 * returns because we'll get called back to reclaim node
823 * state and potentially want to use them.
830 /********************\
831 * Channel/mode setup *
832 \********************/
835 * Convert IEEE channel number to MHz frequency.
838 ath5k_ieee2mhz(short chan
)
840 if (chan
<= 14 || chan
>= 27)
841 return ieee80211chan2mhz(chan
);
843 return 2212 + chan
* 20;
847 ath5k_copy_rates(struct ieee80211_rate
*rates
,
848 const struct ath5k_rate_table
*rt
,
851 unsigned int i
, count
;
856 for (i
= 0, count
= 0; i
< rt
->rate_count
&& max
> 0; i
++) {
857 rates
[count
].bitrate
= rt
->rates
[i
].rate_kbps
/ 100;
858 rates
[count
].hw_value
= rt
->rates
[i
].rate_code
;
859 rates
[count
].flags
= rt
->rates
[i
].modulation
;
868 ath5k_copy_channels(struct ath5k_hw
*ah
,
869 struct ieee80211_channel
*channels
,
873 unsigned int i
, count
, size
, chfreq
, freq
, ch
;
875 if (!test_bit(mode
, ah
->ah_modes
))
880 case AR5K_MODE_11A_TURBO
:
881 /* 1..220, but 2GHz frequencies are filtered by check_channel */
883 chfreq
= CHANNEL_5GHZ
;
887 case AR5K_MODE_11G_TURBO
:
889 chfreq
= CHANNEL_2GHZ
;
892 ATH5K_WARN(ah
->ah_sc
, "bad mode, not copying channels\n");
896 for (i
= 0, count
= 0; i
< size
&& max
> 0; i
++) {
898 freq
= ath5k_ieee2mhz(ch
);
900 /* Check if channel is supported by the chipset */
901 if (!ath5k_channel_ok(ah
, freq
, chfreq
))
904 /* Write channel info and increment counter */
905 channels
[count
].center_freq
= freq
;
906 channels
[count
].band
= (chfreq
== CHANNEL_2GHZ
) ?
907 IEEE80211_BAND_2GHZ
: IEEE80211_BAND_5GHZ
;
911 channels
[count
].hw_value
= chfreq
| CHANNEL_OFDM
;
913 case AR5K_MODE_11A_TURBO
:
914 case AR5K_MODE_11G_TURBO
:
915 channels
[count
].hw_value
= chfreq
|
916 CHANNEL_OFDM
| CHANNEL_TURBO
;
919 channels
[count
].hw_value
= CHANNEL_B
;
930 ath5k_getchannels(struct ieee80211_hw
*hw
)
932 struct ath5k_softc
*sc
= hw
->priv
;
933 struct ath5k_hw
*ah
= sc
->ah
;
934 struct ieee80211_supported_band
*sbands
= sc
->sbands
;
935 const struct ath5k_rate_table
*hw_rates
;
936 unsigned int max_r
, max_c
, count_r
, count_c
;
937 int mode2g
= AR5K_MODE_11G
;
939 BUILD_BUG_ON(ARRAY_SIZE(sc
->sbands
) < IEEE80211_NUM_BANDS
);
941 max_r
= ARRAY_SIZE(sc
->rates
);
942 max_c
= ARRAY_SIZE(sc
->channels
);
943 count_r
= count_c
= 0;
946 if (!test_bit(AR5K_MODE_11G
, sc
->ah
->ah_capabilities
.cap_mode
)) {
947 mode2g
= AR5K_MODE_11B
;
948 if (!test_bit(AR5K_MODE_11B
,
949 sc
->ah
->ah_capabilities
.cap_mode
))
954 struct ieee80211_supported_band
*sband
=
955 &sbands
[IEEE80211_BAND_2GHZ
];
957 sband
->bitrates
= sc
->rates
;
958 sband
->channels
= sc
->channels
;
960 sband
->band
= IEEE80211_BAND_2GHZ
;
961 sband
->n_channels
= ath5k_copy_channels(ah
, sband
->channels
,
964 hw_rates
= ath5k_hw_get_rate_table(ah
, mode2g
);
965 sband
->n_bitrates
= ath5k_copy_rates(sband
->bitrates
,
968 count_c
= sband
->n_channels
;
969 count_r
= sband
->n_bitrates
;
971 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = sband
;
980 if (test_bit(AR5K_MODE_11A
, sc
->ah
->ah_capabilities
.cap_mode
)) {
981 struct ieee80211_supported_band
*sband
=
982 &sbands
[IEEE80211_BAND_5GHZ
];
984 sband
->bitrates
= &sc
->rates
[count_r
];
985 sband
->channels
= &sc
->channels
[count_c
];
987 sband
->band
= IEEE80211_BAND_5GHZ
;
988 sband
->n_channels
= ath5k_copy_channels(ah
, sband
->channels
,
989 AR5K_MODE_11A
, max_c
);
991 hw_rates
= ath5k_hw_get_rate_table(ah
, AR5K_MODE_11A
);
992 sband
->n_bitrates
= ath5k_copy_rates(sband
->bitrates
,
995 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = sband
;
998 ath5k_debug_dump_bands(sc
);
1004 * Set/change channels. If the channel is really being changed,
1005 * it's done by reseting the chip. To accomplish this we must
1006 * first cleanup any pending DMA, then restart stuff after a la
1010 ath5k_chan_set(struct ath5k_softc
*sc
, struct ieee80211_channel
*chan
)
1012 struct ath5k_hw
*ah
= sc
->ah
;
1015 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "(%u MHz) -> (%u MHz)\n",
1016 sc
->curchan
->center_freq
, chan
->center_freq
);
1018 if (chan
->center_freq
!= sc
->curchan
->center_freq
||
1019 chan
->hw_value
!= sc
->curchan
->hw_value
) {
1022 sc
->curband
= &sc
->sbands
[chan
->band
];
1025 * To switch channels clear any pending DMA operations;
1026 * wait long enough for the RX fifo to drain, reset the
1027 * hardware at the new frequency, and then re-enable
1028 * the relevant bits of the h/w.
1030 ath5k_hw_set_intr(ah
, 0); /* disable interrupts */
1031 ath5k_txq_cleanup(sc
); /* clear pending tx frames */
1032 ath5k_rx_stop(sc
); /* turn off frame recv */
1033 ret
= ath5k_hw_reset(ah
, sc
->opmode
, sc
->curchan
, true);
1035 ATH5K_ERR(sc
, "%s: unable to reset channel "
1036 "(%u Mhz)\n", __func__
, chan
->center_freq
);
1040 ath5k_hw_set_txpower_limit(sc
->ah
, 0);
1043 * Re-enable rx framework.
1045 ret
= ath5k_rx_start(sc
);
1047 ATH5K_ERR(sc
, "%s: unable to restart recv logic\n",
1053 * Change channels and update the h/w rate map
1054 * if we're switching; e.g. 11a to 11b/g.
1058 /* ath5k_chan_change(sc, chan); */
1060 ath5k_beacon_config(sc
);
1062 * Re-enable interrupts.
1064 ath5k_hw_set_intr(ah
, sc
->imask
);
1071 * TODO: CLEAN THIS !!!
1074 ath5k_setcurmode(struct ath5k_softc
*sc
, unsigned int mode
)
1076 if (unlikely(test_bit(ATH_STAT_LEDSOFT
, sc
->status
))) {
1077 /* from Atheros NDIS driver, w/ permission */
1078 static const struct {
1079 u16 rate
; /* tx/rx 802.11 rate */
1080 u16 timeOn
; /* LED on time (ms) */
1081 u16 timeOff
; /* LED off time (ms) */
1098 const struct ath5k_rate_table
*rt
=
1099 ath5k_hw_get_rate_table(sc
->ah
, mode
);
1104 memset(sc
->hwmap
, 0, sizeof(sc
->hwmap
));
1105 for (i
= 0; i
< 32; i
++) {
1106 u8 ix
= rt
->rate_code_to_index
[i
];
1108 sc
->hwmap
[i
].ledon
= msecs_to_jiffies(500);
1109 sc
->hwmap
[i
].ledoff
= msecs_to_jiffies(130);
1112 sc
->hwmap
[i
].txflags
= IEEE80211_RADIOTAP_F_DATAPAD
;
1113 /* receive frames include FCS */
1114 sc
->hwmap
[i
].rxflags
= sc
->hwmap
[i
].txflags
|
1115 IEEE80211_RADIOTAP_F_FCS
;
1116 /* setup blink rate table to avoid per-packet lookup */
1117 for (j
= 0; j
< ARRAY_SIZE(blinkrates
) - 1; j
++)
1118 if (blinkrates
[j
].rate
== /* XXX why 7f? */
1119 (rt
->rates
[ix
].dot11_rate
&0x7f))
1122 sc
->hwmap
[i
].ledon
= msecs_to_jiffies(blinkrates
[j
].
1124 sc
->hwmap
[i
].ledoff
= msecs_to_jiffies(blinkrates
[j
].
1131 if (mode
== AR5K_MODE_11A
) {
1132 sc
->curband
= &sc
->sbands
[IEEE80211_BAND_5GHZ
];
1134 sc
->curband
= &sc
->sbands
[IEEE80211_BAND_2GHZ
];
1139 ath5k_mode_setup(struct ath5k_softc
*sc
)
1141 struct ath5k_hw
*ah
= sc
->ah
;
1144 /* configure rx filter */
1145 rfilt
= sc
->filter_flags
;
1146 ath5k_hw_set_rx_filter(ah
, rfilt
);
1148 if (ath5k_hw_hasbssidmask(ah
))
1149 ath5k_hw_set_bssid_mask(ah
, sc
->bssidmask
);
1151 /* configure operational mode */
1152 ath5k_hw_set_opmode(ah
);
1154 ath5k_hw_set_mcast_filter(ah
, 0, 0);
1155 ATH5K_DBG(sc
, ATH5K_DEBUG_MODE
, "RX filter 0x%x\n", rfilt
);
1159 * Match the hw provided rate index (through descriptors)
1160 * to an index for sc->curband->bitrates, so it can be used
1163 * This one is a little bit tricky but i think i'm right
1166 * We have 4 rate tables in the following order:
1170 * 802.11g (12 rates)
1171 * that make the hw rate table.
1173 * Lets take a 5211 for example that supports a and b modes only.
1174 * First comes the 802.11a table and then 802.11b (total 12 rates).
1175 * When hw returns eg. 11 it points to the last 802.11b rate (11Mbit),
1176 * if it returns 2 it points to the second 802.11a rate etc.
1178 * Same goes for 5212 who has xr/a/b/g support (total 28 rates).
1179 * First comes the XR table, then 802.11a, 802.11b and 802.11g.
1180 * When hw returns eg. 27 it points to the last 802.11g rate (54Mbits) etc
1183 ath5k_set_total_hw_rates(struct ath5k_softc
*sc
) {
1185 struct ath5k_hw
*ah
= sc
->ah
;
1187 if (test_bit(AR5K_MODE_11A
, ah
->ah_modes
))
1190 if (test_bit(AR5K_MODE_11B
, ah
->ah_modes
))
1193 if (test_bit(AR5K_MODE_11G
, ah
->ah_modes
))
1196 /* XXX: Need to see what what happens when
1197 xr disable bits in eeprom are set */
1198 if (ah
->ah_version
>= AR5K_AR5212
)
1204 ath5k_hw_to_driver_rix(struct ath5k_softc
*sc
, int hw_rix
) {
1208 if(sc
->curband
->band
== IEEE80211_BAND_2GHZ
) {
1209 /* We setup a g ratetable for both b/g modes */
1211 hw_rix
- sc
->b_rates
- sc
->a_rates
- sc
->xr_rates
;
1213 mac80211_rix
= hw_rix
- sc
->xr_rates
;
1216 /* Something went wrong, fallback to basic rate for this band */
1217 if ((mac80211_rix
>= sc
->curband
->n_bitrates
) ||
1218 (mac80211_rix
<= 0 ))
1221 return mac80211_rix
;
1232 ath5k_rxbuf_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
)
1234 struct ath5k_hw
*ah
= sc
->ah
;
1235 struct sk_buff
*skb
= bf
->skb
;
1236 struct ath5k_desc
*ds
;
1238 if (likely(skb
== NULL
)) {
1242 * Allocate buffer with headroom_needed space for the
1243 * fake physical layer header at the start.
1245 skb
= dev_alloc_skb(sc
->rxbufsize
+ sc
->cachelsz
- 1);
1246 if (unlikely(skb
== NULL
)) {
1247 ATH5K_ERR(sc
, "can't alloc skbuff of size %u\n",
1248 sc
->rxbufsize
+ sc
->cachelsz
- 1);
1252 * Cache-line-align. This is important (for the
1253 * 5210 at least) as not doing so causes bogus data
1256 off
= ((unsigned long)skb
->data
) % sc
->cachelsz
;
1258 skb_reserve(skb
, sc
->cachelsz
- off
);
1261 bf
->skbaddr
= pci_map_single(sc
->pdev
,
1262 skb
->data
, sc
->rxbufsize
, PCI_DMA_FROMDEVICE
);
1263 if (unlikely(pci_dma_mapping_error(bf
->skbaddr
))) {
1264 ATH5K_ERR(sc
, "%s: DMA mapping failed\n", __func__
);
1272 * Setup descriptors. For receive we always terminate
1273 * the descriptor list with a self-linked entry so we'll
1274 * not get overrun under high load (as can happen with a
1275 * 5212 when ANI processing enables PHY error frames).
1277 * To insure the last descriptor is self-linked we create
1278 * each descriptor as self-linked and add it to the end. As
1279 * each additional descriptor is added the previous self-linked
1280 * entry is ``fixed'' naturally. This should be safe even
1281 * if DMA is happening. When processing RX interrupts we
1282 * never remove/process the last, self-linked, entry on the
1283 * descriptor list. This insures the hardware always has
1284 * someplace to write a new frame.
1287 ds
->ds_link
= bf
->daddr
; /* link to self */
1288 ds
->ds_data
= bf
->skbaddr
;
1289 ath5k_hw_setup_rx_desc(ah
, ds
,
1290 skb_tailroom(skb
), /* buffer size */
1293 if (sc
->rxlink
!= NULL
)
1294 *sc
->rxlink
= bf
->daddr
;
1295 sc
->rxlink
= &ds
->ds_link
;
1300 ath5k_txbuf_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
,
1301 struct ieee80211_tx_control
*ctl
)
1303 struct ath5k_hw
*ah
= sc
->ah
;
1304 struct ath5k_txq
*txq
= sc
->txq
;
1305 struct ath5k_desc
*ds
= bf
->desc
;
1306 struct sk_buff
*skb
= bf
->skb
;
1307 unsigned int pktlen
, flags
, keyidx
= AR5K_TXKEYIX_INVALID
;
1310 flags
= AR5K_TXDESC_INTREQ
| AR5K_TXDESC_CLRDMASK
;
1312 /* XXX endianness */
1313 bf
->skbaddr
= pci_map_single(sc
->pdev
, skb
->data
, skb
->len
,
1316 if (ctl
->flags
& IEEE80211_TXCTL_NO_ACK
)
1317 flags
|= AR5K_TXDESC_NOACK
;
1321 if (!(ctl
->flags
& IEEE80211_TXCTL_DO_NOT_ENCRYPT
)) {
1322 keyidx
= ctl
->key_idx
;
1323 pktlen
+= ctl
->icv_len
;
1326 ret
= ah
->ah_setup_tx_desc(ah
, ds
, pktlen
,
1327 ieee80211_get_hdrlen_from_skb(skb
), AR5K_PKT_TYPE_NORMAL
,
1328 (sc
->power_level
* 2), ctl
->tx_rate
->hw_value
,
1329 ctl
->retry_limit
, keyidx
, 0, flags
, 0, 0);
1334 ds
->ds_data
= bf
->skbaddr
;
1336 spin_lock_bh(&txq
->lock
);
1337 list_add_tail(&bf
->list
, &txq
->q
);
1338 sc
->tx_stats
.data
[txq
->qnum
].len
++;
1339 if (txq
->link
== NULL
) /* is this first packet? */
1340 ath5k_hw_put_tx_buf(ah
, txq
->qnum
, bf
->daddr
);
1341 else /* no, so only link it */
1342 *txq
->link
= bf
->daddr
;
1344 txq
->link
= &ds
->ds_link
;
1345 ath5k_hw_tx_start(ah
, txq
->qnum
);
1346 spin_unlock_bh(&txq
->lock
);
1350 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, skb
->len
, PCI_DMA_TODEVICE
);
1354 /*******************\
1355 * Descriptors setup *
1356 \*******************/
1359 ath5k_desc_alloc(struct ath5k_softc
*sc
, struct pci_dev
*pdev
)
1361 struct ath5k_desc
*ds
;
1362 struct ath5k_buf
*bf
;
1367 /* allocate descriptors */
1368 sc
->desc_len
= sizeof(struct ath5k_desc
) *
1369 (ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
+ 1);
1370 sc
->desc
= pci_alloc_consistent(pdev
, sc
->desc_len
, &sc
->desc_daddr
);
1371 if (sc
->desc
== NULL
) {
1372 ATH5K_ERR(sc
, "can't allocate descriptors\n");
1377 da
= sc
->desc_daddr
;
1378 ATH5K_DBG(sc
, ATH5K_DEBUG_ANY
, "DMA map: %p (%zu) -> %llx\n",
1379 ds
, sc
->desc_len
, (unsigned long long)sc
->desc_daddr
);
1381 bf
= kcalloc(1 + ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
,
1382 sizeof(struct ath5k_buf
), GFP_KERNEL
);
1384 ATH5K_ERR(sc
, "can't allocate bufptr\n");
1390 INIT_LIST_HEAD(&sc
->rxbuf
);
1391 for (i
= 0; i
< ATH_RXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
1394 list_add_tail(&bf
->list
, &sc
->rxbuf
);
1397 INIT_LIST_HEAD(&sc
->txbuf
);
1398 sc
->txbuf_len
= ATH_TXBUF
;
1399 for (i
= 0; i
< ATH_TXBUF
; i
++, bf
++, ds
++,
1400 da
+= sizeof(*ds
)) {
1403 list_add_tail(&bf
->list
, &sc
->txbuf
);
1413 pci_free_consistent(pdev
, sc
->desc_len
, sc
->desc
, sc
->desc_daddr
);
1420 ath5k_desc_free(struct ath5k_softc
*sc
, struct pci_dev
*pdev
)
1422 struct ath5k_buf
*bf
;
1424 ath5k_txbuf_free(sc
, sc
->bbuf
);
1425 list_for_each_entry(bf
, &sc
->txbuf
, list
)
1426 ath5k_txbuf_free(sc
, bf
);
1427 list_for_each_entry(bf
, &sc
->rxbuf
, list
)
1428 ath5k_txbuf_free(sc
, bf
);
1430 /* Free memory associated with all descriptors */
1431 pci_free_consistent(pdev
, sc
->desc_len
, sc
->desc
, sc
->desc_daddr
);
1445 static struct ath5k_txq
*
1446 ath5k_txq_setup(struct ath5k_softc
*sc
,
1447 int qtype
, int subtype
)
1449 struct ath5k_hw
*ah
= sc
->ah
;
1450 struct ath5k_txq
*txq
;
1451 struct ath5k_txq_info qi
= {
1452 .tqi_subtype
= subtype
,
1453 .tqi_aifs
= AR5K_TXQ_USEDEFAULT
,
1454 .tqi_cw_min
= AR5K_TXQ_USEDEFAULT
,
1455 .tqi_cw_max
= AR5K_TXQ_USEDEFAULT
1460 * Enable interrupts only for EOL and DESC conditions.
1461 * We mark tx descriptors to receive a DESC interrupt
1462 * when a tx queue gets deep; otherwise waiting for the
1463 * EOL to reap descriptors. Note that this is done to
1464 * reduce interrupt load and this only defers reaping
1465 * descriptors, never transmitting frames. Aside from
1466 * reducing interrupts this also permits more concurrency.
1467 * The only potential downside is if the tx queue backs
1468 * up in which case the top half of the kernel may backup
1469 * due to a lack of tx descriptors.
1471 qi
.tqi_flags
= AR5K_TXQ_FLAG_TXEOLINT_ENABLE
|
1472 AR5K_TXQ_FLAG_TXDESCINT_ENABLE
;
1473 qnum
= ath5k_hw_setup_tx_queue(ah
, qtype
, &qi
);
1476 * NB: don't print a message, this happens
1477 * normally on parts with too few tx queues
1479 return ERR_PTR(qnum
);
1481 if (qnum
>= ARRAY_SIZE(sc
->txqs
)) {
1482 ATH5K_ERR(sc
, "hw qnum %u out of range, max %tu!\n",
1483 qnum
, ARRAY_SIZE(sc
->txqs
));
1484 ath5k_hw_release_tx_queue(ah
, qnum
);
1485 return ERR_PTR(-EINVAL
);
1487 txq
= &sc
->txqs
[qnum
];
1491 INIT_LIST_HEAD(&txq
->q
);
1492 spin_lock_init(&txq
->lock
);
1495 return &sc
->txqs
[qnum
];
1499 ath5k_beaconq_setup(struct ath5k_hw
*ah
)
1501 struct ath5k_txq_info qi
= {
1502 .tqi_aifs
= AR5K_TXQ_USEDEFAULT
,
1503 .tqi_cw_min
= AR5K_TXQ_USEDEFAULT
,
1504 .tqi_cw_max
= AR5K_TXQ_USEDEFAULT
,
1505 /* NB: for dynamic turbo, don't enable any other interrupts */
1506 .tqi_flags
= AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1509 return ath5k_hw_setup_tx_queue(ah
, AR5K_TX_QUEUE_BEACON
, &qi
);
1513 ath5k_beaconq_config(struct ath5k_softc
*sc
)
1515 struct ath5k_hw
*ah
= sc
->ah
;
1516 struct ath5k_txq_info qi
;
1519 ret
= ath5k_hw_get_tx_queueprops(ah
, sc
->bhalq
, &qi
);
1522 if (sc
->opmode
== IEEE80211_IF_TYPE_AP
) {
1524 * Always burst out beacon and CAB traffic
1525 * (aifs = cwmin = cwmax = 0)
1530 } else if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
) {
1532 * Adhoc mode; backoff between 0 and (2 * cw_min).
1536 qi
.tqi_cw_max
= 2 * ah
->ah_cw_min
;
1539 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
1540 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1541 qi
.tqi_aifs
, qi
.tqi_cw_min
, qi
.tqi_cw_max
);
1543 ret
= ath5k_hw_setup_tx_queueprops(ah
, sc
->bhalq
, &qi
);
1545 ATH5K_ERR(sc
, "%s: unable to update parameters for beacon "
1546 "hardware queue!\n", __func__
);
1550 return ath5k_hw_reset_tx_queue(ah
, sc
->bhalq
); /* push to h/w */;
1554 ath5k_txq_drainq(struct ath5k_softc
*sc
, struct ath5k_txq
*txq
)
1556 struct ath5k_buf
*bf
, *bf0
;
1559 * NB: this assumes output has been stopped and
1560 * we do not need to block ath5k_tx_tasklet
1562 spin_lock_bh(&txq
->lock
);
1563 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1564 ath5k_debug_printtxbuf(sc
, bf
);
1566 ath5k_txbuf_free(sc
, bf
);
1568 spin_lock_bh(&sc
->txbuflock
);
1569 sc
->tx_stats
.data
[txq
->qnum
].len
--;
1570 list_move_tail(&bf
->list
, &sc
->txbuf
);
1572 spin_unlock_bh(&sc
->txbuflock
);
1575 spin_unlock_bh(&txq
->lock
);
1579 * Drain the transmit queues and reclaim resources.
1582 ath5k_txq_cleanup(struct ath5k_softc
*sc
)
1584 struct ath5k_hw
*ah
= sc
->ah
;
1587 /* XXX return value */
1588 if (likely(!test_bit(ATH_STAT_INVALID
, sc
->status
))) {
1589 /* don't touch the hardware if marked invalid */
1590 ath5k_hw_stop_tx_dma(ah
, sc
->bhalq
);
1591 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "beacon queue %x\n",
1592 ath5k_hw_get_tx_buf(ah
, sc
->bhalq
));
1593 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++)
1594 if (sc
->txqs
[i
].setup
) {
1595 ath5k_hw_stop_tx_dma(ah
, sc
->txqs
[i
].qnum
);
1596 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "txq [%u] %x, "
1599 ath5k_hw_get_tx_buf(ah
,
1604 ieee80211_start_queues(sc
->hw
); /* XXX move to callers */
1606 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++)
1607 if (sc
->txqs
[i
].setup
)
1608 ath5k_txq_drainq(sc
, &sc
->txqs
[i
]);
1612 ath5k_txq_release(struct ath5k_softc
*sc
)
1614 struct ath5k_txq
*txq
= sc
->txqs
;
1617 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++, txq
++)
1619 ath5k_hw_release_tx_queue(sc
->ah
, txq
->qnum
);
1632 * Enable the receive h/w following a reset.
1635 ath5k_rx_start(struct ath5k_softc
*sc
)
1637 struct ath5k_hw
*ah
= sc
->ah
;
1638 struct ath5k_buf
*bf
;
1641 sc
->rxbufsize
= roundup(IEEE80211_MAX_LEN
, sc
->cachelsz
);
1643 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "cachelsz %u rxbufsize %u\n",
1644 sc
->cachelsz
, sc
->rxbufsize
);
1648 spin_lock_bh(&sc
->rxbuflock
);
1649 list_for_each_entry(bf
, &sc
->rxbuf
, list
) {
1650 ret
= ath5k_rxbuf_setup(sc
, bf
);
1652 spin_unlock_bh(&sc
->rxbuflock
);
1656 bf
= list_first_entry(&sc
->rxbuf
, struct ath5k_buf
, list
);
1657 spin_unlock_bh(&sc
->rxbuflock
);
1659 ath5k_hw_put_rx_buf(ah
, bf
->daddr
);
1660 ath5k_hw_start_rx(ah
); /* enable recv descriptors */
1661 ath5k_mode_setup(sc
); /* set filters, etc. */
1662 ath5k_hw_start_rx_pcu(ah
); /* re-enable PCU/DMA engine */
1670 * Disable the receive h/w in preparation for a reset.
1673 ath5k_rx_stop(struct ath5k_softc
*sc
)
1675 struct ath5k_hw
*ah
= sc
->ah
;
1677 ath5k_hw_stop_pcu_recv(ah
); /* disable PCU */
1678 ath5k_hw_set_rx_filter(ah
, 0); /* clear recv filter */
1679 ath5k_hw_stop_rx_dma(ah
); /* disable DMA engine */
1680 mdelay(3); /* 3ms is long enough for 1 frame */
1682 ath5k_debug_printrxbuffs(sc
, ah
);
1684 sc
->rxlink
= NULL
; /* just in case */
1688 ath5k_rx_decrypted(struct ath5k_softc
*sc
, struct ath5k_desc
*ds
,
1689 struct sk_buff
*skb
, struct ath5k_rx_status
*rs
)
1691 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
1692 unsigned int keyix
, hlen
= ieee80211_get_hdrlen_from_skb(skb
);
1694 if (!(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1695 rs
->rs_keyix
!= AR5K_RXKEYIX_INVALID
)
1696 return RX_FLAG_DECRYPTED
;
1698 /* Apparently when a default key is used to decrypt the packet
1699 the hw does not set the index used to decrypt. In such cases
1700 get the index from the packet. */
1701 if ((le16_to_cpu(hdr
->frame_control
) & IEEE80211_FCTL_PROTECTED
) &&
1702 !(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1703 skb
->len
>= hlen
+ 4) {
1704 keyix
= skb
->data
[hlen
+ 3] >> 6;
1706 if (test_bit(keyix
, sc
->keymap
))
1707 return RX_FLAG_DECRYPTED
;
1715 ath5k_check_ibss_tsf(struct ath5k_softc
*sc
, struct sk_buff
*skb
,
1716 struct ieee80211_rx_status
*rxs
)
1720 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1722 if ((le16_to_cpu(mgmt
->frame_control
) & IEEE80211_FCTL_FTYPE
) ==
1723 IEEE80211_FTYPE_MGMT
&&
1724 (le16_to_cpu(mgmt
->frame_control
) & IEEE80211_FCTL_STYPE
) ==
1725 IEEE80211_STYPE_BEACON
&&
1726 le16_to_cpu(mgmt
->u
.beacon
.capab_info
) & WLAN_CAPABILITY_IBSS
&&
1727 memcmp(mgmt
->bssid
, sc
->ah
->ah_bssid
, ETH_ALEN
) == 0) {
1729 * Received an IBSS beacon with the same BSSID. Hardware *must*
1730 * have updated the local TSF. We have to work around various
1731 * hardware bugs, though...
1733 tsf
= ath5k_hw_get_tsf64(sc
->ah
);
1734 bc_tstamp
= le64_to_cpu(mgmt
->u
.beacon
.timestamp
);
1735 hw_tu
= TSF_TO_TU(tsf
);
1737 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
1738 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1739 (unsigned long long)bc_tstamp
,
1740 (unsigned long long)rxs
->mactime
,
1741 (unsigned long long)(rxs
->mactime
- bc_tstamp
),
1742 (unsigned long long)tsf
);
1745 * Sometimes the HW will give us a wrong tstamp in the rx
1746 * status, causing the timestamp extension to go wrong.
1747 * (This seems to happen especially with beacon frames bigger
1748 * than 78 byte (incl. FCS))
1749 * But we know that the receive timestamp must be later than the
1750 * timestamp of the beacon since HW must have synced to that.
1752 * NOTE: here we assume mactime to be after the frame was
1753 * received, not like mac80211 which defines it at the start.
1755 if (bc_tstamp
> rxs
->mactime
) {
1756 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
1757 "fixing mactime from %llx to %llx\n",
1758 (unsigned long long)rxs
->mactime
,
1759 (unsigned long long)tsf
);
1764 * Local TSF might have moved higher than our beacon timers,
1765 * in that case we have to update them to continue sending
1766 * beacons. This also takes care of synchronizing beacon sending
1767 * times with other stations.
1769 if (hw_tu
>= sc
->nexttbtt
)
1770 ath5k_beacon_update_timers(sc
, bc_tstamp
);
1776 ath5k_tasklet_rx(unsigned long data
)
1778 struct ieee80211_rx_status rxs
= {};
1779 struct ath5k_rx_status rs
= {};
1780 struct sk_buff
*skb
;
1781 struct ath5k_softc
*sc
= (void *)data
;
1782 struct ath5k_buf
*bf
;
1783 struct ath5k_desc
*ds
;
1788 spin_lock(&sc
->rxbuflock
);
1792 if (unlikely(list_empty(&sc
->rxbuf
))) {
1793 ATH5K_WARN(sc
, "empty rx buf pool\n");
1796 bf
= list_first_entry(&sc
->rxbuf
, struct ath5k_buf
, list
);
1797 BUG_ON(bf
->skb
== NULL
);
1801 /* TODO only one segment */
1802 pci_dma_sync_single_for_cpu(sc
->pdev
, sc
->desc_daddr
,
1803 sc
->desc_len
, PCI_DMA_FROMDEVICE
);
1805 if (unlikely(ds
->ds_link
== bf
->daddr
)) /* this is the end */
1808 ret
= sc
->ah
->ah_proc_rx_desc(sc
->ah
, ds
, &rs
);
1809 if (unlikely(ret
== -EINPROGRESS
))
1811 else if (unlikely(ret
)) {
1812 ATH5K_ERR(sc
, "error in processing rx descriptor\n");
1813 spin_unlock(&sc
->rxbuflock
);
1817 if (unlikely(rs
.rs_more
)) {
1818 ATH5K_WARN(sc
, "unsupported jumbo\n");
1822 if (unlikely(rs
.rs_status
)) {
1823 if (rs
.rs_status
& AR5K_RXERR_PHY
)
1825 if (rs
.rs_status
& AR5K_RXERR_DECRYPT
) {
1827 * Decrypt error. If the error occurred
1828 * because there was no hardware key, then
1829 * let the frame through so the upper layers
1830 * can process it. This is necessary for 5210
1831 * parts which have no way to setup a ``clear''
1834 * XXX do key cache faulting
1836 if (rs
.rs_keyix
== AR5K_RXKEYIX_INVALID
&&
1837 !(rs
.rs_status
& AR5K_RXERR_CRC
))
1840 if (rs
.rs_status
& AR5K_RXERR_MIC
) {
1841 rxs
.flag
|= RX_FLAG_MMIC_ERROR
;
1845 /* let crypto-error packets fall through in MNTR */
1847 ~(AR5K_RXERR_DECRYPT
|AR5K_RXERR_MIC
)) ||
1848 sc
->opmode
!= IEEE80211_IF_TYPE_MNTR
)
1852 pci_dma_sync_single_for_cpu(sc
->pdev
, bf
->skbaddr
,
1853 rs
.rs_datalen
, PCI_DMA_FROMDEVICE
);
1854 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, sc
->rxbufsize
,
1855 PCI_DMA_FROMDEVICE
);
1858 skb_put(skb
, rs
.rs_datalen
);
1861 * the hardware adds a padding to 4 byte boundaries between
1862 * the header and the payload data if the header length is
1863 * not multiples of 4 - remove it
1865 hdrlen
= ieee80211_get_hdrlen_from_skb(skb
);
1868 memmove(skb
->data
+ pad
, skb
->data
, hdrlen
);
1873 * always extend the mac timestamp, since this information is
1874 * also needed for proper IBSS merging.
1876 * XXX: it might be too late to do it here, since rs_tstamp is
1877 * 15bit only. that means TSF extension has to be done within
1878 * 32768usec (about 32ms). it might be necessary to move this to
1879 * the interrupt handler, like it is done in madwifi.
1881 * Unfortunately we don't know when the hardware takes the rx
1882 * timestamp (beginning of phy frame, data frame, end of rx?).
1883 * The only thing we know is that it is hardware specific...
1884 * On AR5213 it seems the rx timestamp is at the end of the
1885 * frame, but i'm not sure.
1887 * NOTE: mac80211 defines mactime at the beginning of the first
1888 * data symbol. Since we don't have any time references it's
1889 * impossible to comply to that. This affects IBSS merge only
1890 * right now, so it's not too bad...
1892 rxs
.mactime
= ath5k_extend_tsf(sc
->ah
, rs
.rs_tstamp
);
1893 rxs
.flag
|= RX_FLAG_TSFT
;
1895 rxs
.freq
= sc
->curchan
->center_freq
;
1896 rxs
.band
= sc
->curband
->band
;
1900 * the names here are misleading and the usage of these
1901 * values by iwconfig makes it even worse
1903 /* noise floor in dBm, from the last noise calibration */
1904 rxs
.noise
= sc
->ah
->ah_noise_floor
;
1905 /* signal level in dBm */
1906 rxs
.ssi
= rxs
.noise
+ rs
.rs_rssi
;
1908 * "signal" is actually displayed as Link Quality by iwconfig
1909 * we provide a percentage based on rssi (assuming max rssi 64)
1911 rxs
.signal
= rs
.rs_rssi
* 100 / 64;
1913 rxs
.antenna
= rs
.rs_antenna
;
1914 rxs
.rate_idx
= ath5k_hw_to_driver_rix(sc
, rs
.rs_rate
);
1915 rxs
.flag
|= ath5k_rx_decrypted(sc
, ds
, skb
, &rs
);
1917 ath5k_debug_dump_skb(sc
, skb
, "RX ", 0);
1919 /* check beacons in IBSS mode */
1920 if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
)
1921 ath5k_check_ibss_tsf(sc
, skb
, &rxs
);
1923 __ieee80211_rx(sc
->hw
, skb
, &rxs
);
1924 sc
->led_rxrate
= rs
.rs_rate
;
1925 ath5k_led_event(sc
, ATH_LED_RX
);
1927 list_move_tail(&bf
->list
, &sc
->rxbuf
);
1928 } while (ath5k_rxbuf_setup(sc
, bf
) == 0);
1929 spin_unlock(&sc
->rxbuflock
);
1940 ath5k_tx_processq(struct ath5k_softc
*sc
, struct ath5k_txq
*txq
)
1942 struct ieee80211_tx_status txs
= {};
1943 struct ath5k_tx_status ts
= {};
1944 struct ath5k_buf
*bf
, *bf0
;
1945 struct ath5k_desc
*ds
;
1946 struct sk_buff
*skb
;
1949 spin_lock(&txq
->lock
);
1950 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1953 /* TODO only one segment */
1954 pci_dma_sync_single_for_cpu(sc
->pdev
, sc
->desc_daddr
,
1955 sc
->desc_len
, PCI_DMA_FROMDEVICE
);
1956 ret
= sc
->ah
->ah_proc_tx_desc(sc
->ah
, ds
, &ts
);
1957 if (unlikely(ret
== -EINPROGRESS
))
1959 else if (unlikely(ret
)) {
1960 ATH5K_ERR(sc
, "error %d while processing queue %u\n",
1967 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, skb
->len
,
1970 txs
.control
= bf
->ctl
;
1971 txs
.retry_count
= ts
.ts_shortretry
+ ts
.ts_longretry
/ 6;
1972 if (unlikely(ts
.ts_status
)) {
1973 sc
->ll_stats
.dot11ACKFailureCount
++;
1974 if (ts
.ts_status
& AR5K_TXERR_XRETRY
)
1975 txs
.excessive_retries
= 1;
1976 else if (ts
.ts_status
& AR5K_TXERR_FILT
)
1977 txs
.flags
|= IEEE80211_TX_STATUS_TX_FILTERED
;
1979 txs
.flags
|= IEEE80211_TX_STATUS_ACK
;
1980 txs
.ack_signal
= ts
.ts_rssi
;
1983 ieee80211_tx_status(sc
->hw
, skb
, &txs
);
1984 sc
->tx_stats
.data
[txq
->qnum
].count
++;
1986 spin_lock(&sc
->txbuflock
);
1987 sc
->tx_stats
.data
[txq
->qnum
].len
--;
1988 list_move_tail(&bf
->list
, &sc
->txbuf
);
1990 spin_unlock(&sc
->txbuflock
);
1992 if (likely(list_empty(&txq
->q
)))
1994 spin_unlock(&txq
->lock
);
1995 if (sc
->txbuf_len
> ATH_TXBUF
/ 5)
1996 ieee80211_wake_queues(sc
->hw
);
2000 ath5k_tasklet_tx(unsigned long data
)
2002 struct ath5k_softc
*sc
= (void *)data
;
2004 ath5k_tx_processq(sc
, sc
->txq
);
2006 ath5k_led_event(sc
, ATH_LED_TX
);
2017 * Setup the beacon frame for transmit.
2020 ath5k_beacon_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
,
2021 struct ieee80211_tx_control
*ctl
)
2023 struct sk_buff
*skb
= bf
->skb
;
2024 struct ath5k_hw
*ah
= sc
->ah
;
2025 struct ath5k_desc
*ds
;
2026 int ret
, antenna
= 0;
2029 bf
->skbaddr
= pci_map_single(sc
->pdev
, skb
->data
, skb
->len
,
2031 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
, "skb %p [data %p len %u] "
2032 "skbaddr %llx\n", skb
, skb
->data
, skb
->len
,
2033 (unsigned long long)bf
->skbaddr
);
2034 if (pci_dma_mapping_error(bf
->skbaddr
)) {
2035 ATH5K_ERR(sc
, "beacon DMA mapping failed\n");
2041 flags
= AR5K_TXDESC_NOACK
;
2042 if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
&& ath5k_hw_hasveol(ah
)) {
2043 ds
->ds_link
= bf
->daddr
; /* self-linked */
2044 flags
|= AR5K_TXDESC_VEOL
;
2046 * Let hardware handle antenna switching if txantenna is not set
2051 * Switch antenna every 4 beacons if txantenna is not set
2052 * XXX assumes two antennas
2055 antenna
= sc
->bsent
& 4 ? 2 : 1;
2058 ds
->ds_data
= bf
->skbaddr
;
2059 ret
= ah
->ah_setup_tx_desc(ah
, ds
, skb
->len
,
2060 ieee80211_get_hdrlen_from_skb(skb
),
2061 AR5K_PKT_TYPE_BEACON
, (sc
->power_level
* 2),
2062 ctl
->tx_rate
->hw_value
, 1, AR5K_TXKEYIX_INVALID
,
2063 antenna
, flags
, 0, 0);
2069 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, skb
->len
, PCI_DMA_TODEVICE
);
2074 * Transmit a beacon frame at SWBA. Dynamic updates to the
2075 * frame contents are done as needed and the slot time is
2076 * also adjusted based on current state.
2078 * this is usually called from interrupt context (ath5k_intr())
2079 * but also from ath5k_beacon_config() in IBSS mode which in turn
2080 * can be called from a tasklet and user context
2083 ath5k_beacon_send(struct ath5k_softc
*sc
)
2085 struct ath5k_buf
*bf
= sc
->bbuf
;
2086 struct ath5k_hw
*ah
= sc
->ah
;
2088 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
, "in beacon_send\n");
2090 if (unlikely(bf
->skb
== NULL
|| sc
->opmode
== IEEE80211_IF_TYPE_STA
||
2091 sc
->opmode
== IEEE80211_IF_TYPE_MNTR
)) {
2092 ATH5K_WARN(sc
, "bf=%p bf_skb=%p\n", bf
, bf
? bf
->skb
: NULL
);
2096 * Check if the previous beacon has gone out. If
2097 * not don't don't try to post another, skip this
2098 * period and wait for the next. Missed beacons
2099 * indicate a problem and should not occur. If we
2100 * miss too many consecutive beacons reset the device.
2102 if (unlikely(ath5k_hw_num_tx_pending(ah
, sc
->bhalq
) != 0)) {
2104 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2105 "missed %u consecutive beacons\n", sc
->bmisscount
);
2106 if (sc
->bmisscount
> 3) { /* NB: 3 is a guess */
2107 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2108 "stuck beacon time (%u missed)\n",
2110 tasklet_schedule(&sc
->restq
);
2114 if (unlikely(sc
->bmisscount
!= 0)) {
2115 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2116 "resume beacon xmit after %u misses\n",
2122 * Stop any current dma and put the new frame on the queue.
2123 * This should never fail since we check above that no frames
2124 * are still pending on the queue.
2126 if (unlikely(ath5k_hw_stop_tx_dma(ah
, sc
->bhalq
))) {
2127 ATH5K_WARN(sc
, "beacon queue %u didn't stop?\n", sc
->bhalq
);
2128 /* NB: hw still stops DMA, so proceed */
2130 pci_dma_sync_single_for_cpu(sc
->pdev
, bf
->skbaddr
, bf
->skb
->len
,
2133 ath5k_hw_put_tx_buf(ah
, sc
->bhalq
, bf
->daddr
);
2134 ath5k_hw_tx_start(ah
, sc
->bhalq
);
2135 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
, "TXDP[%u] = %llx (%p)\n",
2136 sc
->bhalq
, (unsigned long long)bf
->daddr
, bf
->desc
);
2143 * ath5k_beacon_update_timers - update beacon timers
2145 * @sc: struct ath5k_softc pointer we are operating on
2146 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2147 * beacon timer update based on the current HW TSF.
2149 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2150 * of a received beacon or the current local hardware TSF and write it to the
2151 * beacon timer registers.
2153 * This is called in a variety of situations, e.g. when a beacon is received,
2154 * when a TSF update has been detected, but also when an new IBSS is created or
2155 * when we otherwise know we have to update the timers, but we keep it in this
2156 * function to have it all together in one place.
2159 ath5k_beacon_update_timers(struct ath5k_softc
*sc
, u64 bc_tsf
)
2161 struct ath5k_hw
*ah
= sc
->ah
;
2162 u32 nexttbtt
, intval
, hw_tu
, bc_tu
;
2165 intval
= sc
->bintval
& AR5K_BEACON_PERIOD
;
2166 if (WARN_ON(!intval
))
2169 /* beacon TSF converted to TU */
2170 bc_tu
= TSF_TO_TU(bc_tsf
);
2172 /* current TSF converted to TU */
2173 hw_tsf
= ath5k_hw_get_tsf64(ah
);
2174 hw_tu
= TSF_TO_TU(hw_tsf
);
2177 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2180 * no beacons received, called internally.
2181 * just need to refresh timers based on HW TSF.
2183 nexttbtt
= roundup(hw_tu
+ FUDGE
, intval
);
2184 } else if (bc_tsf
== 0) {
2186 * no beacon received, probably called by ath5k_reset_tsf().
2187 * reset TSF to start with 0.
2190 intval
|= AR5K_BEACON_RESET_TSF
;
2191 } else if (bc_tsf
> hw_tsf
) {
2193 * beacon received, SW merge happend but HW TSF not yet updated.
2194 * not possible to reconfigure timers yet, but next time we
2195 * receive a beacon with the same BSSID, the hardware will
2196 * automatically update the TSF and then we need to reconfigure
2199 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2200 "need to wait for HW TSF sync\n");
2204 * most important case for beacon synchronization between STA.
2206 * beacon received and HW TSF has been already updated by HW.
2207 * update next TBTT based on the TSF of the beacon, but make
2208 * sure it is ahead of our local TSF timer.
2210 nexttbtt
= bc_tu
+ roundup(hw_tu
+ FUDGE
- bc_tu
, intval
);
2214 sc
->nexttbtt
= nexttbtt
;
2216 intval
|= AR5K_BEACON_ENA
;
2217 ath5k_hw_init_beacon(ah
, nexttbtt
, intval
);
2220 * debugging output last in order to preserve the time critical aspect
2224 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2225 "reconfigured timers based on HW TSF\n");
2226 else if (bc_tsf
== 0)
2227 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2228 "reset HW TSF and timers\n");
2230 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2231 "updated timers based on beacon TSF\n");
2233 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2234 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2235 (unsigned long long) bc_tsf
,
2236 (unsigned long long) hw_tsf
, bc_tu
, hw_tu
, nexttbtt
);
2237 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
, "intval %u %s %s\n",
2238 intval
& AR5K_BEACON_PERIOD
,
2239 intval
& AR5K_BEACON_ENA
? "AR5K_BEACON_ENA" : "",
2240 intval
& AR5K_BEACON_RESET_TSF
? "AR5K_BEACON_RESET_TSF" : "");
2245 * ath5k_beacon_config - Configure the beacon queues and interrupts
2247 * @sc: struct ath5k_softc pointer we are operating on
2249 * When operating in station mode we want to receive a BMISS interrupt when we
2250 * stop seeing beacons from the AP we've associated with so we can look for
2251 * another AP to associate with.
2253 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2254 * interrupts to detect TSF updates only.
2256 * AP mode is missing.
2259 ath5k_beacon_config(struct ath5k_softc
*sc
)
2261 struct ath5k_hw
*ah
= sc
->ah
;
2263 ath5k_hw_set_intr(ah
, 0);
2266 if (sc
->opmode
== IEEE80211_IF_TYPE_STA
) {
2267 sc
->imask
|= AR5K_INT_BMISS
;
2268 } else if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
) {
2270 * In IBSS mode we use a self-linked tx descriptor and let the
2271 * hardware send the beacons automatically. We have to load it
2273 * We use the SWBA interrupt only to keep track of the beacon
2274 * timers in order to detect automatic TSF updates.
2276 ath5k_beaconq_config(sc
);
2278 sc
->imask
|= AR5K_INT_SWBA
;
2280 if (ath5k_hw_hasveol(ah
))
2281 ath5k_beacon_send(sc
);
2285 ath5k_hw_set_intr(ah
, sc
->imask
);
2289 /********************\
2290 * Interrupt handling *
2291 \********************/
2294 ath5k_init(struct ath5k_softc
*sc
)
2298 mutex_lock(&sc
->lock
);
2300 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "mode %d\n", sc
->opmode
);
2303 * Stop anything previously setup. This is safe
2304 * no matter this is the first time through or not.
2306 ath5k_stop_locked(sc
);
2309 * The basic interface to setting the hardware in a good
2310 * state is ``reset''. On return the hardware is known to
2311 * be powered up and with interrupts disabled. This must
2312 * be followed by initialization of the appropriate bits
2313 * and then setup of the interrupt mask.
2315 sc
->curchan
= sc
->hw
->conf
.channel
;
2316 sc
->curband
= &sc
->sbands
[sc
->curchan
->band
];
2317 ret
= ath5k_hw_reset(sc
->ah
, sc
->opmode
, sc
->curchan
, false);
2319 ATH5K_ERR(sc
, "unable to reset hardware: %d\n", ret
);
2323 * This is needed only to setup initial state
2324 * but it's best done after a reset.
2326 ath5k_hw_set_txpower_limit(sc
->ah
, 0);
2329 * Setup the hardware after reset: the key cache
2330 * is filled as needed and the receive engine is
2331 * set going. Frame transmit is handled entirely
2332 * in the frame output path; there's nothing to do
2333 * here except setup the interrupt mask.
2335 ret
= ath5k_rx_start(sc
);
2340 * Enable interrupts.
2342 sc
->imask
= AR5K_INT_RX
| AR5K_INT_TX
| AR5K_INT_RXEOL
|
2343 AR5K_INT_RXORN
| AR5K_INT_FATAL
| AR5K_INT_GLOBAL
|
2346 ath5k_hw_set_intr(sc
->ah
, sc
->imask
);
2347 /* Set ack to be sent at low bit-rates */
2348 ath5k_hw_set_ack_bitrate_high(sc
->ah
, false);
2350 mod_timer(&sc
->calib_tim
, round_jiffies(jiffies
+
2351 msecs_to_jiffies(ath5k_calinterval
* 1000)));
2355 mutex_unlock(&sc
->lock
);
2360 ath5k_stop_locked(struct ath5k_softc
*sc
)
2362 struct ath5k_hw
*ah
= sc
->ah
;
2364 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "invalid %u\n",
2365 test_bit(ATH_STAT_INVALID
, sc
->status
));
2368 * Shutdown the hardware and driver:
2369 * stop output from above
2370 * disable interrupts
2372 * turn off the radio
2373 * clear transmit machinery
2374 * clear receive machinery
2375 * drain and release tx queues
2376 * reclaim beacon resources
2377 * power down hardware
2379 * Note that some of this work is not possible if the
2380 * hardware is gone (invalid).
2382 ieee80211_stop_queues(sc
->hw
);
2384 if (!test_bit(ATH_STAT_INVALID
, sc
->status
)) {
2385 if (test_bit(ATH_STAT_LEDSOFT
, sc
->status
)) {
2386 del_timer_sync(&sc
->led_tim
);
2387 ath5k_hw_set_gpio(ah
, sc
->led_pin
, !sc
->led_on
);
2388 __clear_bit(ATH_STAT_LEDBLINKING
, sc
->status
);
2390 ath5k_hw_set_intr(ah
, 0);
2392 ath5k_txq_cleanup(sc
);
2393 if (!test_bit(ATH_STAT_INVALID
, sc
->status
)) {
2395 ath5k_hw_phy_disable(ah
);
2403 * Stop the device, grabbing the top-level lock to protect
2404 * against concurrent entry through ath5k_init (which can happen
2405 * if another thread does a system call and the thread doing the
2406 * stop is preempted).
2409 ath5k_stop_hw(struct ath5k_softc
*sc
)
2413 mutex_lock(&sc
->lock
);
2414 ret
= ath5k_stop_locked(sc
);
2415 if (ret
== 0 && !test_bit(ATH_STAT_INVALID
, sc
->status
)) {
2417 * Set the chip in full sleep mode. Note that we are
2418 * careful to do this only when bringing the interface
2419 * completely to a stop. When the chip is in this state
2420 * it must be carefully woken up or references to
2421 * registers in the PCI clock domain may freeze the bus
2422 * (and system). This varies by chip and is mostly an
2423 * issue with newer parts that go to sleep more quickly.
2425 if (sc
->ah
->ah_mac_srev
>= 0x78) {
2428 * don't put newer MAC revisions > 7.8 to sleep because
2429 * of the above mentioned problems
2431 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "mac version > 7.8, "
2432 "not putting device to sleep\n");
2434 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
,
2435 "putting device to full sleep\n");
2436 ath5k_hw_set_power(sc
->ah
, AR5K_PM_FULL_SLEEP
, true, 0);
2439 ath5k_txbuf_free(sc
, sc
->bbuf
);
2440 mutex_unlock(&sc
->lock
);
2442 del_timer_sync(&sc
->calib_tim
);
2448 ath5k_intr(int irq
, void *dev_id
)
2450 struct ath5k_softc
*sc
= dev_id
;
2451 struct ath5k_hw
*ah
= sc
->ah
;
2452 enum ath5k_int status
;
2453 unsigned int counter
= 1000;
2455 if (unlikely(test_bit(ATH_STAT_INVALID
, sc
->status
) ||
2456 !ath5k_hw_is_intr_pending(ah
)))
2461 * Figure out the reason(s) for the interrupt. Note
2462 * that get_isr returns a pseudo-ISR that may include
2463 * bits we haven't explicitly enabled so we mask the
2464 * value to insure we only process bits we requested.
2466 ath5k_hw_get_isr(ah
, &status
); /* NB: clears IRQ too */
2467 ATH5K_DBG(sc
, ATH5K_DEBUG_INTR
, "status 0x%x/0x%x\n",
2469 status
&= sc
->imask
; /* discard unasked for bits */
2470 if (unlikely(status
& AR5K_INT_FATAL
)) {
2472 * Fatal errors are unrecoverable.
2473 * Typically these are caused by DMA errors.
2475 tasklet_schedule(&sc
->restq
);
2476 } else if (unlikely(status
& AR5K_INT_RXORN
)) {
2477 tasklet_schedule(&sc
->restq
);
2479 if (status
& AR5K_INT_SWBA
) {
2481 * Software beacon alert--time to send a beacon.
2482 * Handle beacon transmission directly; deferring
2483 * this is too slow to meet timing constraints
2486 * In IBSS mode we use this interrupt just to
2487 * keep track of the next TBTT (target beacon
2488 * transmission time) in order to detect wether
2489 * automatic TSF updates happened.
2491 if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
) {
2492 /* XXX: only if VEOL suppported */
2493 u64 tsf
= ath5k_hw_get_tsf64(ah
);
2494 sc
->nexttbtt
+= sc
->bintval
;
2495 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2496 "SWBA nexttbtt: %x hw_tu: %x "
2500 (unsigned long long) tsf
);
2502 ath5k_beacon_send(sc
);
2505 if (status
& AR5K_INT_RXEOL
) {
2507 * NB: the hardware should re-read the link when
2508 * RXE bit is written, but it doesn't work at
2509 * least on older hardware revs.
2513 if (status
& AR5K_INT_TXURN
) {
2514 /* bump tx trigger level */
2515 ath5k_hw_update_tx_triglevel(ah
, true);
2517 if (status
& AR5K_INT_RX
)
2518 tasklet_schedule(&sc
->rxtq
);
2519 if (status
& AR5K_INT_TX
)
2520 tasklet_schedule(&sc
->txtq
);
2521 if (status
& AR5K_INT_BMISS
) {
2523 if (status
& AR5K_INT_MIB
) {
2525 * These stats are also used for ANI i think
2526 * so how about updating them more often ?
2528 ath5k_hw_update_mib_counters(ah
, &sc
->ll_stats
);
2531 } while (ath5k_hw_is_intr_pending(ah
) && counter
-- > 0);
2533 if (unlikely(!counter
))
2534 ATH5K_WARN(sc
, "too many interrupts, giving up for now\n");
2540 ath5k_tasklet_reset(unsigned long data
)
2542 struct ath5k_softc
*sc
= (void *)data
;
2544 ath5k_reset(sc
->hw
);
2548 * Periodically recalibrate the PHY to account
2549 * for temperature/environment changes.
2552 ath5k_calibrate(unsigned long data
)
2554 struct ath5k_softc
*sc
= (void *)data
;
2555 struct ath5k_hw
*ah
= sc
->ah
;
2557 ATH5K_DBG(sc
, ATH5K_DEBUG_CALIBRATE
, "channel %u/%x\n",
2558 ieee80211_frequency_to_channel(sc
->curchan
->center_freq
),
2559 sc
->curchan
->hw_value
);
2561 if (ath5k_hw_get_rf_gain(ah
) == AR5K_RFGAIN_NEED_CHANGE
) {
2563 * Rfgain is out of bounds, reset the chip
2564 * to load new gain values.
2566 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "calibration, resetting\n");
2567 ath5k_reset(sc
->hw
);
2569 if (ath5k_hw_phy_calibrate(ah
, sc
->curchan
))
2570 ATH5K_ERR(sc
, "calibration of channel %u failed\n",
2571 ieee80211_frequency_to_channel(
2572 sc
->curchan
->center_freq
));
2574 mod_timer(&sc
->calib_tim
, round_jiffies(jiffies
+
2575 msecs_to_jiffies(ath5k_calinterval
* 1000)));
2585 ath5k_led_off(unsigned long data
)
2587 struct ath5k_softc
*sc
= (void *)data
;
2589 if (test_bit(ATH_STAT_LEDENDBLINK
, sc
->status
))
2590 __clear_bit(ATH_STAT_LEDBLINKING
, sc
->status
);
2592 __set_bit(ATH_STAT_LEDENDBLINK
, sc
->status
);
2593 ath5k_hw_set_gpio(sc
->ah
, sc
->led_pin
, !sc
->led_on
);
2594 mod_timer(&sc
->led_tim
, jiffies
+ sc
->led_off
);
2599 * Blink the LED according to the specified on/off times.
2602 ath5k_led_blink(struct ath5k_softc
*sc
, unsigned int on
,
2605 ATH5K_DBG(sc
, ATH5K_DEBUG_LED
, "on %u off %u\n", on
, off
);
2606 ath5k_hw_set_gpio(sc
->ah
, sc
->led_pin
, sc
->led_on
);
2607 __set_bit(ATH_STAT_LEDBLINKING
, sc
->status
);
2608 __clear_bit(ATH_STAT_LEDENDBLINK
, sc
->status
);
2610 mod_timer(&sc
->led_tim
, jiffies
+ on
);
2614 ath5k_led_event(struct ath5k_softc
*sc
, int event
)
2616 if (likely(!test_bit(ATH_STAT_LEDSOFT
, sc
->status
)))
2618 if (unlikely(test_bit(ATH_STAT_LEDBLINKING
, sc
->status
)))
2619 return; /* don't interrupt active blink */
2622 ath5k_led_blink(sc
, sc
->hwmap
[sc
->led_txrate
].ledon
,
2623 sc
->hwmap
[sc
->led_txrate
].ledoff
);
2626 ath5k_led_blink(sc
, sc
->hwmap
[sc
->led_rxrate
].ledon
,
2627 sc
->hwmap
[sc
->led_rxrate
].ledoff
);
2635 /********************\
2636 * Mac80211 functions *
2637 \********************/
2640 ath5k_tx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2641 struct ieee80211_tx_control
*ctl
)
2643 struct ath5k_softc
*sc
= hw
->priv
;
2644 struct ath5k_buf
*bf
;
2645 unsigned long flags
;
2649 ath5k_debug_dump_skb(sc
, skb
, "TX ", 1);
2651 if (sc
->opmode
== IEEE80211_IF_TYPE_MNTR
)
2652 ATH5K_DBG(sc
, ATH5K_DEBUG_XMIT
, "tx in monitor (scan?)\n");
2655 * the hardware expects the header padded to 4 byte boundaries
2656 * if this is not the case we add the padding after the header
2658 hdrlen
= ieee80211_get_hdrlen_from_skb(skb
);
2661 if (skb_headroom(skb
) < pad
) {
2662 ATH5K_ERR(sc
, "tx hdrlen not %%4: %d not enough"
2663 " headroom to pad %d\n", hdrlen
, pad
);
2667 memmove(skb
->data
, skb
->data
+pad
, hdrlen
);
2670 sc
->led_txrate
= ctl
->tx_rate
->hw_value
;
2672 spin_lock_irqsave(&sc
->txbuflock
, flags
);
2673 if (list_empty(&sc
->txbuf
)) {
2674 ATH5K_ERR(sc
, "no further txbuf available, dropping packet\n");
2675 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
2676 ieee80211_stop_queue(hw
, ctl
->queue
);
2679 bf
= list_first_entry(&sc
->txbuf
, struct ath5k_buf
, list
);
2680 list_del(&bf
->list
);
2682 if (list_empty(&sc
->txbuf
))
2683 ieee80211_stop_queues(hw
);
2684 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
2688 if (ath5k_txbuf_setup(sc
, bf
, ctl
)) {
2690 spin_lock_irqsave(&sc
->txbuflock
, flags
);
2691 list_add_tail(&bf
->list
, &sc
->txbuf
);
2693 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
2694 dev_kfree_skb_any(skb
);
2702 ath5k_reset(struct ieee80211_hw
*hw
)
2704 struct ath5k_softc
*sc
= hw
->priv
;
2705 struct ath5k_hw
*ah
= sc
->ah
;
2708 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "resetting\n");
2710 ath5k_hw_set_intr(ah
, 0);
2711 ath5k_txq_cleanup(sc
);
2714 ret
= ath5k_hw_reset(ah
, sc
->opmode
, sc
->curchan
, true);
2715 if (unlikely(ret
)) {
2716 ATH5K_ERR(sc
, "can't reset hardware (%d)\n", ret
);
2719 ath5k_hw_set_txpower_limit(sc
->ah
, 0);
2721 ret
= ath5k_rx_start(sc
);
2722 if (unlikely(ret
)) {
2723 ATH5K_ERR(sc
, "can't start recv logic\n");
2727 * We may be doing a reset in response to an ioctl
2728 * that changes the channel so update any state that
2729 * might change as a result.
2733 /* ath5k_chan_change(sc, c); */
2734 ath5k_beacon_config(sc
);
2735 /* intrs are started by ath5k_beacon_config */
2737 ieee80211_wake_queues(hw
);
2744 static int ath5k_start(struct ieee80211_hw
*hw
)
2746 return ath5k_init(hw
->priv
);
2749 static void ath5k_stop(struct ieee80211_hw
*hw
)
2751 ath5k_stop_hw(hw
->priv
);
2754 static int ath5k_add_interface(struct ieee80211_hw
*hw
,
2755 struct ieee80211_if_init_conf
*conf
)
2757 struct ath5k_softc
*sc
= hw
->priv
;
2760 mutex_lock(&sc
->lock
);
2766 sc
->vif
= conf
->vif
;
2768 switch (conf
->type
) {
2769 case IEEE80211_IF_TYPE_STA
:
2770 case IEEE80211_IF_TYPE_IBSS
:
2771 case IEEE80211_IF_TYPE_MNTR
:
2772 sc
->opmode
= conf
->type
;
2780 mutex_unlock(&sc
->lock
);
2785 ath5k_remove_interface(struct ieee80211_hw
*hw
,
2786 struct ieee80211_if_init_conf
*conf
)
2788 struct ath5k_softc
*sc
= hw
->priv
;
2790 mutex_lock(&sc
->lock
);
2791 if (sc
->vif
!= conf
->vif
)
2796 mutex_unlock(&sc
->lock
);
2800 * TODO: Phy disable/diversity etc
2803 ath5k_config(struct ieee80211_hw
*hw
,
2804 struct ieee80211_conf
*conf
)
2806 struct ath5k_softc
*sc
= hw
->priv
;
2808 sc
->bintval
= conf
->beacon_int
;
2809 sc
->power_level
= conf
->power_level
;
2811 return ath5k_chan_set(sc
, conf
->channel
);
2815 ath5k_config_interface(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
,
2816 struct ieee80211_if_conf
*conf
)
2818 struct ath5k_softc
*sc
= hw
->priv
;
2819 struct ath5k_hw
*ah
= sc
->ah
;
2822 /* Set to a reasonable value. Note that this will
2823 * be set to mac80211's value at ath5k_config(). */
2825 mutex_lock(&sc
->lock
);
2826 if (sc
->vif
!= vif
) {
2831 /* Cache for later use during resets */
2832 memcpy(ah
->ah_bssid
, conf
->bssid
, ETH_ALEN
);
2833 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
2834 * a clean way of letting us retrieve this yet. */
2835 ath5k_hw_set_associd(ah
, ah
->ah_bssid
, 0);
2837 mutex_unlock(&sc
->lock
);
2839 return ath5k_reset(hw
);
2841 mutex_unlock(&sc
->lock
);
2845 #define SUPPORTED_FIF_FLAGS \
2846 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2847 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2848 FIF_BCN_PRBRESP_PROMISC
2850 * o always accept unicast, broadcast, and multicast traffic
2851 * o multicast traffic for all BSSIDs will be enabled if mac80211
2853 * o maintain current state of phy ofdm or phy cck error reception.
2854 * If the hardware detects any of these type of errors then
2855 * ath5k_hw_get_rx_filter() will pass to us the respective
2856 * hardware filters to be able to receive these type of frames.
2857 * o probe request frames are accepted only when operating in
2858 * hostap, adhoc, or monitor modes
2859 * o enable promiscuous mode according to the interface state
2861 * - when operating in adhoc mode so the 802.11 layer creates
2862 * node table entries for peers,
2863 * - when operating in station mode for collecting rssi data when
2864 * the station is otherwise quiet, or
2867 static void ath5k_configure_filter(struct ieee80211_hw
*hw
,
2868 unsigned int changed_flags
,
2869 unsigned int *new_flags
,
2870 int mc_count
, struct dev_mc_list
*mclist
)
2872 struct ath5k_softc
*sc
= hw
->priv
;
2873 struct ath5k_hw
*ah
= sc
->ah
;
2874 u32 mfilt
[2], val
, rfilt
;
2881 /* Only deal with supported flags */
2882 changed_flags
&= SUPPORTED_FIF_FLAGS
;
2883 *new_flags
&= SUPPORTED_FIF_FLAGS
;
2885 /* If HW detects any phy or radar errors, leave those filters on.
2886 * Also, always enable Unicast, Broadcasts and Multicast
2887 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2888 rfilt
= (ath5k_hw_get_rx_filter(ah
) & (AR5K_RX_FILTER_PHYERR
)) |
2889 (AR5K_RX_FILTER_UCAST
| AR5K_RX_FILTER_BCAST
|
2890 AR5K_RX_FILTER_MCAST
);
2892 if (changed_flags
& (FIF_PROMISC_IN_BSS
| FIF_OTHER_BSS
)) {
2893 if (*new_flags
& FIF_PROMISC_IN_BSS
) {
2894 rfilt
|= AR5K_RX_FILTER_PROM
;
2895 __set_bit(ATH_STAT_PROMISC
, sc
->status
);
2898 __clear_bit(ATH_STAT_PROMISC
, sc
->status
);
2901 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2902 if (*new_flags
& FIF_ALLMULTI
) {
2906 for (i
= 0; i
< mc_count
; i
++) {
2909 /* calculate XOR of eight 6-bit values */
2910 val
= get_unaligned_le32(mclist
->dmi_addr
+ 0);
2911 pos
= (val
>> 18) ^ (val
>> 12) ^ (val
>> 6) ^ val
;
2912 val
= get_unaligned_le32(mclist
->dmi_addr
+ 3);
2913 pos
^= (val
>> 18) ^ (val
>> 12) ^ (val
>> 6) ^ val
;
2915 mfilt
[pos
/ 32] |= (1 << (pos
% 32));
2916 /* XXX: we might be able to just do this instead,
2917 * but not sure, needs testing, if we do use this we'd
2918 * neet to inform below to not reset the mcast */
2919 /* ath5k_hw_set_mcast_filterindex(ah,
2920 * mclist->dmi_addr[5]); */
2921 mclist
= mclist
->next
;
2925 /* This is the best we can do */
2926 if (*new_flags
& (FIF_FCSFAIL
| FIF_PLCPFAIL
))
2927 rfilt
|= AR5K_RX_FILTER_PHYERR
;
2929 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2930 * and probes for any BSSID, this needs testing */
2931 if (*new_flags
& FIF_BCN_PRBRESP_PROMISC
)
2932 rfilt
|= AR5K_RX_FILTER_BEACON
| AR5K_RX_FILTER_PROBEREQ
;
2934 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2935 * set we should only pass on control frames for this
2936 * station. This needs testing. I believe right now this
2937 * enables *all* control frames, which is OK.. but
2938 * but we should see if we can improve on granularity */
2939 if (*new_flags
& FIF_CONTROL
)
2940 rfilt
|= AR5K_RX_FILTER_CONTROL
;
2942 /* Additional settings per mode -- this is per ath5k */
2944 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2946 if (sc
->opmode
== IEEE80211_IF_TYPE_MNTR
)
2947 rfilt
|= AR5K_RX_FILTER_CONTROL
| AR5K_RX_FILTER_BEACON
|
2948 AR5K_RX_FILTER_PROBEREQ
| AR5K_RX_FILTER_PROM
;
2949 if (sc
->opmode
!= IEEE80211_IF_TYPE_STA
)
2950 rfilt
|= AR5K_RX_FILTER_PROBEREQ
;
2951 if (sc
->opmode
!= IEEE80211_IF_TYPE_AP
&&
2952 test_bit(ATH_STAT_PROMISC
, sc
->status
))
2953 rfilt
|= AR5K_RX_FILTER_PROM
;
2954 if (sc
->opmode
== IEEE80211_IF_TYPE_STA
||
2955 sc
->opmode
== IEEE80211_IF_TYPE_IBSS
) {
2956 rfilt
|= AR5K_RX_FILTER_BEACON
;
2960 ath5k_hw_set_rx_filter(ah
,rfilt
);
2962 /* Set multicast bits */
2963 ath5k_hw_set_mcast_filter(ah
, mfilt
[0], mfilt
[1]);
2964 /* Set the cached hw filter flags, this will alter actually
2966 sc
->filter_flags
= rfilt
;
2970 ath5k_set_key(struct ieee80211_hw
*hw
, enum set_key_cmd cmd
,
2971 const u8
*local_addr
, const u8
*addr
,
2972 struct ieee80211_key_conf
*key
)
2974 struct ath5k_softc
*sc
= hw
->priv
;
2979 /* XXX: fix hardware encryption, its not working. For now
2980 * allow software encryption */
2990 mutex_lock(&sc
->lock
);
2994 ret
= ath5k_hw_set_key(sc
->ah
, key
->keyidx
, key
, addr
);
2996 ATH5K_ERR(sc
, "can't set the key\n");
2999 __set_bit(key
->keyidx
, sc
->keymap
);
3000 key
->hw_key_idx
= key
->keyidx
;
3003 ath5k_hw_reset_key(sc
->ah
, key
->keyidx
);
3004 __clear_bit(key
->keyidx
, sc
->keymap
);
3012 mutex_unlock(&sc
->lock
);
3017 ath5k_get_stats(struct ieee80211_hw
*hw
,
3018 struct ieee80211_low_level_stats
*stats
)
3020 struct ath5k_softc
*sc
= hw
->priv
;
3021 struct ath5k_hw
*ah
= sc
->ah
;
3024 ath5k_hw_update_mib_counters(ah
, &sc
->ll_stats
);
3026 memcpy(stats
, &sc
->ll_stats
, sizeof(sc
->ll_stats
));
3032 ath5k_get_tx_stats(struct ieee80211_hw
*hw
,
3033 struct ieee80211_tx_queue_stats
*stats
)
3035 struct ath5k_softc
*sc
= hw
->priv
;
3037 memcpy(stats
, &sc
->tx_stats
, sizeof(sc
->tx_stats
));
3043 ath5k_get_tsf(struct ieee80211_hw
*hw
)
3045 struct ath5k_softc
*sc
= hw
->priv
;
3047 return ath5k_hw_get_tsf64(sc
->ah
);
3051 ath5k_reset_tsf(struct ieee80211_hw
*hw
)
3053 struct ath5k_softc
*sc
= hw
->priv
;
3056 * in IBSS mode we need to update the beacon timers too.
3057 * this will also reset the TSF if we call it with 0
3059 if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
)
3060 ath5k_beacon_update_timers(sc
, 0);
3062 ath5k_hw_reset_tsf(sc
->ah
);
3066 ath5k_beacon_update(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
3067 struct ieee80211_tx_control
*ctl
)
3069 struct ath5k_softc
*sc
= hw
->priv
;
3072 ath5k_debug_dump_skb(sc
, skb
, "BC ", 1);
3074 mutex_lock(&sc
->lock
);
3076 if (sc
->opmode
!= IEEE80211_IF_TYPE_IBSS
) {
3081 ath5k_txbuf_free(sc
, sc
->bbuf
);
3082 sc
->bbuf
->skb
= skb
;
3083 ret
= ath5k_beacon_setup(sc
, sc
->bbuf
, ctl
);
3085 sc
->bbuf
->skb
= NULL
;
3087 ath5k_beacon_config(sc
);
3090 mutex_unlock(&sc
->lock
);