Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / md / raid5.c
blob425958a76b84afc9d7608509f6c06954db342745
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
58 * Stripe cache
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 * The following can be used to debug the driver
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
104 static inline int raid6_next_disk(int disk, int raid_disks)
106 disk++;
107 return (disk < raid_disks) ? disk : 0;
110 static void return_io(struct bio *return_bi)
112 struct bio *bi = return_bi;
113 while (bi) {
115 return_bi = bi->bi_next;
116 bi->bi_next = NULL;
117 bi->bi_size = 0;
118 bi->bi_end_io(bi,
119 test_bit(BIO_UPTODATE, &bi->bi_flags)
120 ? 0 : -EIO);
121 bi = return_bi;
125 static void print_raid5_conf (raid5_conf_t *conf);
127 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
129 if (atomic_dec_and_test(&sh->count)) {
130 BUG_ON(!list_empty(&sh->lru));
131 BUG_ON(atomic_read(&conf->active_stripes)==0);
132 if (test_bit(STRIPE_HANDLE, &sh->state)) {
133 if (test_bit(STRIPE_DELAYED, &sh->state)) {
134 list_add_tail(&sh->lru, &conf->delayed_list);
135 blk_plug_device(conf->mddev->queue);
136 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
137 sh->bm_seq - conf->seq_write > 0) {
138 list_add_tail(&sh->lru, &conf->bitmap_list);
139 blk_plug_device(conf->mddev->queue);
140 } else {
141 clear_bit(STRIPE_BIT_DELAY, &sh->state);
142 list_add_tail(&sh->lru, &conf->handle_list);
144 md_wakeup_thread(conf->mddev->thread);
145 } else {
146 BUG_ON(sh->ops.pending);
147 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
148 atomic_dec(&conf->preread_active_stripes);
149 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
150 md_wakeup_thread(conf->mddev->thread);
152 atomic_dec(&conf->active_stripes);
153 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
154 list_add_tail(&sh->lru, &conf->inactive_list);
155 wake_up(&conf->wait_for_stripe);
156 if (conf->retry_read_aligned)
157 md_wakeup_thread(conf->mddev->thread);
162 static void release_stripe(struct stripe_head *sh)
164 raid5_conf_t *conf = sh->raid_conf;
165 unsigned long flags;
167 spin_lock_irqsave(&conf->device_lock, flags);
168 __release_stripe(conf, sh);
169 spin_unlock_irqrestore(&conf->device_lock, flags);
172 static inline void remove_hash(struct stripe_head *sh)
174 pr_debug("remove_hash(), stripe %llu\n",
175 (unsigned long long)sh->sector);
177 hlist_del_init(&sh->hash);
180 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
182 struct hlist_head *hp = stripe_hash(conf, sh->sector);
184 pr_debug("insert_hash(), stripe %llu\n",
185 (unsigned long long)sh->sector);
187 CHECK_DEVLOCK();
188 hlist_add_head(&sh->hash, hp);
192 /* find an idle stripe, make sure it is unhashed, and return it. */
193 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
195 struct stripe_head *sh = NULL;
196 struct list_head *first;
198 CHECK_DEVLOCK();
199 if (list_empty(&conf->inactive_list))
200 goto out;
201 first = conf->inactive_list.next;
202 sh = list_entry(first, struct stripe_head, lru);
203 list_del_init(first);
204 remove_hash(sh);
205 atomic_inc(&conf->active_stripes);
206 out:
207 return sh;
210 static void shrink_buffers(struct stripe_head *sh, int num)
212 struct page *p;
213 int i;
215 for (i=0; i<num ; i++) {
216 p = sh->dev[i].page;
217 if (!p)
218 continue;
219 sh->dev[i].page = NULL;
220 put_page(p);
224 static int grow_buffers(struct stripe_head *sh, int num)
226 int i;
228 for (i=0; i<num; i++) {
229 struct page *page;
231 if (!(page = alloc_page(GFP_KERNEL))) {
232 return 1;
234 sh->dev[i].page = page;
236 return 0;
239 static void raid5_build_block (struct stripe_head *sh, int i);
241 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
243 raid5_conf_t *conf = sh->raid_conf;
244 int i;
246 BUG_ON(atomic_read(&sh->count) != 0);
247 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
248 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
250 CHECK_DEVLOCK();
251 pr_debug("init_stripe called, stripe %llu\n",
252 (unsigned long long)sh->sector);
254 remove_hash(sh);
256 sh->sector = sector;
257 sh->pd_idx = pd_idx;
258 sh->state = 0;
260 sh->disks = disks;
262 for (i = sh->disks; i--; ) {
263 struct r5dev *dev = &sh->dev[i];
265 if (dev->toread || dev->read || dev->towrite || dev->written ||
266 test_bit(R5_LOCKED, &dev->flags)) {
267 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
268 (unsigned long long)sh->sector, i, dev->toread,
269 dev->read, dev->towrite, dev->written,
270 test_bit(R5_LOCKED, &dev->flags));
271 BUG();
273 dev->flags = 0;
274 raid5_build_block(sh, i);
276 insert_hash(conf, sh);
279 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
281 struct stripe_head *sh;
282 struct hlist_node *hn;
284 CHECK_DEVLOCK();
285 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
286 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
287 if (sh->sector == sector && sh->disks == disks)
288 return sh;
289 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
290 return NULL;
293 static void unplug_slaves(mddev_t *mddev);
294 static void raid5_unplug_device(struct request_queue *q);
296 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
297 int pd_idx, int noblock)
299 struct stripe_head *sh;
301 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
303 spin_lock_irq(&conf->device_lock);
305 do {
306 wait_event_lock_irq(conf->wait_for_stripe,
307 conf->quiesce == 0,
308 conf->device_lock, /* nothing */);
309 sh = __find_stripe(conf, sector, disks);
310 if (!sh) {
311 if (!conf->inactive_blocked)
312 sh = get_free_stripe(conf);
313 if (noblock && sh == NULL)
314 break;
315 if (!sh) {
316 conf->inactive_blocked = 1;
317 wait_event_lock_irq(conf->wait_for_stripe,
318 !list_empty(&conf->inactive_list) &&
319 (atomic_read(&conf->active_stripes)
320 < (conf->max_nr_stripes *3/4)
321 || !conf->inactive_blocked),
322 conf->device_lock,
323 raid5_unplug_device(conf->mddev->queue)
325 conf->inactive_blocked = 0;
326 } else
327 init_stripe(sh, sector, pd_idx, disks);
328 } else {
329 if (atomic_read(&sh->count)) {
330 BUG_ON(!list_empty(&sh->lru));
331 } else {
332 if (!test_bit(STRIPE_HANDLE, &sh->state))
333 atomic_inc(&conf->active_stripes);
334 if (list_empty(&sh->lru) &&
335 !test_bit(STRIPE_EXPANDING, &sh->state))
336 BUG();
337 list_del_init(&sh->lru);
340 } while (sh == NULL);
342 if (sh)
343 atomic_inc(&sh->count);
345 spin_unlock_irq(&conf->device_lock);
346 return sh;
349 /* test_and_ack_op() ensures that we only dequeue an operation once */
350 #define test_and_ack_op(op, pend) \
351 do { \
352 if (test_bit(op, &sh->ops.pending) && \
353 !test_bit(op, &sh->ops.complete)) { \
354 if (test_and_set_bit(op, &sh->ops.ack)) \
355 clear_bit(op, &pend); \
356 else \
357 ack++; \
358 } else \
359 clear_bit(op, &pend); \
360 } while (0)
362 /* find new work to run, do not resubmit work that is already
363 * in flight
365 static unsigned long get_stripe_work(struct stripe_head *sh)
367 unsigned long pending;
368 int ack = 0;
370 pending = sh->ops.pending;
372 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
373 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
374 test_and_ack_op(STRIPE_OP_PREXOR, pending);
375 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
376 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
377 test_and_ack_op(STRIPE_OP_CHECK, pending);
378 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
379 ack++;
381 sh->ops.count -= ack;
382 if (unlikely(sh->ops.count < 0)) {
383 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
384 "ops.complete: %#lx\n", pending, sh->ops.pending,
385 sh->ops.ack, sh->ops.complete);
386 BUG();
389 return pending;
392 static void
393 raid5_end_read_request(struct bio *bi, int error);
394 static void
395 raid5_end_write_request(struct bio *bi, int error);
397 static void ops_run_io(struct stripe_head *sh)
399 raid5_conf_t *conf = sh->raid_conf;
400 int i, disks = sh->disks;
402 might_sleep();
404 set_bit(STRIPE_IO_STARTED, &sh->state);
405 for (i = disks; i--; ) {
406 int rw;
407 struct bio *bi;
408 mdk_rdev_t *rdev;
409 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
410 rw = WRITE;
411 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
412 rw = READ;
413 else
414 continue;
416 bi = &sh->dev[i].req;
418 bi->bi_rw = rw;
419 if (rw == WRITE)
420 bi->bi_end_io = raid5_end_write_request;
421 else
422 bi->bi_end_io = raid5_end_read_request;
424 rcu_read_lock();
425 rdev = rcu_dereference(conf->disks[i].rdev);
426 if (rdev && test_bit(Faulty, &rdev->flags))
427 rdev = NULL;
428 if (rdev)
429 atomic_inc(&rdev->nr_pending);
430 rcu_read_unlock();
432 if (rdev) {
433 if (test_bit(STRIPE_SYNCING, &sh->state) ||
434 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
435 test_bit(STRIPE_EXPAND_READY, &sh->state))
436 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
438 bi->bi_bdev = rdev->bdev;
439 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
440 __func__, (unsigned long long)sh->sector,
441 bi->bi_rw, i);
442 atomic_inc(&sh->count);
443 bi->bi_sector = sh->sector + rdev->data_offset;
444 bi->bi_flags = 1 << BIO_UPTODATE;
445 bi->bi_vcnt = 1;
446 bi->bi_max_vecs = 1;
447 bi->bi_idx = 0;
448 bi->bi_io_vec = &sh->dev[i].vec;
449 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
450 bi->bi_io_vec[0].bv_offset = 0;
451 bi->bi_size = STRIPE_SIZE;
452 bi->bi_next = NULL;
453 if (rw == WRITE &&
454 test_bit(R5_ReWrite, &sh->dev[i].flags))
455 atomic_add(STRIPE_SECTORS,
456 &rdev->corrected_errors);
457 generic_make_request(bi);
458 } else {
459 if (rw == WRITE)
460 set_bit(STRIPE_DEGRADED, &sh->state);
461 pr_debug("skip op %ld on disc %d for sector %llu\n",
462 bi->bi_rw, i, (unsigned long long)sh->sector);
463 clear_bit(R5_LOCKED, &sh->dev[i].flags);
464 set_bit(STRIPE_HANDLE, &sh->state);
469 static struct dma_async_tx_descriptor *
470 async_copy_data(int frombio, struct bio *bio, struct page *page,
471 sector_t sector, struct dma_async_tx_descriptor *tx)
473 struct bio_vec *bvl;
474 struct page *bio_page;
475 int i;
476 int page_offset;
478 if (bio->bi_sector >= sector)
479 page_offset = (signed)(bio->bi_sector - sector) * 512;
480 else
481 page_offset = (signed)(sector - bio->bi_sector) * -512;
482 bio_for_each_segment(bvl, bio, i) {
483 int len = bio_iovec_idx(bio, i)->bv_len;
484 int clen;
485 int b_offset = 0;
487 if (page_offset < 0) {
488 b_offset = -page_offset;
489 page_offset += b_offset;
490 len -= b_offset;
493 if (len > 0 && page_offset + len > STRIPE_SIZE)
494 clen = STRIPE_SIZE - page_offset;
495 else
496 clen = len;
498 if (clen > 0) {
499 b_offset += bio_iovec_idx(bio, i)->bv_offset;
500 bio_page = bio_iovec_idx(bio, i)->bv_page;
501 if (frombio)
502 tx = async_memcpy(page, bio_page, page_offset,
503 b_offset, clen,
504 ASYNC_TX_DEP_ACK,
505 tx, NULL, NULL);
506 else
507 tx = async_memcpy(bio_page, page, b_offset,
508 page_offset, clen,
509 ASYNC_TX_DEP_ACK,
510 tx, NULL, NULL);
512 if (clen < len) /* hit end of page */
513 break;
514 page_offset += len;
517 return tx;
520 static void ops_complete_biofill(void *stripe_head_ref)
522 struct stripe_head *sh = stripe_head_ref;
523 struct bio *return_bi = NULL;
524 raid5_conf_t *conf = sh->raid_conf;
525 int i;
527 pr_debug("%s: stripe %llu\n", __func__,
528 (unsigned long long)sh->sector);
530 /* clear completed biofills */
531 for (i = sh->disks; i--; ) {
532 struct r5dev *dev = &sh->dev[i];
534 /* acknowledge completion of a biofill operation */
535 /* and check if we need to reply to a read request,
536 * new R5_Wantfill requests are held off until
537 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
539 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
540 struct bio *rbi, *rbi2;
542 /* The access to dev->read is outside of the
543 * spin_lock_irq(&conf->device_lock), but is protected
544 * by the STRIPE_OP_BIOFILL pending bit
546 BUG_ON(!dev->read);
547 rbi = dev->read;
548 dev->read = NULL;
549 while (rbi && rbi->bi_sector <
550 dev->sector + STRIPE_SECTORS) {
551 rbi2 = r5_next_bio(rbi, dev->sector);
552 spin_lock_irq(&conf->device_lock);
553 if (--rbi->bi_phys_segments == 0) {
554 rbi->bi_next = return_bi;
555 return_bi = rbi;
557 spin_unlock_irq(&conf->device_lock);
558 rbi = rbi2;
562 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
564 return_io(return_bi);
566 set_bit(STRIPE_HANDLE, &sh->state);
567 release_stripe(sh);
570 static void ops_run_biofill(struct stripe_head *sh)
572 struct dma_async_tx_descriptor *tx = NULL;
573 raid5_conf_t *conf = sh->raid_conf;
574 int i;
576 pr_debug("%s: stripe %llu\n", __func__,
577 (unsigned long long)sh->sector);
579 for (i = sh->disks; i--; ) {
580 struct r5dev *dev = &sh->dev[i];
581 if (test_bit(R5_Wantfill, &dev->flags)) {
582 struct bio *rbi;
583 spin_lock_irq(&conf->device_lock);
584 dev->read = rbi = dev->toread;
585 dev->toread = NULL;
586 spin_unlock_irq(&conf->device_lock);
587 while (rbi && rbi->bi_sector <
588 dev->sector + STRIPE_SECTORS) {
589 tx = async_copy_data(0, rbi, dev->page,
590 dev->sector, tx);
591 rbi = r5_next_bio(rbi, dev->sector);
596 atomic_inc(&sh->count);
597 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
598 ops_complete_biofill, sh);
601 static void ops_complete_compute5(void *stripe_head_ref)
603 struct stripe_head *sh = stripe_head_ref;
604 int target = sh->ops.target;
605 struct r5dev *tgt = &sh->dev[target];
607 pr_debug("%s: stripe %llu\n", __func__,
608 (unsigned long long)sh->sector);
610 set_bit(R5_UPTODATE, &tgt->flags);
611 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
612 clear_bit(R5_Wantcompute, &tgt->flags);
613 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
614 set_bit(STRIPE_HANDLE, &sh->state);
615 release_stripe(sh);
618 static struct dma_async_tx_descriptor *
619 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
621 /* kernel stack size limits the total number of disks */
622 int disks = sh->disks;
623 struct page *xor_srcs[disks];
624 int target = sh->ops.target;
625 struct r5dev *tgt = &sh->dev[target];
626 struct page *xor_dest = tgt->page;
627 int count = 0;
628 struct dma_async_tx_descriptor *tx;
629 int i;
631 pr_debug("%s: stripe %llu block: %d\n",
632 __func__, (unsigned long long)sh->sector, target);
633 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
635 for (i = disks; i--; )
636 if (i != target)
637 xor_srcs[count++] = sh->dev[i].page;
639 atomic_inc(&sh->count);
641 if (unlikely(count == 1))
642 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
643 0, NULL, ops_complete_compute5, sh);
644 else
645 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
646 ASYNC_TX_XOR_ZERO_DST, NULL,
647 ops_complete_compute5, sh);
649 /* ack now if postxor is not set to be run */
650 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
651 async_tx_ack(tx);
653 return tx;
656 static void ops_complete_prexor(void *stripe_head_ref)
658 struct stripe_head *sh = stripe_head_ref;
660 pr_debug("%s: stripe %llu\n", __func__,
661 (unsigned long long)sh->sector);
663 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
666 static struct dma_async_tx_descriptor *
667 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
669 /* kernel stack size limits the total number of disks */
670 int disks = sh->disks;
671 struct page *xor_srcs[disks];
672 int count = 0, pd_idx = sh->pd_idx, i;
674 /* existing parity data subtracted */
675 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
677 pr_debug("%s: stripe %llu\n", __func__,
678 (unsigned long long)sh->sector);
680 for (i = disks; i--; ) {
681 struct r5dev *dev = &sh->dev[i];
682 /* Only process blocks that are known to be uptodate */
683 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
684 xor_srcs[count++] = dev->page;
687 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
688 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
689 ops_complete_prexor, sh);
691 return tx;
694 static struct dma_async_tx_descriptor *
695 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
696 unsigned long pending)
698 int disks = sh->disks;
699 int pd_idx = sh->pd_idx, i;
701 /* check if prexor is active which means only process blocks
702 * that are part of a read-modify-write (Wantprexor)
704 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
706 pr_debug("%s: stripe %llu\n", __func__,
707 (unsigned long long)sh->sector);
709 for (i = disks; i--; ) {
710 struct r5dev *dev = &sh->dev[i];
711 struct bio *chosen;
712 int towrite;
714 towrite = 0;
715 if (prexor) { /* rmw */
716 if (dev->towrite &&
717 test_bit(R5_Wantprexor, &dev->flags))
718 towrite = 1;
719 } else { /* rcw */
720 if (i != pd_idx && dev->towrite &&
721 test_bit(R5_LOCKED, &dev->flags))
722 towrite = 1;
725 if (towrite) {
726 struct bio *wbi;
728 spin_lock(&sh->lock);
729 chosen = dev->towrite;
730 dev->towrite = NULL;
731 BUG_ON(dev->written);
732 wbi = dev->written = chosen;
733 spin_unlock(&sh->lock);
735 while (wbi && wbi->bi_sector <
736 dev->sector + STRIPE_SECTORS) {
737 tx = async_copy_data(1, wbi, dev->page,
738 dev->sector, tx);
739 wbi = r5_next_bio(wbi, dev->sector);
744 return tx;
747 static void ops_complete_postxor(void *stripe_head_ref)
749 struct stripe_head *sh = stripe_head_ref;
751 pr_debug("%s: stripe %llu\n", __func__,
752 (unsigned long long)sh->sector);
754 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
755 set_bit(STRIPE_HANDLE, &sh->state);
756 release_stripe(sh);
759 static void ops_complete_write(void *stripe_head_ref)
761 struct stripe_head *sh = stripe_head_ref;
762 int disks = sh->disks, i, pd_idx = sh->pd_idx;
764 pr_debug("%s: stripe %llu\n", __func__,
765 (unsigned long long)sh->sector);
767 for (i = disks; i--; ) {
768 struct r5dev *dev = &sh->dev[i];
769 if (dev->written || i == pd_idx)
770 set_bit(R5_UPTODATE, &dev->flags);
773 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
774 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
776 set_bit(STRIPE_HANDLE, &sh->state);
777 release_stripe(sh);
780 static void
781 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
782 unsigned long pending)
784 /* kernel stack size limits the total number of disks */
785 int disks = sh->disks;
786 struct page *xor_srcs[disks];
788 int count = 0, pd_idx = sh->pd_idx, i;
789 struct page *xor_dest;
790 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
791 unsigned long flags;
792 dma_async_tx_callback callback;
794 pr_debug("%s: stripe %llu\n", __func__,
795 (unsigned long long)sh->sector);
797 /* check if prexor is active which means only process blocks
798 * that are part of a read-modify-write (written)
800 if (prexor) {
801 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
802 for (i = disks; i--; ) {
803 struct r5dev *dev = &sh->dev[i];
804 if (dev->written)
805 xor_srcs[count++] = dev->page;
807 } else {
808 xor_dest = sh->dev[pd_idx].page;
809 for (i = disks; i--; ) {
810 struct r5dev *dev = &sh->dev[i];
811 if (i != pd_idx)
812 xor_srcs[count++] = dev->page;
816 /* check whether this postxor is part of a write */
817 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
818 ops_complete_write : ops_complete_postxor;
820 /* 1/ if we prexor'd then the dest is reused as a source
821 * 2/ if we did not prexor then we are redoing the parity
822 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
823 * for the synchronous xor case
825 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
826 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
828 atomic_inc(&sh->count);
830 if (unlikely(count == 1)) {
831 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
832 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
833 flags, tx, callback, sh);
834 } else
835 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
836 flags, tx, callback, sh);
839 static void ops_complete_check(void *stripe_head_ref)
841 struct stripe_head *sh = stripe_head_ref;
842 int pd_idx = sh->pd_idx;
844 pr_debug("%s: stripe %llu\n", __func__,
845 (unsigned long long)sh->sector);
847 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
848 sh->ops.zero_sum_result == 0)
849 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
851 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
852 set_bit(STRIPE_HANDLE, &sh->state);
853 release_stripe(sh);
856 static void ops_run_check(struct stripe_head *sh)
858 /* kernel stack size limits the total number of disks */
859 int disks = sh->disks;
860 struct page *xor_srcs[disks];
861 struct dma_async_tx_descriptor *tx;
863 int count = 0, pd_idx = sh->pd_idx, i;
864 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
866 pr_debug("%s: stripe %llu\n", __func__,
867 (unsigned long long)sh->sector);
869 for (i = disks; i--; ) {
870 struct r5dev *dev = &sh->dev[i];
871 if (i != pd_idx)
872 xor_srcs[count++] = dev->page;
875 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
876 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
878 if (tx)
879 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
880 else
881 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
883 atomic_inc(&sh->count);
884 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
885 ops_complete_check, sh);
888 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
890 int overlap_clear = 0, i, disks = sh->disks;
891 struct dma_async_tx_descriptor *tx = NULL;
893 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
894 ops_run_biofill(sh);
895 overlap_clear++;
898 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
899 tx = ops_run_compute5(sh, pending);
901 if (test_bit(STRIPE_OP_PREXOR, &pending))
902 tx = ops_run_prexor(sh, tx);
904 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
905 tx = ops_run_biodrain(sh, tx, pending);
906 overlap_clear++;
909 if (test_bit(STRIPE_OP_POSTXOR, &pending))
910 ops_run_postxor(sh, tx, pending);
912 if (test_bit(STRIPE_OP_CHECK, &pending))
913 ops_run_check(sh);
915 if (test_bit(STRIPE_OP_IO, &pending))
916 ops_run_io(sh);
918 if (overlap_clear)
919 for (i = disks; i--; ) {
920 struct r5dev *dev = &sh->dev[i];
921 if (test_and_clear_bit(R5_Overlap, &dev->flags))
922 wake_up(&sh->raid_conf->wait_for_overlap);
926 static int grow_one_stripe(raid5_conf_t *conf)
928 struct stripe_head *sh;
929 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
930 if (!sh)
931 return 0;
932 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
933 sh->raid_conf = conf;
934 spin_lock_init(&sh->lock);
936 if (grow_buffers(sh, conf->raid_disks)) {
937 shrink_buffers(sh, conf->raid_disks);
938 kmem_cache_free(conf->slab_cache, sh);
939 return 0;
941 sh->disks = conf->raid_disks;
942 /* we just created an active stripe so... */
943 atomic_set(&sh->count, 1);
944 atomic_inc(&conf->active_stripes);
945 INIT_LIST_HEAD(&sh->lru);
946 release_stripe(sh);
947 return 1;
950 static int grow_stripes(raid5_conf_t *conf, int num)
952 struct kmem_cache *sc;
953 int devs = conf->raid_disks;
955 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
956 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
957 conf->active_name = 0;
958 sc = kmem_cache_create(conf->cache_name[conf->active_name],
959 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
960 0, 0, NULL);
961 if (!sc)
962 return 1;
963 conf->slab_cache = sc;
964 conf->pool_size = devs;
965 while (num--)
966 if (!grow_one_stripe(conf))
967 return 1;
968 return 0;
971 #ifdef CONFIG_MD_RAID5_RESHAPE
972 static int resize_stripes(raid5_conf_t *conf, int newsize)
974 /* Make all the stripes able to hold 'newsize' devices.
975 * New slots in each stripe get 'page' set to a new page.
977 * This happens in stages:
978 * 1/ create a new kmem_cache and allocate the required number of
979 * stripe_heads.
980 * 2/ gather all the old stripe_heads and tranfer the pages across
981 * to the new stripe_heads. This will have the side effect of
982 * freezing the array as once all stripe_heads have been collected,
983 * no IO will be possible. Old stripe heads are freed once their
984 * pages have been transferred over, and the old kmem_cache is
985 * freed when all stripes are done.
986 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
987 * we simple return a failre status - no need to clean anything up.
988 * 4/ allocate new pages for the new slots in the new stripe_heads.
989 * If this fails, we don't bother trying the shrink the
990 * stripe_heads down again, we just leave them as they are.
991 * As each stripe_head is processed the new one is released into
992 * active service.
994 * Once step2 is started, we cannot afford to wait for a write,
995 * so we use GFP_NOIO allocations.
997 struct stripe_head *osh, *nsh;
998 LIST_HEAD(newstripes);
999 struct disk_info *ndisks;
1000 int err = 0;
1001 struct kmem_cache *sc;
1002 int i;
1004 if (newsize <= conf->pool_size)
1005 return 0; /* never bother to shrink */
1007 md_allow_write(conf->mddev);
1009 /* Step 1 */
1010 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1011 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1012 0, 0, NULL);
1013 if (!sc)
1014 return -ENOMEM;
1016 for (i = conf->max_nr_stripes; i; i--) {
1017 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1018 if (!nsh)
1019 break;
1021 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1023 nsh->raid_conf = conf;
1024 spin_lock_init(&nsh->lock);
1026 list_add(&nsh->lru, &newstripes);
1028 if (i) {
1029 /* didn't get enough, give up */
1030 while (!list_empty(&newstripes)) {
1031 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1032 list_del(&nsh->lru);
1033 kmem_cache_free(sc, nsh);
1035 kmem_cache_destroy(sc);
1036 return -ENOMEM;
1038 /* Step 2 - Must use GFP_NOIO now.
1039 * OK, we have enough stripes, start collecting inactive
1040 * stripes and copying them over
1042 list_for_each_entry(nsh, &newstripes, lru) {
1043 spin_lock_irq(&conf->device_lock);
1044 wait_event_lock_irq(conf->wait_for_stripe,
1045 !list_empty(&conf->inactive_list),
1046 conf->device_lock,
1047 unplug_slaves(conf->mddev)
1049 osh = get_free_stripe(conf);
1050 spin_unlock_irq(&conf->device_lock);
1051 atomic_set(&nsh->count, 1);
1052 for(i=0; i<conf->pool_size; i++)
1053 nsh->dev[i].page = osh->dev[i].page;
1054 for( ; i<newsize; i++)
1055 nsh->dev[i].page = NULL;
1056 kmem_cache_free(conf->slab_cache, osh);
1058 kmem_cache_destroy(conf->slab_cache);
1060 /* Step 3.
1061 * At this point, we are holding all the stripes so the array
1062 * is completely stalled, so now is a good time to resize
1063 * conf->disks.
1065 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1066 if (ndisks) {
1067 for (i=0; i<conf->raid_disks; i++)
1068 ndisks[i] = conf->disks[i];
1069 kfree(conf->disks);
1070 conf->disks = ndisks;
1071 } else
1072 err = -ENOMEM;
1074 /* Step 4, return new stripes to service */
1075 while(!list_empty(&newstripes)) {
1076 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1077 list_del_init(&nsh->lru);
1078 for (i=conf->raid_disks; i < newsize; i++)
1079 if (nsh->dev[i].page == NULL) {
1080 struct page *p = alloc_page(GFP_NOIO);
1081 nsh->dev[i].page = p;
1082 if (!p)
1083 err = -ENOMEM;
1085 release_stripe(nsh);
1087 /* critical section pass, GFP_NOIO no longer needed */
1089 conf->slab_cache = sc;
1090 conf->active_name = 1-conf->active_name;
1091 conf->pool_size = newsize;
1092 return err;
1094 #endif
1096 static int drop_one_stripe(raid5_conf_t *conf)
1098 struct stripe_head *sh;
1100 spin_lock_irq(&conf->device_lock);
1101 sh = get_free_stripe(conf);
1102 spin_unlock_irq(&conf->device_lock);
1103 if (!sh)
1104 return 0;
1105 BUG_ON(atomic_read(&sh->count));
1106 shrink_buffers(sh, conf->pool_size);
1107 kmem_cache_free(conf->slab_cache, sh);
1108 atomic_dec(&conf->active_stripes);
1109 return 1;
1112 static void shrink_stripes(raid5_conf_t *conf)
1114 while (drop_one_stripe(conf))
1117 if (conf->slab_cache)
1118 kmem_cache_destroy(conf->slab_cache);
1119 conf->slab_cache = NULL;
1122 static void raid5_end_read_request(struct bio * bi, int error)
1124 struct stripe_head *sh = bi->bi_private;
1125 raid5_conf_t *conf = sh->raid_conf;
1126 int disks = sh->disks, i;
1127 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1128 char b[BDEVNAME_SIZE];
1129 mdk_rdev_t *rdev;
1132 for (i=0 ; i<disks; i++)
1133 if (bi == &sh->dev[i].req)
1134 break;
1136 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1137 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1138 uptodate);
1139 if (i == disks) {
1140 BUG();
1141 return;
1144 if (uptodate) {
1145 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1146 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1147 rdev = conf->disks[i].rdev;
1148 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1149 " (%lu sectors at %llu on %s)\n",
1150 mdname(conf->mddev), STRIPE_SECTORS,
1151 (unsigned long long)(sh->sector
1152 + rdev->data_offset),
1153 bdevname(rdev->bdev, b));
1154 clear_bit(R5_ReadError, &sh->dev[i].flags);
1155 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1157 if (atomic_read(&conf->disks[i].rdev->read_errors))
1158 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1159 } else {
1160 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1161 int retry = 0;
1162 rdev = conf->disks[i].rdev;
1164 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1165 atomic_inc(&rdev->read_errors);
1166 if (conf->mddev->degraded)
1167 printk_rl(KERN_WARNING
1168 "raid5:%s: read error not correctable "
1169 "(sector %llu on %s).\n",
1170 mdname(conf->mddev),
1171 (unsigned long long)(sh->sector
1172 + rdev->data_offset),
1173 bdn);
1174 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1175 /* Oh, no!!! */
1176 printk_rl(KERN_WARNING
1177 "raid5:%s: read error NOT corrected!! "
1178 "(sector %llu on %s).\n",
1179 mdname(conf->mddev),
1180 (unsigned long long)(sh->sector
1181 + rdev->data_offset),
1182 bdn);
1183 else if (atomic_read(&rdev->read_errors)
1184 > conf->max_nr_stripes)
1185 printk(KERN_WARNING
1186 "raid5:%s: Too many read errors, failing device %s.\n",
1187 mdname(conf->mddev), bdn);
1188 else
1189 retry = 1;
1190 if (retry)
1191 set_bit(R5_ReadError, &sh->dev[i].flags);
1192 else {
1193 clear_bit(R5_ReadError, &sh->dev[i].flags);
1194 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1195 md_error(conf->mddev, rdev);
1198 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1199 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1200 set_bit(STRIPE_HANDLE, &sh->state);
1201 release_stripe(sh);
1204 static void raid5_end_write_request (struct bio *bi, int error)
1206 struct stripe_head *sh = bi->bi_private;
1207 raid5_conf_t *conf = sh->raid_conf;
1208 int disks = sh->disks, i;
1209 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1211 for (i=0 ; i<disks; i++)
1212 if (bi == &sh->dev[i].req)
1213 break;
1215 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1216 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1217 uptodate);
1218 if (i == disks) {
1219 BUG();
1220 return;
1223 if (!uptodate)
1224 md_error(conf->mddev, conf->disks[i].rdev);
1226 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1228 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1229 set_bit(STRIPE_HANDLE, &sh->state);
1230 release_stripe(sh);
1234 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1236 static void raid5_build_block (struct stripe_head *sh, int i)
1238 struct r5dev *dev = &sh->dev[i];
1240 bio_init(&dev->req);
1241 dev->req.bi_io_vec = &dev->vec;
1242 dev->req.bi_vcnt++;
1243 dev->req.bi_max_vecs++;
1244 dev->vec.bv_page = dev->page;
1245 dev->vec.bv_len = STRIPE_SIZE;
1246 dev->vec.bv_offset = 0;
1248 dev->req.bi_sector = sh->sector;
1249 dev->req.bi_private = sh;
1251 dev->flags = 0;
1252 dev->sector = compute_blocknr(sh, i);
1255 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1257 char b[BDEVNAME_SIZE];
1258 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1259 pr_debug("raid5: error called\n");
1261 if (!test_bit(Faulty, &rdev->flags)) {
1262 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1263 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1264 unsigned long flags;
1265 spin_lock_irqsave(&conf->device_lock, flags);
1266 mddev->degraded++;
1267 spin_unlock_irqrestore(&conf->device_lock, flags);
1269 * if recovery was running, make sure it aborts.
1271 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1273 set_bit(Faulty, &rdev->flags);
1274 printk (KERN_ALERT
1275 "raid5: Disk failure on %s, disabling device.\n"
1276 "raid5: Operation continuing on %d devices.\n",
1277 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1282 * Input: a 'big' sector number,
1283 * Output: index of the data and parity disk, and the sector # in them.
1285 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1286 unsigned int data_disks, unsigned int * dd_idx,
1287 unsigned int * pd_idx, raid5_conf_t *conf)
1289 long stripe;
1290 unsigned long chunk_number;
1291 unsigned int chunk_offset;
1292 sector_t new_sector;
1293 int sectors_per_chunk = conf->chunk_size >> 9;
1295 /* First compute the information on this sector */
1298 * Compute the chunk number and the sector offset inside the chunk
1300 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1301 chunk_number = r_sector;
1302 BUG_ON(r_sector != chunk_number);
1305 * Compute the stripe number
1307 stripe = chunk_number / data_disks;
1310 * Compute the data disk and parity disk indexes inside the stripe
1312 *dd_idx = chunk_number % data_disks;
1315 * Select the parity disk based on the user selected algorithm.
1317 switch(conf->level) {
1318 case 4:
1319 *pd_idx = data_disks;
1320 break;
1321 case 5:
1322 switch (conf->algorithm) {
1323 case ALGORITHM_LEFT_ASYMMETRIC:
1324 *pd_idx = data_disks - stripe % raid_disks;
1325 if (*dd_idx >= *pd_idx)
1326 (*dd_idx)++;
1327 break;
1328 case ALGORITHM_RIGHT_ASYMMETRIC:
1329 *pd_idx = stripe % raid_disks;
1330 if (*dd_idx >= *pd_idx)
1331 (*dd_idx)++;
1332 break;
1333 case ALGORITHM_LEFT_SYMMETRIC:
1334 *pd_idx = data_disks - stripe % raid_disks;
1335 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1336 break;
1337 case ALGORITHM_RIGHT_SYMMETRIC:
1338 *pd_idx = stripe % raid_disks;
1339 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1340 break;
1341 default:
1342 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1343 conf->algorithm);
1345 break;
1346 case 6:
1348 /**** FIX THIS ****/
1349 switch (conf->algorithm) {
1350 case ALGORITHM_LEFT_ASYMMETRIC:
1351 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1352 if (*pd_idx == raid_disks-1)
1353 (*dd_idx)++; /* Q D D D P */
1354 else if (*dd_idx >= *pd_idx)
1355 (*dd_idx) += 2; /* D D P Q D */
1356 break;
1357 case ALGORITHM_RIGHT_ASYMMETRIC:
1358 *pd_idx = stripe % raid_disks;
1359 if (*pd_idx == raid_disks-1)
1360 (*dd_idx)++; /* Q D D D P */
1361 else if (*dd_idx >= *pd_idx)
1362 (*dd_idx) += 2; /* D D P Q D */
1363 break;
1364 case ALGORITHM_LEFT_SYMMETRIC:
1365 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1366 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1367 break;
1368 case ALGORITHM_RIGHT_SYMMETRIC:
1369 *pd_idx = stripe % raid_disks;
1370 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1371 break;
1372 default:
1373 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1374 conf->algorithm);
1376 break;
1380 * Finally, compute the new sector number
1382 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1383 return new_sector;
1387 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1389 raid5_conf_t *conf = sh->raid_conf;
1390 int raid_disks = sh->disks;
1391 int data_disks = raid_disks - conf->max_degraded;
1392 sector_t new_sector = sh->sector, check;
1393 int sectors_per_chunk = conf->chunk_size >> 9;
1394 sector_t stripe;
1395 int chunk_offset;
1396 int chunk_number, dummy1, dummy2, dd_idx = i;
1397 sector_t r_sector;
1400 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1401 stripe = new_sector;
1402 BUG_ON(new_sector != stripe);
1404 if (i == sh->pd_idx)
1405 return 0;
1406 switch(conf->level) {
1407 case 4: break;
1408 case 5:
1409 switch (conf->algorithm) {
1410 case ALGORITHM_LEFT_ASYMMETRIC:
1411 case ALGORITHM_RIGHT_ASYMMETRIC:
1412 if (i > sh->pd_idx)
1413 i--;
1414 break;
1415 case ALGORITHM_LEFT_SYMMETRIC:
1416 case ALGORITHM_RIGHT_SYMMETRIC:
1417 if (i < sh->pd_idx)
1418 i += raid_disks;
1419 i -= (sh->pd_idx + 1);
1420 break;
1421 default:
1422 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1423 conf->algorithm);
1425 break;
1426 case 6:
1427 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1428 return 0; /* It is the Q disk */
1429 switch (conf->algorithm) {
1430 case ALGORITHM_LEFT_ASYMMETRIC:
1431 case ALGORITHM_RIGHT_ASYMMETRIC:
1432 if (sh->pd_idx == raid_disks-1)
1433 i--; /* Q D D D P */
1434 else if (i > sh->pd_idx)
1435 i -= 2; /* D D P Q D */
1436 break;
1437 case ALGORITHM_LEFT_SYMMETRIC:
1438 case ALGORITHM_RIGHT_SYMMETRIC:
1439 if (sh->pd_idx == raid_disks-1)
1440 i--; /* Q D D D P */
1441 else {
1442 /* D D P Q D */
1443 if (i < sh->pd_idx)
1444 i += raid_disks;
1445 i -= (sh->pd_idx + 2);
1447 break;
1448 default:
1449 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1450 conf->algorithm);
1452 break;
1455 chunk_number = stripe * data_disks + i;
1456 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1458 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1459 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1460 printk(KERN_ERR "compute_blocknr: map not correct\n");
1461 return 0;
1463 return r_sector;
1469 * Copy data between a page in the stripe cache, and one or more bion
1470 * The page could align with the middle of the bio, or there could be
1471 * several bion, each with several bio_vecs, which cover part of the page
1472 * Multiple bion are linked together on bi_next. There may be extras
1473 * at the end of this list. We ignore them.
1475 static void copy_data(int frombio, struct bio *bio,
1476 struct page *page,
1477 sector_t sector)
1479 char *pa = page_address(page);
1480 struct bio_vec *bvl;
1481 int i;
1482 int page_offset;
1484 if (bio->bi_sector >= sector)
1485 page_offset = (signed)(bio->bi_sector - sector) * 512;
1486 else
1487 page_offset = (signed)(sector - bio->bi_sector) * -512;
1488 bio_for_each_segment(bvl, bio, i) {
1489 int len = bio_iovec_idx(bio,i)->bv_len;
1490 int clen;
1491 int b_offset = 0;
1493 if (page_offset < 0) {
1494 b_offset = -page_offset;
1495 page_offset += b_offset;
1496 len -= b_offset;
1499 if (len > 0 && page_offset + len > STRIPE_SIZE)
1500 clen = STRIPE_SIZE - page_offset;
1501 else clen = len;
1503 if (clen > 0) {
1504 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1505 if (frombio)
1506 memcpy(pa+page_offset, ba+b_offset, clen);
1507 else
1508 memcpy(ba+b_offset, pa+page_offset, clen);
1509 __bio_kunmap_atomic(ba, KM_USER0);
1511 if (clen < len) /* hit end of page */
1512 break;
1513 page_offset += len;
1517 #define check_xor() do { \
1518 if (count == MAX_XOR_BLOCKS) { \
1519 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1520 count = 0; \
1522 } while(0)
1524 static void compute_parity6(struct stripe_head *sh, int method)
1526 raid6_conf_t *conf = sh->raid_conf;
1527 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1528 struct bio *chosen;
1529 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1530 void *ptrs[disks];
1532 qd_idx = raid6_next_disk(pd_idx, disks);
1533 d0_idx = raid6_next_disk(qd_idx, disks);
1535 pr_debug("compute_parity, stripe %llu, method %d\n",
1536 (unsigned long long)sh->sector, method);
1538 switch(method) {
1539 case READ_MODIFY_WRITE:
1540 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1541 case RECONSTRUCT_WRITE:
1542 for (i= disks; i-- ;)
1543 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1544 chosen = sh->dev[i].towrite;
1545 sh->dev[i].towrite = NULL;
1547 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1548 wake_up(&conf->wait_for_overlap);
1550 BUG_ON(sh->dev[i].written);
1551 sh->dev[i].written = chosen;
1553 break;
1554 case CHECK_PARITY:
1555 BUG(); /* Not implemented yet */
1558 for (i = disks; i--;)
1559 if (sh->dev[i].written) {
1560 sector_t sector = sh->dev[i].sector;
1561 struct bio *wbi = sh->dev[i].written;
1562 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1563 copy_data(1, wbi, sh->dev[i].page, sector);
1564 wbi = r5_next_bio(wbi, sector);
1567 set_bit(R5_LOCKED, &sh->dev[i].flags);
1568 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1571 // switch(method) {
1572 // case RECONSTRUCT_WRITE:
1573 // case CHECK_PARITY:
1574 // case UPDATE_PARITY:
1575 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1576 /* FIX: Is this ordering of drives even remotely optimal? */
1577 count = 0;
1578 i = d0_idx;
1579 do {
1580 ptrs[count++] = page_address(sh->dev[i].page);
1581 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1582 printk("block %d/%d not uptodate on parity calc\n", i,count);
1583 i = raid6_next_disk(i, disks);
1584 } while ( i != d0_idx );
1585 // break;
1586 // }
1588 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1590 switch(method) {
1591 case RECONSTRUCT_WRITE:
1592 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1593 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1594 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1595 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1596 break;
1597 case UPDATE_PARITY:
1598 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1599 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1600 break;
1605 /* Compute one missing block */
1606 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1608 int i, count, disks = sh->disks;
1609 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1610 int pd_idx = sh->pd_idx;
1611 int qd_idx = raid6_next_disk(pd_idx, disks);
1613 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1614 (unsigned long long)sh->sector, dd_idx);
1616 if ( dd_idx == qd_idx ) {
1617 /* We're actually computing the Q drive */
1618 compute_parity6(sh, UPDATE_PARITY);
1619 } else {
1620 dest = page_address(sh->dev[dd_idx].page);
1621 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1622 count = 0;
1623 for (i = disks ; i--; ) {
1624 if (i == dd_idx || i == qd_idx)
1625 continue;
1626 p = page_address(sh->dev[i].page);
1627 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1628 ptr[count++] = p;
1629 else
1630 printk("compute_block() %d, stripe %llu, %d"
1631 " not present\n", dd_idx,
1632 (unsigned long long)sh->sector, i);
1634 check_xor();
1636 if (count)
1637 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1638 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1639 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1643 /* Compute two missing blocks */
1644 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1646 int i, count, disks = sh->disks;
1647 int pd_idx = sh->pd_idx;
1648 int qd_idx = raid6_next_disk(pd_idx, disks);
1649 int d0_idx = raid6_next_disk(qd_idx, disks);
1650 int faila, failb;
1652 /* faila and failb are disk numbers relative to d0_idx */
1653 /* pd_idx become disks-2 and qd_idx become disks-1 */
1654 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1655 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1657 BUG_ON(faila == failb);
1658 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1660 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1661 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1663 if ( failb == disks-1 ) {
1664 /* Q disk is one of the missing disks */
1665 if ( faila == disks-2 ) {
1666 /* Missing P+Q, just recompute */
1667 compute_parity6(sh, UPDATE_PARITY);
1668 return;
1669 } else {
1670 /* We're missing D+Q; recompute D from P */
1671 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1672 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1673 return;
1677 /* We're missing D+P or D+D; build pointer table */
1679 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1680 void *ptrs[disks];
1682 count = 0;
1683 i = d0_idx;
1684 do {
1685 ptrs[count++] = page_address(sh->dev[i].page);
1686 i = raid6_next_disk(i, disks);
1687 if (i != dd_idx1 && i != dd_idx2 &&
1688 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1689 printk("compute_2 with missing block %d/%d\n", count, i);
1690 } while ( i != d0_idx );
1692 if ( failb == disks-2 ) {
1693 /* We're missing D+P. */
1694 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1695 } else {
1696 /* We're missing D+D. */
1697 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1700 /* Both the above update both missing blocks */
1701 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1702 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1706 static int
1707 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1709 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1710 int locked = 0;
1712 if (rcw) {
1713 /* if we are not expanding this is a proper write request, and
1714 * there will be bios with new data to be drained into the
1715 * stripe cache
1717 if (!expand) {
1718 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1719 sh->ops.count++;
1722 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1723 sh->ops.count++;
1725 for (i = disks; i--; ) {
1726 struct r5dev *dev = &sh->dev[i];
1728 if (dev->towrite) {
1729 set_bit(R5_LOCKED, &dev->flags);
1730 if (!expand)
1731 clear_bit(R5_UPTODATE, &dev->flags);
1732 locked++;
1735 if (locked + 1 == disks)
1736 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1737 atomic_inc(&sh->raid_conf->pending_full_writes);
1738 } else {
1739 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1740 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1742 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1743 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1744 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1746 sh->ops.count += 3;
1748 for (i = disks; i--; ) {
1749 struct r5dev *dev = &sh->dev[i];
1750 if (i == pd_idx)
1751 continue;
1753 /* For a read-modify write there may be blocks that are
1754 * locked for reading while others are ready to be
1755 * written so we distinguish these blocks by the
1756 * R5_Wantprexor bit
1758 if (dev->towrite &&
1759 (test_bit(R5_UPTODATE, &dev->flags) ||
1760 test_bit(R5_Wantcompute, &dev->flags))) {
1761 set_bit(R5_Wantprexor, &dev->flags);
1762 set_bit(R5_LOCKED, &dev->flags);
1763 clear_bit(R5_UPTODATE, &dev->flags);
1764 locked++;
1769 /* keep the parity disk locked while asynchronous operations
1770 * are in flight
1772 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1773 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1774 locked++;
1776 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1777 __func__, (unsigned long long)sh->sector,
1778 locked, sh->ops.pending);
1780 return locked;
1784 * Each stripe/dev can have one or more bion attached.
1785 * toread/towrite point to the first in a chain.
1786 * The bi_next chain must be in order.
1788 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1790 struct bio **bip;
1791 raid5_conf_t *conf = sh->raid_conf;
1792 int firstwrite=0;
1794 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1795 (unsigned long long)bi->bi_sector,
1796 (unsigned long long)sh->sector);
1799 spin_lock(&sh->lock);
1800 spin_lock_irq(&conf->device_lock);
1801 if (forwrite) {
1802 bip = &sh->dev[dd_idx].towrite;
1803 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1804 firstwrite = 1;
1805 } else
1806 bip = &sh->dev[dd_idx].toread;
1807 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1808 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1809 goto overlap;
1810 bip = & (*bip)->bi_next;
1812 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1813 goto overlap;
1815 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1816 if (*bip)
1817 bi->bi_next = *bip;
1818 *bip = bi;
1819 bi->bi_phys_segments ++;
1820 spin_unlock_irq(&conf->device_lock);
1821 spin_unlock(&sh->lock);
1823 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1824 (unsigned long long)bi->bi_sector,
1825 (unsigned long long)sh->sector, dd_idx);
1827 if (conf->mddev->bitmap && firstwrite) {
1828 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1829 STRIPE_SECTORS, 0);
1830 sh->bm_seq = conf->seq_flush+1;
1831 set_bit(STRIPE_BIT_DELAY, &sh->state);
1834 if (forwrite) {
1835 /* check if page is covered */
1836 sector_t sector = sh->dev[dd_idx].sector;
1837 for (bi=sh->dev[dd_idx].towrite;
1838 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1839 bi && bi->bi_sector <= sector;
1840 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1841 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1842 sector = bi->bi_sector + (bi->bi_size>>9);
1844 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1845 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1847 return 1;
1849 overlap:
1850 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1851 spin_unlock_irq(&conf->device_lock);
1852 spin_unlock(&sh->lock);
1853 return 0;
1856 static void end_reshape(raid5_conf_t *conf);
1858 static int page_is_zero(struct page *p)
1860 char *a = page_address(p);
1861 return ((*(u32*)a) == 0 &&
1862 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1865 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1867 int sectors_per_chunk = conf->chunk_size >> 9;
1868 int pd_idx, dd_idx;
1869 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1871 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1872 *sectors_per_chunk + chunk_offset,
1873 disks, disks - conf->max_degraded,
1874 &dd_idx, &pd_idx, conf);
1875 return pd_idx;
1878 static void
1879 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1880 struct stripe_head_state *s, int disks,
1881 struct bio **return_bi)
1883 int i;
1884 for (i = disks; i--; ) {
1885 struct bio *bi;
1886 int bitmap_end = 0;
1888 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1889 mdk_rdev_t *rdev;
1890 rcu_read_lock();
1891 rdev = rcu_dereference(conf->disks[i].rdev);
1892 if (rdev && test_bit(In_sync, &rdev->flags))
1893 /* multiple read failures in one stripe */
1894 md_error(conf->mddev, rdev);
1895 rcu_read_unlock();
1897 spin_lock_irq(&conf->device_lock);
1898 /* fail all writes first */
1899 bi = sh->dev[i].towrite;
1900 sh->dev[i].towrite = NULL;
1901 if (bi) {
1902 s->to_write--;
1903 bitmap_end = 1;
1906 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1907 wake_up(&conf->wait_for_overlap);
1909 while (bi && bi->bi_sector <
1910 sh->dev[i].sector + STRIPE_SECTORS) {
1911 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1912 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1913 if (--bi->bi_phys_segments == 0) {
1914 md_write_end(conf->mddev);
1915 bi->bi_next = *return_bi;
1916 *return_bi = bi;
1918 bi = nextbi;
1920 /* and fail all 'written' */
1921 bi = sh->dev[i].written;
1922 sh->dev[i].written = NULL;
1923 if (bi) bitmap_end = 1;
1924 while (bi && bi->bi_sector <
1925 sh->dev[i].sector + STRIPE_SECTORS) {
1926 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1927 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1928 if (--bi->bi_phys_segments == 0) {
1929 md_write_end(conf->mddev);
1930 bi->bi_next = *return_bi;
1931 *return_bi = bi;
1933 bi = bi2;
1936 /* fail any reads if this device is non-operational and
1937 * the data has not reached the cache yet.
1939 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1940 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1941 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1942 bi = sh->dev[i].toread;
1943 sh->dev[i].toread = NULL;
1944 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1945 wake_up(&conf->wait_for_overlap);
1946 if (bi) s->to_read--;
1947 while (bi && bi->bi_sector <
1948 sh->dev[i].sector + STRIPE_SECTORS) {
1949 struct bio *nextbi =
1950 r5_next_bio(bi, sh->dev[i].sector);
1951 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1952 if (--bi->bi_phys_segments == 0) {
1953 bi->bi_next = *return_bi;
1954 *return_bi = bi;
1956 bi = nextbi;
1959 spin_unlock_irq(&conf->device_lock);
1960 if (bitmap_end)
1961 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1962 STRIPE_SECTORS, 0, 0);
1965 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1966 if (atomic_dec_and_test(&conf->pending_full_writes))
1967 md_wakeup_thread(conf->mddev->thread);
1970 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1971 * to process
1973 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1974 struct stripe_head_state *s, int disk_idx, int disks)
1976 struct r5dev *dev = &sh->dev[disk_idx];
1977 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1979 /* don't schedule compute operations or reads on the parity block while
1980 * a check is in flight
1982 if ((disk_idx == sh->pd_idx) &&
1983 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1984 return ~0;
1986 /* is the data in this block needed, and can we get it? */
1987 if (!test_bit(R5_LOCKED, &dev->flags) &&
1988 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1989 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1990 s->syncing || s->expanding || (s->failed &&
1991 (failed_dev->toread || (failed_dev->towrite &&
1992 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1993 ))))) {
1994 /* 1/ We would like to get this block, possibly by computing it,
1995 * but we might not be able to.
1997 * 2/ Since parity check operations potentially make the parity
1998 * block !uptodate it will need to be refreshed before any
1999 * compute operations on data disks are scheduled.
2001 * 3/ We hold off parity block re-reads until check operations
2002 * have quiesced.
2004 if ((s->uptodate == disks - 1) &&
2005 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2006 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2007 set_bit(R5_Wantcompute, &dev->flags);
2008 sh->ops.target = disk_idx;
2009 s->req_compute = 1;
2010 sh->ops.count++;
2011 /* Careful: from this point on 'uptodate' is in the eye
2012 * of raid5_run_ops which services 'compute' operations
2013 * before writes. R5_Wantcompute flags a block that will
2014 * be R5_UPTODATE by the time it is needed for a
2015 * subsequent operation.
2017 s->uptodate++;
2018 return 0; /* uptodate + compute == disks */
2019 } else if ((s->uptodate < disks - 1) &&
2020 test_bit(R5_Insync, &dev->flags)) {
2021 /* Note: we hold off compute operations while checks are
2022 * in flight, but we still prefer 'compute' over 'read'
2023 * hence we only read if (uptodate < * disks-1)
2025 set_bit(R5_LOCKED, &dev->flags);
2026 set_bit(R5_Wantread, &dev->flags);
2027 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2028 sh->ops.count++;
2029 s->locked++;
2030 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2031 s->syncing);
2035 return ~0;
2038 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2039 struct stripe_head_state *s, int disks)
2041 int i;
2043 /* Clear completed compute operations. Parity recovery
2044 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2045 * later on in this routine
2047 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2048 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2049 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2050 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2051 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2054 /* look for blocks to read/compute, skip this if a compute
2055 * is already in flight, or if the stripe contents are in the
2056 * midst of changing due to a write
2058 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2059 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2060 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2061 for (i = disks; i--; )
2062 if (__handle_issuing_new_read_requests5(
2063 sh, s, i, disks) == 0)
2064 break;
2066 set_bit(STRIPE_HANDLE, &sh->state);
2069 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2070 struct stripe_head_state *s, struct r6_state *r6s,
2071 int disks)
2073 int i;
2074 for (i = disks; i--; ) {
2075 struct r5dev *dev = &sh->dev[i];
2076 if (!test_bit(R5_LOCKED, &dev->flags) &&
2077 !test_bit(R5_UPTODATE, &dev->flags) &&
2078 (dev->toread || (dev->towrite &&
2079 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2080 s->syncing || s->expanding ||
2081 (s->failed >= 1 &&
2082 (sh->dev[r6s->failed_num[0]].toread ||
2083 s->to_write)) ||
2084 (s->failed >= 2 &&
2085 (sh->dev[r6s->failed_num[1]].toread ||
2086 s->to_write)))) {
2087 /* we would like to get this block, possibly
2088 * by computing it, but we might not be able to
2090 if (s->uptodate == disks-1) {
2091 pr_debug("Computing stripe %llu block %d\n",
2092 (unsigned long long)sh->sector, i);
2093 compute_block_1(sh, i, 0);
2094 s->uptodate++;
2095 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2096 /* Computing 2-failure is *very* expensive; only
2097 * do it if failed >= 2
2099 int other;
2100 for (other = disks; other--; ) {
2101 if (other == i)
2102 continue;
2103 if (!test_bit(R5_UPTODATE,
2104 &sh->dev[other].flags))
2105 break;
2107 BUG_ON(other < 0);
2108 pr_debug("Computing stripe %llu blocks %d,%d\n",
2109 (unsigned long long)sh->sector,
2110 i, other);
2111 compute_block_2(sh, i, other);
2112 s->uptodate += 2;
2113 } else if (test_bit(R5_Insync, &dev->flags)) {
2114 set_bit(R5_LOCKED, &dev->flags);
2115 set_bit(R5_Wantread, &dev->flags);
2116 s->locked++;
2117 pr_debug("Reading block %d (sync=%d)\n",
2118 i, s->syncing);
2122 set_bit(STRIPE_HANDLE, &sh->state);
2126 /* handle_completed_write_requests
2127 * any written block on an uptodate or failed drive can be returned.
2128 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2129 * never LOCKED, so we don't need to test 'failed' directly.
2131 static void handle_completed_write_requests(raid5_conf_t *conf,
2132 struct stripe_head *sh, int disks, struct bio **return_bi)
2134 int i;
2135 struct r5dev *dev;
2137 for (i = disks; i--; )
2138 if (sh->dev[i].written) {
2139 dev = &sh->dev[i];
2140 if (!test_bit(R5_LOCKED, &dev->flags) &&
2141 test_bit(R5_UPTODATE, &dev->flags)) {
2142 /* We can return any write requests */
2143 struct bio *wbi, *wbi2;
2144 int bitmap_end = 0;
2145 pr_debug("Return write for disc %d\n", i);
2146 spin_lock_irq(&conf->device_lock);
2147 wbi = dev->written;
2148 dev->written = NULL;
2149 while (wbi && wbi->bi_sector <
2150 dev->sector + STRIPE_SECTORS) {
2151 wbi2 = r5_next_bio(wbi, dev->sector);
2152 if (--wbi->bi_phys_segments == 0) {
2153 md_write_end(conf->mddev);
2154 wbi->bi_next = *return_bi;
2155 *return_bi = wbi;
2157 wbi = wbi2;
2159 if (dev->towrite == NULL)
2160 bitmap_end = 1;
2161 spin_unlock_irq(&conf->device_lock);
2162 if (bitmap_end)
2163 bitmap_endwrite(conf->mddev->bitmap,
2164 sh->sector,
2165 STRIPE_SECTORS,
2166 !test_bit(STRIPE_DEGRADED, &sh->state),
2171 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2172 if (atomic_dec_and_test(&conf->pending_full_writes))
2173 md_wakeup_thread(conf->mddev->thread);
2176 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2177 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2179 int rmw = 0, rcw = 0, i;
2180 for (i = disks; i--; ) {
2181 /* would I have to read this buffer for read_modify_write */
2182 struct r5dev *dev = &sh->dev[i];
2183 if ((dev->towrite || i == sh->pd_idx) &&
2184 !test_bit(R5_LOCKED, &dev->flags) &&
2185 !(test_bit(R5_UPTODATE, &dev->flags) ||
2186 test_bit(R5_Wantcompute, &dev->flags))) {
2187 if (test_bit(R5_Insync, &dev->flags))
2188 rmw++;
2189 else
2190 rmw += 2*disks; /* cannot read it */
2192 /* Would I have to read this buffer for reconstruct_write */
2193 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2194 !test_bit(R5_LOCKED, &dev->flags) &&
2195 !(test_bit(R5_UPTODATE, &dev->flags) ||
2196 test_bit(R5_Wantcompute, &dev->flags))) {
2197 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2198 else
2199 rcw += 2*disks;
2202 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2203 (unsigned long long)sh->sector, rmw, rcw);
2204 set_bit(STRIPE_HANDLE, &sh->state);
2205 if (rmw < rcw && rmw > 0)
2206 /* prefer read-modify-write, but need to get some data */
2207 for (i = disks; i--; ) {
2208 struct r5dev *dev = &sh->dev[i];
2209 if ((dev->towrite || i == sh->pd_idx) &&
2210 !test_bit(R5_LOCKED, &dev->flags) &&
2211 !(test_bit(R5_UPTODATE, &dev->flags) ||
2212 test_bit(R5_Wantcompute, &dev->flags)) &&
2213 test_bit(R5_Insync, &dev->flags)) {
2214 if (
2215 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2216 pr_debug("Read_old block "
2217 "%d for r-m-w\n", i);
2218 set_bit(R5_LOCKED, &dev->flags);
2219 set_bit(R5_Wantread, &dev->flags);
2220 if (!test_and_set_bit(
2221 STRIPE_OP_IO, &sh->ops.pending))
2222 sh->ops.count++;
2223 s->locked++;
2224 } else {
2225 set_bit(STRIPE_DELAYED, &sh->state);
2226 set_bit(STRIPE_HANDLE, &sh->state);
2230 if (rcw <= rmw && rcw > 0)
2231 /* want reconstruct write, but need to get some data */
2232 for (i = disks; i--; ) {
2233 struct r5dev *dev = &sh->dev[i];
2234 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2235 i != sh->pd_idx &&
2236 !test_bit(R5_LOCKED, &dev->flags) &&
2237 !(test_bit(R5_UPTODATE, &dev->flags) ||
2238 test_bit(R5_Wantcompute, &dev->flags)) &&
2239 test_bit(R5_Insync, &dev->flags)) {
2240 if (
2241 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2242 pr_debug("Read_old block "
2243 "%d for Reconstruct\n", i);
2244 set_bit(R5_LOCKED, &dev->flags);
2245 set_bit(R5_Wantread, &dev->flags);
2246 if (!test_and_set_bit(
2247 STRIPE_OP_IO, &sh->ops.pending))
2248 sh->ops.count++;
2249 s->locked++;
2250 } else {
2251 set_bit(STRIPE_DELAYED, &sh->state);
2252 set_bit(STRIPE_HANDLE, &sh->state);
2256 /* now if nothing is locked, and if we have enough data,
2257 * we can start a write request
2259 /* since handle_stripe can be called at any time we need to handle the
2260 * case where a compute block operation has been submitted and then a
2261 * subsequent call wants to start a write request. raid5_run_ops only
2262 * handles the case where compute block and postxor are requested
2263 * simultaneously. If this is not the case then new writes need to be
2264 * held off until the compute completes.
2266 if ((s->req_compute ||
2267 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2268 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2269 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2270 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2273 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2274 struct stripe_head *sh, struct stripe_head_state *s,
2275 struct r6_state *r6s, int disks)
2277 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2278 int qd_idx = r6s->qd_idx;
2279 for (i = disks; i--; ) {
2280 struct r5dev *dev = &sh->dev[i];
2281 /* Would I have to read this buffer for reconstruct_write */
2282 if (!test_bit(R5_OVERWRITE, &dev->flags)
2283 && i != pd_idx && i != qd_idx
2284 && (!test_bit(R5_LOCKED, &dev->flags)
2285 ) &&
2286 !test_bit(R5_UPTODATE, &dev->flags)) {
2287 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2288 else {
2289 pr_debug("raid6: must_compute: "
2290 "disk %d flags=%#lx\n", i, dev->flags);
2291 must_compute++;
2295 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2296 (unsigned long long)sh->sector, rcw, must_compute);
2297 set_bit(STRIPE_HANDLE, &sh->state);
2299 if (rcw > 0)
2300 /* want reconstruct write, but need to get some data */
2301 for (i = disks; i--; ) {
2302 struct r5dev *dev = &sh->dev[i];
2303 if (!test_bit(R5_OVERWRITE, &dev->flags)
2304 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2305 && !test_bit(R5_LOCKED, &dev->flags) &&
2306 !test_bit(R5_UPTODATE, &dev->flags) &&
2307 test_bit(R5_Insync, &dev->flags)) {
2308 if (
2309 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2310 pr_debug("Read_old stripe %llu "
2311 "block %d for Reconstruct\n",
2312 (unsigned long long)sh->sector, i);
2313 set_bit(R5_LOCKED, &dev->flags);
2314 set_bit(R5_Wantread, &dev->flags);
2315 s->locked++;
2316 } else {
2317 pr_debug("Request delayed stripe %llu "
2318 "block %d for Reconstruct\n",
2319 (unsigned long long)sh->sector, i);
2320 set_bit(STRIPE_DELAYED, &sh->state);
2321 set_bit(STRIPE_HANDLE, &sh->state);
2325 /* now if nothing is locked, and if we have enough data, we can start a
2326 * write request
2328 if (s->locked == 0 && rcw == 0 &&
2329 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2330 if (must_compute > 0) {
2331 /* We have failed blocks and need to compute them */
2332 switch (s->failed) {
2333 case 0:
2334 BUG();
2335 case 1:
2336 compute_block_1(sh, r6s->failed_num[0], 0);
2337 break;
2338 case 2:
2339 compute_block_2(sh, r6s->failed_num[0],
2340 r6s->failed_num[1]);
2341 break;
2342 default: /* This request should have been failed? */
2343 BUG();
2347 pr_debug("Computing parity for stripe %llu\n",
2348 (unsigned long long)sh->sector);
2349 compute_parity6(sh, RECONSTRUCT_WRITE);
2350 /* now every locked buffer is ready to be written */
2351 for (i = disks; i--; )
2352 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2353 pr_debug("Writing stripe %llu block %d\n",
2354 (unsigned long long)sh->sector, i);
2355 s->locked++;
2356 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2358 if (s->locked == disks)
2359 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2360 atomic_inc(&conf->pending_full_writes);
2361 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2362 set_bit(STRIPE_INSYNC, &sh->state);
2364 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2365 atomic_dec(&conf->preread_active_stripes);
2366 if (atomic_read(&conf->preread_active_stripes) <
2367 IO_THRESHOLD)
2368 md_wakeup_thread(conf->mddev->thread);
2373 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2374 struct stripe_head_state *s, int disks)
2376 int canceled_check = 0;
2378 set_bit(STRIPE_HANDLE, &sh->state);
2380 /* complete a check operation */
2381 if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2382 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2383 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2384 if (s->failed == 0) {
2385 if (sh->ops.zero_sum_result == 0)
2386 /* parity is correct (on disc,
2387 * not in buffer any more)
2389 set_bit(STRIPE_INSYNC, &sh->state);
2390 else {
2391 conf->mddev->resync_mismatches +=
2392 STRIPE_SECTORS;
2393 if (test_bit(
2394 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2395 /* don't try to repair!! */
2396 set_bit(STRIPE_INSYNC, &sh->state);
2397 else {
2398 set_bit(STRIPE_OP_COMPUTE_BLK,
2399 &sh->ops.pending);
2400 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2401 &sh->ops.pending);
2402 set_bit(R5_Wantcompute,
2403 &sh->dev[sh->pd_idx].flags);
2404 sh->ops.target = sh->pd_idx;
2405 sh->ops.count++;
2406 s->uptodate++;
2409 } else
2410 canceled_check = 1; /* STRIPE_INSYNC is not set */
2413 /* start a new check operation if there are no failures, the stripe is
2414 * not insync, and a repair is not in flight
2416 if (s->failed == 0 &&
2417 !test_bit(STRIPE_INSYNC, &sh->state) &&
2418 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2419 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2420 BUG_ON(s->uptodate != disks);
2421 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2422 sh->ops.count++;
2423 s->uptodate--;
2427 /* check if we can clear a parity disk reconstruct */
2428 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2429 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2431 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2432 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2433 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2434 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2438 /* Wait for check parity and compute block operations to complete
2439 * before write-back. If a failure occurred while the check operation
2440 * was in flight we need to cycle this stripe through handle_stripe
2441 * since the parity block may not be uptodate
2443 if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2444 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2445 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2446 struct r5dev *dev;
2447 /* either failed parity check, or recovery is happening */
2448 if (s->failed == 0)
2449 s->failed_num = sh->pd_idx;
2450 dev = &sh->dev[s->failed_num];
2451 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2452 BUG_ON(s->uptodate != disks);
2454 set_bit(R5_LOCKED, &dev->flags);
2455 set_bit(R5_Wantwrite, &dev->flags);
2456 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2457 sh->ops.count++;
2459 clear_bit(STRIPE_DEGRADED, &sh->state);
2460 s->locked++;
2461 set_bit(STRIPE_INSYNC, &sh->state);
2466 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2467 struct stripe_head_state *s,
2468 struct r6_state *r6s, struct page *tmp_page,
2469 int disks)
2471 int update_p = 0, update_q = 0;
2472 struct r5dev *dev;
2473 int pd_idx = sh->pd_idx;
2474 int qd_idx = r6s->qd_idx;
2476 set_bit(STRIPE_HANDLE, &sh->state);
2478 BUG_ON(s->failed > 2);
2479 BUG_ON(s->uptodate < disks);
2480 /* Want to check and possibly repair P and Q.
2481 * However there could be one 'failed' device, in which
2482 * case we can only check one of them, possibly using the
2483 * other to generate missing data
2486 /* If !tmp_page, we cannot do the calculations,
2487 * but as we have set STRIPE_HANDLE, we will soon be called
2488 * by stripe_handle with a tmp_page - just wait until then.
2490 if (tmp_page) {
2491 if (s->failed == r6s->q_failed) {
2492 /* The only possible failed device holds 'Q', so it
2493 * makes sense to check P (If anything else were failed,
2494 * we would have used P to recreate it).
2496 compute_block_1(sh, pd_idx, 1);
2497 if (!page_is_zero(sh->dev[pd_idx].page)) {
2498 compute_block_1(sh, pd_idx, 0);
2499 update_p = 1;
2502 if (!r6s->q_failed && s->failed < 2) {
2503 /* q is not failed, and we didn't use it to generate
2504 * anything, so it makes sense to check it
2506 memcpy(page_address(tmp_page),
2507 page_address(sh->dev[qd_idx].page),
2508 STRIPE_SIZE);
2509 compute_parity6(sh, UPDATE_PARITY);
2510 if (memcmp(page_address(tmp_page),
2511 page_address(sh->dev[qd_idx].page),
2512 STRIPE_SIZE) != 0) {
2513 clear_bit(STRIPE_INSYNC, &sh->state);
2514 update_q = 1;
2517 if (update_p || update_q) {
2518 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2519 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2520 /* don't try to repair!! */
2521 update_p = update_q = 0;
2524 /* now write out any block on a failed drive,
2525 * or P or Q if they need it
2528 if (s->failed == 2) {
2529 dev = &sh->dev[r6s->failed_num[1]];
2530 s->locked++;
2531 set_bit(R5_LOCKED, &dev->flags);
2532 set_bit(R5_Wantwrite, &dev->flags);
2534 if (s->failed >= 1) {
2535 dev = &sh->dev[r6s->failed_num[0]];
2536 s->locked++;
2537 set_bit(R5_LOCKED, &dev->flags);
2538 set_bit(R5_Wantwrite, &dev->flags);
2541 if (update_p) {
2542 dev = &sh->dev[pd_idx];
2543 s->locked++;
2544 set_bit(R5_LOCKED, &dev->flags);
2545 set_bit(R5_Wantwrite, &dev->flags);
2547 if (update_q) {
2548 dev = &sh->dev[qd_idx];
2549 s->locked++;
2550 set_bit(R5_LOCKED, &dev->flags);
2551 set_bit(R5_Wantwrite, &dev->flags);
2553 clear_bit(STRIPE_DEGRADED, &sh->state);
2555 set_bit(STRIPE_INSYNC, &sh->state);
2559 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2560 struct r6_state *r6s)
2562 int i;
2564 /* We have read all the blocks in this stripe and now we need to
2565 * copy some of them into a target stripe for expand.
2567 struct dma_async_tx_descriptor *tx = NULL;
2568 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2569 for (i = 0; i < sh->disks; i++)
2570 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2571 int dd_idx, pd_idx, j;
2572 struct stripe_head *sh2;
2574 sector_t bn = compute_blocknr(sh, i);
2575 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2576 conf->raid_disks -
2577 conf->max_degraded, &dd_idx,
2578 &pd_idx, conf);
2579 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2580 pd_idx, 1);
2581 if (sh2 == NULL)
2582 /* so far only the early blocks of this stripe
2583 * have been requested. When later blocks
2584 * get requested, we will try again
2586 continue;
2587 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2588 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2589 /* must have already done this block */
2590 release_stripe(sh2);
2591 continue;
2594 /* place all the copies on one channel */
2595 tx = async_memcpy(sh2->dev[dd_idx].page,
2596 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2597 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2599 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2600 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2601 for (j = 0; j < conf->raid_disks; j++)
2602 if (j != sh2->pd_idx &&
2603 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2604 sh2->disks)) &&
2605 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2606 break;
2607 if (j == conf->raid_disks) {
2608 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2609 set_bit(STRIPE_HANDLE, &sh2->state);
2611 release_stripe(sh2);
2614 /* done submitting copies, wait for them to complete */
2615 if (tx) {
2616 async_tx_ack(tx);
2617 dma_wait_for_async_tx(tx);
2623 * handle_stripe - do things to a stripe.
2625 * We lock the stripe and then examine the state of various bits
2626 * to see what needs to be done.
2627 * Possible results:
2628 * return some read request which now have data
2629 * return some write requests which are safely on disc
2630 * schedule a read on some buffers
2631 * schedule a write of some buffers
2632 * return confirmation of parity correctness
2634 * buffers are taken off read_list or write_list, and bh_cache buffers
2635 * get BH_Lock set before the stripe lock is released.
2639 static void handle_stripe5(struct stripe_head *sh)
2641 raid5_conf_t *conf = sh->raid_conf;
2642 int disks = sh->disks, i;
2643 struct bio *return_bi = NULL;
2644 struct stripe_head_state s;
2645 struct r5dev *dev;
2646 unsigned long pending = 0;
2647 mdk_rdev_t *blocked_rdev = NULL;
2649 memset(&s, 0, sizeof(s));
2650 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2651 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2652 atomic_read(&sh->count), sh->pd_idx,
2653 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2655 spin_lock(&sh->lock);
2656 clear_bit(STRIPE_HANDLE, &sh->state);
2657 clear_bit(STRIPE_DELAYED, &sh->state);
2659 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2660 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2661 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2662 /* Now to look around and see what can be done */
2664 /* clean-up completed biofill operations */
2665 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2666 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2667 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2668 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2671 rcu_read_lock();
2672 for (i=disks; i--; ) {
2673 mdk_rdev_t *rdev;
2674 struct r5dev *dev = &sh->dev[i];
2675 clear_bit(R5_Insync, &dev->flags);
2677 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2678 "written %p\n", i, dev->flags, dev->toread, dev->read,
2679 dev->towrite, dev->written);
2681 /* maybe we can request a biofill operation
2683 * new wantfill requests are only permitted while
2684 * STRIPE_OP_BIOFILL is clear
2686 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2687 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2688 set_bit(R5_Wantfill, &dev->flags);
2690 /* now count some things */
2691 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2692 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2693 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2695 if (test_bit(R5_Wantfill, &dev->flags))
2696 s.to_fill++;
2697 else if (dev->toread)
2698 s.to_read++;
2699 if (dev->towrite) {
2700 s.to_write++;
2701 if (!test_bit(R5_OVERWRITE, &dev->flags))
2702 s.non_overwrite++;
2704 if (dev->written)
2705 s.written++;
2706 rdev = rcu_dereference(conf->disks[i].rdev);
2707 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2708 blocked_rdev = rdev;
2709 atomic_inc(&rdev->nr_pending);
2710 break;
2712 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2713 /* The ReadError flag will just be confusing now */
2714 clear_bit(R5_ReadError, &dev->flags);
2715 clear_bit(R5_ReWrite, &dev->flags);
2717 if (!rdev || !test_bit(In_sync, &rdev->flags)
2718 || test_bit(R5_ReadError, &dev->flags)) {
2719 s.failed++;
2720 s.failed_num = i;
2721 } else
2722 set_bit(R5_Insync, &dev->flags);
2724 rcu_read_unlock();
2726 if (unlikely(blocked_rdev)) {
2727 set_bit(STRIPE_HANDLE, &sh->state);
2728 goto unlock;
2731 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2732 sh->ops.count++;
2734 pr_debug("locked=%d uptodate=%d to_read=%d"
2735 " to_write=%d failed=%d failed_num=%d\n",
2736 s.locked, s.uptodate, s.to_read, s.to_write,
2737 s.failed, s.failed_num);
2738 /* check if the array has lost two devices and, if so, some requests might
2739 * need to be failed
2741 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2742 handle_requests_to_failed_array(conf, sh, &s, disks,
2743 &return_bi);
2744 if (s.failed > 1 && s.syncing) {
2745 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2746 clear_bit(STRIPE_SYNCING, &sh->state);
2747 s.syncing = 0;
2750 /* might be able to return some write requests if the parity block
2751 * is safe, or on a failed drive
2753 dev = &sh->dev[sh->pd_idx];
2754 if ( s.written &&
2755 ((test_bit(R5_Insync, &dev->flags) &&
2756 !test_bit(R5_LOCKED, &dev->flags) &&
2757 test_bit(R5_UPTODATE, &dev->flags)) ||
2758 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2759 handle_completed_write_requests(conf, sh, disks, &return_bi);
2761 /* Now we might consider reading some blocks, either to check/generate
2762 * parity, or to satisfy requests
2763 * or to load a block that is being partially written.
2765 if (s.to_read || s.non_overwrite ||
2766 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2767 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2768 handle_issuing_new_read_requests5(sh, &s, disks);
2770 /* Now we check to see if any write operations have recently
2771 * completed
2774 /* leave prexor set until postxor is done, allows us to distinguish
2775 * a rmw from a rcw during biodrain
2777 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2778 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2780 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2781 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2782 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2784 for (i = disks; i--; )
2785 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2788 /* if only POSTXOR is set then this is an 'expand' postxor */
2789 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2790 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2792 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2793 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2794 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2796 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2797 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2798 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2800 /* All the 'written' buffers and the parity block are ready to
2801 * be written back to disk
2803 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2804 for (i = disks; i--; ) {
2805 dev = &sh->dev[i];
2806 if (test_bit(R5_LOCKED, &dev->flags) &&
2807 (i == sh->pd_idx || dev->written)) {
2808 pr_debug("Writing block %d\n", i);
2809 set_bit(R5_Wantwrite, &dev->flags);
2810 if (!test_and_set_bit(
2811 STRIPE_OP_IO, &sh->ops.pending))
2812 sh->ops.count++;
2813 if (!test_bit(R5_Insync, &dev->flags) ||
2814 (i == sh->pd_idx && s.failed == 0))
2815 set_bit(STRIPE_INSYNC, &sh->state);
2818 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2819 atomic_dec(&conf->preread_active_stripes);
2820 if (atomic_read(&conf->preread_active_stripes) <
2821 IO_THRESHOLD)
2822 md_wakeup_thread(conf->mddev->thread);
2826 /* Now to consider new write requests and what else, if anything
2827 * should be read. We do not handle new writes when:
2828 * 1/ A 'write' operation (copy+xor) is already in flight.
2829 * 2/ A 'check' operation is in flight, as it may clobber the parity
2830 * block.
2832 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2833 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2834 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2836 /* maybe we need to check and possibly fix the parity for this stripe
2837 * Any reads will already have been scheduled, so we just see if enough
2838 * data is available. The parity check is held off while parity
2839 * dependent operations are in flight.
2841 if ((s.syncing && s.locked == 0 &&
2842 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2843 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2844 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2845 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2846 handle_parity_checks5(conf, sh, &s, disks);
2848 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2849 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2850 clear_bit(STRIPE_SYNCING, &sh->state);
2853 /* If the failed drive is just a ReadError, then we might need to progress
2854 * the repair/check process
2856 if (s.failed == 1 && !conf->mddev->ro &&
2857 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2858 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2859 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2861 dev = &sh->dev[s.failed_num];
2862 if (!test_bit(R5_ReWrite, &dev->flags)) {
2863 set_bit(R5_Wantwrite, &dev->flags);
2864 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2865 sh->ops.count++;
2866 set_bit(R5_ReWrite, &dev->flags);
2867 set_bit(R5_LOCKED, &dev->flags);
2868 s.locked++;
2869 } else {
2870 /* let's read it back */
2871 set_bit(R5_Wantread, &dev->flags);
2872 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2873 sh->ops.count++;
2874 set_bit(R5_LOCKED, &dev->flags);
2875 s.locked++;
2879 /* Finish postxor operations initiated by the expansion
2880 * process
2882 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2883 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2885 clear_bit(STRIPE_EXPANDING, &sh->state);
2887 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2888 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2889 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2891 for (i = conf->raid_disks; i--; ) {
2892 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2893 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2894 sh->ops.count++;
2898 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2899 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2900 /* Need to write out all blocks after computing parity */
2901 sh->disks = conf->raid_disks;
2902 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2903 conf->raid_disks);
2904 s.locked += handle_write_operations5(sh, 1, 1);
2905 } else if (s.expanded &&
2906 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2907 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2908 atomic_dec(&conf->reshape_stripes);
2909 wake_up(&conf->wait_for_overlap);
2910 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2913 if (s.expanding && s.locked == 0 &&
2914 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2915 handle_stripe_expansion(conf, sh, NULL);
2917 if (sh->ops.count)
2918 pending = get_stripe_work(sh);
2920 unlock:
2921 spin_unlock(&sh->lock);
2923 /* wait for this device to become unblocked */
2924 if (unlikely(blocked_rdev))
2925 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2927 if (pending)
2928 raid5_run_ops(sh, pending);
2930 return_io(return_bi);
2934 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2936 raid6_conf_t *conf = sh->raid_conf;
2937 int disks = sh->disks;
2938 struct bio *return_bi = NULL;
2939 int i, pd_idx = sh->pd_idx;
2940 struct stripe_head_state s;
2941 struct r6_state r6s;
2942 struct r5dev *dev, *pdev, *qdev;
2943 mdk_rdev_t *blocked_rdev = NULL;
2945 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2946 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2947 "pd_idx=%d, qd_idx=%d\n",
2948 (unsigned long long)sh->sector, sh->state,
2949 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2950 memset(&s, 0, sizeof(s));
2952 spin_lock(&sh->lock);
2953 clear_bit(STRIPE_HANDLE, &sh->state);
2954 clear_bit(STRIPE_DELAYED, &sh->state);
2956 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2957 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2958 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2959 /* Now to look around and see what can be done */
2961 rcu_read_lock();
2962 for (i=disks; i--; ) {
2963 mdk_rdev_t *rdev;
2964 dev = &sh->dev[i];
2965 clear_bit(R5_Insync, &dev->flags);
2967 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2968 i, dev->flags, dev->toread, dev->towrite, dev->written);
2969 /* maybe we can reply to a read */
2970 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2971 struct bio *rbi, *rbi2;
2972 pr_debug("Return read for disc %d\n", i);
2973 spin_lock_irq(&conf->device_lock);
2974 rbi = dev->toread;
2975 dev->toread = NULL;
2976 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2977 wake_up(&conf->wait_for_overlap);
2978 spin_unlock_irq(&conf->device_lock);
2979 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2980 copy_data(0, rbi, dev->page, dev->sector);
2981 rbi2 = r5_next_bio(rbi, dev->sector);
2982 spin_lock_irq(&conf->device_lock);
2983 if (--rbi->bi_phys_segments == 0) {
2984 rbi->bi_next = return_bi;
2985 return_bi = rbi;
2987 spin_unlock_irq(&conf->device_lock);
2988 rbi = rbi2;
2992 /* now count some things */
2993 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2994 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2997 if (dev->toread)
2998 s.to_read++;
2999 if (dev->towrite) {
3000 s.to_write++;
3001 if (!test_bit(R5_OVERWRITE, &dev->flags))
3002 s.non_overwrite++;
3004 if (dev->written)
3005 s.written++;
3006 rdev = rcu_dereference(conf->disks[i].rdev);
3007 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3008 blocked_rdev = rdev;
3009 atomic_inc(&rdev->nr_pending);
3010 break;
3012 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3013 /* The ReadError flag will just be confusing now */
3014 clear_bit(R5_ReadError, &dev->flags);
3015 clear_bit(R5_ReWrite, &dev->flags);
3017 if (!rdev || !test_bit(In_sync, &rdev->flags)
3018 || test_bit(R5_ReadError, &dev->flags)) {
3019 if (s.failed < 2)
3020 r6s.failed_num[s.failed] = i;
3021 s.failed++;
3022 } else
3023 set_bit(R5_Insync, &dev->flags);
3025 rcu_read_unlock();
3027 if (unlikely(blocked_rdev)) {
3028 set_bit(STRIPE_HANDLE, &sh->state);
3029 goto unlock;
3031 pr_debug("locked=%d uptodate=%d to_read=%d"
3032 " to_write=%d failed=%d failed_num=%d,%d\n",
3033 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3034 r6s.failed_num[0], r6s.failed_num[1]);
3035 /* check if the array has lost >2 devices and, if so, some requests
3036 * might need to be failed
3038 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3039 handle_requests_to_failed_array(conf, sh, &s, disks,
3040 &return_bi);
3041 if (s.failed > 2 && s.syncing) {
3042 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3043 clear_bit(STRIPE_SYNCING, &sh->state);
3044 s.syncing = 0;
3048 * might be able to return some write requests if the parity blocks
3049 * are safe, or on a failed drive
3051 pdev = &sh->dev[pd_idx];
3052 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3053 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3054 qdev = &sh->dev[r6s.qd_idx];
3055 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3056 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3058 if ( s.written &&
3059 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3060 && !test_bit(R5_LOCKED, &pdev->flags)
3061 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3062 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3063 && !test_bit(R5_LOCKED, &qdev->flags)
3064 && test_bit(R5_UPTODATE, &qdev->flags)))))
3065 handle_completed_write_requests(conf, sh, disks, &return_bi);
3067 /* Now we might consider reading some blocks, either to check/generate
3068 * parity, or to satisfy requests
3069 * or to load a block that is being partially written.
3071 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3072 (s.syncing && (s.uptodate < disks)) || s.expanding)
3073 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3075 /* now to consider writing and what else, if anything should be read */
3076 if (s.to_write)
3077 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3079 /* maybe we need to check and possibly fix the parity for this stripe
3080 * Any reads will already have been scheduled, so we just see if enough
3081 * data is available
3083 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3084 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3086 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3087 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3088 clear_bit(STRIPE_SYNCING, &sh->state);
3091 /* If the failed drives are just a ReadError, then we might need
3092 * to progress the repair/check process
3094 if (s.failed <= 2 && !conf->mddev->ro)
3095 for (i = 0; i < s.failed; i++) {
3096 dev = &sh->dev[r6s.failed_num[i]];
3097 if (test_bit(R5_ReadError, &dev->flags)
3098 && !test_bit(R5_LOCKED, &dev->flags)
3099 && test_bit(R5_UPTODATE, &dev->flags)
3101 if (!test_bit(R5_ReWrite, &dev->flags)) {
3102 set_bit(R5_Wantwrite, &dev->flags);
3103 set_bit(R5_ReWrite, &dev->flags);
3104 set_bit(R5_LOCKED, &dev->flags);
3105 } else {
3106 /* let's read it back */
3107 set_bit(R5_Wantread, &dev->flags);
3108 set_bit(R5_LOCKED, &dev->flags);
3113 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3114 /* Need to write out all blocks after computing P&Q */
3115 sh->disks = conf->raid_disks;
3116 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3117 conf->raid_disks);
3118 compute_parity6(sh, RECONSTRUCT_WRITE);
3119 for (i = conf->raid_disks ; i-- ; ) {
3120 set_bit(R5_LOCKED, &sh->dev[i].flags);
3121 s.locked++;
3122 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3124 clear_bit(STRIPE_EXPANDING, &sh->state);
3125 } else if (s.expanded) {
3126 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3127 atomic_dec(&conf->reshape_stripes);
3128 wake_up(&conf->wait_for_overlap);
3129 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3132 if (s.expanding && s.locked == 0 &&
3133 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3134 handle_stripe_expansion(conf, sh, &r6s);
3136 unlock:
3137 spin_unlock(&sh->lock);
3139 /* wait for this device to become unblocked */
3140 if (unlikely(blocked_rdev))
3141 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3143 return_io(return_bi);
3145 for (i=disks; i-- ;) {
3146 int rw;
3147 struct bio *bi;
3148 mdk_rdev_t *rdev;
3149 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3150 rw = WRITE;
3151 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3152 rw = READ;
3153 else
3154 continue;
3156 set_bit(STRIPE_IO_STARTED, &sh->state);
3158 bi = &sh->dev[i].req;
3160 bi->bi_rw = rw;
3161 if (rw == WRITE)
3162 bi->bi_end_io = raid5_end_write_request;
3163 else
3164 bi->bi_end_io = raid5_end_read_request;
3166 rcu_read_lock();
3167 rdev = rcu_dereference(conf->disks[i].rdev);
3168 if (rdev && test_bit(Faulty, &rdev->flags))
3169 rdev = NULL;
3170 if (rdev)
3171 atomic_inc(&rdev->nr_pending);
3172 rcu_read_unlock();
3174 if (rdev) {
3175 if (s.syncing || s.expanding || s.expanded)
3176 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3178 bi->bi_bdev = rdev->bdev;
3179 pr_debug("for %llu schedule op %ld on disc %d\n",
3180 (unsigned long long)sh->sector, bi->bi_rw, i);
3181 atomic_inc(&sh->count);
3182 bi->bi_sector = sh->sector + rdev->data_offset;
3183 bi->bi_flags = 1 << BIO_UPTODATE;
3184 bi->bi_vcnt = 1;
3185 bi->bi_max_vecs = 1;
3186 bi->bi_idx = 0;
3187 bi->bi_io_vec = &sh->dev[i].vec;
3188 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3189 bi->bi_io_vec[0].bv_offset = 0;
3190 bi->bi_size = STRIPE_SIZE;
3191 bi->bi_next = NULL;
3192 if (rw == WRITE &&
3193 test_bit(R5_ReWrite, &sh->dev[i].flags))
3194 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3195 generic_make_request(bi);
3196 } else {
3197 if (rw == WRITE)
3198 set_bit(STRIPE_DEGRADED, &sh->state);
3199 pr_debug("skip op %ld on disc %d for sector %llu\n",
3200 bi->bi_rw, i, (unsigned long long)sh->sector);
3201 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3202 set_bit(STRIPE_HANDLE, &sh->state);
3207 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3209 if (sh->raid_conf->level == 6)
3210 handle_stripe6(sh, tmp_page);
3211 else
3212 handle_stripe5(sh);
3217 static void raid5_activate_delayed(raid5_conf_t *conf)
3219 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3220 while (!list_empty(&conf->delayed_list)) {
3221 struct list_head *l = conf->delayed_list.next;
3222 struct stripe_head *sh;
3223 sh = list_entry(l, struct stripe_head, lru);
3224 list_del_init(l);
3225 clear_bit(STRIPE_DELAYED, &sh->state);
3226 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3227 atomic_inc(&conf->preread_active_stripes);
3228 list_add_tail(&sh->lru, &conf->hold_list);
3230 } else
3231 blk_plug_device(conf->mddev->queue);
3234 static void activate_bit_delay(raid5_conf_t *conf)
3236 /* device_lock is held */
3237 struct list_head head;
3238 list_add(&head, &conf->bitmap_list);
3239 list_del_init(&conf->bitmap_list);
3240 while (!list_empty(&head)) {
3241 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3242 list_del_init(&sh->lru);
3243 atomic_inc(&sh->count);
3244 __release_stripe(conf, sh);
3248 static void unplug_slaves(mddev_t *mddev)
3250 raid5_conf_t *conf = mddev_to_conf(mddev);
3251 int i;
3253 rcu_read_lock();
3254 for (i=0; i<mddev->raid_disks; i++) {
3255 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3256 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3257 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3259 atomic_inc(&rdev->nr_pending);
3260 rcu_read_unlock();
3262 blk_unplug(r_queue);
3264 rdev_dec_pending(rdev, mddev);
3265 rcu_read_lock();
3268 rcu_read_unlock();
3271 static void raid5_unplug_device(struct request_queue *q)
3273 mddev_t *mddev = q->queuedata;
3274 raid5_conf_t *conf = mddev_to_conf(mddev);
3275 unsigned long flags;
3277 spin_lock_irqsave(&conf->device_lock, flags);
3279 if (blk_remove_plug(q)) {
3280 conf->seq_flush++;
3281 raid5_activate_delayed(conf);
3283 md_wakeup_thread(mddev->thread);
3285 spin_unlock_irqrestore(&conf->device_lock, flags);
3287 unplug_slaves(mddev);
3290 static int raid5_congested(void *data, int bits)
3292 mddev_t *mddev = data;
3293 raid5_conf_t *conf = mddev_to_conf(mddev);
3295 /* No difference between reads and writes. Just check
3296 * how busy the stripe_cache is
3298 if (conf->inactive_blocked)
3299 return 1;
3300 if (conf->quiesce)
3301 return 1;
3302 if (list_empty_careful(&conf->inactive_list))
3303 return 1;
3305 return 0;
3308 /* We want read requests to align with chunks where possible,
3309 * but write requests don't need to.
3311 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3313 mddev_t *mddev = q->queuedata;
3314 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3315 int max;
3316 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3317 unsigned int bio_sectors = bio->bi_size >> 9;
3319 if (bio_data_dir(bio) == WRITE)
3320 return biovec->bv_len; /* always allow writes to be mergeable */
3322 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3323 if (max < 0) max = 0;
3324 if (max <= biovec->bv_len && bio_sectors == 0)
3325 return biovec->bv_len;
3326 else
3327 return max;
3331 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3333 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3334 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3335 unsigned int bio_sectors = bio->bi_size >> 9;
3337 return chunk_sectors >=
3338 ((sector & (chunk_sectors - 1)) + bio_sectors);
3342 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3343 * later sampled by raid5d.
3345 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3347 unsigned long flags;
3349 spin_lock_irqsave(&conf->device_lock, flags);
3351 bi->bi_next = conf->retry_read_aligned_list;
3352 conf->retry_read_aligned_list = bi;
3354 spin_unlock_irqrestore(&conf->device_lock, flags);
3355 md_wakeup_thread(conf->mddev->thread);
3359 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3361 struct bio *bi;
3363 bi = conf->retry_read_aligned;
3364 if (bi) {
3365 conf->retry_read_aligned = NULL;
3366 return bi;
3368 bi = conf->retry_read_aligned_list;
3369 if(bi) {
3370 conf->retry_read_aligned_list = bi->bi_next;
3371 bi->bi_next = NULL;
3372 bi->bi_phys_segments = 1; /* biased count of active stripes */
3373 bi->bi_hw_segments = 0; /* count of processed stripes */
3376 return bi;
3381 * The "raid5_align_endio" should check if the read succeeded and if it
3382 * did, call bio_endio on the original bio (having bio_put the new bio
3383 * first).
3384 * If the read failed..
3386 static void raid5_align_endio(struct bio *bi, int error)
3388 struct bio* raid_bi = bi->bi_private;
3389 mddev_t *mddev;
3390 raid5_conf_t *conf;
3391 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3392 mdk_rdev_t *rdev;
3394 bio_put(bi);
3396 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3397 conf = mddev_to_conf(mddev);
3398 rdev = (void*)raid_bi->bi_next;
3399 raid_bi->bi_next = NULL;
3401 rdev_dec_pending(rdev, conf->mddev);
3403 if (!error && uptodate) {
3404 bio_endio(raid_bi, 0);
3405 if (atomic_dec_and_test(&conf->active_aligned_reads))
3406 wake_up(&conf->wait_for_stripe);
3407 return;
3411 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3413 add_bio_to_retry(raid_bi, conf);
3416 static int bio_fits_rdev(struct bio *bi)
3418 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3420 if ((bi->bi_size>>9) > q->max_sectors)
3421 return 0;
3422 blk_recount_segments(q, bi);
3423 if (bi->bi_phys_segments > q->max_phys_segments ||
3424 bi->bi_hw_segments > q->max_hw_segments)
3425 return 0;
3427 if (q->merge_bvec_fn)
3428 /* it's too hard to apply the merge_bvec_fn at this stage,
3429 * just just give up
3431 return 0;
3433 return 1;
3437 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3439 mddev_t *mddev = q->queuedata;
3440 raid5_conf_t *conf = mddev_to_conf(mddev);
3441 const unsigned int raid_disks = conf->raid_disks;
3442 const unsigned int data_disks = raid_disks - conf->max_degraded;
3443 unsigned int dd_idx, pd_idx;
3444 struct bio* align_bi;
3445 mdk_rdev_t *rdev;
3447 if (!in_chunk_boundary(mddev, raid_bio)) {
3448 pr_debug("chunk_aligned_read : non aligned\n");
3449 return 0;
3452 * use bio_clone to make a copy of the bio
3454 align_bi = bio_clone(raid_bio, GFP_NOIO);
3455 if (!align_bi)
3456 return 0;
3458 * set bi_end_io to a new function, and set bi_private to the
3459 * original bio.
3461 align_bi->bi_end_io = raid5_align_endio;
3462 align_bi->bi_private = raid_bio;
3464 * compute position
3466 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3467 raid_disks,
3468 data_disks,
3469 &dd_idx,
3470 &pd_idx,
3471 conf);
3473 rcu_read_lock();
3474 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3475 if (rdev && test_bit(In_sync, &rdev->flags)) {
3476 atomic_inc(&rdev->nr_pending);
3477 rcu_read_unlock();
3478 raid_bio->bi_next = (void*)rdev;
3479 align_bi->bi_bdev = rdev->bdev;
3480 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3481 align_bi->bi_sector += rdev->data_offset;
3483 if (!bio_fits_rdev(align_bi)) {
3484 /* too big in some way */
3485 bio_put(align_bi);
3486 rdev_dec_pending(rdev, mddev);
3487 return 0;
3490 spin_lock_irq(&conf->device_lock);
3491 wait_event_lock_irq(conf->wait_for_stripe,
3492 conf->quiesce == 0,
3493 conf->device_lock, /* nothing */);
3494 atomic_inc(&conf->active_aligned_reads);
3495 spin_unlock_irq(&conf->device_lock);
3497 generic_make_request(align_bi);
3498 return 1;
3499 } else {
3500 rcu_read_unlock();
3501 bio_put(align_bi);
3502 return 0;
3506 /* __get_priority_stripe - get the next stripe to process
3508 * Full stripe writes are allowed to pass preread active stripes up until
3509 * the bypass_threshold is exceeded. In general the bypass_count
3510 * increments when the handle_list is handled before the hold_list; however, it
3511 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3512 * stripe with in flight i/o. The bypass_count will be reset when the
3513 * head of the hold_list has changed, i.e. the head was promoted to the
3514 * handle_list.
3516 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3518 struct stripe_head *sh;
3520 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3521 __func__,
3522 list_empty(&conf->handle_list) ? "empty" : "busy",
3523 list_empty(&conf->hold_list) ? "empty" : "busy",
3524 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3526 if (!list_empty(&conf->handle_list)) {
3527 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3529 if (list_empty(&conf->hold_list))
3530 conf->bypass_count = 0;
3531 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3532 if (conf->hold_list.next == conf->last_hold)
3533 conf->bypass_count++;
3534 else {
3535 conf->last_hold = conf->hold_list.next;
3536 conf->bypass_count -= conf->bypass_threshold;
3537 if (conf->bypass_count < 0)
3538 conf->bypass_count = 0;
3541 } else if (!list_empty(&conf->hold_list) &&
3542 ((conf->bypass_threshold &&
3543 conf->bypass_count > conf->bypass_threshold) ||
3544 atomic_read(&conf->pending_full_writes) == 0)) {
3545 sh = list_entry(conf->hold_list.next,
3546 typeof(*sh), lru);
3547 conf->bypass_count -= conf->bypass_threshold;
3548 if (conf->bypass_count < 0)
3549 conf->bypass_count = 0;
3550 } else
3551 return NULL;
3553 list_del_init(&sh->lru);
3554 atomic_inc(&sh->count);
3555 BUG_ON(atomic_read(&sh->count) != 1);
3556 return sh;
3559 static int make_request(struct request_queue *q, struct bio * bi)
3561 mddev_t *mddev = q->queuedata;
3562 raid5_conf_t *conf = mddev_to_conf(mddev);
3563 unsigned int dd_idx, pd_idx;
3564 sector_t new_sector;
3565 sector_t logical_sector, last_sector;
3566 struct stripe_head *sh;
3567 const int rw = bio_data_dir(bi);
3568 int remaining;
3570 if (unlikely(bio_barrier(bi))) {
3571 bio_endio(bi, -EOPNOTSUPP);
3572 return 0;
3575 md_write_start(mddev, bi);
3577 disk_stat_inc(mddev->gendisk, ios[rw]);
3578 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3580 if (rw == READ &&
3581 mddev->reshape_position == MaxSector &&
3582 chunk_aligned_read(q,bi))
3583 return 0;
3585 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3586 last_sector = bi->bi_sector + (bi->bi_size>>9);
3587 bi->bi_next = NULL;
3588 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3590 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3591 DEFINE_WAIT(w);
3592 int disks, data_disks;
3594 retry:
3595 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3596 if (likely(conf->expand_progress == MaxSector))
3597 disks = conf->raid_disks;
3598 else {
3599 /* spinlock is needed as expand_progress may be
3600 * 64bit on a 32bit platform, and so it might be
3601 * possible to see a half-updated value
3602 * Ofcourse expand_progress could change after
3603 * the lock is dropped, so once we get a reference
3604 * to the stripe that we think it is, we will have
3605 * to check again.
3607 spin_lock_irq(&conf->device_lock);
3608 disks = conf->raid_disks;
3609 if (logical_sector >= conf->expand_progress)
3610 disks = conf->previous_raid_disks;
3611 else {
3612 if (logical_sector >= conf->expand_lo) {
3613 spin_unlock_irq(&conf->device_lock);
3614 schedule();
3615 goto retry;
3618 spin_unlock_irq(&conf->device_lock);
3620 data_disks = disks - conf->max_degraded;
3622 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3623 &dd_idx, &pd_idx, conf);
3624 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3625 (unsigned long long)new_sector,
3626 (unsigned long long)logical_sector);
3628 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3629 if (sh) {
3630 if (unlikely(conf->expand_progress != MaxSector)) {
3631 /* expansion might have moved on while waiting for a
3632 * stripe, so we must do the range check again.
3633 * Expansion could still move past after this
3634 * test, but as we are holding a reference to
3635 * 'sh', we know that if that happens,
3636 * STRIPE_EXPANDING will get set and the expansion
3637 * won't proceed until we finish with the stripe.
3639 int must_retry = 0;
3640 spin_lock_irq(&conf->device_lock);
3641 if (logical_sector < conf->expand_progress &&
3642 disks == conf->previous_raid_disks)
3643 /* mismatch, need to try again */
3644 must_retry = 1;
3645 spin_unlock_irq(&conf->device_lock);
3646 if (must_retry) {
3647 release_stripe(sh);
3648 goto retry;
3651 /* FIXME what if we get a false positive because these
3652 * are being updated.
3654 if (logical_sector >= mddev->suspend_lo &&
3655 logical_sector < mddev->suspend_hi) {
3656 release_stripe(sh);
3657 schedule();
3658 goto retry;
3661 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3662 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3663 /* Stripe is busy expanding or
3664 * add failed due to overlap. Flush everything
3665 * and wait a while
3667 raid5_unplug_device(mddev->queue);
3668 release_stripe(sh);
3669 schedule();
3670 goto retry;
3672 finish_wait(&conf->wait_for_overlap, &w);
3673 set_bit(STRIPE_HANDLE, &sh->state);
3674 clear_bit(STRIPE_DELAYED, &sh->state);
3675 release_stripe(sh);
3676 } else {
3677 /* cannot get stripe for read-ahead, just give-up */
3678 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3679 finish_wait(&conf->wait_for_overlap, &w);
3680 break;
3684 spin_lock_irq(&conf->device_lock);
3685 remaining = --bi->bi_phys_segments;
3686 spin_unlock_irq(&conf->device_lock);
3687 if (remaining == 0) {
3689 if ( rw == WRITE )
3690 md_write_end(mddev);
3692 bi->bi_end_io(bi,
3693 test_bit(BIO_UPTODATE, &bi->bi_flags)
3694 ? 0 : -EIO);
3696 return 0;
3699 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3701 /* reshaping is quite different to recovery/resync so it is
3702 * handled quite separately ... here.
3704 * On each call to sync_request, we gather one chunk worth of
3705 * destination stripes and flag them as expanding.
3706 * Then we find all the source stripes and request reads.
3707 * As the reads complete, handle_stripe will copy the data
3708 * into the destination stripe and release that stripe.
3710 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3711 struct stripe_head *sh;
3712 int pd_idx;
3713 sector_t first_sector, last_sector;
3714 int raid_disks = conf->previous_raid_disks;
3715 int data_disks = raid_disks - conf->max_degraded;
3716 int new_data_disks = conf->raid_disks - conf->max_degraded;
3717 int i;
3718 int dd_idx;
3719 sector_t writepos, safepos, gap;
3721 if (sector_nr == 0 &&
3722 conf->expand_progress != 0) {
3723 /* restarting in the middle, skip the initial sectors */
3724 sector_nr = conf->expand_progress;
3725 sector_div(sector_nr, new_data_disks);
3726 *skipped = 1;
3727 return sector_nr;
3730 /* we update the metadata when there is more than 3Meg
3731 * in the block range (that is rather arbitrary, should
3732 * probably be time based) or when the data about to be
3733 * copied would over-write the source of the data at
3734 * the front of the range.
3735 * i.e. one new_stripe forward from expand_progress new_maps
3736 * to after where expand_lo old_maps to
3738 writepos = conf->expand_progress +
3739 conf->chunk_size/512*(new_data_disks);
3740 sector_div(writepos, new_data_disks);
3741 safepos = conf->expand_lo;
3742 sector_div(safepos, data_disks);
3743 gap = conf->expand_progress - conf->expand_lo;
3745 if (writepos >= safepos ||
3746 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3747 /* Cannot proceed until we've updated the superblock... */
3748 wait_event(conf->wait_for_overlap,
3749 atomic_read(&conf->reshape_stripes)==0);
3750 mddev->reshape_position = conf->expand_progress;
3751 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3752 md_wakeup_thread(mddev->thread);
3753 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3754 kthread_should_stop());
3755 spin_lock_irq(&conf->device_lock);
3756 conf->expand_lo = mddev->reshape_position;
3757 spin_unlock_irq(&conf->device_lock);
3758 wake_up(&conf->wait_for_overlap);
3761 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3762 int j;
3763 int skipped = 0;
3764 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3765 sh = get_active_stripe(conf, sector_nr+i,
3766 conf->raid_disks, pd_idx, 0);
3767 set_bit(STRIPE_EXPANDING, &sh->state);
3768 atomic_inc(&conf->reshape_stripes);
3769 /* If any of this stripe is beyond the end of the old
3770 * array, then we need to zero those blocks
3772 for (j=sh->disks; j--;) {
3773 sector_t s;
3774 if (j == sh->pd_idx)
3775 continue;
3776 if (conf->level == 6 &&
3777 j == raid6_next_disk(sh->pd_idx, sh->disks))
3778 continue;
3779 s = compute_blocknr(sh, j);
3780 if (s < (mddev->array_size<<1)) {
3781 skipped = 1;
3782 continue;
3784 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3785 set_bit(R5_Expanded, &sh->dev[j].flags);
3786 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3788 if (!skipped) {
3789 set_bit(STRIPE_EXPAND_READY, &sh->state);
3790 set_bit(STRIPE_HANDLE, &sh->state);
3792 release_stripe(sh);
3794 spin_lock_irq(&conf->device_lock);
3795 conf->expand_progress = (sector_nr + i) * new_data_disks;
3796 spin_unlock_irq(&conf->device_lock);
3797 /* Ok, those stripe are ready. We can start scheduling
3798 * reads on the source stripes.
3799 * The source stripes are determined by mapping the first and last
3800 * block on the destination stripes.
3802 first_sector =
3803 raid5_compute_sector(sector_nr*(new_data_disks),
3804 raid_disks, data_disks,
3805 &dd_idx, &pd_idx, conf);
3806 last_sector =
3807 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3808 *(new_data_disks) -1,
3809 raid_disks, data_disks,
3810 &dd_idx, &pd_idx, conf);
3811 if (last_sector >= (mddev->size<<1))
3812 last_sector = (mddev->size<<1)-1;
3813 while (first_sector <= last_sector) {
3814 pd_idx = stripe_to_pdidx(first_sector, conf,
3815 conf->previous_raid_disks);
3816 sh = get_active_stripe(conf, first_sector,
3817 conf->previous_raid_disks, pd_idx, 0);
3818 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3819 set_bit(STRIPE_HANDLE, &sh->state);
3820 release_stripe(sh);
3821 first_sector += STRIPE_SECTORS;
3823 /* If this takes us to the resync_max point where we have to pause,
3824 * then we need to write out the superblock.
3826 sector_nr += conf->chunk_size>>9;
3827 if (sector_nr >= mddev->resync_max) {
3828 /* Cannot proceed until we've updated the superblock... */
3829 wait_event(conf->wait_for_overlap,
3830 atomic_read(&conf->reshape_stripes) == 0);
3831 mddev->reshape_position = conf->expand_progress;
3832 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3833 md_wakeup_thread(mddev->thread);
3834 wait_event(mddev->sb_wait,
3835 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3836 || kthread_should_stop());
3837 spin_lock_irq(&conf->device_lock);
3838 conf->expand_lo = mddev->reshape_position;
3839 spin_unlock_irq(&conf->device_lock);
3840 wake_up(&conf->wait_for_overlap);
3842 return conf->chunk_size>>9;
3845 /* FIXME go_faster isn't used */
3846 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3848 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3849 struct stripe_head *sh;
3850 int pd_idx;
3851 int raid_disks = conf->raid_disks;
3852 sector_t max_sector = mddev->size << 1;
3853 int sync_blocks;
3854 int still_degraded = 0;
3855 int i;
3857 if (sector_nr >= max_sector) {
3858 /* just being told to finish up .. nothing much to do */
3859 unplug_slaves(mddev);
3860 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3861 end_reshape(conf);
3862 return 0;
3865 if (mddev->curr_resync < max_sector) /* aborted */
3866 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3867 &sync_blocks, 1);
3868 else /* completed sync */
3869 conf->fullsync = 0;
3870 bitmap_close_sync(mddev->bitmap);
3872 return 0;
3875 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3876 return reshape_request(mddev, sector_nr, skipped);
3878 /* No need to check resync_max as we never do more than one
3879 * stripe, and as resync_max will always be on a chunk boundary,
3880 * if the check in md_do_sync didn't fire, there is no chance
3881 * of overstepping resync_max here
3884 /* if there is too many failed drives and we are trying
3885 * to resync, then assert that we are finished, because there is
3886 * nothing we can do.
3888 if (mddev->degraded >= conf->max_degraded &&
3889 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3890 sector_t rv = (mddev->size << 1) - sector_nr;
3891 *skipped = 1;
3892 return rv;
3894 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3895 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3896 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3897 /* we can skip this block, and probably more */
3898 sync_blocks /= STRIPE_SECTORS;
3899 *skipped = 1;
3900 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3904 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3906 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3907 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3908 if (sh == NULL) {
3909 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3910 /* make sure we don't swamp the stripe cache if someone else
3911 * is trying to get access
3913 schedule_timeout_uninterruptible(1);
3915 /* Need to check if array will still be degraded after recovery/resync
3916 * We don't need to check the 'failed' flag as when that gets set,
3917 * recovery aborts.
3919 for (i=0; i<mddev->raid_disks; i++)
3920 if (conf->disks[i].rdev == NULL)
3921 still_degraded = 1;
3923 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3925 spin_lock(&sh->lock);
3926 set_bit(STRIPE_SYNCING, &sh->state);
3927 clear_bit(STRIPE_INSYNC, &sh->state);
3928 spin_unlock(&sh->lock);
3930 handle_stripe(sh, NULL);
3931 release_stripe(sh);
3933 return STRIPE_SECTORS;
3936 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3938 /* We may not be able to submit a whole bio at once as there
3939 * may not be enough stripe_heads available.
3940 * We cannot pre-allocate enough stripe_heads as we may need
3941 * more than exist in the cache (if we allow ever large chunks).
3942 * So we do one stripe head at a time and record in
3943 * ->bi_hw_segments how many have been done.
3945 * We *know* that this entire raid_bio is in one chunk, so
3946 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3948 struct stripe_head *sh;
3949 int dd_idx, pd_idx;
3950 sector_t sector, logical_sector, last_sector;
3951 int scnt = 0;
3952 int remaining;
3953 int handled = 0;
3955 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3956 sector = raid5_compute_sector( logical_sector,
3957 conf->raid_disks,
3958 conf->raid_disks - conf->max_degraded,
3959 &dd_idx,
3960 &pd_idx,
3961 conf);
3962 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3964 for (; logical_sector < last_sector;
3965 logical_sector += STRIPE_SECTORS,
3966 sector += STRIPE_SECTORS,
3967 scnt++) {
3969 if (scnt < raid_bio->bi_hw_segments)
3970 /* already done this stripe */
3971 continue;
3973 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3975 if (!sh) {
3976 /* failed to get a stripe - must wait */
3977 raid_bio->bi_hw_segments = scnt;
3978 conf->retry_read_aligned = raid_bio;
3979 return handled;
3982 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3983 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3984 release_stripe(sh);
3985 raid_bio->bi_hw_segments = scnt;
3986 conf->retry_read_aligned = raid_bio;
3987 return handled;
3990 handle_stripe(sh, NULL);
3991 release_stripe(sh);
3992 handled++;
3994 spin_lock_irq(&conf->device_lock);
3995 remaining = --raid_bio->bi_phys_segments;
3996 spin_unlock_irq(&conf->device_lock);
3997 if (remaining == 0) {
3999 raid_bio->bi_end_io(raid_bio,
4000 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
4001 ? 0 : -EIO);
4003 if (atomic_dec_and_test(&conf->active_aligned_reads))
4004 wake_up(&conf->wait_for_stripe);
4005 return handled;
4011 * This is our raid5 kernel thread.
4013 * We scan the hash table for stripes which can be handled now.
4014 * During the scan, completed stripes are saved for us by the interrupt
4015 * handler, so that they will not have to wait for our next wakeup.
4017 static void raid5d(mddev_t *mddev)
4019 struct stripe_head *sh;
4020 raid5_conf_t *conf = mddev_to_conf(mddev);
4021 int handled;
4023 pr_debug("+++ raid5d active\n");
4025 md_check_recovery(mddev);
4027 handled = 0;
4028 spin_lock_irq(&conf->device_lock);
4029 while (1) {
4030 struct bio *bio;
4032 if (conf->seq_flush != conf->seq_write) {
4033 int seq = conf->seq_flush;
4034 spin_unlock_irq(&conf->device_lock);
4035 bitmap_unplug(mddev->bitmap);
4036 spin_lock_irq(&conf->device_lock);
4037 conf->seq_write = seq;
4038 activate_bit_delay(conf);
4041 while ((bio = remove_bio_from_retry(conf))) {
4042 int ok;
4043 spin_unlock_irq(&conf->device_lock);
4044 ok = retry_aligned_read(conf, bio);
4045 spin_lock_irq(&conf->device_lock);
4046 if (!ok)
4047 break;
4048 handled++;
4051 sh = __get_priority_stripe(conf);
4053 if (!sh) {
4054 async_tx_issue_pending_all();
4055 break;
4057 spin_unlock_irq(&conf->device_lock);
4059 handled++;
4060 handle_stripe(sh, conf->spare_page);
4061 release_stripe(sh);
4063 spin_lock_irq(&conf->device_lock);
4065 pr_debug("%d stripes handled\n", handled);
4067 spin_unlock_irq(&conf->device_lock);
4069 unplug_slaves(mddev);
4071 pr_debug("--- raid5d inactive\n");
4074 static ssize_t
4075 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4077 raid5_conf_t *conf = mddev_to_conf(mddev);
4078 if (conf)
4079 return sprintf(page, "%d\n", conf->max_nr_stripes);
4080 else
4081 return 0;
4084 static ssize_t
4085 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4087 raid5_conf_t *conf = mddev_to_conf(mddev);
4088 unsigned long new;
4089 if (len >= PAGE_SIZE)
4090 return -EINVAL;
4091 if (!conf)
4092 return -ENODEV;
4094 if (strict_strtoul(page, 10, &new))
4095 return -EINVAL;
4096 if (new <= 16 || new > 32768)
4097 return -EINVAL;
4098 while (new < conf->max_nr_stripes) {
4099 if (drop_one_stripe(conf))
4100 conf->max_nr_stripes--;
4101 else
4102 break;
4104 md_allow_write(mddev);
4105 while (new > conf->max_nr_stripes) {
4106 if (grow_one_stripe(conf))
4107 conf->max_nr_stripes++;
4108 else break;
4110 return len;
4113 static struct md_sysfs_entry
4114 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4115 raid5_show_stripe_cache_size,
4116 raid5_store_stripe_cache_size);
4118 static ssize_t
4119 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4121 raid5_conf_t *conf = mddev_to_conf(mddev);
4122 if (conf)
4123 return sprintf(page, "%d\n", conf->bypass_threshold);
4124 else
4125 return 0;
4128 static ssize_t
4129 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4131 raid5_conf_t *conf = mddev_to_conf(mddev);
4132 unsigned long new;
4133 if (len >= PAGE_SIZE)
4134 return -EINVAL;
4135 if (!conf)
4136 return -ENODEV;
4138 if (strict_strtoul(page, 10, &new))
4139 return -EINVAL;
4140 if (new > conf->max_nr_stripes)
4141 return -EINVAL;
4142 conf->bypass_threshold = new;
4143 return len;
4146 static struct md_sysfs_entry
4147 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4148 S_IRUGO | S_IWUSR,
4149 raid5_show_preread_threshold,
4150 raid5_store_preread_threshold);
4152 static ssize_t
4153 stripe_cache_active_show(mddev_t *mddev, char *page)
4155 raid5_conf_t *conf = mddev_to_conf(mddev);
4156 if (conf)
4157 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4158 else
4159 return 0;
4162 static struct md_sysfs_entry
4163 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4165 static struct attribute *raid5_attrs[] = {
4166 &raid5_stripecache_size.attr,
4167 &raid5_stripecache_active.attr,
4168 &raid5_preread_bypass_threshold.attr,
4169 NULL,
4171 static struct attribute_group raid5_attrs_group = {
4172 .name = NULL,
4173 .attrs = raid5_attrs,
4176 static int run(mddev_t *mddev)
4178 raid5_conf_t *conf;
4179 int raid_disk, memory;
4180 mdk_rdev_t *rdev;
4181 struct disk_info *disk;
4182 struct list_head *tmp;
4183 int working_disks = 0;
4185 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4186 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4187 mdname(mddev), mddev->level);
4188 return -EIO;
4191 if (mddev->reshape_position != MaxSector) {
4192 /* Check that we can continue the reshape.
4193 * Currently only disks can change, it must
4194 * increase, and we must be past the point where
4195 * a stripe over-writes itself
4197 sector_t here_new, here_old;
4198 int old_disks;
4199 int max_degraded = (mddev->level == 5 ? 1 : 2);
4201 if (mddev->new_level != mddev->level ||
4202 mddev->new_layout != mddev->layout ||
4203 mddev->new_chunk != mddev->chunk_size) {
4204 printk(KERN_ERR "raid5: %s: unsupported reshape "
4205 "required - aborting.\n",
4206 mdname(mddev));
4207 return -EINVAL;
4209 if (mddev->delta_disks <= 0) {
4210 printk(KERN_ERR "raid5: %s: unsupported reshape "
4211 "(reduce disks) required - aborting.\n",
4212 mdname(mddev));
4213 return -EINVAL;
4215 old_disks = mddev->raid_disks - mddev->delta_disks;
4216 /* reshape_position must be on a new-stripe boundary, and one
4217 * further up in new geometry must map after here in old
4218 * geometry.
4220 here_new = mddev->reshape_position;
4221 if (sector_div(here_new, (mddev->chunk_size>>9)*
4222 (mddev->raid_disks - max_degraded))) {
4223 printk(KERN_ERR "raid5: reshape_position not "
4224 "on a stripe boundary\n");
4225 return -EINVAL;
4227 /* here_new is the stripe we will write to */
4228 here_old = mddev->reshape_position;
4229 sector_div(here_old, (mddev->chunk_size>>9)*
4230 (old_disks-max_degraded));
4231 /* here_old is the first stripe that we might need to read
4232 * from */
4233 if (here_new >= here_old) {
4234 /* Reading from the same stripe as writing to - bad */
4235 printk(KERN_ERR "raid5: reshape_position too early for "
4236 "auto-recovery - aborting.\n");
4237 return -EINVAL;
4239 printk(KERN_INFO "raid5: reshape will continue\n");
4240 /* OK, we should be able to continue; */
4244 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4245 if ((conf = mddev->private) == NULL)
4246 goto abort;
4247 if (mddev->reshape_position == MaxSector) {
4248 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4249 } else {
4250 conf->raid_disks = mddev->raid_disks;
4251 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4254 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4255 GFP_KERNEL);
4256 if (!conf->disks)
4257 goto abort;
4259 conf->mddev = mddev;
4261 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4262 goto abort;
4264 if (mddev->level == 6) {
4265 conf->spare_page = alloc_page(GFP_KERNEL);
4266 if (!conf->spare_page)
4267 goto abort;
4269 spin_lock_init(&conf->device_lock);
4270 mddev->queue->queue_lock = &conf->device_lock;
4271 init_waitqueue_head(&conf->wait_for_stripe);
4272 init_waitqueue_head(&conf->wait_for_overlap);
4273 INIT_LIST_HEAD(&conf->handle_list);
4274 INIT_LIST_HEAD(&conf->hold_list);
4275 INIT_LIST_HEAD(&conf->delayed_list);
4276 INIT_LIST_HEAD(&conf->bitmap_list);
4277 INIT_LIST_HEAD(&conf->inactive_list);
4278 atomic_set(&conf->active_stripes, 0);
4279 atomic_set(&conf->preread_active_stripes, 0);
4280 atomic_set(&conf->active_aligned_reads, 0);
4281 conf->bypass_threshold = BYPASS_THRESHOLD;
4283 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4285 rdev_for_each(rdev, tmp, mddev) {
4286 raid_disk = rdev->raid_disk;
4287 if (raid_disk >= conf->raid_disks
4288 || raid_disk < 0)
4289 continue;
4290 disk = conf->disks + raid_disk;
4292 disk->rdev = rdev;
4294 if (test_bit(In_sync, &rdev->flags)) {
4295 char b[BDEVNAME_SIZE];
4296 printk(KERN_INFO "raid5: device %s operational as raid"
4297 " disk %d\n", bdevname(rdev->bdev,b),
4298 raid_disk);
4299 working_disks++;
4304 * 0 for a fully functional array, 1 or 2 for a degraded array.
4306 mddev->degraded = conf->raid_disks - working_disks;
4307 conf->mddev = mddev;
4308 conf->chunk_size = mddev->chunk_size;
4309 conf->level = mddev->level;
4310 if (conf->level == 6)
4311 conf->max_degraded = 2;
4312 else
4313 conf->max_degraded = 1;
4314 conf->algorithm = mddev->layout;
4315 conf->max_nr_stripes = NR_STRIPES;
4316 conf->expand_progress = mddev->reshape_position;
4318 /* device size must be a multiple of chunk size */
4319 mddev->size &= ~(mddev->chunk_size/1024 -1);
4320 mddev->resync_max_sectors = mddev->size << 1;
4322 if (conf->level == 6 && conf->raid_disks < 4) {
4323 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4324 mdname(mddev), conf->raid_disks);
4325 goto abort;
4327 if (!conf->chunk_size || conf->chunk_size % 4) {
4328 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4329 conf->chunk_size, mdname(mddev));
4330 goto abort;
4332 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4333 printk(KERN_ERR
4334 "raid5: unsupported parity algorithm %d for %s\n",
4335 conf->algorithm, mdname(mddev));
4336 goto abort;
4338 if (mddev->degraded > conf->max_degraded) {
4339 printk(KERN_ERR "raid5: not enough operational devices for %s"
4340 " (%d/%d failed)\n",
4341 mdname(mddev), mddev->degraded, conf->raid_disks);
4342 goto abort;
4345 if (mddev->degraded > 0 &&
4346 mddev->recovery_cp != MaxSector) {
4347 if (mddev->ok_start_degraded)
4348 printk(KERN_WARNING
4349 "raid5: starting dirty degraded array: %s"
4350 "- data corruption possible.\n",
4351 mdname(mddev));
4352 else {
4353 printk(KERN_ERR
4354 "raid5: cannot start dirty degraded array for %s\n",
4355 mdname(mddev));
4356 goto abort;
4361 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4362 if (!mddev->thread) {
4363 printk(KERN_ERR
4364 "raid5: couldn't allocate thread for %s\n",
4365 mdname(mddev));
4366 goto abort;
4369 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4370 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4371 if (grow_stripes(conf, conf->max_nr_stripes)) {
4372 printk(KERN_ERR
4373 "raid5: couldn't allocate %dkB for buffers\n", memory);
4374 shrink_stripes(conf);
4375 md_unregister_thread(mddev->thread);
4376 goto abort;
4377 } else
4378 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4379 memory, mdname(mddev));
4381 if (mddev->degraded == 0)
4382 printk("raid5: raid level %d set %s active with %d out of %d"
4383 " devices, algorithm %d\n", conf->level, mdname(mddev),
4384 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4385 conf->algorithm);
4386 else
4387 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4388 " out of %d devices, algorithm %d\n", conf->level,
4389 mdname(mddev), mddev->raid_disks - mddev->degraded,
4390 mddev->raid_disks, conf->algorithm);
4392 print_raid5_conf(conf);
4394 if (conf->expand_progress != MaxSector) {
4395 printk("...ok start reshape thread\n");
4396 conf->expand_lo = conf->expand_progress;
4397 atomic_set(&conf->reshape_stripes, 0);
4398 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4399 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4400 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4401 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4402 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4403 "%s_reshape");
4406 /* read-ahead size must cover two whole stripes, which is
4407 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4410 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4411 int stripe = data_disks *
4412 (mddev->chunk_size / PAGE_SIZE);
4413 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4414 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4417 /* Ok, everything is just fine now */
4418 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4419 printk(KERN_WARNING
4420 "raid5: failed to create sysfs attributes for %s\n",
4421 mdname(mddev));
4423 mddev->queue->unplug_fn = raid5_unplug_device;
4424 mddev->queue->backing_dev_info.congested_data = mddev;
4425 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4427 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4428 conf->max_degraded);
4430 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4432 return 0;
4433 abort:
4434 if (conf) {
4435 print_raid5_conf(conf);
4436 safe_put_page(conf->spare_page);
4437 kfree(conf->disks);
4438 kfree(conf->stripe_hashtbl);
4439 kfree(conf);
4441 mddev->private = NULL;
4442 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4443 return -EIO;
4448 static int stop(mddev_t *mddev)
4450 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4452 md_unregister_thread(mddev->thread);
4453 mddev->thread = NULL;
4454 shrink_stripes(conf);
4455 kfree(conf->stripe_hashtbl);
4456 mddev->queue->backing_dev_info.congested_fn = NULL;
4457 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4458 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4459 kfree(conf->disks);
4460 kfree(conf);
4461 mddev->private = NULL;
4462 return 0;
4465 #ifdef DEBUG
4466 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4468 int i;
4470 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4471 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4472 seq_printf(seq, "sh %llu, count %d.\n",
4473 (unsigned long long)sh->sector, atomic_read(&sh->count));
4474 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4475 for (i = 0; i < sh->disks; i++) {
4476 seq_printf(seq, "(cache%d: %p %ld) ",
4477 i, sh->dev[i].page, sh->dev[i].flags);
4479 seq_printf(seq, "\n");
4482 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4484 struct stripe_head *sh;
4485 struct hlist_node *hn;
4486 int i;
4488 spin_lock_irq(&conf->device_lock);
4489 for (i = 0; i < NR_HASH; i++) {
4490 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4491 if (sh->raid_conf != conf)
4492 continue;
4493 print_sh(seq, sh);
4496 spin_unlock_irq(&conf->device_lock);
4498 #endif
4500 static void status (struct seq_file *seq, mddev_t *mddev)
4502 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4503 int i;
4505 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4506 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4507 for (i = 0; i < conf->raid_disks; i++)
4508 seq_printf (seq, "%s",
4509 conf->disks[i].rdev &&
4510 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4511 seq_printf (seq, "]");
4512 #ifdef DEBUG
4513 seq_printf (seq, "\n");
4514 printall(seq, conf);
4515 #endif
4518 static void print_raid5_conf (raid5_conf_t *conf)
4520 int i;
4521 struct disk_info *tmp;
4523 printk("RAID5 conf printout:\n");
4524 if (!conf) {
4525 printk("(conf==NULL)\n");
4526 return;
4528 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4529 conf->raid_disks - conf->mddev->degraded);
4531 for (i = 0; i < conf->raid_disks; i++) {
4532 char b[BDEVNAME_SIZE];
4533 tmp = conf->disks + i;
4534 if (tmp->rdev)
4535 printk(" disk %d, o:%d, dev:%s\n",
4536 i, !test_bit(Faulty, &tmp->rdev->flags),
4537 bdevname(tmp->rdev->bdev,b));
4541 static int raid5_spare_active(mddev_t *mddev)
4543 int i;
4544 raid5_conf_t *conf = mddev->private;
4545 struct disk_info *tmp;
4547 for (i = 0; i < conf->raid_disks; i++) {
4548 tmp = conf->disks + i;
4549 if (tmp->rdev
4550 && !test_bit(Faulty, &tmp->rdev->flags)
4551 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4552 unsigned long flags;
4553 spin_lock_irqsave(&conf->device_lock, flags);
4554 mddev->degraded--;
4555 spin_unlock_irqrestore(&conf->device_lock, flags);
4558 print_raid5_conf(conf);
4559 return 0;
4562 static int raid5_remove_disk(mddev_t *mddev, int number)
4564 raid5_conf_t *conf = mddev->private;
4565 int err = 0;
4566 mdk_rdev_t *rdev;
4567 struct disk_info *p = conf->disks + number;
4569 print_raid5_conf(conf);
4570 rdev = p->rdev;
4571 if (rdev) {
4572 if (test_bit(In_sync, &rdev->flags) ||
4573 atomic_read(&rdev->nr_pending)) {
4574 err = -EBUSY;
4575 goto abort;
4577 /* Only remove non-faulty devices if recovery
4578 * isn't possible.
4580 if (!test_bit(Faulty, &rdev->flags) &&
4581 mddev->degraded <= conf->max_degraded) {
4582 err = -EBUSY;
4583 goto abort;
4585 p->rdev = NULL;
4586 synchronize_rcu();
4587 if (atomic_read(&rdev->nr_pending)) {
4588 /* lost the race, try later */
4589 err = -EBUSY;
4590 p->rdev = rdev;
4593 abort:
4595 print_raid5_conf(conf);
4596 return err;
4599 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4601 raid5_conf_t *conf = mddev->private;
4602 int found = 0;
4603 int disk;
4604 struct disk_info *p;
4606 if (mddev->degraded > conf->max_degraded)
4607 /* no point adding a device */
4608 return 0;
4611 * find the disk ... but prefer rdev->saved_raid_disk
4612 * if possible.
4614 if (rdev->saved_raid_disk >= 0 &&
4615 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4616 disk = rdev->saved_raid_disk;
4617 else
4618 disk = 0;
4619 for ( ; disk < conf->raid_disks; disk++)
4620 if ((p=conf->disks + disk)->rdev == NULL) {
4621 clear_bit(In_sync, &rdev->flags);
4622 rdev->raid_disk = disk;
4623 found = 1;
4624 if (rdev->saved_raid_disk != disk)
4625 conf->fullsync = 1;
4626 rcu_assign_pointer(p->rdev, rdev);
4627 break;
4629 print_raid5_conf(conf);
4630 return found;
4633 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4635 /* no resync is happening, and there is enough space
4636 * on all devices, so we can resize.
4637 * We need to make sure resync covers any new space.
4638 * If the array is shrinking we should possibly wait until
4639 * any io in the removed space completes, but it hardly seems
4640 * worth it.
4642 raid5_conf_t *conf = mddev_to_conf(mddev);
4644 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4645 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4646 set_capacity(mddev->gendisk, mddev->array_size << 1);
4647 mddev->changed = 1;
4648 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4649 mddev->recovery_cp = mddev->size << 1;
4650 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4652 mddev->size = sectors /2;
4653 mddev->resync_max_sectors = sectors;
4654 return 0;
4657 #ifdef CONFIG_MD_RAID5_RESHAPE
4658 static int raid5_check_reshape(mddev_t *mddev)
4660 raid5_conf_t *conf = mddev_to_conf(mddev);
4661 int err;
4663 if (mddev->delta_disks < 0 ||
4664 mddev->new_level != mddev->level)
4665 return -EINVAL; /* Cannot shrink array or change level yet */
4666 if (mddev->delta_disks == 0)
4667 return 0; /* nothing to do */
4669 /* Can only proceed if there are plenty of stripe_heads.
4670 * We need a minimum of one full stripe,, and for sensible progress
4671 * it is best to have about 4 times that.
4672 * If we require 4 times, then the default 256 4K stripe_heads will
4673 * allow for chunk sizes up to 256K, which is probably OK.
4674 * If the chunk size is greater, user-space should request more
4675 * stripe_heads first.
4677 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4678 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4679 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4680 (mddev->chunk_size / STRIPE_SIZE)*4);
4681 return -ENOSPC;
4684 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4685 if (err)
4686 return err;
4688 if (mddev->degraded > conf->max_degraded)
4689 return -EINVAL;
4690 /* looks like we might be able to manage this */
4691 return 0;
4694 static int raid5_start_reshape(mddev_t *mddev)
4696 raid5_conf_t *conf = mddev_to_conf(mddev);
4697 mdk_rdev_t *rdev;
4698 struct list_head *rtmp;
4699 int spares = 0;
4700 int added_devices = 0;
4701 unsigned long flags;
4703 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4704 return -EBUSY;
4706 rdev_for_each(rdev, rtmp, mddev)
4707 if (rdev->raid_disk < 0 &&
4708 !test_bit(Faulty, &rdev->flags))
4709 spares++;
4711 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4712 /* Not enough devices even to make a degraded array
4713 * of that size
4715 return -EINVAL;
4717 atomic_set(&conf->reshape_stripes, 0);
4718 spin_lock_irq(&conf->device_lock);
4719 conf->previous_raid_disks = conf->raid_disks;
4720 conf->raid_disks += mddev->delta_disks;
4721 conf->expand_progress = 0;
4722 conf->expand_lo = 0;
4723 spin_unlock_irq(&conf->device_lock);
4725 /* Add some new drives, as many as will fit.
4726 * We know there are enough to make the newly sized array work.
4728 rdev_for_each(rdev, rtmp, mddev)
4729 if (rdev->raid_disk < 0 &&
4730 !test_bit(Faulty, &rdev->flags)) {
4731 if (raid5_add_disk(mddev, rdev)) {
4732 char nm[20];
4733 set_bit(In_sync, &rdev->flags);
4734 added_devices++;
4735 rdev->recovery_offset = 0;
4736 sprintf(nm, "rd%d", rdev->raid_disk);
4737 if (sysfs_create_link(&mddev->kobj,
4738 &rdev->kobj, nm))
4739 printk(KERN_WARNING
4740 "raid5: failed to create "
4741 " link %s for %s\n",
4742 nm, mdname(mddev));
4743 } else
4744 break;
4747 spin_lock_irqsave(&conf->device_lock, flags);
4748 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4749 spin_unlock_irqrestore(&conf->device_lock, flags);
4750 mddev->raid_disks = conf->raid_disks;
4751 mddev->reshape_position = 0;
4752 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4754 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4755 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4756 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4757 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4758 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4759 "%s_reshape");
4760 if (!mddev->sync_thread) {
4761 mddev->recovery = 0;
4762 spin_lock_irq(&conf->device_lock);
4763 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4764 conf->expand_progress = MaxSector;
4765 spin_unlock_irq(&conf->device_lock);
4766 return -EAGAIN;
4768 md_wakeup_thread(mddev->sync_thread);
4769 md_new_event(mddev);
4770 return 0;
4772 #endif
4774 static void end_reshape(raid5_conf_t *conf)
4776 struct block_device *bdev;
4778 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4779 conf->mddev->array_size = conf->mddev->size *
4780 (conf->raid_disks - conf->max_degraded);
4781 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4782 conf->mddev->changed = 1;
4784 bdev = bdget_disk(conf->mddev->gendisk, 0);
4785 if (bdev) {
4786 mutex_lock(&bdev->bd_inode->i_mutex);
4787 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4788 mutex_unlock(&bdev->bd_inode->i_mutex);
4789 bdput(bdev);
4791 spin_lock_irq(&conf->device_lock);
4792 conf->expand_progress = MaxSector;
4793 spin_unlock_irq(&conf->device_lock);
4794 conf->mddev->reshape_position = MaxSector;
4796 /* read-ahead size must cover two whole stripes, which is
4797 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4800 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4801 int stripe = data_disks *
4802 (conf->mddev->chunk_size / PAGE_SIZE);
4803 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4804 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4809 static void raid5_quiesce(mddev_t *mddev, int state)
4811 raid5_conf_t *conf = mddev_to_conf(mddev);
4813 switch(state) {
4814 case 2: /* resume for a suspend */
4815 wake_up(&conf->wait_for_overlap);
4816 break;
4818 case 1: /* stop all writes */
4819 spin_lock_irq(&conf->device_lock);
4820 conf->quiesce = 1;
4821 wait_event_lock_irq(conf->wait_for_stripe,
4822 atomic_read(&conf->active_stripes) == 0 &&
4823 atomic_read(&conf->active_aligned_reads) == 0,
4824 conf->device_lock, /* nothing */);
4825 spin_unlock_irq(&conf->device_lock);
4826 break;
4828 case 0: /* re-enable writes */
4829 spin_lock_irq(&conf->device_lock);
4830 conf->quiesce = 0;
4831 wake_up(&conf->wait_for_stripe);
4832 wake_up(&conf->wait_for_overlap);
4833 spin_unlock_irq(&conf->device_lock);
4834 break;
4838 static struct mdk_personality raid6_personality =
4840 .name = "raid6",
4841 .level = 6,
4842 .owner = THIS_MODULE,
4843 .make_request = make_request,
4844 .run = run,
4845 .stop = stop,
4846 .status = status,
4847 .error_handler = error,
4848 .hot_add_disk = raid5_add_disk,
4849 .hot_remove_disk= raid5_remove_disk,
4850 .spare_active = raid5_spare_active,
4851 .sync_request = sync_request,
4852 .resize = raid5_resize,
4853 #ifdef CONFIG_MD_RAID5_RESHAPE
4854 .check_reshape = raid5_check_reshape,
4855 .start_reshape = raid5_start_reshape,
4856 #endif
4857 .quiesce = raid5_quiesce,
4859 static struct mdk_personality raid5_personality =
4861 .name = "raid5",
4862 .level = 5,
4863 .owner = THIS_MODULE,
4864 .make_request = make_request,
4865 .run = run,
4866 .stop = stop,
4867 .status = status,
4868 .error_handler = error,
4869 .hot_add_disk = raid5_add_disk,
4870 .hot_remove_disk= raid5_remove_disk,
4871 .spare_active = raid5_spare_active,
4872 .sync_request = sync_request,
4873 .resize = raid5_resize,
4874 #ifdef CONFIG_MD_RAID5_RESHAPE
4875 .check_reshape = raid5_check_reshape,
4876 .start_reshape = raid5_start_reshape,
4877 #endif
4878 .quiesce = raid5_quiesce,
4881 static struct mdk_personality raid4_personality =
4883 .name = "raid4",
4884 .level = 4,
4885 .owner = THIS_MODULE,
4886 .make_request = make_request,
4887 .run = run,
4888 .stop = stop,
4889 .status = status,
4890 .error_handler = error,
4891 .hot_add_disk = raid5_add_disk,
4892 .hot_remove_disk= raid5_remove_disk,
4893 .spare_active = raid5_spare_active,
4894 .sync_request = sync_request,
4895 .resize = raid5_resize,
4896 #ifdef CONFIG_MD_RAID5_RESHAPE
4897 .check_reshape = raid5_check_reshape,
4898 .start_reshape = raid5_start_reshape,
4899 #endif
4900 .quiesce = raid5_quiesce,
4903 static int __init raid5_init(void)
4905 int e;
4907 e = raid6_select_algo();
4908 if ( e )
4909 return e;
4910 register_md_personality(&raid6_personality);
4911 register_md_personality(&raid5_personality);
4912 register_md_personality(&raid4_personality);
4913 return 0;
4916 static void raid5_exit(void)
4918 unregister_md_personality(&raid6_personality);
4919 unregister_md_personality(&raid5_personality);
4920 unregister_md_personality(&raid4_personality);
4923 module_init(raid5_init);
4924 module_exit(raid5_exit);
4925 MODULE_LICENSE("GPL");
4926 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4927 MODULE_ALIAS("md-raid5");
4928 MODULE_ALIAS("md-raid4");
4929 MODULE_ALIAS("md-level-5");
4930 MODULE_ALIAS("md-level-4");
4931 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4932 MODULE_ALIAS("md-raid6");
4933 MODULE_ALIAS("md-level-6");
4935 /* This used to be two separate modules, they were: */
4936 MODULE_ALIAS("raid5");
4937 MODULE_ALIAS("raid6");