Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / wireless / ath5k / base.c
blob635b9ac9aaa17589e40f41e7c455ecffc2558357
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 * All rights reserved.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/version.h>
44 #include <linux/module.h>
45 #include <linux/delay.h>
46 #include <linux/if.h>
47 #include <linux/netdevice.h>
48 #include <linux/cache.h>
49 #include <linux/pci.h>
50 #include <linux/ethtool.h>
51 #include <linux/uaccess.h>
53 #include <net/ieee80211_radiotap.h>
55 #include <asm/unaligned.h>
57 #include "base.h"
58 #include "reg.h"
59 #include "debug.h"
61 enum {
62 ATH_LED_TX,
63 ATH_LED_RX,
66 static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
69 /******************\
70 * Internal defines *
71 \******************/
73 /* Module info */
74 MODULE_AUTHOR("Jiri Slaby");
75 MODULE_AUTHOR("Nick Kossifidis");
76 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
77 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
78 MODULE_LICENSE("Dual BSD/GPL");
79 MODULE_VERSION("0.5.0 (EXPERIMENTAL)");
82 /* Known PCI ids */
83 static struct pci_device_id ath5k_pci_id_table[] __devinitdata = {
84 { PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */
85 { PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */
86 { PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/
87 { PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */
88 { PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */
89 { PCI_VDEVICE(3COM_2, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */
90 { PCI_VDEVICE(3COM, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */
91 { PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */
92 { PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
93 { PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
94 { PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
95 { PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
96 { PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
97 { PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
98 { PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */
99 { PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */
100 { PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* 5424 Condor (PCI-E)*/
101 { PCI_VDEVICE(ATHEROS, 0x0023), .driver_data = AR5K_AR5212 }, /* 5416 */
102 { PCI_VDEVICE(ATHEROS, 0x0024), .driver_data = AR5K_AR5212 }, /* 5418 */
103 { 0 }
105 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
107 /* Known SREVs */
108 static struct ath5k_srev_name srev_names[] = {
109 { "5210", AR5K_VERSION_VER, AR5K_SREV_VER_AR5210 },
110 { "5311", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311 },
111 { "5311A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311A },
112 { "5311B", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311B },
113 { "5211", AR5K_VERSION_VER, AR5K_SREV_VER_AR5211 },
114 { "5212", AR5K_VERSION_VER, AR5K_SREV_VER_AR5212 },
115 { "5213", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213 },
116 { "5213A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213A },
117 { "2413", AR5K_VERSION_VER, AR5K_SREV_VER_AR2413 },
118 { "2414", AR5K_VERSION_VER, AR5K_SREV_VER_AR2414 },
119 { "2424", AR5K_VERSION_VER, AR5K_SREV_VER_AR2424 },
120 { "5424", AR5K_VERSION_VER, AR5K_SREV_VER_AR5424 },
121 { "5413", AR5K_VERSION_VER, AR5K_SREV_VER_AR5413 },
122 { "5414", AR5K_VERSION_VER, AR5K_SREV_VER_AR5414 },
123 { "5416", AR5K_VERSION_VER, AR5K_SREV_VER_AR5416 },
124 { "5418", AR5K_VERSION_VER, AR5K_SREV_VER_AR5418 },
125 { "2425", AR5K_VERSION_VER, AR5K_SREV_VER_AR2425 },
126 { "xxxxx", AR5K_VERSION_VER, AR5K_SREV_UNKNOWN },
127 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
128 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
129 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
130 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
131 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
132 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
133 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
134 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC0 },
135 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC1 },
136 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC2 },
137 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
138 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
142 * Prototypes - PCI stack related functions
144 static int __devinit ath5k_pci_probe(struct pci_dev *pdev,
145 const struct pci_device_id *id);
146 static void __devexit ath5k_pci_remove(struct pci_dev *pdev);
147 #ifdef CONFIG_PM
148 static int ath5k_pci_suspend(struct pci_dev *pdev,
149 pm_message_t state);
150 static int ath5k_pci_resume(struct pci_dev *pdev);
151 #else
152 #define ath5k_pci_suspend NULL
153 #define ath5k_pci_resume NULL
154 #endif /* CONFIG_PM */
156 static struct pci_driver ath5k_pci_driver = {
157 .name = "ath5k_pci",
158 .id_table = ath5k_pci_id_table,
159 .probe = ath5k_pci_probe,
160 .remove = __devexit_p(ath5k_pci_remove),
161 .suspend = ath5k_pci_suspend,
162 .resume = ath5k_pci_resume,
168 * Prototypes - MAC 802.11 stack related functions
170 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
171 struct ieee80211_tx_control *ctl);
172 static int ath5k_reset(struct ieee80211_hw *hw);
173 static int ath5k_start(struct ieee80211_hw *hw);
174 static void ath5k_stop(struct ieee80211_hw *hw);
175 static int ath5k_add_interface(struct ieee80211_hw *hw,
176 struct ieee80211_if_init_conf *conf);
177 static void ath5k_remove_interface(struct ieee80211_hw *hw,
178 struct ieee80211_if_init_conf *conf);
179 static int ath5k_config(struct ieee80211_hw *hw,
180 struct ieee80211_conf *conf);
181 static int ath5k_config_interface(struct ieee80211_hw *hw,
182 struct ieee80211_vif *vif,
183 struct ieee80211_if_conf *conf);
184 static void ath5k_configure_filter(struct ieee80211_hw *hw,
185 unsigned int changed_flags,
186 unsigned int *new_flags,
187 int mc_count, struct dev_mc_list *mclist);
188 static int ath5k_set_key(struct ieee80211_hw *hw,
189 enum set_key_cmd cmd,
190 const u8 *local_addr, const u8 *addr,
191 struct ieee80211_key_conf *key);
192 static int ath5k_get_stats(struct ieee80211_hw *hw,
193 struct ieee80211_low_level_stats *stats);
194 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
195 struct ieee80211_tx_queue_stats *stats);
196 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
197 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
198 static int ath5k_beacon_update(struct ieee80211_hw *hw,
199 struct sk_buff *skb,
200 struct ieee80211_tx_control *ctl);
202 static struct ieee80211_ops ath5k_hw_ops = {
203 .tx = ath5k_tx,
204 .start = ath5k_start,
205 .stop = ath5k_stop,
206 .add_interface = ath5k_add_interface,
207 .remove_interface = ath5k_remove_interface,
208 .config = ath5k_config,
209 .config_interface = ath5k_config_interface,
210 .configure_filter = ath5k_configure_filter,
211 .set_key = ath5k_set_key,
212 .get_stats = ath5k_get_stats,
213 .conf_tx = NULL,
214 .get_tx_stats = ath5k_get_tx_stats,
215 .get_tsf = ath5k_get_tsf,
216 .reset_tsf = ath5k_reset_tsf,
217 .beacon_update = ath5k_beacon_update,
221 * Prototypes - Internal functions
223 /* Attach detach */
224 static int ath5k_attach(struct pci_dev *pdev,
225 struct ieee80211_hw *hw);
226 static void ath5k_detach(struct pci_dev *pdev,
227 struct ieee80211_hw *hw);
228 /* Channel/mode setup */
229 static inline short ath5k_ieee2mhz(short chan);
230 static unsigned int ath5k_copy_rates(struct ieee80211_rate *rates,
231 const struct ath5k_rate_table *rt,
232 unsigned int max);
233 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
234 struct ieee80211_channel *channels,
235 unsigned int mode,
236 unsigned int max);
237 static int ath5k_getchannels(struct ieee80211_hw *hw);
238 static int ath5k_chan_set(struct ath5k_softc *sc,
239 struct ieee80211_channel *chan);
240 static void ath5k_setcurmode(struct ath5k_softc *sc,
241 unsigned int mode);
242 static void ath5k_mode_setup(struct ath5k_softc *sc);
243 static void ath5k_set_total_hw_rates(struct ath5k_softc *sc);
245 /* Descriptor setup */
246 static int ath5k_desc_alloc(struct ath5k_softc *sc,
247 struct pci_dev *pdev);
248 static void ath5k_desc_free(struct ath5k_softc *sc,
249 struct pci_dev *pdev);
250 /* Buffers setup */
251 static int ath5k_rxbuf_setup(struct ath5k_softc *sc,
252 struct ath5k_buf *bf);
253 static int ath5k_txbuf_setup(struct ath5k_softc *sc,
254 struct ath5k_buf *bf,
255 struct ieee80211_tx_control *ctl);
257 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
258 struct ath5k_buf *bf)
260 BUG_ON(!bf);
261 if (!bf->skb)
262 return;
263 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
264 PCI_DMA_TODEVICE);
265 dev_kfree_skb(bf->skb);
266 bf->skb = NULL;
269 /* Queues setup */
270 static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
271 int qtype, int subtype);
272 static int ath5k_beaconq_setup(struct ath5k_hw *ah);
273 static int ath5k_beaconq_config(struct ath5k_softc *sc);
274 static void ath5k_txq_drainq(struct ath5k_softc *sc,
275 struct ath5k_txq *txq);
276 static void ath5k_txq_cleanup(struct ath5k_softc *sc);
277 static void ath5k_txq_release(struct ath5k_softc *sc);
278 /* Rx handling */
279 static int ath5k_rx_start(struct ath5k_softc *sc);
280 static void ath5k_rx_stop(struct ath5k_softc *sc);
281 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
282 struct ath5k_desc *ds,
283 struct sk_buff *skb,
284 struct ath5k_rx_status *rs);
285 static void ath5k_tasklet_rx(unsigned long data);
286 /* Tx handling */
287 static void ath5k_tx_processq(struct ath5k_softc *sc,
288 struct ath5k_txq *txq);
289 static void ath5k_tasklet_tx(unsigned long data);
290 /* Beacon handling */
291 static int ath5k_beacon_setup(struct ath5k_softc *sc,
292 struct ath5k_buf *bf,
293 struct ieee80211_tx_control *ctl);
294 static void ath5k_beacon_send(struct ath5k_softc *sc);
295 static void ath5k_beacon_config(struct ath5k_softc *sc);
296 static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
298 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
300 u64 tsf = ath5k_hw_get_tsf64(ah);
302 if ((tsf & 0x7fff) < rstamp)
303 tsf -= 0x8000;
305 return (tsf & ~0x7fff) | rstamp;
308 /* Interrupt handling */
309 static int ath5k_init(struct ath5k_softc *sc);
310 static int ath5k_stop_locked(struct ath5k_softc *sc);
311 static int ath5k_stop_hw(struct ath5k_softc *sc);
312 static irqreturn_t ath5k_intr(int irq, void *dev_id);
313 static void ath5k_tasklet_reset(unsigned long data);
315 static void ath5k_calibrate(unsigned long data);
316 /* LED functions */
317 static void ath5k_led_off(unsigned long data);
318 static void ath5k_led_blink(struct ath5k_softc *sc,
319 unsigned int on,
320 unsigned int off);
321 static void ath5k_led_event(struct ath5k_softc *sc,
322 int event);
326 * Module init/exit functions
328 static int __init
329 init_ath5k_pci(void)
331 int ret;
333 ath5k_debug_init();
335 ret = pci_register_driver(&ath5k_pci_driver);
336 if (ret) {
337 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
338 return ret;
341 return 0;
344 static void __exit
345 exit_ath5k_pci(void)
347 pci_unregister_driver(&ath5k_pci_driver);
349 ath5k_debug_finish();
352 module_init(init_ath5k_pci);
353 module_exit(exit_ath5k_pci);
356 /********************\
357 * PCI Initialization *
358 \********************/
360 static const char *
361 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
363 const char *name = "xxxxx";
364 unsigned int i;
366 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
367 if (srev_names[i].sr_type != type)
368 continue;
369 if ((val & 0xff) < srev_names[i + 1].sr_val) {
370 name = srev_names[i].sr_name;
371 break;
375 return name;
378 static int __devinit
379 ath5k_pci_probe(struct pci_dev *pdev,
380 const struct pci_device_id *id)
382 void __iomem *mem;
383 struct ath5k_softc *sc;
384 struct ieee80211_hw *hw;
385 int ret;
386 u8 csz;
388 ret = pci_enable_device(pdev);
389 if (ret) {
390 dev_err(&pdev->dev, "can't enable device\n");
391 goto err;
394 /* XXX 32-bit addressing only */
395 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
396 if (ret) {
397 dev_err(&pdev->dev, "32-bit DMA not available\n");
398 goto err_dis;
402 * Cache line size is used to size and align various
403 * structures used to communicate with the hardware.
405 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
406 if (csz == 0) {
408 * Linux 2.4.18 (at least) writes the cache line size
409 * register as a 16-bit wide register which is wrong.
410 * We must have this setup properly for rx buffer
411 * DMA to work so force a reasonable value here if it
412 * comes up zero.
414 csz = L1_CACHE_BYTES / sizeof(u32);
415 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
418 * The default setting of latency timer yields poor results,
419 * set it to the value used by other systems. It may be worth
420 * tweaking this setting more.
422 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
424 /* Enable bus mastering */
425 pci_set_master(pdev);
428 * Disable the RETRY_TIMEOUT register (0x41) to keep
429 * PCI Tx retries from interfering with C3 CPU state.
431 pci_write_config_byte(pdev, 0x41, 0);
433 ret = pci_request_region(pdev, 0, "ath5k");
434 if (ret) {
435 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
436 goto err_dis;
439 mem = pci_iomap(pdev, 0, 0);
440 if (!mem) {
441 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
442 ret = -EIO;
443 goto err_reg;
447 * Allocate hw (mac80211 main struct)
448 * and hw->priv (driver private data)
450 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
451 if (hw == NULL) {
452 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
453 ret = -ENOMEM;
454 goto err_map;
457 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
459 /* Initialize driver private data */
460 SET_IEEE80211_DEV(hw, &pdev->dev);
461 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS;
462 hw->extra_tx_headroom = 2;
463 hw->channel_change_time = 5000;
464 /* these names are misleading */
465 hw->max_rssi = -110; /* signal in dBm */
466 hw->max_noise = -110; /* noise in dBm */
467 hw->max_signal = 100; /* we will provide a percentage based on rssi */
468 sc = hw->priv;
469 sc->hw = hw;
470 sc->pdev = pdev;
472 ath5k_debug_init_device(sc);
475 * Mark the device as detached to avoid processing
476 * interrupts until setup is complete.
478 __set_bit(ATH_STAT_INVALID, sc->status);
480 sc->iobase = mem; /* So we can unmap it on detach */
481 sc->cachelsz = csz * sizeof(u32); /* convert to bytes */
482 sc->opmode = IEEE80211_IF_TYPE_STA;
483 mutex_init(&sc->lock);
484 spin_lock_init(&sc->rxbuflock);
485 spin_lock_init(&sc->txbuflock);
487 /* Set private data */
488 pci_set_drvdata(pdev, hw);
490 /* Enable msi for devices that support it */
491 pci_enable_msi(pdev);
493 /* Setup interrupt handler */
494 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
495 if (ret) {
496 ATH5K_ERR(sc, "request_irq failed\n");
497 goto err_free;
500 /* Initialize device */
501 sc->ah = ath5k_hw_attach(sc, id->driver_data);
502 if (IS_ERR(sc->ah)) {
503 ret = PTR_ERR(sc->ah);
504 goto err_irq;
507 /* Finish private driver data initialization */
508 ret = ath5k_attach(pdev, hw);
509 if (ret)
510 goto err_ah;
512 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
513 ath5k_chip_name(AR5K_VERSION_VER,sc->ah->ah_mac_srev),
514 sc->ah->ah_mac_srev,
515 sc->ah->ah_phy_revision);
517 if (!sc->ah->ah_single_chip) {
518 /* Single chip radio (!RF5111) */
519 if (sc->ah->ah_radio_5ghz_revision &&
520 !sc->ah->ah_radio_2ghz_revision) {
521 /* No 5GHz support -> report 2GHz radio */
522 if (!test_bit(AR5K_MODE_11A,
523 sc->ah->ah_capabilities.cap_mode)) {
524 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
525 ath5k_chip_name(AR5K_VERSION_RAD,
526 sc->ah->ah_radio_5ghz_revision),
527 sc->ah->ah_radio_5ghz_revision);
528 /* No 2GHz support (5110 and some
529 * 5Ghz only cards) -> report 5Ghz radio */
530 } else if (!test_bit(AR5K_MODE_11B,
531 sc->ah->ah_capabilities.cap_mode)) {
532 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
533 ath5k_chip_name(AR5K_VERSION_RAD,
534 sc->ah->ah_radio_5ghz_revision),
535 sc->ah->ah_radio_5ghz_revision);
536 /* Multiband radio */
537 } else {
538 ATH5K_INFO(sc, "RF%s multiband radio found"
539 " (0x%x)\n",
540 ath5k_chip_name(AR5K_VERSION_RAD,
541 sc->ah->ah_radio_5ghz_revision),
542 sc->ah->ah_radio_5ghz_revision);
545 /* Multi chip radio (RF5111 - RF2111) ->
546 * report both 2GHz/5GHz radios */
547 else if (sc->ah->ah_radio_5ghz_revision &&
548 sc->ah->ah_radio_2ghz_revision){
549 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
550 ath5k_chip_name(AR5K_VERSION_RAD,
551 sc->ah->ah_radio_5ghz_revision),
552 sc->ah->ah_radio_5ghz_revision);
553 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
554 ath5k_chip_name(AR5K_VERSION_RAD,
555 sc->ah->ah_radio_2ghz_revision),
556 sc->ah->ah_radio_2ghz_revision);
561 /* ready to process interrupts */
562 __clear_bit(ATH_STAT_INVALID, sc->status);
564 return 0;
565 err_ah:
566 ath5k_hw_detach(sc->ah);
567 err_irq:
568 free_irq(pdev->irq, sc);
569 err_free:
570 pci_disable_msi(pdev);
571 ieee80211_free_hw(hw);
572 err_map:
573 pci_iounmap(pdev, mem);
574 err_reg:
575 pci_release_region(pdev, 0);
576 err_dis:
577 pci_disable_device(pdev);
578 err:
579 return ret;
582 static void __devexit
583 ath5k_pci_remove(struct pci_dev *pdev)
585 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
586 struct ath5k_softc *sc = hw->priv;
588 ath5k_debug_finish_device(sc);
589 ath5k_detach(pdev, hw);
590 ath5k_hw_detach(sc->ah);
591 free_irq(pdev->irq, sc);
592 pci_disable_msi(pdev);
593 pci_iounmap(pdev, sc->iobase);
594 pci_release_region(pdev, 0);
595 pci_disable_device(pdev);
596 ieee80211_free_hw(hw);
599 #ifdef CONFIG_PM
600 static int
601 ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
603 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
604 struct ath5k_softc *sc = hw->priv;
606 if (test_bit(ATH_STAT_LEDSOFT, sc->status))
607 ath5k_hw_set_gpio(sc->ah, sc->led_pin, 1);
609 ath5k_stop_hw(sc);
610 pci_save_state(pdev);
611 pci_disable_device(pdev);
612 pci_set_power_state(pdev, PCI_D3hot);
614 return 0;
617 static int
618 ath5k_pci_resume(struct pci_dev *pdev)
620 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
621 struct ath5k_softc *sc = hw->priv;
622 struct ath5k_hw *ah = sc->ah;
623 int i, err;
625 err = pci_set_power_state(pdev, PCI_D0);
626 if (err)
627 return err;
629 err = pci_enable_device(pdev);
630 if (err)
631 return err;
633 pci_restore_state(pdev);
635 * Suspend/Resume resets the PCI configuration space, so we have to
636 * re-disable the RETRY_TIMEOUT register (0x41) to keep
637 * PCI Tx retries from interfering with C3 CPU state
639 pci_write_config_byte(pdev, 0x41, 0);
641 ath5k_init(sc);
642 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
643 ath5k_hw_set_gpio_output(ah, sc->led_pin);
644 ath5k_hw_set_gpio(ah, sc->led_pin, 0);
648 * Reset the key cache since some parts do not
649 * reset the contents on initial power up or resume.
651 * FIXME: This may need to be revisited when mac80211 becomes
652 * aware of suspend/resume.
654 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
655 ath5k_hw_reset_key(ah, i);
657 return 0;
659 #endif /* CONFIG_PM */
663 /***********************\
664 * Driver Initialization *
665 \***********************/
667 static int
668 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
670 struct ath5k_softc *sc = hw->priv;
671 struct ath5k_hw *ah = sc->ah;
672 u8 mac[ETH_ALEN];
673 unsigned int i;
674 int ret;
676 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
679 * Check if the MAC has multi-rate retry support.
680 * We do this by trying to setup a fake extended
681 * descriptor. MAC's that don't have support will
682 * return false w/o doing anything. MAC's that do
683 * support it will return true w/o doing anything.
685 ret = ah->ah_setup_xtx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
686 if (ret < 0)
687 goto err;
688 if (ret > 0)
689 __set_bit(ATH_STAT_MRRETRY, sc->status);
692 * Reset the key cache since some parts do not
693 * reset the contents on initial power up.
695 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
696 ath5k_hw_reset_key(ah, i);
699 * Collect the channel list. The 802.11 layer
700 * is resposible for filtering this list based
701 * on settings like the phy mode and regulatory
702 * domain restrictions.
704 ret = ath5k_getchannels(hw);
705 if (ret) {
706 ATH5K_ERR(sc, "can't get channels\n");
707 goto err;
710 /* Set *_rates so we can map hw rate index */
711 ath5k_set_total_hw_rates(sc);
713 /* NB: setup here so ath5k_rate_update is happy */
714 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
715 ath5k_setcurmode(sc, AR5K_MODE_11A);
716 else
717 ath5k_setcurmode(sc, AR5K_MODE_11B);
720 * Allocate tx+rx descriptors and populate the lists.
722 ret = ath5k_desc_alloc(sc, pdev);
723 if (ret) {
724 ATH5K_ERR(sc, "can't allocate descriptors\n");
725 goto err;
729 * Allocate hardware transmit queues: one queue for
730 * beacon frames and one data queue for each QoS
731 * priority. Note that hw functions handle reseting
732 * these queues at the needed time.
734 ret = ath5k_beaconq_setup(ah);
735 if (ret < 0) {
736 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
737 goto err_desc;
739 sc->bhalq = ret;
741 sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
742 if (IS_ERR(sc->txq)) {
743 ATH5K_ERR(sc, "can't setup xmit queue\n");
744 ret = PTR_ERR(sc->txq);
745 goto err_bhal;
748 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
749 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
750 tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
751 setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc);
752 setup_timer(&sc->led_tim, ath5k_led_off, (unsigned long)sc);
754 sc->led_on = 0; /* low true */
756 * Auto-enable soft led processing for IBM cards and for
757 * 5211 minipci cards.
759 if (pdev->device == PCI_DEVICE_ID_ATHEROS_AR5212_IBM ||
760 pdev->device == PCI_DEVICE_ID_ATHEROS_AR5211) {
761 __set_bit(ATH_STAT_LEDSOFT, sc->status);
762 sc->led_pin = 0;
764 /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */
765 if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ) {
766 __set_bit(ATH_STAT_LEDSOFT, sc->status);
767 sc->led_pin = 0;
769 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
770 ath5k_hw_set_gpio_output(ah, sc->led_pin);
771 ath5k_hw_set_gpio(ah, sc->led_pin, !sc->led_on);
774 ath5k_hw_get_lladdr(ah, mac);
775 SET_IEEE80211_PERM_ADDR(hw, mac);
776 /* All MAC address bits matter for ACKs */
777 memset(sc->bssidmask, 0xff, ETH_ALEN);
778 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
780 ret = ieee80211_register_hw(hw);
781 if (ret) {
782 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
783 goto err_queues;
786 return 0;
787 err_queues:
788 ath5k_txq_release(sc);
789 err_bhal:
790 ath5k_hw_release_tx_queue(ah, sc->bhalq);
791 err_desc:
792 ath5k_desc_free(sc, pdev);
793 err:
794 return ret;
797 static void
798 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
800 struct ath5k_softc *sc = hw->priv;
803 * NB: the order of these is important:
804 * o call the 802.11 layer before detaching ath5k_hw to
805 * insure callbacks into the driver to delete global
806 * key cache entries can be handled
807 * o reclaim the tx queue data structures after calling
808 * the 802.11 layer as we'll get called back to reclaim
809 * node state and potentially want to use them
810 * o to cleanup the tx queues the hal is called, so detach
811 * it last
812 * XXX: ??? detach ath5k_hw ???
813 * Other than that, it's straightforward...
815 ieee80211_unregister_hw(hw);
816 ath5k_desc_free(sc, pdev);
817 ath5k_txq_release(sc);
818 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
821 * NB: can't reclaim these until after ieee80211_ifdetach
822 * returns because we'll get called back to reclaim node
823 * state and potentially want to use them.
830 /********************\
831 * Channel/mode setup *
832 \********************/
835 * Convert IEEE channel number to MHz frequency.
837 static inline short
838 ath5k_ieee2mhz(short chan)
840 if (chan <= 14 || chan >= 27)
841 return ieee80211chan2mhz(chan);
842 else
843 return 2212 + chan * 20;
846 static unsigned int
847 ath5k_copy_rates(struct ieee80211_rate *rates,
848 const struct ath5k_rate_table *rt,
849 unsigned int max)
851 unsigned int i, count;
853 if (rt == NULL)
854 return 0;
856 for (i = 0, count = 0; i < rt->rate_count && max > 0; i++) {
857 rates[count].bitrate = rt->rates[i].rate_kbps / 100;
858 rates[count].hw_value = rt->rates[i].rate_code;
859 rates[count].flags = rt->rates[i].modulation;
860 count++;
861 max--;
864 return count;
867 static unsigned int
868 ath5k_copy_channels(struct ath5k_hw *ah,
869 struct ieee80211_channel *channels,
870 unsigned int mode,
871 unsigned int max)
873 unsigned int i, count, size, chfreq, freq, ch;
875 if (!test_bit(mode, ah->ah_modes))
876 return 0;
878 switch (mode) {
879 case AR5K_MODE_11A:
880 case AR5K_MODE_11A_TURBO:
881 /* 1..220, but 2GHz frequencies are filtered by check_channel */
882 size = 220 ;
883 chfreq = CHANNEL_5GHZ;
884 break;
885 case AR5K_MODE_11B:
886 case AR5K_MODE_11G:
887 case AR5K_MODE_11G_TURBO:
888 size = 26;
889 chfreq = CHANNEL_2GHZ;
890 break;
891 default:
892 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
893 return 0;
896 for (i = 0, count = 0; i < size && max > 0; i++) {
897 ch = i + 1 ;
898 freq = ath5k_ieee2mhz(ch);
900 /* Check if channel is supported by the chipset */
901 if (!ath5k_channel_ok(ah, freq, chfreq))
902 continue;
904 /* Write channel info and increment counter */
905 channels[count].center_freq = freq;
906 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
907 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
908 switch (mode) {
909 case AR5K_MODE_11A:
910 case AR5K_MODE_11G:
911 channels[count].hw_value = chfreq | CHANNEL_OFDM;
912 break;
913 case AR5K_MODE_11A_TURBO:
914 case AR5K_MODE_11G_TURBO:
915 channels[count].hw_value = chfreq |
916 CHANNEL_OFDM | CHANNEL_TURBO;
917 break;
918 case AR5K_MODE_11B:
919 channels[count].hw_value = CHANNEL_B;
922 count++;
923 max--;
926 return count;
929 static int
930 ath5k_getchannels(struct ieee80211_hw *hw)
932 struct ath5k_softc *sc = hw->priv;
933 struct ath5k_hw *ah = sc->ah;
934 struct ieee80211_supported_band *sbands = sc->sbands;
935 const struct ath5k_rate_table *hw_rates;
936 unsigned int max_r, max_c, count_r, count_c;
937 int mode2g = AR5K_MODE_11G;
939 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
941 max_r = ARRAY_SIZE(sc->rates);
942 max_c = ARRAY_SIZE(sc->channels);
943 count_r = count_c = 0;
945 /* 2GHz band */
946 if (!test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
947 mode2g = AR5K_MODE_11B;
948 if (!test_bit(AR5K_MODE_11B,
949 sc->ah->ah_capabilities.cap_mode))
950 mode2g = -1;
953 if (mode2g > 0) {
954 struct ieee80211_supported_band *sband =
955 &sbands[IEEE80211_BAND_2GHZ];
957 sband->bitrates = sc->rates;
958 sband->channels = sc->channels;
960 sband->band = IEEE80211_BAND_2GHZ;
961 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
962 mode2g, max_c);
964 hw_rates = ath5k_hw_get_rate_table(ah, mode2g);
965 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
966 hw_rates, max_r);
968 count_c = sband->n_channels;
969 count_r = sband->n_bitrates;
971 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
973 max_r -= count_r;
974 max_c -= count_c;
978 /* 5GHz band */
980 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
981 struct ieee80211_supported_band *sband =
982 &sbands[IEEE80211_BAND_5GHZ];
984 sband->bitrates = &sc->rates[count_r];
985 sband->channels = &sc->channels[count_c];
987 sband->band = IEEE80211_BAND_5GHZ;
988 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
989 AR5K_MODE_11A, max_c);
991 hw_rates = ath5k_hw_get_rate_table(ah, AR5K_MODE_11A);
992 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
993 hw_rates, max_r);
995 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
998 ath5k_debug_dump_bands(sc);
1000 return 0;
1004 * Set/change channels. If the channel is really being changed,
1005 * it's done by reseting the chip. To accomplish this we must
1006 * first cleanup any pending DMA, then restart stuff after a la
1007 * ath5k_init.
1009 static int
1010 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1012 struct ath5k_hw *ah = sc->ah;
1013 int ret;
1015 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
1016 sc->curchan->center_freq, chan->center_freq);
1018 if (chan->center_freq != sc->curchan->center_freq ||
1019 chan->hw_value != sc->curchan->hw_value) {
1021 sc->curchan = chan;
1022 sc->curband = &sc->sbands[chan->band];
1025 * To switch channels clear any pending DMA operations;
1026 * wait long enough for the RX fifo to drain, reset the
1027 * hardware at the new frequency, and then re-enable
1028 * the relevant bits of the h/w.
1030 ath5k_hw_set_intr(ah, 0); /* disable interrupts */
1031 ath5k_txq_cleanup(sc); /* clear pending tx frames */
1032 ath5k_rx_stop(sc); /* turn off frame recv */
1033 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
1034 if (ret) {
1035 ATH5K_ERR(sc, "%s: unable to reset channel "
1036 "(%u Mhz)\n", __func__, chan->center_freq);
1037 return ret;
1040 ath5k_hw_set_txpower_limit(sc->ah, 0);
1043 * Re-enable rx framework.
1045 ret = ath5k_rx_start(sc);
1046 if (ret) {
1047 ATH5K_ERR(sc, "%s: unable to restart recv logic\n",
1048 __func__);
1049 return ret;
1053 * Change channels and update the h/w rate map
1054 * if we're switching; e.g. 11a to 11b/g.
1056 * XXX needed?
1058 /* ath5k_chan_change(sc, chan); */
1060 ath5k_beacon_config(sc);
1062 * Re-enable interrupts.
1064 ath5k_hw_set_intr(ah, sc->imask);
1067 return 0;
1071 * TODO: CLEAN THIS !!!
1073 static void
1074 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1076 if (unlikely(test_bit(ATH_STAT_LEDSOFT, sc->status))) {
1077 /* from Atheros NDIS driver, w/ permission */
1078 static const struct {
1079 u16 rate; /* tx/rx 802.11 rate */
1080 u16 timeOn; /* LED on time (ms) */
1081 u16 timeOff; /* LED off time (ms) */
1082 } blinkrates[] = {
1083 { 108, 40, 10 },
1084 { 96, 44, 11 },
1085 { 72, 50, 13 },
1086 { 48, 57, 14 },
1087 { 36, 67, 16 },
1088 { 24, 80, 20 },
1089 { 22, 100, 25 },
1090 { 18, 133, 34 },
1091 { 12, 160, 40 },
1092 { 10, 200, 50 },
1093 { 6, 240, 58 },
1094 { 4, 267, 66 },
1095 { 2, 400, 100 },
1096 { 0, 500, 130 }
1098 const struct ath5k_rate_table *rt =
1099 ath5k_hw_get_rate_table(sc->ah, mode);
1100 unsigned int i, j;
1102 BUG_ON(rt == NULL);
1104 memset(sc->hwmap, 0, sizeof(sc->hwmap));
1105 for (i = 0; i < 32; i++) {
1106 u8 ix = rt->rate_code_to_index[i];
1107 if (ix == 0xff) {
1108 sc->hwmap[i].ledon = msecs_to_jiffies(500);
1109 sc->hwmap[i].ledoff = msecs_to_jiffies(130);
1110 continue;
1112 sc->hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
1113 /* receive frames include FCS */
1114 sc->hwmap[i].rxflags = sc->hwmap[i].txflags |
1115 IEEE80211_RADIOTAP_F_FCS;
1116 /* setup blink rate table to avoid per-packet lookup */
1117 for (j = 0; j < ARRAY_SIZE(blinkrates) - 1; j++)
1118 if (blinkrates[j].rate == /* XXX why 7f? */
1119 (rt->rates[ix].dot11_rate&0x7f))
1120 break;
1122 sc->hwmap[i].ledon = msecs_to_jiffies(blinkrates[j].
1123 timeOn);
1124 sc->hwmap[i].ledoff = msecs_to_jiffies(blinkrates[j].
1125 timeOff);
1129 sc->curmode = mode;
1131 if (mode == AR5K_MODE_11A) {
1132 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1133 } else {
1134 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1138 static void
1139 ath5k_mode_setup(struct ath5k_softc *sc)
1141 struct ath5k_hw *ah = sc->ah;
1142 u32 rfilt;
1144 /* configure rx filter */
1145 rfilt = sc->filter_flags;
1146 ath5k_hw_set_rx_filter(ah, rfilt);
1148 if (ath5k_hw_hasbssidmask(ah))
1149 ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1151 /* configure operational mode */
1152 ath5k_hw_set_opmode(ah);
1154 ath5k_hw_set_mcast_filter(ah, 0, 0);
1155 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1159 * Match the hw provided rate index (through descriptors)
1160 * to an index for sc->curband->bitrates, so it can be used
1161 * by the stack.
1163 * This one is a little bit tricky but i think i'm right
1164 * about this...
1166 * We have 4 rate tables in the following order:
1167 * XR (4 rates)
1168 * 802.11a (8 rates)
1169 * 802.11b (4 rates)
1170 * 802.11g (12 rates)
1171 * that make the hw rate table.
1173 * Lets take a 5211 for example that supports a and b modes only.
1174 * First comes the 802.11a table and then 802.11b (total 12 rates).
1175 * When hw returns eg. 11 it points to the last 802.11b rate (11Mbit),
1176 * if it returns 2 it points to the second 802.11a rate etc.
1178 * Same goes for 5212 who has xr/a/b/g support (total 28 rates).
1179 * First comes the XR table, then 802.11a, 802.11b and 802.11g.
1180 * When hw returns eg. 27 it points to the last 802.11g rate (54Mbits) etc
1182 static void
1183 ath5k_set_total_hw_rates(struct ath5k_softc *sc) {
1185 struct ath5k_hw *ah = sc->ah;
1187 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
1188 sc->a_rates = 8;
1190 if (test_bit(AR5K_MODE_11B, ah->ah_modes))
1191 sc->b_rates = 4;
1193 if (test_bit(AR5K_MODE_11G, ah->ah_modes))
1194 sc->g_rates = 12;
1196 /* XXX: Need to see what what happens when
1197 xr disable bits in eeprom are set */
1198 if (ah->ah_version >= AR5K_AR5212)
1199 sc->xr_rates = 4;
1203 static inline int
1204 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix) {
1206 int mac80211_rix;
1208 if(sc->curband->band == IEEE80211_BAND_2GHZ) {
1209 /* We setup a g ratetable for both b/g modes */
1210 mac80211_rix =
1211 hw_rix - sc->b_rates - sc->a_rates - sc->xr_rates;
1212 } else {
1213 mac80211_rix = hw_rix - sc->xr_rates;
1216 /* Something went wrong, fallback to basic rate for this band */
1217 if ((mac80211_rix >= sc->curband->n_bitrates) ||
1218 (mac80211_rix <= 0 ))
1219 mac80211_rix = 1;
1221 return mac80211_rix;
1227 /***************\
1228 * Buffers setup *
1229 \***************/
1231 static int
1232 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1234 struct ath5k_hw *ah = sc->ah;
1235 struct sk_buff *skb = bf->skb;
1236 struct ath5k_desc *ds;
1238 if (likely(skb == NULL)) {
1239 unsigned int off;
1242 * Allocate buffer with headroom_needed space for the
1243 * fake physical layer header at the start.
1245 skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1);
1246 if (unlikely(skb == NULL)) {
1247 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1248 sc->rxbufsize + sc->cachelsz - 1);
1249 return -ENOMEM;
1252 * Cache-line-align. This is important (for the
1253 * 5210 at least) as not doing so causes bogus data
1254 * in rx'd frames.
1256 off = ((unsigned long)skb->data) % sc->cachelsz;
1257 if (off != 0)
1258 skb_reserve(skb, sc->cachelsz - off);
1260 bf->skb = skb;
1261 bf->skbaddr = pci_map_single(sc->pdev,
1262 skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
1263 if (unlikely(pci_dma_mapping_error(bf->skbaddr))) {
1264 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1265 dev_kfree_skb(skb);
1266 bf->skb = NULL;
1267 return -ENOMEM;
1272 * Setup descriptors. For receive we always terminate
1273 * the descriptor list with a self-linked entry so we'll
1274 * not get overrun under high load (as can happen with a
1275 * 5212 when ANI processing enables PHY error frames).
1277 * To insure the last descriptor is self-linked we create
1278 * each descriptor as self-linked and add it to the end. As
1279 * each additional descriptor is added the previous self-linked
1280 * entry is ``fixed'' naturally. This should be safe even
1281 * if DMA is happening. When processing RX interrupts we
1282 * never remove/process the last, self-linked, entry on the
1283 * descriptor list. This insures the hardware always has
1284 * someplace to write a new frame.
1286 ds = bf->desc;
1287 ds->ds_link = bf->daddr; /* link to self */
1288 ds->ds_data = bf->skbaddr;
1289 ath5k_hw_setup_rx_desc(ah, ds,
1290 skb_tailroom(skb), /* buffer size */
1293 if (sc->rxlink != NULL)
1294 *sc->rxlink = bf->daddr;
1295 sc->rxlink = &ds->ds_link;
1296 return 0;
1299 static int
1300 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
1301 struct ieee80211_tx_control *ctl)
1303 struct ath5k_hw *ah = sc->ah;
1304 struct ath5k_txq *txq = sc->txq;
1305 struct ath5k_desc *ds = bf->desc;
1306 struct sk_buff *skb = bf->skb;
1307 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1308 int ret;
1310 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1311 bf->ctl = *ctl;
1312 /* XXX endianness */
1313 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1314 PCI_DMA_TODEVICE);
1316 if (ctl->flags & IEEE80211_TXCTL_NO_ACK)
1317 flags |= AR5K_TXDESC_NOACK;
1319 pktlen = skb->len;
1321 if (!(ctl->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) {
1322 keyidx = ctl->key_idx;
1323 pktlen += ctl->icv_len;
1326 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1327 ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1328 (sc->power_level * 2), ctl->tx_rate->hw_value,
1329 ctl->retry_limit, keyidx, 0, flags, 0, 0);
1330 if (ret)
1331 goto err_unmap;
1333 ds->ds_link = 0;
1334 ds->ds_data = bf->skbaddr;
1336 spin_lock_bh(&txq->lock);
1337 list_add_tail(&bf->list, &txq->q);
1338 sc->tx_stats.data[txq->qnum].len++;
1339 if (txq->link == NULL) /* is this first packet? */
1340 ath5k_hw_put_tx_buf(ah, txq->qnum, bf->daddr);
1341 else /* no, so only link it */
1342 *txq->link = bf->daddr;
1344 txq->link = &ds->ds_link;
1345 ath5k_hw_tx_start(ah, txq->qnum);
1346 spin_unlock_bh(&txq->lock);
1348 return 0;
1349 err_unmap:
1350 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1351 return ret;
1354 /*******************\
1355 * Descriptors setup *
1356 \*******************/
1358 static int
1359 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1361 struct ath5k_desc *ds;
1362 struct ath5k_buf *bf;
1363 dma_addr_t da;
1364 unsigned int i;
1365 int ret;
1367 /* allocate descriptors */
1368 sc->desc_len = sizeof(struct ath5k_desc) *
1369 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1370 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1371 if (sc->desc == NULL) {
1372 ATH5K_ERR(sc, "can't allocate descriptors\n");
1373 ret = -ENOMEM;
1374 goto err;
1376 ds = sc->desc;
1377 da = sc->desc_daddr;
1378 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1379 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1381 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1382 sizeof(struct ath5k_buf), GFP_KERNEL);
1383 if (bf == NULL) {
1384 ATH5K_ERR(sc, "can't allocate bufptr\n");
1385 ret = -ENOMEM;
1386 goto err_free;
1388 sc->bufptr = bf;
1390 INIT_LIST_HEAD(&sc->rxbuf);
1391 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1392 bf->desc = ds;
1393 bf->daddr = da;
1394 list_add_tail(&bf->list, &sc->rxbuf);
1397 INIT_LIST_HEAD(&sc->txbuf);
1398 sc->txbuf_len = ATH_TXBUF;
1399 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1400 da += sizeof(*ds)) {
1401 bf->desc = ds;
1402 bf->daddr = da;
1403 list_add_tail(&bf->list, &sc->txbuf);
1406 /* beacon buffer */
1407 bf->desc = ds;
1408 bf->daddr = da;
1409 sc->bbuf = bf;
1411 return 0;
1412 err_free:
1413 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1414 err:
1415 sc->desc = NULL;
1416 return ret;
1419 static void
1420 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1422 struct ath5k_buf *bf;
1424 ath5k_txbuf_free(sc, sc->bbuf);
1425 list_for_each_entry(bf, &sc->txbuf, list)
1426 ath5k_txbuf_free(sc, bf);
1427 list_for_each_entry(bf, &sc->rxbuf, list)
1428 ath5k_txbuf_free(sc, bf);
1430 /* Free memory associated with all descriptors */
1431 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1433 kfree(sc->bufptr);
1434 sc->bufptr = NULL;
1441 /**************\
1442 * Queues setup *
1443 \**************/
1445 static struct ath5k_txq *
1446 ath5k_txq_setup(struct ath5k_softc *sc,
1447 int qtype, int subtype)
1449 struct ath5k_hw *ah = sc->ah;
1450 struct ath5k_txq *txq;
1451 struct ath5k_txq_info qi = {
1452 .tqi_subtype = subtype,
1453 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1454 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1455 .tqi_cw_max = AR5K_TXQ_USEDEFAULT
1457 int qnum;
1460 * Enable interrupts only for EOL and DESC conditions.
1461 * We mark tx descriptors to receive a DESC interrupt
1462 * when a tx queue gets deep; otherwise waiting for the
1463 * EOL to reap descriptors. Note that this is done to
1464 * reduce interrupt load and this only defers reaping
1465 * descriptors, never transmitting frames. Aside from
1466 * reducing interrupts this also permits more concurrency.
1467 * The only potential downside is if the tx queue backs
1468 * up in which case the top half of the kernel may backup
1469 * due to a lack of tx descriptors.
1471 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1472 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1473 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1474 if (qnum < 0) {
1476 * NB: don't print a message, this happens
1477 * normally on parts with too few tx queues
1479 return ERR_PTR(qnum);
1481 if (qnum >= ARRAY_SIZE(sc->txqs)) {
1482 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1483 qnum, ARRAY_SIZE(sc->txqs));
1484 ath5k_hw_release_tx_queue(ah, qnum);
1485 return ERR_PTR(-EINVAL);
1487 txq = &sc->txqs[qnum];
1488 if (!txq->setup) {
1489 txq->qnum = qnum;
1490 txq->link = NULL;
1491 INIT_LIST_HEAD(&txq->q);
1492 spin_lock_init(&txq->lock);
1493 txq->setup = true;
1495 return &sc->txqs[qnum];
1498 static int
1499 ath5k_beaconq_setup(struct ath5k_hw *ah)
1501 struct ath5k_txq_info qi = {
1502 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1503 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1504 .tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1505 /* NB: for dynamic turbo, don't enable any other interrupts */
1506 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1509 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1512 static int
1513 ath5k_beaconq_config(struct ath5k_softc *sc)
1515 struct ath5k_hw *ah = sc->ah;
1516 struct ath5k_txq_info qi;
1517 int ret;
1519 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1520 if (ret)
1521 return ret;
1522 if (sc->opmode == IEEE80211_IF_TYPE_AP) {
1524 * Always burst out beacon and CAB traffic
1525 * (aifs = cwmin = cwmax = 0)
1527 qi.tqi_aifs = 0;
1528 qi.tqi_cw_min = 0;
1529 qi.tqi_cw_max = 0;
1530 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
1532 * Adhoc mode; backoff between 0 and (2 * cw_min).
1534 qi.tqi_aifs = 0;
1535 qi.tqi_cw_min = 0;
1536 qi.tqi_cw_max = 2 * ah->ah_cw_min;
1539 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1540 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1541 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1543 ret = ath5k_hw_setup_tx_queueprops(ah, sc->bhalq, &qi);
1544 if (ret) {
1545 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1546 "hardware queue!\n", __func__);
1547 return ret;
1550 return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1553 static void
1554 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1556 struct ath5k_buf *bf, *bf0;
1559 * NB: this assumes output has been stopped and
1560 * we do not need to block ath5k_tx_tasklet
1562 spin_lock_bh(&txq->lock);
1563 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1564 ath5k_debug_printtxbuf(sc, bf);
1566 ath5k_txbuf_free(sc, bf);
1568 spin_lock_bh(&sc->txbuflock);
1569 sc->tx_stats.data[txq->qnum].len--;
1570 list_move_tail(&bf->list, &sc->txbuf);
1571 sc->txbuf_len++;
1572 spin_unlock_bh(&sc->txbuflock);
1574 txq->link = NULL;
1575 spin_unlock_bh(&txq->lock);
1579 * Drain the transmit queues and reclaim resources.
1581 static void
1582 ath5k_txq_cleanup(struct ath5k_softc *sc)
1584 struct ath5k_hw *ah = sc->ah;
1585 unsigned int i;
1587 /* XXX return value */
1588 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1589 /* don't touch the hardware if marked invalid */
1590 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1591 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1592 ath5k_hw_get_tx_buf(ah, sc->bhalq));
1593 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1594 if (sc->txqs[i].setup) {
1595 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1596 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1597 "link %p\n",
1598 sc->txqs[i].qnum,
1599 ath5k_hw_get_tx_buf(ah,
1600 sc->txqs[i].qnum),
1601 sc->txqs[i].link);
1604 ieee80211_start_queues(sc->hw); /* XXX move to callers */
1606 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1607 if (sc->txqs[i].setup)
1608 ath5k_txq_drainq(sc, &sc->txqs[i]);
1611 static void
1612 ath5k_txq_release(struct ath5k_softc *sc)
1614 struct ath5k_txq *txq = sc->txqs;
1615 unsigned int i;
1617 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1618 if (txq->setup) {
1619 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1620 txq->setup = false;
1627 /*************\
1628 * RX Handling *
1629 \*************/
1632 * Enable the receive h/w following a reset.
1634 static int
1635 ath5k_rx_start(struct ath5k_softc *sc)
1637 struct ath5k_hw *ah = sc->ah;
1638 struct ath5k_buf *bf;
1639 int ret;
1641 sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz);
1643 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1644 sc->cachelsz, sc->rxbufsize);
1646 sc->rxlink = NULL;
1648 spin_lock_bh(&sc->rxbuflock);
1649 list_for_each_entry(bf, &sc->rxbuf, list) {
1650 ret = ath5k_rxbuf_setup(sc, bf);
1651 if (ret != 0) {
1652 spin_unlock_bh(&sc->rxbuflock);
1653 goto err;
1656 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1657 spin_unlock_bh(&sc->rxbuflock);
1659 ath5k_hw_put_rx_buf(ah, bf->daddr);
1660 ath5k_hw_start_rx(ah); /* enable recv descriptors */
1661 ath5k_mode_setup(sc); /* set filters, etc. */
1662 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1664 return 0;
1665 err:
1666 return ret;
1670 * Disable the receive h/w in preparation for a reset.
1672 static void
1673 ath5k_rx_stop(struct ath5k_softc *sc)
1675 struct ath5k_hw *ah = sc->ah;
1677 ath5k_hw_stop_pcu_recv(ah); /* disable PCU */
1678 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1679 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
1680 mdelay(3); /* 3ms is long enough for 1 frame */
1682 ath5k_debug_printrxbuffs(sc, ah);
1684 sc->rxlink = NULL; /* just in case */
1687 static unsigned int
1688 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1689 struct sk_buff *skb, struct ath5k_rx_status *rs)
1691 struct ieee80211_hdr *hdr = (void *)skb->data;
1692 unsigned int keyix, hlen = ieee80211_get_hdrlen_from_skb(skb);
1694 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1695 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1696 return RX_FLAG_DECRYPTED;
1698 /* Apparently when a default key is used to decrypt the packet
1699 the hw does not set the index used to decrypt. In such cases
1700 get the index from the packet. */
1701 if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_PROTECTED) &&
1702 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1703 skb->len >= hlen + 4) {
1704 keyix = skb->data[hlen + 3] >> 6;
1706 if (test_bit(keyix, sc->keymap))
1707 return RX_FLAG_DECRYPTED;
1710 return 0;
1714 static void
1715 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1716 struct ieee80211_rx_status *rxs)
1718 u64 tsf, bc_tstamp;
1719 u32 hw_tu;
1720 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1722 if ((le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_FTYPE) ==
1723 IEEE80211_FTYPE_MGMT &&
1724 (le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE) ==
1725 IEEE80211_STYPE_BEACON &&
1726 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1727 memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1729 * Received an IBSS beacon with the same BSSID. Hardware *must*
1730 * have updated the local TSF. We have to work around various
1731 * hardware bugs, though...
1733 tsf = ath5k_hw_get_tsf64(sc->ah);
1734 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1735 hw_tu = TSF_TO_TU(tsf);
1737 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1738 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1739 (unsigned long long)bc_tstamp,
1740 (unsigned long long)rxs->mactime,
1741 (unsigned long long)(rxs->mactime - bc_tstamp),
1742 (unsigned long long)tsf);
1745 * Sometimes the HW will give us a wrong tstamp in the rx
1746 * status, causing the timestamp extension to go wrong.
1747 * (This seems to happen especially with beacon frames bigger
1748 * than 78 byte (incl. FCS))
1749 * But we know that the receive timestamp must be later than the
1750 * timestamp of the beacon since HW must have synced to that.
1752 * NOTE: here we assume mactime to be after the frame was
1753 * received, not like mac80211 which defines it at the start.
1755 if (bc_tstamp > rxs->mactime) {
1756 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1757 "fixing mactime from %llx to %llx\n",
1758 (unsigned long long)rxs->mactime,
1759 (unsigned long long)tsf);
1760 rxs->mactime = tsf;
1764 * Local TSF might have moved higher than our beacon timers,
1765 * in that case we have to update them to continue sending
1766 * beacons. This also takes care of synchronizing beacon sending
1767 * times with other stations.
1769 if (hw_tu >= sc->nexttbtt)
1770 ath5k_beacon_update_timers(sc, bc_tstamp);
1775 static void
1776 ath5k_tasklet_rx(unsigned long data)
1778 struct ieee80211_rx_status rxs = {};
1779 struct ath5k_rx_status rs = {};
1780 struct sk_buff *skb;
1781 struct ath5k_softc *sc = (void *)data;
1782 struct ath5k_buf *bf;
1783 struct ath5k_desc *ds;
1784 int ret;
1785 int hdrlen;
1786 int pad;
1788 spin_lock(&sc->rxbuflock);
1789 do {
1790 rxs.flag = 0;
1792 if (unlikely(list_empty(&sc->rxbuf))) {
1793 ATH5K_WARN(sc, "empty rx buf pool\n");
1794 break;
1796 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1797 BUG_ON(bf->skb == NULL);
1798 skb = bf->skb;
1799 ds = bf->desc;
1801 /* TODO only one segment */
1802 pci_dma_sync_single_for_cpu(sc->pdev, sc->desc_daddr,
1803 sc->desc_len, PCI_DMA_FROMDEVICE);
1805 if (unlikely(ds->ds_link == bf->daddr)) /* this is the end */
1806 break;
1808 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1809 if (unlikely(ret == -EINPROGRESS))
1810 break;
1811 else if (unlikely(ret)) {
1812 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1813 spin_unlock(&sc->rxbuflock);
1814 return;
1817 if (unlikely(rs.rs_more)) {
1818 ATH5K_WARN(sc, "unsupported jumbo\n");
1819 goto next;
1822 if (unlikely(rs.rs_status)) {
1823 if (rs.rs_status & AR5K_RXERR_PHY)
1824 goto next;
1825 if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1827 * Decrypt error. If the error occurred
1828 * because there was no hardware key, then
1829 * let the frame through so the upper layers
1830 * can process it. This is necessary for 5210
1831 * parts which have no way to setup a ``clear''
1832 * key cache entry.
1834 * XXX do key cache faulting
1836 if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1837 !(rs.rs_status & AR5K_RXERR_CRC))
1838 goto accept;
1840 if (rs.rs_status & AR5K_RXERR_MIC) {
1841 rxs.flag |= RX_FLAG_MMIC_ERROR;
1842 goto accept;
1845 /* let crypto-error packets fall through in MNTR */
1846 if ((rs.rs_status &
1847 ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1848 sc->opmode != IEEE80211_IF_TYPE_MNTR)
1849 goto next;
1851 accept:
1852 pci_dma_sync_single_for_cpu(sc->pdev, bf->skbaddr,
1853 rs.rs_datalen, PCI_DMA_FROMDEVICE);
1854 pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1855 PCI_DMA_FROMDEVICE);
1856 bf->skb = NULL;
1858 skb_put(skb, rs.rs_datalen);
1861 * the hardware adds a padding to 4 byte boundaries between
1862 * the header and the payload data if the header length is
1863 * not multiples of 4 - remove it
1865 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1866 if (hdrlen & 3) {
1867 pad = hdrlen % 4;
1868 memmove(skb->data + pad, skb->data, hdrlen);
1869 skb_pull(skb, pad);
1873 * always extend the mac timestamp, since this information is
1874 * also needed for proper IBSS merging.
1876 * XXX: it might be too late to do it here, since rs_tstamp is
1877 * 15bit only. that means TSF extension has to be done within
1878 * 32768usec (about 32ms). it might be necessary to move this to
1879 * the interrupt handler, like it is done in madwifi.
1881 * Unfortunately we don't know when the hardware takes the rx
1882 * timestamp (beginning of phy frame, data frame, end of rx?).
1883 * The only thing we know is that it is hardware specific...
1884 * On AR5213 it seems the rx timestamp is at the end of the
1885 * frame, but i'm not sure.
1887 * NOTE: mac80211 defines mactime at the beginning of the first
1888 * data symbol. Since we don't have any time references it's
1889 * impossible to comply to that. This affects IBSS merge only
1890 * right now, so it's not too bad...
1892 rxs.mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1893 rxs.flag |= RX_FLAG_TSFT;
1895 rxs.freq = sc->curchan->center_freq;
1896 rxs.band = sc->curband->band;
1899 * signal quality:
1900 * the names here are misleading and the usage of these
1901 * values by iwconfig makes it even worse
1903 /* noise floor in dBm, from the last noise calibration */
1904 rxs.noise = sc->ah->ah_noise_floor;
1905 /* signal level in dBm */
1906 rxs.ssi = rxs.noise + rs.rs_rssi;
1908 * "signal" is actually displayed as Link Quality by iwconfig
1909 * we provide a percentage based on rssi (assuming max rssi 64)
1911 rxs.signal = rs.rs_rssi * 100 / 64;
1913 rxs.antenna = rs.rs_antenna;
1914 rxs.rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1915 rxs.flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1917 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
1919 /* check beacons in IBSS mode */
1920 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
1921 ath5k_check_ibss_tsf(sc, skb, &rxs);
1923 __ieee80211_rx(sc->hw, skb, &rxs);
1924 sc->led_rxrate = rs.rs_rate;
1925 ath5k_led_event(sc, ATH_LED_RX);
1926 next:
1927 list_move_tail(&bf->list, &sc->rxbuf);
1928 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1929 spin_unlock(&sc->rxbuflock);
1935 /*************\
1936 * TX Handling *
1937 \*************/
1939 static void
1940 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1942 struct ieee80211_tx_status txs = {};
1943 struct ath5k_tx_status ts = {};
1944 struct ath5k_buf *bf, *bf0;
1945 struct ath5k_desc *ds;
1946 struct sk_buff *skb;
1947 int ret;
1949 spin_lock(&txq->lock);
1950 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1951 ds = bf->desc;
1953 /* TODO only one segment */
1954 pci_dma_sync_single_for_cpu(sc->pdev, sc->desc_daddr,
1955 sc->desc_len, PCI_DMA_FROMDEVICE);
1956 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1957 if (unlikely(ret == -EINPROGRESS))
1958 break;
1959 else if (unlikely(ret)) {
1960 ATH5K_ERR(sc, "error %d while processing queue %u\n",
1961 ret, txq->qnum);
1962 break;
1965 skb = bf->skb;
1966 bf->skb = NULL;
1967 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1968 PCI_DMA_TODEVICE);
1970 txs.control = bf->ctl;
1971 txs.retry_count = ts.ts_shortretry + ts.ts_longretry / 6;
1972 if (unlikely(ts.ts_status)) {
1973 sc->ll_stats.dot11ACKFailureCount++;
1974 if (ts.ts_status & AR5K_TXERR_XRETRY)
1975 txs.excessive_retries = 1;
1976 else if (ts.ts_status & AR5K_TXERR_FILT)
1977 txs.flags |= IEEE80211_TX_STATUS_TX_FILTERED;
1978 } else {
1979 txs.flags |= IEEE80211_TX_STATUS_ACK;
1980 txs.ack_signal = ts.ts_rssi;
1983 ieee80211_tx_status(sc->hw, skb, &txs);
1984 sc->tx_stats.data[txq->qnum].count++;
1986 spin_lock(&sc->txbuflock);
1987 sc->tx_stats.data[txq->qnum].len--;
1988 list_move_tail(&bf->list, &sc->txbuf);
1989 sc->txbuf_len++;
1990 spin_unlock(&sc->txbuflock);
1992 if (likely(list_empty(&txq->q)))
1993 txq->link = NULL;
1994 spin_unlock(&txq->lock);
1995 if (sc->txbuf_len > ATH_TXBUF / 5)
1996 ieee80211_wake_queues(sc->hw);
1999 static void
2000 ath5k_tasklet_tx(unsigned long data)
2002 struct ath5k_softc *sc = (void *)data;
2004 ath5k_tx_processq(sc, sc->txq);
2006 ath5k_led_event(sc, ATH_LED_TX);
2012 /*****************\
2013 * Beacon handling *
2014 \*****************/
2017 * Setup the beacon frame for transmit.
2019 static int
2020 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
2021 struct ieee80211_tx_control *ctl)
2023 struct sk_buff *skb = bf->skb;
2024 struct ath5k_hw *ah = sc->ah;
2025 struct ath5k_desc *ds;
2026 int ret, antenna = 0;
2027 u32 flags;
2029 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
2030 PCI_DMA_TODEVICE);
2031 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
2032 "skbaddr %llx\n", skb, skb->data, skb->len,
2033 (unsigned long long)bf->skbaddr);
2034 if (pci_dma_mapping_error(bf->skbaddr)) {
2035 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
2036 return -EIO;
2039 ds = bf->desc;
2041 flags = AR5K_TXDESC_NOACK;
2042 if (sc->opmode == IEEE80211_IF_TYPE_IBSS && ath5k_hw_hasveol(ah)) {
2043 ds->ds_link = bf->daddr; /* self-linked */
2044 flags |= AR5K_TXDESC_VEOL;
2046 * Let hardware handle antenna switching if txantenna is not set
2048 } else {
2049 ds->ds_link = 0;
2051 * Switch antenna every 4 beacons if txantenna is not set
2052 * XXX assumes two antennas
2054 if (antenna == 0)
2055 antenna = sc->bsent & 4 ? 2 : 1;
2058 ds->ds_data = bf->skbaddr;
2059 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
2060 ieee80211_get_hdrlen_from_skb(skb),
2061 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
2062 ctl->tx_rate->hw_value, 1, AR5K_TXKEYIX_INVALID,
2063 antenna, flags, 0, 0);
2064 if (ret)
2065 goto err_unmap;
2067 return 0;
2068 err_unmap:
2069 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
2070 return ret;
2074 * Transmit a beacon frame at SWBA. Dynamic updates to the
2075 * frame contents are done as needed and the slot time is
2076 * also adjusted based on current state.
2078 * this is usually called from interrupt context (ath5k_intr())
2079 * but also from ath5k_beacon_config() in IBSS mode which in turn
2080 * can be called from a tasklet and user context
2082 static void
2083 ath5k_beacon_send(struct ath5k_softc *sc)
2085 struct ath5k_buf *bf = sc->bbuf;
2086 struct ath5k_hw *ah = sc->ah;
2088 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
2090 if (unlikely(bf->skb == NULL || sc->opmode == IEEE80211_IF_TYPE_STA ||
2091 sc->opmode == IEEE80211_IF_TYPE_MNTR)) {
2092 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
2093 return;
2096 * Check if the previous beacon has gone out. If
2097 * not don't don't try to post another, skip this
2098 * period and wait for the next. Missed beacons
2099 * indicate a problem and should not occur. If we
2100 * miss too many consecutive beacons reset the device.
2102 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2103 sc->bmisscount++;
2104 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2105 "missed %u consecutive beacons\n", sc->bmisscount);
2106 if (sc->bmisscount > 3) { /* NB: 3 is a guess */
2107 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2108 "stuck beacon time (%u missed)\n",
2109 sc->bmisscount);
2110 tasklet_schedule(&sc->restq);
2112 return;
2114 if (unlikely(sc->bmisscount != 0)) {
2115 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2116 "resume beacon xmit after %u misses\n",
2117 sc->bmisscount);
2118 sc->bmisscount = 0;
2122 * Stop any current dma and put the new frame on the queue.
2123 * This should never fail since we check above that no frames
2124 * are still pending on the queue.
2126 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2127 ATH5K_WARN(sc, "beacon queue %u didn't stop?\n", sc->bhalq);
2128 /* NB: hw still stops DMA, so proceed */
2130 pci_dma_sync_single_for_cpu(sc->pdev, bf->skbaddr, bf->skb->len,
2131 PCI_DMA_TODEVICE);
2133 ath5k_hw_put_tx_buf(ah, sc->bhalq, bf->daddr);
2134 ath5k_hw_tx_start(ah, sc->bhalq);
2135 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2136 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2138 sc->bsent++;
2143 * ath5k_beacon_update_timers - update beacon timers
2145 * @sc: struct ath5k_softc pointer we are operating on
2146 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2147 * beacon timer update based on the current HW TSF.
2149 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2150 * of a received beacon or the current local hardware TSF and write it to the
2151 * beacon timer registers.
2153 * This is called in a variety of situations, e.g. when a beacon is received,
2154 * when a TSF update has been detected, but also when an new IBSS is created or
2155 * when we otherwise know we have to update the timers, but we keep it in this
2156 * function to have it all together in one place.
2158 static void
2159 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2161 struct ath5k_hw *ah = sc->ah;
2162 u32 nexttbtt, intval, hw_tu, bc_tu;
2163 u64 hw_tsf;
2165 intval = sc->bintval & AR5K_BEACON_PERIOD;
2166 if (WARN_ON(!intval))
2167 return;
2169 /* beacon TSF converted to TU */
2170 bc_tu = TSF_TO_TU(bc_tsf);
2172 /* current TSF converted to TU */
2173 hw_tsf = ath5k_hw_get_tsf64(ah);
2174 hw_tu = TSF_TO_TU(hw_tsf);
2176 #define FUDGE 3
2177 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2178 if (bc_tsf == -1) {
2180 * no beacons received, called internally.
2181 * just need to refresh timers based on HW TSF.
2183 nexttbtt = roundup(hw_tu + FUDGE, intval);
2184 } else if (bc_tsf == 0) {
2186 * no beacon received, probably called by ath5k_reset_tsf().
2187 * reset TSF to start with 0.
2189 nexttbtt = intval;
2190 intval |= AR5K_BEACON_RESET_TSF;
2191 } else if (bc_tsf > hw_tsf) {
2193 * beacon received, SW merge happend but HW TSF not yet updated.
2194 * not possible to reconfigure timers yet, but next time we
2195 * receive a beacon with the same BSSID, the hardware will
2196 * automatically update the TSF and then we need to reconfigure
2197 * the timers.
2199 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2200 "need to wait for HW TSF sync\n");
2201 return;
2202 } else {
2204 * most important case for beacon synchronization between STA.
2206 * beacon received and HW TSF has been already updated by HW.
2207 * update next TBTT based on the TSF of the beacon, but make
2208 * sure it is ahead of our local TSF timer.
2210 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2212 #undef FUDGE
2214 sc->nexttbtt = nexttbtt;
2216 intval |= AR5K_BEACON_ENA;
2217 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2220 * debugging output last in order to preserve the time critical aspect
2221 * of this function
2223 if (bc_tsf == -1)
2224 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2225 "reconfigured timers based on HW TSF\n");
2226 else if (bc_tsf == 0)
2227 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2228 "reset HW TSF and timers\n");
2229 else
2230 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2231 "updated timers based on beacon TSF\n");
2233 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2234 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2235 (unsigned long long) bc_tsf,
2236 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2237 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2238 intval & AR5K_BEACON_PERIOD,
2239 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2240 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2245 * ath5k_beacon_config - Configure the beacon queues and interrupts
2247 * @sc: struct ath5k_softc pointer we are operating on
2249 * When operating in station mode we want to receive a BMISS interrupt when we
2250 * stop seeing beacons from the AP we've associated with so we can look for
2251 * another AP to associate with.
2253 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2254 * interrupts to detect TSF updates only.
2256 * AP mode is missing.
2258 static void
2259 ath5k_beacon_config(struct ath5k_softc *sc)
2261 struct ath5k_hw *ah = sc->ah;
2263 ath5k_hw_set_intr(ah, 0);
2264 sc->bmisscount = 0;
2266 if (sc->opmode == IEEE80211_IF_TYPE_STA) {
2267 sc->imask |= AR5K_INT_BMISS;
2268 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2270 * In IBSS mode we use a self-linked tx descriptor and let the
2271 * hardware send the beacons automatically. We have to load it
2272 * only once here.
2273 * We use the SWBA interrupt only to keep track of the beacon
2274 * timers in order to detect automatic TSF updates.
2276 ath5k_beaconq_config(sc);
2278 sc->imask |= AR5K_INT_SWBA;
2280 if (ath5k_hw_hasveol(ah))
2281 ath5k_beacon_send(sc);
2283 /* TODO else AP */
2285 ath5k_hw_set_intr(ah, sc->imask);
2289 /********************\
2290 * Interrupt handling *
2291 \********************/
2293 static int
2294 ath5k_init(struct ath5k_softc *sc)
2296 int ret;
2298 mutex_lock(&sc->lock);
2300 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2303 * Stop anything previously setup. This is safe
2304 * no matter this is the first time through or not.
2306 ath5k_stop_locked(sc);
2309 * The basic interface to setting the hardware in a good
2310 * state is ``reset''. On return the hardware is known to
2311 * be powered up and with interrupts disabled. This must
2312 * be followed by initialization of the appropriate bits
2313 * and then setup of the interrupt mask.
2315 sc->curchan = sc->hw->conf.channel;
2316 sc->curband = &sc->sbands[sc->curchan->band];
2317 ret = ath5k_hw_reset(sc->ah, sc->opmode, sc->curchan, false);
2318 if (ret) {
2319 ATH5K_ERR(sc, "unable to reset hardware: %d\n", ret);
2320 goto done;
2323 * This is needed only to setup initial state
2324 * but it's best done after a reset.
2326 ath5k_hw_set_txpower_limit(sc->ah, 0);
2329 * Setup the hardware after reset: the key cache
2330 * is filled as needed and the receive engine is
2331 * set going. Frame transmit is handled entirely
2332 * in the frame output path; there's nothing to do
2333 * here except setup the interrupt mask.
2335 ret = ath5k_rx_start(sc);
2336 if (ret)
2337 goto done;
2340 * Enable interrupts.
2342 sc->imask = AR5K_INT_RX | AR5K_INT_TX | AR5K_INT_RXEOL |
2343 AR5K_INT_RXORN | AR5K_INT_FATAL | AR5K_INT_GLOBAL |
2344 AR5K_INT_MIB;
2346 ath5k_hw_set_intr(sc->ah, sc->imask);
2347 /* Set ack to be sent at low bit-rates */
2348 ath5k_hw_set_ack_bitrate_high(sc->ah, false);
2350 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2351 msecs_to_jiffies(ath5k_calinterval * 1000)));
2353 ret = 0;
2354 done:
2355 mutex_unlock(&sc->lock);
2356 return ret;
2359 static int
2360 ath5k_stop_locked(struct ath5k_softc *sc)
2362 struct ath5k_hw *ah = sc->ah;
2364 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2365 test_bit(ATH_STAT_INVALID, sc->status));
2368 * Shutdown the hardware and driver:
2369 * stop output from above
2370 * disable interrupts
2371 * turn off timers
2372 * turn off the radio
2373 * clear transmit machinery
2374 * clear receive machinery
2375 * drain and release tx queues
2376 * reclaim beacon resources
2377 * power down hardware
2379 * Note that some of this work is not possible if the
2380 * hardware is gone (invalid).
2382 ieee80211_stop_queues(sc->hw);
2384 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2385 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
2386 del_timer_sync(&sc->led_tim);
2387 ath5k_hw_set_gpio(ah, sc->led_pin, !sc->led_on);
2388 __clear_bit(ATH_STAT_LEDBLINKING, sc->status);
2390 ath5k_hw_set_intr(ah, 0);
2392 ath5k_txq_cleanup(sc);
2393 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2394 ath5k_rx_stop(sc);
2395 ath5k_hw_phy_disable(ah);
2396 } else
2397 sc->rxlink = NULL;
2399 return 0;
2403 * Stop the device, grabbing the top-level lock to protect
2404 * against concurrent entry through ath5k_init (which can happen
2405 * if another thread does a system call and the thread doing the
2406 * stop is preempted).
2408 static int
2409 ath5k_stop_hw(struct ath5k_softc *sc)
2411 int ret;
2413 mutex_lock(&sc->lock);
2414 ret = ath5k_stop_locked(sc);
2415 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2417 * Set the chip in full sleep mode. Note that we are
2418 * careful to do this only when bringing the interface
2419 * completely to a stop. When the chip is in this state
2420 * it must be carefully woken up or references to
2421 * registers in the PCI clock domain may freeze the bus
2422 * (and system). This varies by chip and is mostly an
2423 * issue with newer parts that go to sleep more quickly.
2425 if (sc->ah->ah_mac_srev >= 0x78) {
2427 * XXX
2428 * don't put newer MAC revisions > 7.8 to sleep because
2429 * of the above mentioned problems
2431 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, "
2432 "not putting device to sleep\n");
2433 } else {
2434 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2435 "putting device to full sleep\n");
2436 ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0);
2439 ath5k_txbuf_free(sc, sc->bbuf);
2440 mutex_unlock(&sc->lock);
2442 del_timer_sync(&sc->calib_tim);
2444 return ret;
2447 static irqreturn_t
2448 ath5k_intr(int irq, void *dev_id)
2450 struct ath5k_softc *sc = dev_id;
2451 struct ath5k_hw *ah = sc->ah;
2452 enum ath5k_int status;
2453 unsigned int counter = 1000;
2455 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2456 !ath5k_hw_is_intr_pending(ah)))
2457 return IRQ_NONE;
2459 do {
2461 * Figure out the reason(s) for the interrupt. Note
2462 * that get_isr returns a pseudo-ISR that may include
2463 * bits we haven't explicitly enabled so we mask the
2464 * value to insure we only process bits we requested.
2466 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2467 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2468 status, sc->imask);
2469 status &= sc->imask; /* discard unasked for bits */
2470 if (unlikely(status & AR5K_INT_FATAL)) {
2472 * Fatal errors are unrecoverable.
2473 * Typically these are caused by DMA errors.
2475 tasklet_schedule(&sc->restq);
2476 } else if (unlikely(status & AR5K_INT_RXORN)) {
2477 tasklet_schedule(&sc->restq);
2478 } else {
2479 if (status & AR5K_INT_SWBA) {
2481 * Software beacon alert--time to send a beacon.
2482 * Handle beacon transmission directly; deferring
2483 * this is too slow to meet timing constraints
2484 * under load.
2486 * In IBSS mode we use this interrupt just to
2487 * keep track of the next TBTT (target beacon
2488 * transmission time) in order to detect wether
2489 * automatic TSF updates happened.
2491 if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2492 /* XXX: only if VEOL suppported */
2493 u64 tsf = ath5k_hw_get_tsf64(ah);
2494 sc->nexttbtt += sc->bintval;
2495 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2496 "SWBA nexttbtt: %x hw_tu: %x "
2497 "TSF: %llx\n",
2498 sc->nexttbtt,
2499 TSF_TO_TU(tsf),
2500 (unsigned long long) tsf);
2501 } else {
2502 ath5k_beacon_send(sc);
2505 if (status & AR5K_INT_RXEOL) {
2507 * NB: the hardware should re-read the link when
2508 * RXE bit is written, but it doesn't work at
2509 * least on older hardware revs.
2511 sc->rxlink = NULL;
2513 if (status & AR5K_INT_TXURN) {
2514 /* bump tx trigger level */
2515 ath5k_hw_update_tx_triglevel(ah, true);
2517 if (status & AR5K_INT_RX)
2518 tasklet_schedule(&sc->rxtq);
2519 if (status & AR5K_INT_TX)
2520 tasklet_schedule(&sc->txtq);
2521 if (status & AR5K_INT_BMISS) {
2523 if (status & AR5K_INT_MIB) {
2525 * These stats are also used for ANI i think
2526 * so how about updating them more often ?
2528 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
2531 } while (ath5k_hw_is_intr_pending(ah) && counter-- > 0);
2533 if (unlikely(!counter))
2534 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2536 return IRQ_HANDLED;
2539 static void
2540 ath5k_tasklet_reset(unsigned long data)
2542 struct ath5k_softc *sc = (void *)data;
2544 ath5k_reset(sc->hw);
2548 * Periodically recalibrate the PHY to account
2549 * for temperature/environment changes.
2551 static void
2552 ath5k_calibrate(unsigned long data)
2554 struct ath5k_softc *sc = (void *)data;
2555 struct ath5k_hw *ah = sc->ah;
2557 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2558 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2559 sc->curchan->hw_value);
2561 if (ath5k_hw_get_rf_gain(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2563 * Rfgain is out of bounds, reset the chip
2564 * to load new gain values.
2566 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2567 ath5k_reset(sc->hw);
2569 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2570 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2571 ieee80211_frequency_to_channel(
2572 sc->curchan->center_freq));
2574 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2575 msecs_to_jiffies(ath5k_calinterval * 1000)));
2580 /***************\
2581 * LED functions *
2582 \***************/
2584 static void
2585 ath5k_led_off(unsigned long data)
2587 struct ath5k_softc *sc = (void *)data;
2589 if (test_bit(ATH_STAT_LEDENDBLINK, sc->status))
2590 __clear_bit(ATH_STAT_LEDBLINKING, sc->status);
2591 else {
2592 __set_bit(ATH_STAT_LEDENDBLINK, sc->status);
2593 ath5k_hw_set_gpio(sc->ah, sc->led_pin, !sc->led_on);
2594 mod_timer(&sc->led_tim, jiffies + sc->led_off);
2599 * Blink the LED according to the specified on/off times.
2601 static void
2602 ath5k_led_blink(struct ath5k_softc *sc, unsigned int on,
2603 unsigned int off)
2605 ATH5K_DBG(sc, ATH5K_DEBUG_LED, "on %u off %u\n", on, off);
2606 ath5k_hw_set_gpio(sc->ah, sc->led_pin, sc->led_on);
2607 __set_bit(ATH_STAT_LEDBLINKING, sc->status);
2608 __clear_bit(ATH_STAT_LEDENDBLINK, sc->status);
2609 sc->led_off = off;
2610 mod_timer(&sc->led_tim, jiffies + on);
2613 static void
2614 ath5k_led_event(struct ath5k_softc *sc, int event)
2616 if (likely(!test_bit(ATH_STAT_LEDSOFT, sc->status)))
2617 return;
2618 if (unlikely(test_bit(ATH_STAT_LEDBLINKING, sc->status)))
2619 return; /* don't interrupt active blink */
2620 switch (event) {
2621 case ATH_LED_TX:
2622 ath5k_led_blink(sc, sc->hwmap[sc->led_txrate].ledon,
2623 sc->hwmap[sc->led_txrate].ledoff);
2624 break;
2625 case ATH_LED_RX:
2626 ath5k_led_blink(sc, sc->hwmap[sc->led_rxrate].ledon,
2627 sc->hwmap[sc->led_rxrate].ledoff);
2628 break;
2635 /********************\
2636 * Mac80211 functions *
2637 \********************/
2639 static int
2640 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
2641 struct ieee80211_tx_control *ctl)
2643 struct ath5k_softc *sc = hw->priv;
2644 struct ath5k_buf *bf;
2645 unsigned long flags;
2646 int hdrlen;
2647 int pad;
2649 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
2651 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2652 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2655 * the hardware expects the header padded to 4 byte boundaries
2656 * if this is not the case we add the padding after the header
2658 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2659 if (hdrlen & 3) {
2660 pad = hdrlen % 4;
2661 if (skb_headroom(skb) < pad) {
2662 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2663 " headroom to pad %d\n", hdrlen, pad);
2664 return -1;
2666 skb_push(skb, pad);
2667 memmove(skb->data, skb->data+pad, hdrlen);
2670 sc->led_txrate = ctl->tx_rate->hw_value;
2672 spin_lock_irqsave(&sc->txbuflock, flags);
2673 if (list_empty(&sc->txbuf)) {
2674 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2675 spin_unlock_irqrestore(&sc->txbuflock, flags);
2676 ieee80211_stop_queue(hw, ctl->queue);
2677 return -1;
2679 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2680 list_del(&bf->list);
2681 sc->txbuf_len--;
2682 if (list_empty(&sc->txbuf))
2683 ieee80211_stop_queues(hw);
2684 spin_unlock_irqrestore(&sc->txbuflock, flags);
2686 bf->skb = skb;
2688 if (ath5k_txbuf_setup(sc, bf, ctl)) {
2689 bf->skb = NULL;
2690 spin_lock_irqsave(&sc->txbuflock, flags);
2691 list_add_tail(&bf->list, &sc->txbuf);
2692 sc->txbuf_len++;
2693 spin_unlock_irqrestore(&sc->txbuflock, flags);
2694 dev_kfree_skb_any(skb);
2695 return 0;
2698 return 0;
2701 static int
2702 ath5k_reset(struct ieee80211_hw *hw)
2704 struct ath5k_softc *sc = hw->priv;
2705 struct ath5k_hw *ah = sc->ah;
2706 int ret;
2708 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2710 ath5k_hw_set_intr(ah, 0);
2711 ath5k_txq_cleanup(sc);
2712 ath5k_rx_stop(sc);
2714 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
2715 if (unlikely(ret)) {
2716 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2717 goto err;
2719 ath5k_hw_set_txpower_limit(sc->ah, 0);
2721 ret = ath5k_rx_start(sc);
2722 if (unlikely(ret)) {
2723 ATH5K_ERR(sc, "can't start recv logic\n");
2724 goto err;
2727 * We may be doing a reset in response to an ioctl
2728 * that changes the channel so update any state that
2729 * might change as a result.
2731 * XXX needed?
2733 /* ath5k_chan_change(sc, c); */
2734 ath5k_beacon_config(sc);
2735 /* intrs are started by ath5k_beacon_config */
2737 ieee80211_wake_queues(hw);
2739 return 0;
2740 err:
2741 return ret;
2744 static int ath5k_start(struct ieee80211_hw *hw)
2746 return ath5k_init(hw->priv);
2749 static void ath5k_stop(struct ieee80211_hw *hw)
2751 ath5k_stop_hw(hw->priv);
2754 static int ath5k_add_interface(struct ieee80211_hw *hw,
2755 struct ieee80211_if_init_conf *conf)
2757 struct ath5k_softc *sc = hw->priv;
2758 int ret;
2760 mutex_lock(&sc->lock);
2761 if (sc->vif) {
2762 ret = 0;
2763 goto end;
2766 sc->vif = conf->vif;
2768 switch (conf->type) {
2769 case IEEE80211_IF_TYPE_STA:
2770 case IEEE80211_IF_TYPE_IBSS:
2771 case IEEE80211_IF_TYPE_MNTR:
2772 sc->opmode = conf->type;
2773 break;
2774 default:
2775 ret = -EOPNOTSUPP;
2776 goto end;
2778 ret = 0;
2779 end:
2780 mutex_unlock(&sc->lock);
2781 return ret;
2784 static void
2785 ath5k_remove_interface(struct ieee80211_hw *hw,
2786 struct ieee80211_if_init_conf *conf)
2788 struct ath5k_softc *sc = hw->priv;
2790 mutex_lock(&sc->lock);
2791 if (sc->vif != conf->vif)
2792 goto end;
2794 sc->vif = NULL;
2795 end:
2796 mutex_unlock(&sc->lock);
2800 * TODO: Phy disable/diversity etc
2802 static int
2803 ath5k_config(struct ieee80211_hw *hw,
2804 struct ieee80211_conf *conf)
2806 struct ath5k_softc *sc = hw->priv;
2808 sc->bintval = conf->beacon_int;
2809 sc->power_level = conf->power_level;
2811 return ath5k_chan_set(sc, conf->channel);
2814 static int
2815 ath5k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2816 struct ieee80211_if_conf *conf)
2818 struct ath5k_softc *sc = hw->priv;
2819 struct ath5k_hw *ah = sc->ah;
2820 int ret;
2822 /* Set to a reasonable value. Note that this will
2823 * be set to mac80211's value at ath5k_config(). */
2824 sc->bintval = 1000;
2825 mutex_lock(&sc->lock);
2826 if (sc->vif != vif) {
2827 ret = -EIO;
2828 goto unlock;
2830 if (conf->bssid) {
2831 /* Cache for later use during resets */
2832 memcpy(ah->ah_bssid, conf->bssid, ETH_ALEN);
2833 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
2834 * a clean way of letting us retrieve this yet. */
2835 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
2837 mutex_unlock(&sc->lock);
2839 return ath5k_reset(hw);
2840 unlock:
2841 mutex_unlock(&sc->lock);
2842 return ret;
2845 #define SUPPORTED_FIF_FLAGS \
2846 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2847 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2848 FIF_BCN_PRBRESP_PROMISC
2850 * o always accept unicast, broadcast, and multicast traffic
2851 * o multicast traffic for all BSSIDs will be enabled if mac80211
2852 * says it should be
2853 * o maintain current state of phy ofdm or phy cck error reception.
2854 * If the hardware detects any of these type of errors then
2855 * ath5k_hw_get_rx_filter() will pass to us the respective
2856 * hardware filters to be able to receive these type of frames.
2857 * o probe request frames are accepted only when operating in
2858 * hostap, adhoc, or monitor modes
2859 * o enable promiscuous mode according to the interface state
2860 * o accept beacons:
2861 * - when operating in adhoc mode so the 802.11 layer creates
2862 * node table entries for peers,
2863 * - when operating in station mode for collecting rssi data when
2864 * the station is otherwise quiet, or
2865 * - when scanning
2867 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2868 unsigned int changed_flags,
2869 unsigned int *new_flags,
2870 int mc_count, struct dev_mc_list *mclist)
2872 struct ath5k_softc *sc = hw->priv;
2873 struct ath5k_hw *ah = sc->ah;
2874 u32 mfilt[2], val, rfilt;
2875 u8 pos;
2876 int i;
2878 mfilt[0] = 0;
2879 mfilt[1] = 0;
2881 /* Only deal with supported flags */
2882 changed_flags &= SUPPORTED_FIF_FLAGS;
2883 *new_flags &= SUPPORTED_FIF_FLAGS;
2885 /* If HW detects any phy or radar errors, leave those filters on.
2886 * Also, always enable Unicast, Broadcasts and Multicast
2887 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2888 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2889 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2890 AR5K_RX_FILTER_MCAST);
2892 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2893 if (*new_flags & FIF_PROMISC_IN_BSS) {
2894 rfilt |= AR5K_RX_FILTER_PROM;
2895 __set_bit(ATH_STAT_PROMISC, sc->status);
2897 else
2898 __clear_bit(ATH_STAT_PROMISC, sc->status);
2901 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2902 if (*new_flags & FIF_ALLMULTI) {
2903 mfilt[0] = ~0;
2904 mfilt[1] = ~0;
2905 } else {
2906 for (i = 0; i < mc_count; i++) {
2907 if (!mclist)
2908 break;
2909 /* calculate XOR of eight 6-bit values */
2910 val = get_unaligned_le32(mclist->dmi_addr + 0);
2911 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2912 val = get_unaligned_le32(mclist->dmi_addr + 3);
2913 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2914 pos &= 0x3f;
2915 mfilt[pos / 32] |= (1 << (pos % 32));
2916 /* XXX: we might be able to just do this instead,
2917 * but not sure, needs testing, if we do use this we'd
2918 * neet to inform below to not reset the mcast */
2919 /* ath5k_hw_set_mcast_filterindex(ah,
2920 * mclist->dmi_addr[5]); */
2921 mclist = mclist->next;
2925 /* This is the best we can do */
2926 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2927 rfilt |= AR5K_RX_FILTER_PHYERR;
2929 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2930 * and probes for any BSSID, this needs testing */
2931 if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2932 rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2934 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2935 * set we should only pass on control frames for this
2936 * station. This needs testing. I believe right now this
2937 * enables *all* control frames, which is OK.. but
2938 * but we should see if we can improve on granularity */
2939 if (*new_flags & FIF_CONTROL)
2940 rfilt |= AR5K_RX_FILTER_CONTROL;
2942 /* Additional settings per mode -- this is per ath5k */
2944 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2946 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2947 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2948 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2949 if (sc->opmode != IEEE80211_IF_TYPE_STA)
2950 rfilt |= AR5K_RX_FILTER_PROBEREQ;
2951 if (sc->opmode != IEEE80211_IF_TYPE_AP &&
2952 test_bit(ATH_STAT_PROMISC, sc->status))
2953 rfilt |= AR5K_RX_FILTER_PROM;
2954 if (sc->opmode == IEEE80211_IF_TYPE_STA ||
2955 sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2956 rfilt |= AR5K_RX_FILTER_BEACON;
2959 /* Set filters */
2960 ath5k_hw_set_rx_filter(ah,rfilt);
2962 /* Set multicast bits */
2963 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2964 /* Set the cached hw filter flags, this will alter actually
2965 * be set in HW */
2966 sc->filter_flags = rfilt;
2969 static int
2970 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2971 const u8 *local_addr, const u8 *addr,
2972 struct ieee80211_key_conf *key)
2974 struct ath5k_softc *sc = hw->priv;
2975 int ret = 0;
2977 switch(key->alg) {
2978 case ALG_WEP:
2979 /* XXX: fix hardware encryption, its not working. For now
2980 * allow software encryption */
2981 /* break; */
2982 case ALG_TKIP:
2983 case ALG_CCMP:
2984 return -EOPNOTSUPP;
2985 default:
2986 WARN_ON(1);
2987 return -EINVAL;
2990 mutex_lock(&sc->lock);
2992 switch (cmd) {
2993 case SET_KEY:
2994 ret = ath5k_hw_set_key(sc->ah, key->keyidx, key, addr);
2995 if (ret) {
2996 ATH5K_ERR(sc, "can't set the key\n");
2997 goto unlock;
2999 __set_bit(key->keyidx, sc->keymap);
3000 key->hw_key_idx = key->keyidx;
3001 break;
3002 case DISABLE_KEY:
3003 ath5k_hw_reset_key(sc->ah, key->keyidx);
3004 __clear_bit(key->keyidx, sc->keymap);
3005 break;
3006 default:
3007 ret = -EINVAL;
3008 goto unlock;
3011 unlock:
3012 mutex_unlock(&sc->lock);
3013 return ret;
3016 static int
3017 ath5k_get_stats(struct ieee80211_hw *hw,
3018 struct ieee80211_low_level_stats *stats)
3020 struct ath5k_softc *sc = hw->priv;
3021 struct ath5k_hw *ah = sc->ah;
3023 /* Force update */
3024 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
3026 memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3028 return 0;
3031 static int
3032 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3033 struct ieee80211_tx_queue_stats *stats)
3035 struct ath5k_softc *sc = hw->priv;
3037 memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3039 return 0;
3042 static u64
3043 ath5k_get_tsf(struct ieee80211_hw *hw)
3045 struct ath5k_softc *sc = hw->priv;
3047 return ath5k_hw_get_tsf64(sc->ah);
3050 static void
3051 ath5k_reset_tsf(struct ieee80211_hw *hw)
3053 struct ath5k_softc *sc = hw->priv;
3056 * in IBSS mode we need to update the beacon timers too.
3057 * this will also reset the TSF if we call it with 0
3059 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
3060 ath5k_beacon_update_timers(sc, 0);
3061 else
3062 ath5k_hw_reset_tsf(sc->ah);
3065 static int
3066 ath5k_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
3067 struct ieee80211_tx_control *ctl)
3069 struct ath5k_softc *sc = hw->priv;
3070 int ret;
3072 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
3074 mutex_lock(&sc->lock);
3076 if (sc->opmode != IEEE80211_IF_TYPE_IBSS) {
3077 ret = -EIO;
3078 goto end;
3081 ath5k_txbuf_free(sc, sc->bbuf);
3082 sc->bbuf->skb = skb;
3083 ret = ath5k_beacon_setup(sc, sc->bbuf, ctl);
3084 if (ret)
3085 sc->bbuf->skb = NULL;
3086 else
3087 ath5k_beacon_config(sc);
3089 end:
3090 mutex_unlock(&sc->lock);
3091 return ret;