Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / wireless / ipw2100.c
blob599e2fe76188534cedd9973f7ebfd0fb1fb03e6a
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <jkmaline@cc.hut.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
46 Theory of Operation
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
94 ...
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
167 #include "ipw2100.h"
169 #define IPW2100_VERSION "git-1.2.2"
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
296 #endif
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
433 len -= dif_len;
434 aligned_addr += 4;
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
471 len -= dif_len;
472 aligned_addr += 4;
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
521 return -EINVAL;
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530 return 0;
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535 ord -= IPW_START_ORD_TAB_2;
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
560 *len = total_length;
561 if (!total_length)
562 return 0;
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
567 return 0;
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
573 return -EINVAL;
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
592 write_nic_dword(priv->net_dev, addr, *val);
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596 return 0;
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
603 return -EINVAL;
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
609 int out, i, j, l;
610 char c;
612 out = snprintf(buf, count, "%08X", ofs);
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
631 out += snprintf(buf + out, count - out, "%c", c);
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
638 return buf;
641 static void printk_buf(int level, const u8 * data, u32 len)
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
657 #define MAX_RESET_BACKOFF 10
659 static void schedule_reset(struct ipw2100_priv *priv)
661 unsigned long now = get_seconds();
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
670 priv->last_reset = get_seconds();
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_work(priv->workqueue, &priv->reset_work);
684 if (priv->reset_backoff < MAX_RESET_BACKOFF)
685 priv->reset_backoff++;
687 wake_up_interruptible(&priv->wait_command_queue);
688 } else
689 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
690 priv->net_dev->name);
694 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
695 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
696 struct host_command *cmd)
698 struct list_head *element;
699 struct ipw2100_tx_packet *packet;
700 unsigned long flags;
701 int err = 0;
703 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
704 command_types[cmd->host_command], cmd->host_command,
705 cmd->host_command_length);
706 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
707 cmd->host_command_length);
709 spin_lock_irqsave(&priv->low_lock, flags);
711 if (priv->fatal_error) {
712 IPW_DEBUG_INFO
713 ("Attempt to send command while hardware in fatal error condition.\n");
714 err = -EIO;
715 goto fail_unlock;
718 if (!(priv->status & STATUS_RUNNING)) {
719 IPW_DEBUG_INFO
720 ("Attempt to send command while hardware is not running.\n");
721 err = -EIO;
722 goto fail_unlock;
725 if (priv->status & STATUS_CMD_ACTIVE) {
726 IPW_DEBUG_INFO
727 ("Attempt to send command while another command is pending.\n");
728 err = -EBUSY;
729 goto fail_unlock;
732 if (list_empty(&priv->msg_free_list)) {
733 IPW_DEBUG_INFO("no available msg buffers\n");
734 goto fail_unlock;
737 priv->status |= STATUS_CMD_ACTIVE;
738 priv->messages_sent++;
740 element = priv->msg_free_list.next;
742 packet = list_entry(element, struct ipw2100_tx_packet, list);
743 packet->jiffy_start = jiffies;
745 /* initialize the firmware command packet */
746 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
747 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
748 packet->info.c_struct.cmd->host_command_len_reg =
749 cmd->host_command_length;
750 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
753 cmd->host_command_parameters,
754 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756 list_del(element);
757 DEC_STAT(&priv->msg_free_stat);
759 list_add_tail(element, &priv->msg_pend_list);
760 INC_STAT(&priv->msg_pend_stat);
762 ipw2100_tx_send_commands(priv);
763 ipw2100_tx_send_data(priv);
765 spin_unlock_irqrestore(&priv->low_lock, flags);
768 * We must wait for this command to complete before another
769 * command can be sent... but if we wait more than 3 seconds
770 * then there is a problem.
773 err =
774 wait_event_interruptible_timeout(priv->wait_command_queue,
775 !(priv->
776 status & STATUS_CMD_ACTIVE),
777 HOST_COMPLETE_TIMEOUT);
779 if (err == 0) {
780 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
781 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
782 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
783 priv->status &= ~STATUS_CMD_ACTIVE;
784 schedule_reset(priv);
785 return -EIO;
788 if (priv->fatal_error) {
789 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
790 priv->net_dev->name);
791 return -EIO;
794 /* !!!!! HACK TEST !!!!!
795 * When lots of debug trace statements are enabled, the driver
796 * doesn't seem to have as many firmware restart cycles...
798 * As a test, we're sticking in a 1/100s delay here */
799 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801 return 0;
803 fail_unlock:
804 spin_unlock_irqrestore(&priv->low_lock, flags);
806 return err;
810 * Verify the values and data access of the hardware
811 * No locks needed or used. No functions called.
813 static int ipw2100_verify(struct ipw2100_priv *priv)
815 u32 data1, data2;
816 u32 address;
818 u32 val1 = 0x76543210;
819 u32 val2 = 0xFEDCBA98;
821 /* Domain 0 check - all values should be DOA_DEBUG */
822 for (address = IPW_REG_DOA_DEBUG_AREA_START;
823 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
824 read_register(priv->net_dev, address, &data1);
825 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
826 return -EIO;
829 /* Domain 1 check - use arbitrary read/write compare */
830 for (address = 0; address < 5; address++) {
831 /* The memory area is not used now */
832 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
833 val1);
834 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
835 val2);
836 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
837 &data1);
838 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
839 &data2);
840 if (val1 == data1 && val2 == data2)
841 return 0;
844 return -EIO;
849 * Loop until the CARD_DISABLED bit is the same value as the
850 * supplied parameter
852 * TODO: See if it would be more efficient to do a wait/wake
853 * cycle and have the completion event trigger the wakeup
856 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
857 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 int i;
860 u32 card_state;
861 u32 len = sizeof(card_state);
862 int err;
864 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
865 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
866 &card_state, &len);
867 if (err) {
868 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
869 "failed.\n");
870 return 0;
873 /* We'll break out if either the HW state says it is
874 * in the state we want, or if HOST_COMPLETE command
875 * finishes */
876 if ((card_state == state) ||
877 ((priv->status & STATUS_ENABLED) ?
878 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
879 if (state == IPW_HW_STATE_ENABLED)
880 priv->status |= STATUS_ENABLED;
881 else
882 priv->status &= ~STATUS_ENABLED;
884 return 0;
887 udelay(50);
890 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
891 state ? "DISABLED" : "ENABLED");
892 return -EIO;
895 /*********************************************************************
896 Procedure : sw_reset_and_clock
897 Purpose : Asserts s/w reset, asserts clock initialization
898 and waits for clock stabilization
899 ********************************************************************/
900 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 int i;
903 u32 r;
905 // assert s/w reset
906 write_register(priv->net_dev, IPW_REG_RESET_REG,
907 IPW_AUX_HOST_RESET_REG_SW_RESET);
909 // wait for clock stabilization
910 for (i = 0; i < 1000; i++) {
911 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913 // check clock ready bit
914 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
915 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
916 break;
919 if (i == 1000)
920 return -EIO; // TODO: better error value
922 /* set "initialization complete" bit to move adapter to
923 * D0 state */
924 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
925 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927 /* wait for clock stabilization */
928 for (i = 0; i < 10000; i++) {
929 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931 /* check clock ready bit */
932 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
933 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
934 break;
937 if (i == 10000)
938 return -EIO; /* TODO: better error value */
940 /* set D0 standby bit */
941 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
942 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
943 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945 return 0;
948 /*********************************************************************
949 Procedure : ipw2100_download_firmware
950 Purpose : Initiaze adapter after power on.
951 The sequence is:
952 1. assert s/w reset first!
953 2. awake clocks & wait for clock stabilization
954 3. hold ARC (don't ask me why...)
955 4. load Dino ucode and reset/clock init again
956 5. zero-out shared mem
957 6. download f/w
958 *******************************************************************/
959 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 u32 address;
962 int err;
964 #ifndef CONFIG_PM
965 /* Fetch the firmware and microcode */
966 struct ipw2100_fw ipw2100_firmware;
967 #endif
969 if (priv->fatal_error) {
970 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
971 "fatal error %d. Interface must be brought down.\n",
972 priv->net_dev->name, priv->fatal_error);
973 return -EINVAL;
975 #ifdef CONFIG_PM
976 if (!ipw2100_firmware.version) {
977 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
978 if (err) {
979 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
980 priv->net_dev->name, err);
981 priv->fatal_error = IPW2100_ERR_FW_LOAD;
982 goto fail;
985 #else
986 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
987 if (err) {
988 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
989 priv->net_dev->name, err);
990 priv->fatal_error = IPW2100_ERR_FW_LOAD;
991 goto fail;
993 #endif
994 priv->firmware_version = ipw2100_firmware.version;
996 /* s/w reset and clock stabilization */
997 err = sw_reset_and_clock(priv);
998 if (err) {
999 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1000 priv->net_dev->name, err);
1001 goto fail;
1004 err = ipw2100_verify(priv);
1005 if (err) {
1006 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1007 priv->net_dev->name, err);
1008 goto fail;
1011 /* Hold ARC */
1012 write_nic_dword(priv->net_dev,
1013 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015 /* allow ARC to run */
1016 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018 /* load microcode */
1019 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1020 if (err) {
1021 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1022 priv->net_dev->name, err);
1023 goto fail;
1026 /* release ARC */
1027 write_nic_dword(priv->net_dev,
1028 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030 /* s/w reset and clock stabilization (again!!!) */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 printk(KERN_ERR DRV_NAME
1034 ": %s: sw_reset_and_clock failed: %d\n",
1035 priv->net_dev->name, err);
1036 goto fail;
1039 /* load f/w */
1040 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1041 if (err) {
1042 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1043 priv->net_dev->name, err);
1044 goto fail;
1046 #ifndef CONFIG_PM
1048 * When the .resume method of the driver is called, the other
1049 * part of the system, i.e. the ide driver could still stay in
1050 * the suspend stage. This prevents us from loading the firmware
1051 * from the disk. --YZ
1054 /* free any storage allocated for firmware image */
1055 ipw2100_release_firmware(priv, &ipw2100_firmware);
1056 #endif
1058 /* zero out Domain 1 area indirectly (Si requirement) */
1059 for (address = IPW_HOST_FW_SHARED_AREA0;
1060 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1061 write_nic_dword(priv->net_dev, address, 0);
1062 for (address = IPW_HOST_FW_SHARED_AREA1;
1063 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1064 write_nic_dword(priv->net_dev, address, 0);
1065 for (address = IPW_HOST_FW_SHARED_AREA2;
1066 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1067 write_nic_dword(priv->net_dev, address, 0);
1068 for (address = IPW_HOST_FW_SHARED_AREA3;
1069 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1070 write_nic_dword(priv->net_dev, address, 0);
1071 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1072 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1073 write_nic_dword(priv->net_dev, address, 0);
1075 return 0;
1077 fail:
1078 ipw2100_release_firmware(priv, &ipw2100_firmware);
1079 return err;
1082 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 if (priv->status & STATUS_INT_ENABLED)
1085 return;
1086 priv->status |= STATUS_INT_ENABLED;
1087 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1090 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 if (!(priv->status & STATUS_INT_ENABLED))
1093 return;
1094 priv->status &= ~STATUS_INT_ENABLED;
1095 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1098 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 struct ipw2100_ordinals *ord = &priv->ordinals;
1102 IPW_DEBUG_INFO("enter\n");
1104 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1105 &ord->table1_addr);
1107 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1108 &ord->table2_addr);
1110 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1111 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113 ord->table2_size &= 0x0000FFFF;
1115 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1116 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1117 IPW_DEBUG_INFO("exit\n");
1120 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 u32 reg = 0;
1124 * Set GPIO 3 writable by FW; GPIO 1 writable
1125 * by driver and enable clock
1127 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1128 IPW_BIT_GPIO_LED_OFF);
1129 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1132 static int rf_kill_active(struct ipw2100_priv *priv)
1134 #define MAX_RF_KILL_CHECKS 5
1135 #define RF_KILL_CHECK_DELAY 40
1137 unsigned short value = 0;
1138 u32 reg = 0;
1139 int i;
1141 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1142 priv->status &= ~STATUS_RF_KILL_HW;
1143 return 0;
1146 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1147 udelay(RF_KILL_CHECK_DELAY);
1148 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1149 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1152 if (value == 0)
1153 priv->status |= STATUS_RF_KILL_HW;
1154 else
1155 priv->status &= ~STATUS_RF_KILL_HW;
1157 return (value == 0);
1160 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 u32 addr, len;
1163 u32 val;
1166 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 len = sizeof(addr);
1169 if (ipw2100_get_ordinal
1170 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1171 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1172 __LINE__);
1173 return -EIO;
1176 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1179 * EEPROM version is the byte at offset 0xfd in firmware
1180 * We read 4 bytes, then shift out the byte we actually want */
1181 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1182 priv->eeprom_version = (val >> 24) & 0xFF;
1183 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1186 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 * notice that the EEPROM bit is reverse polarity, i.e.
1189 * bit = 0 signifies HW RF kill switch is supported
1190 * bit = 1 signifies HW RF kill switch is NOT supported
1192 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1193 if (!((val >> 24) & 0x01))
1194 priv->hw_features |= HW_FEATURE_RFKILL;
1196 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1197 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199 return 0;
1203 * Start firmware execution after power on and intialization
1204 * The sequence is:
1205 * 1. Release ARC
1206 * 2. Wait for f/w initialization completes;
1208 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 int i;
1211 u32 inta, inta_mask, gpio;
1213 IPW_DEBUG_INFO("enter\n");
1215 if (priv->status & STATUS_RUNNING)
1216 return 0;
1219 * Initialize the hw - drive adapter to DO state by setting
1220 * init_done bit. Wait for clk_ready bit and Download
1221 * fw & dino ucode
1223 if (ipw2100_download_firmware(priv)) {
1224 printk(KERN_ERR DRV_NAME
1225 ": %s: Failed to power on the adapter.\n",
1226 priv->net_dev->name);
1227 return -EIO;
1230 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1231 * in the firmware RBD and TBD ring queue */
1232 ipw2100_queues_initialize(priv);
1234 ipw2100_hw_set_gpio(priv);
1236 /* TODO -- Look at disabling interrupts here to make sure none
1237 * get fired during FW initialization */
1239 /* Release ARC - clear reset bit */
1240 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242 /* wait for f/w intialization complete */
1243 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1244 i = 5000;
1245 do {
1246 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1247 /* Todo... wait for sync command ... */
1249 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251 /* check "init done" bit */
1252 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1253 /* reset "init done" bit */
1254 write_register(priv->net_dev, IPW_REG_INTA,
1255 IPW2100_INTA_FW_INIT_DONE);
1256 break;
1259 /* check error conditions : we check these after the firmware
1260 * check so that if there is an error, the interrupt handler
1261 * will see it and the adapter will be reset */
1262 if (inta &
1263 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1264 /* clear error conditions */
1265 write_register(priv->net_dev, IPW_REG_INTA,
1266 IPW2100_INTA_FATAL_ERROR |
1267 IPW2100_INTA_PARITY_ERROR);
1269 } while (i--);
1271 /* Clear out any pending INTAs since we aren't supposed to have
1272 * interrupts enabled at this point... */
1273 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1275 inta &= IPW_INTERRUPT_MASK;
1276 /* Clear out any pending interrupts */
1277 if (inta & inta_mask)
1278 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1281 i ? "SUCCESS" : "FAILED");
1283 if (!i) {
1284 printk(KERN_WARNING DRV_NAME
1285 ": %s: Firmware did not initialize.\n",
1286 priv->net_dev->name);
1287 return -EIO;
1290 /* allow firmware to write to GPIO1 & GPIO3 */
1291 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297 /* Ready to receive commands */
1298 priv->status |= STATUS_RUNNING;
1300 /* The adapter has been reset; we are not associated */
1301 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303 IPW_DEBUG_INFO("exit\n");
1305 return 0;
1308 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 if (!priv->fatal_error)
1311 return;
1313 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1314 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1315 priv->fatal_error = 0;
1318 /* NOTE: Our interrupt is disabled when this method is called */
1319 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 u32 reg;
1322 int i;
1324 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326 ipw2100_hw_set_gpio(priv);
1328 /* Step 1. Stop Master Assert */
1329 write_register(priv->net_dev, IPW_REG_RESET_REG,
1330 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332 /* Step 2. Wait for stop Master Assert
1333 * (not more then 50us, otherwise ret error */
1334 i = 5;
1335 do {
1336 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1337 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1340 break;
1341 } while (i--);
1343 priv->status &= ~STATUS_RESET_PENDING;
1345 if (!i) {
1346 IPW_DEBUG_INFO
1347 ("exit - waited too long for master assert stop\n");
1348 return -EIO;
1351 write_register(priv->net_dev, IPW_REG_RESET_REG,
1352 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354 /* Reset any fatal_error conditions */
1355 ipw2100_reset_fatalerror(priv);
1357 /* At this point, the adapter is now stopped and disabled */
1358 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1359 STATUS_ASSOCIATED | STATUS_ENABLED);
1361 return 0;
1365 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1370 * if STATUS_ASSN_LOST is sent.
1372 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1375 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377 struct host_command cmd = {
1378 .host_command = CARD_DISABLE_PHY_OFF,
1379 .host_command_sequence = 0,
1380 .host_command_length = 0,
1382 int err, i;
1383 u32 val1, val2;
1385 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387 /* Turn off the radio */
1388 err = ipw2100_hw_send_command(priv, &cmd);
1389 if (err)
1390 return err;
1392 for (i = 0; i < 2500; i++) {
1393 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1394 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1397 (val2 & IPW2100_COMMAND_PHY_OFF))
1398 return 0;
1400 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1403 return -EIO;
1406 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 struct host_command cmd = {
1409 .host_command = HOST_COMPLETE,
1410 .host_command_sequence = 0,
1411 .host_command_length = 0
1413 int err = 0;
1415 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417 if (priv->status & STATUS_ENABLED)
1418 return 0;
1420 mutex_lock(&priv->adapter_mutex);
1422 if (rf_kill_active(priv)) {
1423 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1424 goto fail_up;
1427 err = ipw2100_hw_send_command(priv, &cmd);
1428 if (err) {
1429 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1430 goto fail_up;
1433 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1434 if (err) {
1435 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1436 priv->net_dev->name);
1437 goto fail_up;
1440 if (priv->stop_hang_check) {
1441 priv->stop_hang_check = 0;
1442 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1445 fail_up:
1446 mutex_unlock(&priv->adapter_mutex);
1447 return err;
1450 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454 struct host_command cmd = {
1455 .host_command = HOST_PRE_POWER_DOWN,
1456 .host_command_sequence = 0,
1457 .host_command_length = 0,
1459 int err, i;
1460 u32 reg;
1462 if (!(priv->status & STATUS_RUNNING))
1463 return 0;
1465 priv->status |= STATUS_STOPPING;
1467 /* We can only shut down the card if the firmware is operational. So,
1468 * if we haven't reset since a fatal_error, then we can not send the
1469 * shutdown commands. */
1470 if (!priv->fatal_error) {
1471 /* First, make sure the adapter is enabled so that the PHY_OFF
1472 * command can shut it down */
1473 ipw2100_enable_adapter(priv);
1475 err = ipw2100_hw_phy_off(priv);
1476 if (err)
1477 printk(KERN_WARNING DRV_NAME
1478 ": Error disabling radio %d\n", err);
1481 * If in D0-standby mode going directly to D3 may cause a
1482 * PCI bus violation. Therefore we must change out of the D0
1483 * state.
1485 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1486 * hardware from going into standby mode and will transition
1487 * out of D0-standby if it is already in that state.
1489 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1490 * driver upon completion. Once received, the driver can
1491 * proceed to the D3 state.
1493 * Prepare for power down command to fw. This command would
1494 * take HW out of D0-standby and prepare it for D3 state.
1496 * Currently FW does not support event notification for this
1497 * event. Therefore, skip waiting for it. Just wait a fixed
1498 * 100ms
1500 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502 err = ipw2100_hw_send_command(priv, &cmd);
1503 if (err)
1504 printk(KERN_WARNING DRV_NAME ": "
1505 "%s: Power down command failed: Error %d\n",
1506 priv->net_dev->name, err);
1507 else
1508 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1511 priv->status &= ~STATUS_ENABLED;
1514 * Set GPIO 3 writable by FW; GPIO 1 writable
1515 * by driver and enable clock
1517 ipw2100_hw_set_gpio(priv);
1520 * Power down adapter. Sequence:
1521 * 1. Stop master assert (RESET_REG[9]=1)
1522 * 2. Wait for stop master (RESET_REG[8]==1)
1523 * 3. S/w reset assert (RESET_REG[7] = 1)
1526 /* Stop master assert */
1527 write_register(priv->net_dev, IPW_REG_RESET_REG,
1528 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530 /* wait stop master not more than 50 usec.
1531 * Otherwise return error. */
1532 for (i = 5; i > 0; i--) {
1533 udelay(10);
1535 /* Check master stop bit */
1536 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1539 break;
1542 if (i == 0)
1543 printk(KERN_WARNING DRV_NAME
1544 ": %s: Could now power down adapter.\n",
1545 priv->net_dev->name);
1547 /* assert s/w reset */
1548 write_register(priv->net_dev, IPW_REG_RESET_REG,
1549 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553 return 0;
1556 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 struct host_command cmd = {
1559 .host_command = CARD_DISABLE,
1560 .host_command_sequence = 0,
1561 .host_command_length = 0
1563 int err = 0;
1565 IPW_DEBUG_HC("CARD_DISABLE\n");
1567 if (!(priv->status & STATUS_ENABLED))
1568 return 0;
1570 /* Make sure we clear the associated state */
1571 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573 if (!priv->stop_hang_check) {
1574 priv->stop_hang_check = 1;
1575 cancel_delayed_work(&priv->hang_check);
1578 mutex_lock(&priv->adapter_mutex);
1580 err = ipw2100_hw_send_command(priv, &cmd);
1581 if (err) {
1582 printk(KERN_WARNING DRV_NAME
1583 ": exit - failed to send CARD_DISABLE command\n");
1584 goto fail_up;
1587 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1588 if (err) {
1589 printk(KERN_WARNING DRV_NAME
1590 ": exit - card failed to change to DISABLED\n");
1591 goto fail_up;
1594 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596 fail_up:
1597 mutex_unlock(&priv->adapter_mutex);
1598 return err;
1601 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 struct host_command cmd = {
1604 .host_command = SET_SCAN_OPTIONS,
1605 .host_command_sequence = 0,
1606 .host_command_length = 8
1608 int err;
1610 IPW_DEBUG_INFO("enter\n");
1612 IPW_DEBUG_SCAN("setting scan options\n");
1614 cmd.host_command_parameters[0] = 0;
1616 if (!(priv->config & CFG_ASSOCIATE))
1617 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1618 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1619 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1620 if (priv->config & CFG_PASSIVE_SCAN)
1621 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623 cmd.host_command_parameters[1] = priv->channel_mask;
1625 err = ipw2100_hw_send_command(priv, &cmd);
1627 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1628 cmd.host_command_parameters[0]);
1630 return err;
1633 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 struct host_command cmd = {
1636 .host_command = BROADCAST_SCAN,
1637 .host_command_sequence = 0,
1638 .host_command_length = 4
1640 int err;
1642 IPW_DEBUG_HC("START_SCAN\n");
1644 cmd.host_command_parameters[0] = 0;
1646 /* No scanning if in monitor mode */
1647 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1648 return 1;
1650 if (priv->status & STATUS_SCANNING) {
1651 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1652 return 0;
1655 IPW_DEBUG_INFO("enter\n");
1657 /* Not clearing here; doing so makes iwlist always return nothing...
1659 * We should modify the table logic to use aging tables vs. clearing
1660 * the table on each scan start.
1662 IPW_DEBUG_SCAN("starting scan\n");
1664 priv->status |= STATUS_SCANNING;
1665 err = ipw2100_hw_send_command(priv, &cmd);
1666 if (err)
1667 priv->status &= ~STATUS_SCANNING;
1669 IPW_DEBUG_INFO("exit\n");
1671 return err;
1674 static const struct ieee80211_geo ipw_geos[] = {
1675 { /* Restricted */
1676 "---",
1677 .bg_channels = 14,
1678 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1679 {2427, 4}, {2432, 5}, {2437, 6},
1680 {2442, 7}, {2447, 8}, {2452, 9},
1681 {2457, 10}, {2462, 11}, {2467, 12},
1682 {2472, 13}, {2484, 14}},
1686 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 unsigned long flags;
1689 int rc = 0;
1690 u32 lock;
1691 u32 ord_len = sizeof(lock);
1693 /* Quite if manually disabled. */
1694 if (priv->status & STATUS_RF_KILL_SW) {
1695 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1696 "switch\n", priv->net_dev->name);
1697 return 0;
1700 /* the ipw2100 hardware really doesn't want power management delays
1701 * longer than 175usec
1703 modify_acceptable_latency("ipw2100", 175);
1705 /* If the interrupt is enabled, turn it off... */
1706 spin_lock_irqsave(&priv->low_lock, flags);
1707 ipw2100_disable_interrupts(priv);
1709 /* Reset any fatal_error conditions */
1710 ipw2100_reset_fatalerror(priv);
1711 spin_unlock_irqrestore(&priv->low_lock, flags);
1713 if (priv->status & STATUS_POWERED ||
1714 (priv->status & STATUS_RESET_PENDING)) {
1715 /* Power cycle the card ... */
1716 if (ipw2100_power_cycle_adapter(priv)) {
1717 printk(KERN_WARNING DRV_NAME
1718 ": %s: Could not cycle adapter.\n",
1719 priv->net_dev->name);
1720 rc = 1;
1721 goto exit;
1723 } else
1724 priv->status |= STATUS_POWERED;
1726 /* Load the firmware, start the clocks, etc. */
1727 if (ipw2100_start_adapter(priv)) {
1728 printk(KERN_ERR DRV_NAME
1729 ": %s: Failed to start the firmware.\n",
1730 priv->net_dev->name);
1731 rc = 1;
1732 goto exit;
1735 ipw2100_initialize_ordinals(priv);
1737 /* Determine capabilities of this particular HW configuration */
1738 if (ipw2100_get_hw_features(priv)) {
1739 printk(KERN_ERR DRV_NAME
1740 ": %s: Failed to determine HW features.\n",
1741 priv->net_dev->name);
1742 rc = 1;
1743 goto exit;
1746 /* Initialize the geo */
1747 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1748 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1749 return 0;
1751 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753 lock = LOCK_NONE;
1754 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1755 printk(KERN_ERR DRV_NAME
1756 ": %s: Failed to clear ordinal lock.\n",
1757 priv->net_dev->name);
1758 rc = 1;
1759 goto exit;
1762 priv->status &= ~STATUS_SCANNING;
1764 if (rf_kill_active(priv)) {
1765 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1766 priv->net_dev->name);
1768 if (priv->stop_rf_kill) {
1769 priv->stop_rf_kill = 0;
1770 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1773 deferred = 1;
1776 /* Turn on the interrupt so that commands can be processed */
1777 ipw2100_enable_interrupts(priv);
1779 /* Send all of the commands that must be sent prior to
1780 * HOST_COMPLETE */
1781 if (ipw2100_adapter_setup(priv)) {
1782 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1783 priv->net_dev->name);
1784 rc = 1;
1785 goto exit;
1788 if (!deferred) {
1789 /* Enable the adapter - sends HOST_COMPLETE */
1790 if (ipw2100_enable_adapter(priv)) {
1791 printk(KERN_ERR DRV_NAME ": "
1792 "%s: failed in call to enable adapter.\n",
1793 priv->net_dev->name);
1794 ipw2100_hw_stop_adapter(priv);
1795 rc = 1;
1796 goto exit;
1799 /* Start a scan . . . */
1800 ipw2100_set_scan_options(priv);
1801 ipw2100_start_scan(priv);
1804 exit:
1805 return rc;
1808 /* Called by register_netdev() */
1809 static int ipw2100_net_init(struct net_device *dev)
1811 struct ipw2100_priv *priv = ieee80211_priv(dev);
1812 return ipw2100_up(priv, 1);
1815 static void ipw2100_down(struct ipw2100_priv *priv)
1817 unsigned long flags;
1818 union iwreq_data wrqu = {
1819 .ap_addr = {
1820 .sa_family = ARPHRD_ETHER}
1822 int associated = priv->status & STATUS_ASSOCIATED;
1824 /* Kill the RF switch timer */
1825 if (!priv->stop_rf_kill) {
1826 priv->stop_rf_kill = 1;
1827 cancel_delayed_work(&priv->rf_kill);
1830 /* Kill the firmare hang check timer */
1831 if (!priv->stop_hang_check) {
1832 priv->stop_hang_check = 1;
1833 cancel_delayed_work(&priv->hang_check);
1836 /* Kill any pending resets */
1837 if (priv->status & STATUS_RESET_PENDING)
1838 cancel_delayed_work(&priv->reset_work);
1840 /* Make sure the interrupt is on so that FW commands will be
1841 * processed correctly */
1842 spin_lock_irqsave(&priv->low_lock, flags);
1843 ipw2100_enable_interrupts(priv);
1844 spin_unlock_irqrestore(&priv->low_lock, flags);
1846 if (ipw2100_hw_stop_adapter(priv))
1847 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1848 priv->net_dev->name);
1850 /* Do not disable the interrupt until _after_ we disable
1851 * the adaptor. Otherwise the CARD_DISABLE command will never
1852 * be ack'd by the firmware */
1853 spin_lock_irqsave(&priv->low_lock, flags);
1854 ipw2100_disable_interrupts(priv);
1855 spin_unlock_irqrestore(&priv->low_lock, flags);
1857 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1859 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1860 if (priv->config & CFG_C3_DISABLED) {
1861 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1862 acpi_set_cstate_limit(priv->cstate_limit);
1863 priv->config &= ~CFG_C3_DISABLED;
1865 #endif
1867 /* We have to signal any supplicant if we are disassociating */
1868 if (associated)
1869 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1871 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1872 netif_carrier_off(priv->net_dev);
1873 netif_stop_queue(priv->net_dev);
1876 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1878 unsigned long flags;
1879 union iwreq_data wrqu = {
1880 .ap_addr = {
1881 .sa_family = ARPHRD_ETHER}
1883 int associated = priv->status & STATUS_ASSOCIATED;
1885 spin_lock_irqsave(&priv->low_lock, flags);
1886 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1887 priv->resets++;
1888 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1889 priv->status |= STATUS_SECURITY_UPDATED;
1891 /* Force a power cycle even if interface hasn't been opened
1892 * yet */
1893 cancel_delayed_work(&priv->reset_work);
1894 priv->status |= STATUS_RESET_PENDING;
1895 spin_unlock_irqrestore(&priv->low_lock, flags);
1897 mutex_lock(&priv->action_mutex);
1898 /* stop timed checks so that they don't interfere with reset */
1899 priv->stop_hang_check = 1;
1900 cancel_delayed_work(&priv->hang_check);
1902 /* We have to signal any supplicant if we are disassociating */
1903 if (associated)
1904 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1906 ipw2100_up(priv, 0);
1907 mutex_unlock(&priv->action_mutex);
1911 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1914 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1915 int ret, len, essid_len;
1916 char essid[IW_ESSID_MAX_SIZE];
1917 u32 txrate;
1918 u32 chan;
1919 char *txratename;
1920 u8 bssid[ETH_ALEN];
1923 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1924 * an actual MAC of the AP. Seems like FW sets this
1925 * address too late. Read it later and expose through
1926 * /proc or schedule a later task to query and update
1929 essid_len = IW_ESSID_MAX_SIZE;
1930 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1931 essid, &essid_len);
1932 if (ret) {
1933 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1934 __LINE__);
1935 return;
1938 len = sizeof(u32);
1939 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1940 if (ret) {
1941 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1942 __LINE__);
1943 return;
1946 len = sizeof(u32);
1947 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1948 if (ret) {
1949 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1950 __LINE__);
1951 return;
1953 len = ETH_ALEN;
1954 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1955 if (ret) {
1956 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1957 __LINE__);
1958 return;
1960 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1962 switch (txrate) {
1963 case TX_RATE_1_MBIT:
1964 txratename = "1Mbps";
1965 break;
1966 case TX_RATE_2_MBIT:
1967 txratename = "2Mbsp";
1968 break;
1969 case TX_RATE_5_5_MBIT:
1970 txratename = "5.5Mbps";
1971 break;
1972 case TX_RATE_11_MBIT:
1973 txratename = "11Mbps";
1974 break;
1975 default:
1976 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1977 txratename = "unknown rate";
1978 break;
1981 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1982 MAC_FMT ")\n",
1983 priv->net_dev->name, escape_essid(essid, essid_len),
1984 txratename, chan, MAC_ARG(bssid));
1986 /* now we copy read ssid into dev */
1987 if (!(priv->config & CFG_STATIC_ESSID)) {
1988 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1989 memcpy(priv->essid, essid, priv->essid_len);
1991 priv->channel = chan;
1992 memcpy(priv->bssid, bssid, ETH_ALEN);
1994 priv->status |= STATUS_ASSOCIATING;
1995 priv->connect_start = get_seconds();
1997 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2000 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2001 int length, int batch_mode)
2003 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2004 struct host_command cmd = {
2005 .host_command = SSID,
2006 .host_command_sequence = 0,
2007 .host_command_length = ssid_len
2009 int err;
2011 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2013 if (ssid_len)
2014 memcpy(cmd.host_command_parameters, essid, ssid_len);
2016 if (!batch_mode) {
2017 err = ipw2100_disable_adapter(priv);
2018 if (err)
2019 return err;
2022 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2023 * disable auto association -- so we cheat by setting a bogus SSID */
2024 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2025 int i;
2026 u8 *bogus = (u8 *) cmd.host_command_parameters;
2027 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2028 bogus[i] = 0x18 + i;
2029 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2032 /* NOTE: We always send the SSID command even if the provided ESSID is
2033 * the same as what we currently think is set. */
2035 err = ipw2100_hw_send_command(priv, &cmd);
2036 if (!err) {
2037 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2038 memcpy(priv->essid, essid, ssid_len);
2039 priv->essid_len = ssid_len;
2042 if (!batch_mode) {
2043 if (ipw2100_enable_adapter(priv))
2044 err = -EIO;
2047 return err;
2050 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2052 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2053 "disassociated: '%s' " MAC_FMT " \n",
2054 escape_essid(priv->essid, priv->essid_len),
2055 MAC_ARG(priv->bssid));
2057 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2059 if (priv->status & STATUS_STOPPING) {
2060 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2061 return;
2064 memset(priv->bssid, 0, ETH_ALEN);
2065 memset(priv->ieee->bssid, 0, ETH_ALEN);
2067 netif_carrier_off(priv->net_dev);
2068 netif_stop_queue(priv->net_dev);
2070 if (!(priv->status & STATUS_RUNNING))
2071 return;
2073 if (priv->status & STATUS_SECURITY_UPDATED)
2074 queue_work(priv->workqueue, &priv->security_work);
2076 queue_work(priv->workqueue, &priv->wx_event_work);
2079 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2081 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2082 priv->net_dev->name);
2084 /* RF_KILL is now enabled (else we wouldn't be here) */
2085 priv->status |= STATUS_RF_KILL_HW;
2087 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2088 if (priv->config & CFG_C3_DISABLED) {
2089 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2090 acpi_set_cstate_limit(priv->cstate_limit);
2091 priv->config &= ~CFG_C3_DISABLED;
2093 #endif
2095 /* Make sure the RF Kill check timer is running */
2096 priv->stop_rf_kill = 0;
2097 cancel_delayed_work(&priv->rf_kill);
2098 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2101 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2103 IPW_DEBUG_SCAN("scan complete\n");
2104 /* Age the scan results... */
2105 priv->ieee->scans++;
2106 priv->status &= ~STATUS_SCANNING;
2109 #ifdef CONFIG_IPW2100_DEBUG
2110 #define IPW2100_HANDLER(v, f) { v, f, # v }
2111 struct ipw2100_status_indicator {
2112 int status;
2113 void (*cb) (struct ipw2100_priv * priv, u32 status);
2114 char *name;
2116 #else
2117 #define IPW2100_HANDLER(v, f) { v, f }
2118 struct ipw2100_status_indicator {
2119 int status;
2120 void (*cb) (struct ipw2100_priv * priv, u32 status);
2122 #endif /* CONFIG_IPW2100_DEBUG */
2124 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2126 IPW_DEBUG_SCAN("Scanning...\n");
2127 priv->status |= STATUS_SCANNING;
2130 static const struct ipw2100_status_indicator status_handlers[] = {
2131 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2132 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2133 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2134 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2135 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2136 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2137 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2138 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2139 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2140 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2141 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2142 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2143 IPW2100_HANDLER(-1, NULL)
2146 static void isr_status_change(struct ipw2100_priv *priv, int status)
2148 int i;
2150 if (status == IPW_STATE_SCANNING &&
2151 priv->status & STATUS_ASSOCIATED &&
2152 !(priv->status & STATUS_SCANNING)) {
2153 IPW_DEBUG_INFO("Scan detected while associated, with "
2154 "no scan request. Restarting firmware.\n");
2156 /* Wake up any sleeping jobs */
2157 schedule_reset(priv);
2160 for (i = 0; status_handlers[i].status != -1; i++) {
2161 if (status == status_handlers[i].status) {
2162 IPW_DEBUG_NOTIF("Status change: %s\n",
2163 status_handlers[i].name);
2164 if (status_handlers[i].cb)
2165 status_handlers[i].cb(priv, status);
2166 priv->wstats.status = status;
2167 return;
2171 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2174 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2175 struct ipw2100_cmd_header *cmd)
2177 #ifdef CONFIG_IPW2100_DEBUG
2178 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2179 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2180 command_types[cmd->host_command_reg],
2181 cmd->host_command_reg);
2183 #endif
2184 if (cmd->host_command_reg == HOST_COMPLETE)
2185 priv->status |= STATUS_ENABLED;
2187 if (cmd->host_command_reg == CARD_DISABLE)
2188 priv->status &= ~STATUS_ENABLED;
2190 priv->status &= ~STATUS_CMD_ACTIVE;
2192 wake_up_interruptible(&priv->wait_command_queue);
2195 #ifdef CONFIG_IPW2100_DEBUG
2196 static const char *frame_types[] = {
2197 "COMMAND_STATUS_VAL",
2198 "STATUS_CHANGE_VAL",
2199 "P80211_DATA_VAL",
2200 "P8023_DATA_VAL",
2201 "HOST_NOTIFICATION_VAL"
2203 #endif
2205 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2206 struct ipw2100_rx_packet *packet)
2208 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2209 if (!packet->skb)
2210 return -ENOMEM;
2212 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2213 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2214 sizeof(struct ipw2100_rx),
2215 PCI_DMA_FROMDEVICE);
2216 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2217 * dma_addr */
2219 return 0;
2222 #define SEARCH_ERROR 0xffffffff
2223 #define SEARCH_FAIL 0xfffffffe
2224 #define SEARCH_SUCCESS 0xfffffff0
2225 #define SEARCH_DISCARD 0
2226 #define SEARCH_SNAPSHOT 1
2228 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2229 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2231 int i;
2232 if (!priv->snapshot[0])
2233 return;
2234 for (i = 0; i < 0x30; i++)
2235 kfree(priv->snapshot[i]);
2236 priv->snapshot[0] = NULL;
2239 #ifdef CONFIG_IPW2100_DEBUG_C3
2240 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2242 int i;
2243 if (priv->snapshot[0])
2244 return 1;
2245 for (i = 0; i < 0x30; i++) {
2246 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2247 if (!priv->snapshot[i]) {
2248 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2249 "buffer %d\n", priv->net_dev->name, i);
2250 while (i > 0)
2251 kfree(priv->snapshot[--i]);
2252 priv->snapshot[0] = NULL;
2253 return 0;
2257 return 1;
2260 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2261 size_t len, int mode)
2263 u32 i, j;
2264 u32 tmp;
2265 u8 *s, *d;
2266 u32 ret;
2268 s = in_buf;
2269 if (mode == SEARCH_SNAPSHOT) {
2270 if (!ipw2100_snapshot_alloc(priv))
2271 mode = SEARCH_DISCARD;
2274 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2275 read_nic_dword(priv->net_dev, i, &tmp);
2276 if (mode == SEARCH_SNAPSHOT)
2277 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2278 if (ret == SEARCH_FAIL) {
2279 d = (u8 *) & tmp;
2280 for (j = 0; j < 4; j++) {
2281 if (*s != *d) {
2282 s = in_buf;
2283 continue;
2286 s++;
2287 d++;
2289 if ((s - in_buf) == len)
2290 ret = (i + j) - len + 1;
2292 } else if (mode == SEARCH_DISCARD)
2293 return ret;
2296 return ret;
2298 #endif
2302 * 0) Disconnect the SKB from the firmware (just unmap)
2303 * 1) Pack the ETH header into the SKB
2304 * 2) Pass the SKB to the network stack
2306 * When packet is provided by the firmware, it contains the following:
2308 * . ieee80211_hdr
2309 * . ieee80211_snap_hdr
2311 * The size of the constructed ethernet
2314 #ifdef CONFIG_IPW2100_RX_DEBUG
2315 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2316 #endif
2318 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2320 #ifdef CONFIG_IPW2100_DEBUG_C3
2321 struct ipw2100_status *status = &priv->status_queue.drv[i];
2322 u32 match, reg;
2323 int j;
2324 #endif
2325 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2326 int limit;
2327 #endif
2329 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2330 i * sizeof(struct ipw2100_status));
2332 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2333 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2334 limit = acpi_get_cstate_limit();
2335 if (limit > 2) {
2336 priv->cstate_limit = limit;
2337 acpi_set_cstate_limit(2);
2338 priv->config |= CFG_C3_DISABLED;
2340 #endif
2342 #ifdef CONFIG_IPW2100_DEBUG_C3
2343 /* Halt the fimrware so we can get a good image */
2344 write_register(priv->net_dev, IPW_REG_RESET_REG,
2345 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2346 j = 5;
2347 do {
2348 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2349 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2351 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2352 break;
2353 } while (j--);
2355 match = ipw2100_match_buf(priv, (u8 *) status,
2356 sizeof(struct ipw2100_status),
2357 SEARCH_SNAPSHOT);
2358 if (match < SEARCH_SUCCESS)
2359 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2360 "offset 0x%06X, length %d:\n",
2361 priv->net_dev->name, match,
2362 sizeof(struct ipw2100_status));
2363 else
2364 IPW_DEBUG_INFO("%s: No DMA status match in "
2365 "Firmware.\n", priv->net_dev->name);
2367 printk_buf((u8 *) priv->status_queue.drv,
2368 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2369 #endif
2371 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2372 priv->ieee->stats.rx_errors++;
2373 schedule_reset(priv);
2376 static void isr_rx(struct ipw2100_priv *priv, int i,
2377 struct ieee80211_rx_stats *stats)
2379 struct ipw2100_status *status = &priv->status_queue.drv[i];
2380 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2382 IPW_DEBUG_RX("Handler...\n");
2384 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2385 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2386 " Dropping.\n",
2387 priv->net_dev->name,
2388 status->frame_size, skb_tailroom(packet->skb));
2389 priv->ieee->stats.rx_errors++;
2390 return;
2393 if (unlikely(!netif_running(priv->net_dev))) {
2394 priv->ieee->stats.rx_errors++;
2395 priv->wstats.discard.misc++;
2396 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2397 return;
2400 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2401 !(priv->status & STATUS_ASSOCIATED))) {
2402 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2403 priv->wstats.discard.misc++;
2404 return;
2407 pci_unmap_single(priv->pci_dev,
2408 packet->dma_addr,
2409 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2411 skb_put(packet->skb, status->frame_size);
2413 #ifdef CONFIG_IPW2100_RX_DEBUG
2414 /* Make a copy of the frame so we can dump it to the logs if
2415 * ieee80211_rx fails */
2416 memcpy(packet_data, packet->skb->data,
2417 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2418 #endif
2420 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2421 #ifdef CONFIG_IPW2100_RX_DEBUG
2422 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2423 priv->net_dev->name);
2424 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2425 #endif
2426 priv->ieee->stats.rx_errors++;
2428 /* ieee80211_rx failed, so it didn't free the SKB */
2429 dev_kfree_skb_any(packet->skb);
2430 packet->skb = NULL;
2433 /* We need to allocate a new SKB and attach it to the RDB. */
2434 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2435 printk(KERN_WARNING DRV_NAME ": "
2436 "%s: Unable to allocate SKB onto RBD ring - disabling "
2437 "adapter.\n", priv->net_dev->name);
2438 /* TODO: schedule adapter shutdown */
2439 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2442 /* Update the RDB entry */
2443 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2446 #ifdef CONFIG_IPW2100_MONITOR
2448 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2449 struct ieee80211_rx_stats *stats)
2451 struct ipw2100_status *status = &priv->status_queue.drv[i];
2452 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2454 /* Magic struct that slots into the radiotap header -- no reason
2455 * to build this manually element by element, we can write it much
2456 * more efficiently than we can parse it. ORDER MATTERS HERE */
2457 struct ipw_rt_hdr {
2458 struct ieee80211_radiotap_header rt_hdr;
2459 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2460 } *ipw_rt;
2462 IPW_DEBUG_RX("Handler...\n");
2464 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2465 sizeof(struct ipw_rt_hdr))) {
2466 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2467 " Dropping.\n",
2468 priv->net_dev->name,
2469 status->frame_size,
2470 skb_tailroom(packet->skb));
2471 priv->ieee->stats.rx_errors++;
2472 return;
2475 if (unlikely(!netif_running(priv->net_dev))) {
2476 priv->ieee->stats.rx_errors++;
2477 priv->wstats.discard.misc++;
2478 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2479 return;
2482 if (unlikely(priv->config & CFG_CRC_CHECK &&
2483 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2484 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2485 priv->ieee->stats.rx_errors++;
2486 return;
2489 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2490 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2491 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2492 packet->skb->data, status->frame_size);
2494 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2496 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2497 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2498 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2500 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2502 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2504 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2506 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2507 priv->ieee->stats.rx_errors++;
2509 /* ieee80211_rx failed, so it didn't free the SKB */
2510 dev_kfree_skb_any(packet->skb);
2511 packet->skb = NULL;
2514 /* We need to allocate a new SKB and attach it to the RDB. */
2515 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2516 IPW_DEBUG_WARNING(
2517 "%s: Unable to allocate SKB onto RBD ring - disabling "
2518 "adapter.\n", priv->net_dev->name);
2519 /* TODO: schedule adapter shutdown */
2520 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2523 /* Update the RDB entry */
2524 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2527 #endif
2529 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2531 struct ipw2100_status *status = &priv->status_queue.drv[i];
2532 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2533 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2535 switch (frame_type) {
2536 case COMMAND_STATUS_VAL:
2537 return (status->frame_size != sizeof(u->rx_data.command));
2538 case STATUS_CHANGE_VAL:
2539 return (status->frame_size != sizeof(u->rx_data.status));
2540 case HOST_NOTIFICATION_VAL:
2541 return (status->frame_size < sizeof(u->rx_data.notification));
2542 case P80211_DATA_VAL:
2543 case P8023_DATA_VAL:
2544 #ifdef CONFIG_IPW2100_MONITOR
2545 return 0;
2546 #else
2547 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2548 case IEEE80211_FTYPE_MGMT:
2549 case IEEE80211_FTYPE_CTL:
2550 return 0;
2551 case IEEE80211_FTYPE_DATA:
2552 return (status->frame_size >
2553 IPW_MAX_802_11_PAYLOAD_LENGTH);
2555 #endif
2558 return 1;
2562 * ipw2100 interrupts are disabled at this point, and the ISR
2563 * is the only code that calls this method. So, we do not need
2564 * to play with any locks.
2566 * RX Queue works as follows:
2568 * Read index - firmware places packet in entry identified by the
2569 * Read index and advances Read index. In this manner,
2570 * Read index will always point to the next packet to
2571 * be filled--but not yet valid.
2573 * Write index - driver fills this entry with an unused RBD entry.
2574 * This entry has not filled by the firmware yet.
2576 * In between the W and R indexes are the RBDs that have been received
2577 * but not yet processed.
2579 * The process of handling packets will start at WRITE + 1 and advance
2580 * until it reaches the READ index.
2582 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2585 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2587 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2588 struct ipw2100_status_queue *sq = &priv->status_queue;
2589 struct ipw2100_rx_packet *packet;
2590 u16 frame_type;
2591 u32 r, w, i, s;
2592 struct ipw2100_rx *u;
2593 struct ieee80211_rx_stats stats = {
2594 .mac_time = jiffies,
2597 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2598 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2600 if (r >= rxq->entries) {
2601 IPW_DEBUG_RX("exit - bad read index\n");
2602 return;
2605 i = (rxq->next + 1) % rxq->entries;
2606 s = i;
2607 while (i != r) {
2608 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2609 r, rxq->next, i); */
2611 packet = &priv->rx_buffers[i];
2613 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2614 * the correct values */
2615 pci_dma_sync_single_for_cpu(priv->pci_dev,
2616 sq->nic +
2617 sizeof(struct ipw2100_status) * i,
2618 sizeof(struct ipw2100_status),
2619 PCI_DMA_FROMDEVICE);
2621 /* Sync the DMA for the RX buffer so CPU is sure to get
2622 * the correct values */
2623 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2624 sizeof(struct ipw2100_rx),
2625 PCI_DMA_FROMDEVICE);
2627 if (unlikely(ipw2100_corruption_check(priv, i))) {
2628 ipw2100_corruption_detected(priv, i);
2629 goto increment;
2632 u = packet->rxp;
2633 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2634 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2635 stats.len = sq->drv[i].frame_size;
2637 stats.mask = 0;
2638 if (stats.rssi != 0)
2639 stats.mask |= IEEE80211_STATMASK_RSSI;
2640 stats.freq = IEEE80211_24GHZ_BAND;
2642 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2643 priv->net_dev->name, frame_types[frame_type],
2644 stats.len);
2646 switch (frame_type) {
2647 case COMMAND_STATUS_VAL:
2648 /* Reset Rx watchdog */
2649 isr_rx_complete_command(priv, &u->rx_data.command);
2650 break;
2652 case STATUS_CHANGE_VAL:
2653 isr_status_change(priv, u->rx_data.status);
2654 break;
2656 case P80211_DATA_VAL:
2657 case P8023_DATA_VAL:
2658 #ifdef CONFIG_IPW2100_MONITOR
2659 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2660 isr_rx_monitor(priv, i, &stats);
2661 break;
2663 #endif
2664 if (stats.len < sizeof(u->rx_data.header))
2665 break;
2666 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2667 case IEEE80211_FTYPE_MGMT:
2668 ieee80211_rx_mgt(priv->ieee,
2669 &u->rx_data.header, &stats);
2670 break;
2672 case IEEE80211_FTYPE_CTL:
2673 break;
2675 case IEEE80211_FTYPE_DATA:
2676 isr_rx(priv, i, &stats);
2677 break;
2680 break;
2683 increment:
2684 /* clear status field associated with this RBD */
2685 rxq->drv[i].status.info.field = 0;
2687 i = (i + 1) % rxq->entries;
2690 if (i != s) {
2691 /* backtrack one entry, wrapping to end if at 0 */
2692 rxq->next = (i ? i : rxq->entries) - 1;
2694 write_register(priv->net_dev,
2695 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2700 * __ipw2100_tx_process
2702 * This routine will determine whether the next packet on
2703 * the fw_pend_list has been processed by the firmware yet.
2705 * If not, then it does nothing and returns.
2707 * If so, then it removes the item from the fw_pend_list, frees
2708 * any associated storage, and places the item back on the
2709 * free list of its source (either msg_free_list or tx_free_list)
2711 * TX Queue works as follows:
2713 * Read index - points to the next TBD that the firmware will
2714 * process. The firmware will read the data, and once
2715 * done processing, it will advance the Read index.
2717 * Write index - driver fills this entry with an constructed TBD
2718 * entry. The Write index is not advanced until the
2719 * packet has been configured.
2721 * In between the W and R indexes are the TBDs that have NOT been
2722 * processed. Lagging behind the R index are packets that have
2723 * been processed but have not been freed by the driver.
2725 * In order to free old storage, an internal index will be maintained
2726 * that points to the next packet to be freed. When all used
2727 * packets have been freed, the oldest index will be the same as the
2728 * firmware's read index.
2730 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2732 * Because the TBD structure can not contain arbitrary data, the
2733 * driver must keep an internal queue of cached allocations such that
2734 * it can put that data back into the tx_free_list and msg_free_list
2735 * for use by future command and data packets.
2738 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2740 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2741 struct ipw2100_bd *tbd;
2742 struct list_head *element;
2743 struct ipw2100_tx_packet *packet;
2744 int descriptors_used;
2745 int e, i;
2746 u32 r, w, frag_num = 0;
2748 if (list_empty(&priv->fw_pend_list))
2749 return 0;
2751 element = priv->fw_pend_list.next;
2753 packet = list_entry(element, struct ipw2100_tx_packet, list);
2754 tbd = &txq->drv[packet->index];
2756 /* Determine how many TBD entries must be finished... */
2757 switch (packet->type) {
2758 case COMMAND:
2759 /* COMMAND uses only one slot; don't advance */
2760 descriptors_used = 1;
2761 e = txq->oldest;
2762 break;
2764 case DATA:
2765 /* DATA uses two slots; advance and loop position. */
2766 descriptors_used = tbd->num_fragments;
2767 frag_num = tbd->num_fragments - 1;
2768 e = txq->oldest + frag_num;
2769 e %= txq->entries;
2770 break;
2772 default:
2773 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2774 priv->net_dev->name);
2775 return 0;
2778 /* if the last TBD is not done by NIC yet, then packet is
2779 * not ready to be released.
2782 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2783 &r);
2784 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2785 &w);
2786 if (w != txq->next)
2787 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2788 priv->net_dev->name);
2791 * txq->next is the index of the last packet written txq->oldest is
2792 * the index of the r is the index of the next packet to be read by
2793 * firmware
2797 * Quick graphic to help you visualize the following
2798 * if / else statement
2800 * ===>| s---->|===============
2801 * e>|
2802 * | a | b | c | d | e | f | g | h | i | j | k | l
2803 * r---->|
2806 * w - updated by driver
2807 * r - updated by firmware
2808 * s - start of oldest BD entry (txq->oldest)
2809 * e - end of oldest BD entry
2812 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2813 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2814 return 0;
2817 list_del(element);
2818 DEC_STAT(&priv->fw_pend_stat);
2820 #ifdef CONFIG_IPW2100_DEBUG
2822 int i = txq->oldest;
2823 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2824 &txq->drv[i],
2825 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2826 txq->drv[i].host_addr, txq->drv[i].buf_length);
2828 if (packet->type == DATA) {
2829 i = (i + 1) % txq->entries;
2831 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2832 &txq->drv[i],
2833 (u32) (txq->nic + i *
2834 sizeof(struct ipw2100_bd)),
2835 (u32) txq->drv[i].host_addr,
2836 txq->drv[i].buf_length);
2839 #endif
2841 switch (packet->type) {
2842 case DATA:
2843 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2844 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2845 "Expecting DATA TBD but pulled "
2846 "something else: ids %d=%d.\n",
2847 priv->net_dev->name, txq->oldest, packet->index);
2849 /* DATA packet; we have to unmap and free the SKB */
2850 for (i = 0; i < frag_num; i++) {
2851 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2853 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2854 (packet->index + 1 + i) % txq->entries,
2855 tbd->host_addr, tbd->buf_length);
2857 pci_unmap_single(priv->pci_dev,
2858 tbd->host_addr,
2859 tbd->buf_length, PCI_DMA_TODEVICE);
2862 ieee80211_txb_free(packet->info.d_struct.txb);
2863 packet->info.d_struct.txb = NULL;
2865 list_add_tail(element, &priv->tx_free_list);
2866 INC_STAT(&priv->tx_free_stat);
2868 /* We have a free slot in the Tx queue, so wake up the
2869 * transmit layer if it is stopped. */
2870 if (priv->status & STATUS_ASSOCIATED)
2871 netif_wake_queue(priv->net_dev);
2873 /* A packet was processed by the hardware, so update the
2874 * watchdog */
2875 priv->net_dev->trans_start = jiffies;
2877 break;
2879 case COMMAND:
2880 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2881 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2882 "Expecting COMMAND TBD but pulled "
2883 "something else: ids %d=%d.\n",
2884 priv->net_dev->name, txq->oldest, packet->index);
2886 #ifdef CONFIG_IPW2100_DEBUG
2887 if (packet->info.c_struct.cmd->host_command_reg <
2888 sizeof(command_types) / sizeof(*command_types))
2889 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2890 command_types[packet->info.c_struct.cmd->
2891 host_command_reg],
2892 packet->info.c_struct.cmd->
2893 host_command_reg,
2894 packet->info.c_struct.cmd->cmd_status_reg);
2895 #endif
2897 list_add_tail(element, &priv->msg_free_list);
2898 INC_STAT(&priv->msg_free_stat);
2899 break;
2902 /* advance oldest used TBD pointer to start of next entry */
2903 txq->oldest = (e + 1) % txq->entries;
2904 /* increase available TBDs number */
2905 txq->available += descriptors_used;
2906 SET_STAT(&priv->txq_stat, txq->available);
2908 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2909 jiffies - packet->jiffy_start);
2911 return (!list_empty(&priv->fw_pend_list));
2914 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2916 int i = 0;
2918 while (__ipw2100_tx_process(priv) && i < 200)
2919 i++;
2921 if (i == 200) {
2922 printk(KERN_WARNING DRV_NAME ": "
2923 "%s: Driver is running slow (%d iters).\n",
2924 priv->net_dev->name, i);
2928 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2930 struct list_head *element;
2931 struct ipw2100_tx_packet *packet;
2932 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2933 struct ipw2100_bd *tbd;
2934 int next = txq->next;
2936 while (!list_empty(&priv->msg_pend_list)) {
2937 /* if there isn't enough space in TBD queue, then
2938 * don't stuff a new one in.
2939 * NOTE: 3 are needed as a command will take one,
2940 * and there is a minimum of 2 that must be
2941 * maintained between the r and w indexes
2943 if (txq->available <= 3) {
2944 IPW_DEBUG_TX("no room in tx_queue\n");
2945 break;
2948 element = priv->msg_pend_list.next;
2949 list_del(element);
2950 DEC_STAT(&priv->msg_pend_stat);
2952 packet = list_entry(element, struct ipw2100_tx_packet, list);
2954 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2955 &txq->drv[txq->next],
2956 (void *)(txq->nic + txq->next *
2957 sizeof(struct ipw2100_bd)));
2959 packet->index = txq->next;
2961 tbd = &txq->drv[txq->next];
2963 /* initialize TBD */
2964 tbd->host_addr = packet->info.c_struct.cmd_phys;
2965 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2966 /* not marking number of fragments causes problems
2967 * with f/w debug version */
2968 tbd->num_fragments = 1;
2969 tbd->status.info.field =
2970 IPW_BD_STATUS_TX_FRAME_COMMAND |
2971 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2973 /* update TBD queue counters */
2974 txq->next++;
2975 txq->next %= txq->entries;
2976 txq->available--;
2977 DEC_STAT(&priv->txq_stat);
2979 list_add_tail(element, &priv->fw_pend_list);
2980 INC_STAT(&priv->fw_pend_stat);
2983 if (txq->next != next) {
2984 /* kick off the DMA by notifying firmware the
2985 * write index has moved; make sure TBD stores are sync'd */
2986 wmb();
2987 write_register(priv->net_dev,
2988 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2989 txq->next);
2994 * ipw2100_tx_send_data
2997 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2999 struct list_head *element;
3000 struct ipw2100_tx_packet *packet;
3001 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3002 struct ipw2100_bd *tbd;
3003 int next = txq->next;
3004 int i = 0;
3005 struct ipw2100_data_header *ipw_hdr;
3006 struct ieee80211_hdr_3addr *hdr;
3008 while (!list_empty(&priv->tx_pend_list)) {
3009 /* if there isn't enough space in TBD queue, then
3010 * don't stuff a new one in.
3011 * NOTE: 4 are needed as a data will take two,
3012 * and there is a minimum of 2 that must be
3013 * maintained between the r and w indexes
3015 element = priv->tx_pend_list.next;
3016 packet = list_entry(element, struct ipw2100_tx_packet, list);
3018 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3019 IPW_MAX_BDS)) {
3020 /* TODO: Support merging buffers if more than
3021 * IPW_MAX_BDS are used */
3022 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3023 "Increase fragmentation level.\n",
3024 priv->net_dev->name);
3027 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3028 IPW_DEBUG_TX("no room in tx_queue\n");
3029 break;
3032 list_del(element);
3033 DEC_STAT(&priv->tx_pend_stat);
3035 tbd = &txq->drv[txq->next];
3037 packet->index = txq->next;
3039 ipw_hdr = packet->info.d_struct.data;
3040 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3041 fragments[0]->data;
3043 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3044 /* To DS: Addr1 = BSSID, Addr2 = SA,
3045 Addr3 = DA */
3046 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3047 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3048 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3049 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3050 Addr3 = BSSID */
3051 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3052 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3055 ipw_hdr->host_command_reg = SEND;
3056 ipw_hdr->host_command_reg1 = 0;
3058 /* For now we only support host based encryption */
3059 ipw_hdr->needs_encryption = 0;
3060 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3061 if (packet->info.d_struct.txb->nr_frags > 1)
3062 ipw_hdr->fragment_size =
3063 packet->info.d_struct.txb->frag_size -
3064 IEEE80211_3ADDR_LEN;
3065 else
3066 ipw_hdr->fragment_size = 0;
3068 tbd->host_addr = packet->info.d_struct.data_phys;
3069 tbd->buf_length = sizeof(struct ipw2100_data_header);
3070 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3071 tbd->status.info.field =
3072 IPW_BD_STATUS_TX_FRAME_802_3 |
3073 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3074 txq->next++;
3075 txq->next %= txq->entries;
3077 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3078 packet->index, tbd->host_addr, tbd->buf_length);
3079 #ifdef CONFIG_IPW2100_DEBUG
3080 if (packet->info.d_struct.txb->nr_frags > 1)
3081 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3082 packet->info.d_struct.txb->nr_frags);
3083 #endif
3085 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3086 tbd = &txq->drv[txq->next];
3087 if (i == packet->info.d_struct.txb->nr_frags - 1)
3088 tbd->status.info.field =
3089 IPW_BD_STATUS_TX_FRAME_802_3 |
3090 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3091 else
3092 tbd->status.info.field =
3093 IPW_BD_STATUS_TX_FRAME_802_3 |
3094 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3096 tbd->buf_length = packet->info.d_struct.txb->
3097 fragments[i]->len - IEEE80211_3ADDR_LEN;
3099 tbd->host_addr = pci_map_single(priv->pci_dev,
3100 packet->info.d_struct.
3101 txb->fragments[i]->
3102 data +
3103 IEEE80211_3ADDR_LEN,
3104 tbd->buf_length,
3105 PCI_DMA_TODEVICE);
3107 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3108 txq->next, tbd->host_addr,
3109 tbd->buf_length);
3111 pci_dma_sync_single_for_device(priv->pci_dev,
3112 tbd->host_addr,
3113 tbd->buf_length,
3114 PCI_DMA_TODEVICE);
3116 txq->next++;
3117 txq->next %= txq->entries;
3120 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3121 SET_STAT(&priv->txq_stat, txq->available);
3123 list_add_tail(element, &priv->fw_pend_list);
3124 INC_STAT(&priv->fw_pend_stat);
3127 if (txq->next != next) {
3128 /* kick off the DMA by notifying firmware the
3129 * write index has moved; make sure TBD stores are sync'd */
3130 write_register(priv->net_dev,
3131 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3132 txq->next);
3134 return;
3137 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3139 struct net_device *dev = priv->net_dev;
3140 unsigned long flags;
3141 u32 inta, tmp;
3143 spin_lock_irqsave(&priv->low_lock, flags);
3144 ipw2100_disable_interrupts(priv);
3146 read_register(dev, IPW_REG_INTA, &inta);
3148 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3149 (unsigned long)inta & IPW_INTERRUPT_MASK);
3151 priv->in_isr++;
3152 priv->interrupts++;
3154 /* We do not loop and keep polling for more interrupts as this
3155 * is frowned upon and doesn't play nicely with other potentially
3156 * chained IRQs */
3157 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3158 (unsigned long)inta & IPW_INTERRUPT_MASK);
3160 if (inta & IPW2100_INTA_FATAL_ERROR) {
3161 printk(KERN_WARNING DRV_NAME
3162 ": Fatal interrupt. Scheduling firmware restart.\n");
3163 priv->inta_other++;
3164 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3166 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3167 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3168 priv->net_dev->name, priv->fatal_error);
3170 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3171 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3172 priv->net_dev->name, tmp);
3174 /* Wake up any sleeping jobs */
3175 schedule_reset(priv);
3178 if (inta & IPW2100_INTA_PARITY_ERROR) {
3179 printk(KERN_ERR DRV_NAME
3180 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3181 priv->inta_other++;
3182 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3185 if (inta & IPW2100_INTA_RX_TRANSFER) {
3186 IPW_DEBUG_ISR("RX interrupt\n");
3188 priv->rx_interrupts++;
3190 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3192 __ipw2100_rx_process(priv);
3193 __ipw2100_tx_complete(priv);
3196 if (inta & IPW2100_INTA_TX_TRANSFER) {
3197 IPW_DEBUG_ISR("TX interrupt\n");
3199 priv->tx_interrupts++;
3201 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3203 __ipw2100_tx_complete(priv);
3204 ipw2100_tx_send_commands(priv);
3205 ipw2100_tx_send_data(priv);
3208 if (inta & IPW2100_INTA_TX_COMPLETE) {
3209 IPW_DEBUG_ISR("TX complete\n");
3210 priv->inta_other++;
3211 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3213 __ipw2100_tx_complete(priv);
3216 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3217 /* ipw2100_handle_event(dev); */
3218 priv->inta_other++;
3219 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3222 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3223 IPW_DEBUG_ISR("FW init done interrupt\n");
3224 priv->inta_other++;
3226 read_register(dev, IPW_REG_INTA, &tmp);
3227 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3228 IPW2100_INTA_PARITY_ERROR)) {
3229 write_register(dev, IPW_REG_INTA,
3230 IPW2100_INTA_FATAL_ERROR |
3231 IPW2100_INTA_PARITY_ERROR);
3234 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3237 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3238 IPW_DEBUG_ISR("Status change interrupt\n");
3239 priv->inta_other++;
3240 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3243 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3244 IPW_DEBUG_ISR("slave host mode interrupt\n");
3245 priv->inta_other++;
3246 write_register(dev, IPW_REG_INTA,
3247 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3250 priv->in_isr--;
3251 ipw2100_enable_interrupts(priv);
3253 spin_unlock_irqrestore(&priv->low_lock, flags);
3255 IPW_DEBUG_ISR("exit\n");
3258 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3260 struct ipw2100_priv *priv = data;
3261 u32 inta, inta_mask;
3263 if (!data)
3264 return IRQ_NONE;
3266 spin_lock(&priv->low_lock);
3268 /* We check to see if we should be ignoring interrupts before
3269 * we touch the hardware. During ucode load if we try and handle
3270 * an interrupt we can cause keyboard problems as well as cause
3271 * the ucode to fail to initialize */
3272 if (!(priv->status & STATUS_INT_ENABLED)) {
3273 /* Shared IRQ */
3274 goto none;
3277 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3278 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3280 if (inta == 0xFFFFFFFF) {
3281 /* Hardware disappeared */
3282 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3283 goto none;
3286 inta &= IPW_INTERRUPT_MASK;
3288 if (!(inta & inta_mask)) {
3289 /* Shared interrupt */
3290 goto none;
3293 /* We disable the hardware interrupt here just to prevent unneeded
3294 * calls to be made. We disable this again within the actual
3295 * work tasklet, so if another part of the code re-enables the
3296 * interrupt, that is fine */
3297 ipw2100_disable_interrupts(priv);
3299 tasklet_schedule(&priv->irq_tasklet);
3300 spin_unlock(&priv->low_lock);
3302 return IRQ_HANDLED;
3303 none:
3304 spin_unlock(&priv->low_lock);
3305 return IRQ_NONE;
3308 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3309 int pri)
3311 struct ipw2100_priv *priv = ieee80211_priv(dev);
3312 struct list_head *element;
3313 struct ipw2100_tx_packet *packet;
3314 unsigned long flags;
3316 spin_lock_irqsave(&priv->low_lock, flags);
3318 if (!(priv->status & STATUS_ASSOCIATED)) {
3319 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3320 priv->ieee->stats.tx_carrier_errors++;
3321 netif_stop_queue(dev);
3322 goto fail_unlock;
3325 if (list_empty(&priv->tx_free_list))
3326 goto fail_unlock;
3328 element = priv->tx_free_list.next;
3329 packet = list_entry(element, struct ipw2100_tx_packet, list);
3331 packet->info.d_struct.txb = txb;
3333 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3334 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3336 packet->jiffy_start = jiffies;
3338 list_del(element);
3339 DEC_STAT(&priv->tx_free_stat);
3341 list_add_tail(element, &priv->tx_pend_list);
3342 INC_STAT(&priv->tx_pend_stat);
3344 ipw2100_tx_send_data(priv);
3346 spin_unlock_irqrestore(&priv->low_lock, flags);
3347 return 0;
3349 fail_unlock:
3350 netif_stop_queue(dev);
3351 spin_unlock_irqrestore(&priv->low_lock, flags);
3352 return 1;
3355 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3357 int i, j, err = -EINVAL;
3358 void *v;
3359 dma_addr_t p;
3361 priv->msg_buffers =
3362 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3363 sizeof(struct
3364 ipw2100_tx_packet),
3365 GFP_KERNEL);
3366 if (!priv->msg_buffers) {
3367 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3368 "buffers.\n", priv->net_dev->name);
3369 return -ENOMEM;
3372 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3373 v = pci_alloc_consistent(priv->pci_dev,
3374 sizeof(struct ipw2100_cmd_header), &p);
3375 if (!v) {
3376 printk(KERN_ERR DRV_NAME ": "
3377 "%s: PCI alloc failed for msg "
3378 "buffers.\n", priv->net_dev->name);
3379 err = -ENOMEM;
3380 break;
3383 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3385 priv->msg_buffers[i].type = COMMAND;
3386 priv->msg_buffers[i].info.c_struct.cmd =
3387 (struct ipw2100_cmd_header *)v;
3388 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3391 if (i == IPW_COMMAND_POOL_SIZE)
3392 return 0;
3394 for (j = 0; j < i; j++) {
3395 pci_free_consistent(priv->pci_dev,
3396 sizeof(struct ipw2100_cmd_header),
3397 priv->msg_buffers[j].info.c_struct.cmd,
3398 priv->msg_buffers[j].info.c_struct.
3399 cmd_phys);
3402 kfree(priv->msg_buffers);
3403 priv->msg_buffers = NULL;
3405 return err;
3408 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3410 int i;
3412 INIT_LIST_HEAD(&priv->msg_free_list);
3413 INIT_LIST_HEAD(&priv->msg_pend_list);
3415 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3416 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3417 SET_STAT(&priv->msg_free_stat, i);
3419 return 0;
3422 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3424 int i;
3426 if (!priv->msg_buffers)
3427 return;
3429 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3430 pci_free_consistent(priv->pci_dev,
3431 sizeof(struct ipw2100_cmd_header),
3432 priv->msg_buffers[i].info.c_struct.cmd,
3433 priv->msg_buffers[i].info.c_struct.
3434 cmd_phys);
3437 kfree(priv->msg_buffers);
3438 priv->msg_buffers = NULL;
3441 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3442 char *buf)
3444 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3445 char *out = buf;
3446 int i, j;
3447 u32 val;
3449 for (i = 0; i < 16; i++) {
3450 out += sprintf(out, "[%08X] ", i * 16);
3451 for (j = 0; j < 16; j += 4) {
3452 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3453 out += sprintf(out, "%08X ", val);
3455 out += sprintf(out, "\n");
3458 return out - buf;
3461 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3463 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3464 char *buf)
3466 struct ipw2100_priv *p = d->driver_data;
3467 return sprintf(buf, "0x%08x\n", (int)p->config);
3470 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3472 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3473 char *buf)
3475 struct ipw2100_priv *p = d->driver_data;
3476 return sprintf(buf, "0x%08x\n", (int)p->status);
3479 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3481 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3482 char *buf)
3484 struct ipw2100_priv *p = d->driver_data;
3485 return sprintf(buf, "0x%08x\n", (int)p->capability);
3488 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3490 #define IPW2100_REG(x) { IPW_ ##x, #x }
3491 static const struct {
3492 u32 addr;
3493 const char *name;
3494 } hw_data[] = {
3495 IPW2100_REG(REG_GP_CNTRL),
3496 IPW2100_REG(REG_GPIO),
3497 IPW2100_REG(REG_INTA),
3498 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3499 #define IPW2100_NIC(x, s) { x, #x, s }
3500 static const struct {
3501 u32 addr;
3502 const char *name;
3503 size_t size;
3504 } nic_data[] = {
3505 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3506 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3507 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3508 static const struct {
3509 u8 index;
3510 const char *name;
3511 const char *desc;
3512 } ord_data[] = {
3513 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3514 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3515 "successful Host Tx's (MSDU)"),
3516 IPW2100_ORD(STAT_TX_DIR_DATA,
3517 "successful Directed Tx's (MSDU)"),
3518 IPW2100_ORD(STAT_TX_DIR_DATA1,
3519 "successful Directed Tx's (MSDU) @ 1MB"),
3520 IPW2100_ORD(STAT_TX_DIR_DATA2,
3521 "successful Directed Tx's (MSDU) @ 2MB"),
3522 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3523 "successful Directed Tx's (MSDU) @ 5_5MB"),
3524 IPW2100_ORD(STAT_TX_DIR_DATA11,
3525 "successful Directed Tx's (MSDU) @ 11MB"),
3526 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3527 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3528 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3529 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3530 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3531 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3532 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3533 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3534 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3535 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3536 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3537 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3538 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3539 IPW2100_ORD(STAT_TX_ASSN_RESP,
3540 "successful Association response Tx's"),
3541 IPW2100_ORD(STAT_TX_REASSN,
3542 "successful Reassociation Tx's"),
3543 IPW2100_ORD(STAT_TX_REASSN_RESP,
3544 "successful Reassociation response Tx's"),
3545 IPW2100_ORD(STAT_TX_PROBE,
3546 "probes successfully transmitted"),
3547 IPW2100_ORD(STAT_TX_PROBE_RESP,
3548 "probe responses successfully transmitted"),
3549 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3550 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3551 IPW2100_ORD(STAT_TX_DISASSN,
3552 "successful Disassociation TX"),
3553 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3554 IPW2100_ORD(STAT_TX_DEAUTH,
3555 "successful Deauthentication TX"),
3556 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3557 "Total successful Tx data bytes"),
3558 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3559 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3560 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3561 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3562 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3563 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3564 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3565 "times max tries in a hop failed"),
3566 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3567 "times disassociation failed"),
3568 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3569 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3570 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3571 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3572 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3573 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3574 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3575 "directed packets at 5.5MB"),
3576 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3577 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3578 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3579 "nondirected packets at 1MB"),
3580 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3581 "nondirected packets at 2MB"),
3582 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3583 "nondirected packets at 5.5MB"),
3584 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3585 "nondirected packets at 11MB"),
3586 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3587 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3588 "Rx CTS"),
3589 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3590 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3591 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3592 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3593 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3594 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3595 IPW2100_ORD(STAT_RX_REASSN_RESP,
3596 "Reassociation response Rx's"),
3597 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3598 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3599 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3600 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3601 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3602 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3603 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3604 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3605 "Total rx data bytes received"),
3606 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3607 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3608 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3609 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3610 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3611 IPW2100_ORD(STAT_RX_DUPLICATE1,
3612 "duplicate rx packets at 1MB"),
3613 IPW2100_ORD(STAT_RX_DUPLICATE2,
3614 "duplicate rx packets at 2MB"),
3615 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3616 "duplicate rx packets at 5.5MB"),
3617 IPW2100_ORD(STAT_RX_DUPLICATE11,
3618 "duplicate rx packets at 11MB"),
3619 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3620 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3621 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3622 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3623 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3624 "rx frames with invalid protocol"),
3625 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3626 IPW2100_ORD(STAT_RX_NO_BUFFER,
3627 "rx frames rejected due to no buffer"),
3628 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3629 "rx frames dropped due to missing fragment"),
3630 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3631 "rx frames dropped due to non-sequential fragment"),
3632 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3633 "rx frames dropped due to unmatched 1st frame"),
3634 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3635 "rx frames dropped due to uncompleted frame"),
3636 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3637 "ICV errors during decryption"),
3638 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3639 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3640 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3641 "poll response timeouts"),
3642 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3643 "timeouts waiting for last {broad,multi}cast pkt"),
3644 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3645 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3646 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3647 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3648 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3649 "current calculation of % missed beacons"),
3650 IPW2100_ORD(STAT_PERCENT_RETRIES,
3651 "current calculation of % missed tx retries"),
3652 IPW2100_ORD(ASSOCIATED_AP_PTR,
3653 "0 if not associated, else pointer to AP table entry"),
3654 IPW2100_ORD(AVAILABLE_AP_CNT,
3655 "AP's decsribed in the AP table"),
3656 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3657 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3658 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3659 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3660 "failures due to response fail"),
3661 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3662 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3663 IPW2100_ORD(STAT_ROAM_INHIBIT,
3664 "times roaming was inhibited due to activity"),
3665 IPW2100_ORD(RSSI_AT_ASSN,
3666 "RSSI of associated AP at time of association"),
3667 IPW2100_ORD(STAT_ASSN_CAUSE1,
3668 "reassociation: no probe response or TX on hop"),
3669 IPW2100_ORD(STAT_ASSN_CAUSE2,
3670 "reassociation: poor tx/rx quality"),
3671 IPW2100_ORD(STAT_ASSN_CAUSE3,
3672 "reassociation: tx/rx quality (excessive AP load"),
3673 IPW2100_ORD(STAT_ASSN_CAUSE4,
3674 "reassociation: AP RSSI level"),
3675 IPW2100_ORD(STAT_ASSN_CAUSE5,
3676 "reassociations due to load leveling"),
3677 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3678 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3679 "times authentication response failed"),
3680 IPW2100_ORD(STATION_TABLE_CNT,
3681 "entries in association table"),
3682 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3683 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3684 IPW2100_ORD(COUNTRY_CODE,
3685 "IEEE country code as recv'd from beacon"),
3686 IPW2100_ORD(COUNTRY_CHANNELS,
3687 "channels suported by country"),
3688 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3689 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3690 IPW2100_ORD(ANTENNA_DIVERSITY,
3691 "TRUE if antenna diversity is disabled"),
3692 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3693 IPW2100_ORD(OUR_FREQ,
3694 "current radio freq lower digits - channel ID"),
3695 IPW2100_ORD(RTC_TIME, "current RTC time"),
3696 IPW2100_ORD(PORT_TYPE, "operating mode"),
3697 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3698 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3699 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3700 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3701 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3702 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3703 IPW2100_ORD(CAPABILITIES,
3704 "Management frame capability field"),
3705 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3706 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3707 IPW2100_ORD(RTS_THRESHOLD,
3708 "Min packet length for RTS handshaking"),
3709 IPW2100_ORD(INT_MODE, "International mode"),
3710 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3711 "protocol frag threshold"),
3712 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3713 "EEPROM offset in SRAM"),
3714 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3715 "EEPROM size in SRAM"),
3716 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3717 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3718 "EEPROM IBSS 11b channel set"),
3719 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3720 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3721 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3722 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3723 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3725 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3726 char *buf)
3728 int i;
3729 struct ipw2100_priv *priv = dev_get_drvdata(d);
3730 struct net_device *dev = priv->net_dev;
3731 char *out = buf;
3732 u32 val = 0;
3734 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3736 for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3737 read_register(dev, hw_data[i].addr, &val);
3738 out += sprintf(out, "%30s [%08X] : %08X\n",
3739 hw_data[i].name, hw_data[i].addr, val);
3742 return out - buf;
3745 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3747 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3748 char *buf)
3750 struct ipw2100_priv *priv = dev_get_drvdata(d);
3751 struct net_device *dev = priv->net_dev;
3752 char *out = buf;
3753 int i;
3755 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3757 for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3758 u8 tmp8;
3759 u16 tmp16;
3760 u32 tmp32;
3762 switch (nic_data[i].size) {
3763 case 1:
3764 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3765 out += sprintf(out, "%30s [%08X] : %02X\n",
3766 nic_data[i].name, nic_data[i].addr,
3767 tmp8);
3768 break;
3769 case 2:
3770 read_nic_word(dev, nic_data[i].addr, &tmp16);
3771 out += sprintf(out, "%30s [%08X] : %04X\n",
3772 nic_data[i].name, nic_data[i].addr,
3773 tmp16);
3774 break;
3775 case 4:
3776 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3777 out += sprintf(out, "%30s [%08X] : %08X\n",
3778 nic_data[i].name, nic_data[i].addr,
3779 tmp32);
3780 break;
3783 return out - buf;
3786 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3788 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3789 char *buf)
3791 struct ipw2100_priv *priv = dev_get_drvdata(d);
3792 struct net_device *dev = priv->net_dev;
3793 static unsigned long loop = 0;
3794 int len = 0;
3795 u32 buffer[4];
3796 int i;
3797 char line[81];
3799 if (loop >= 0x30000)
3800 loop = 0;
3802 /* sysfs provides us PAGE_SIZE buffer */
3803 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3805 if (priv->snapshot[0])
3806 for (i = 0; i < 4; i++)
3807 buffer[i] =
3808 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3809 else
3810 for (i = 0; i < 4; i++)
3811 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3813 if (priv->dump_raw)
3814 len += sprintf(buf + len,
3815 "%c%c%c%c"
3816 "%c%c%c%c"
3817 "%c%c%c%c"
3818 "%c%c%c%c",
3819 ((u8 *) buffer)[0x0],
3820 ((u8 *) buffer)[0x1],
3821 ((u8 *) buffer)[0x2],
3822 ((u8 *) buffer)[0x3],
3823 ((u8 *) buffer)[0x4],
3824 ((u8 *) buffer)[0x5],
3825 ((u8 *) buffer)[0x6],
3826 ((u8 *) buffer)[0x7],
3827 ((u8 *) buffer)[0x8],
3828 ((u8 *) buffer)[0x9],
3829 ((u8 *) buffer)[0xa],
3830 ((u8 *) buffer)[0xb],
3831 ((u8 *) buffer)[0xc],
3832 ((u8 *) buffer)[0xd],
3833 ((u8 *) buffer)[0xe],
3834 ((u8 *) buffer)[0xf]);
3835 else
3836 len += sprintf(buf + len, "%s\n",
3837 snprint_line(line, sizeof(line),
3838 (u8 *) buffer, 16, loop));
3839 loop += 16;
3842 return len;
3845 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3846 const char *buf, size_t count)
3848 struct ipw2100_priv *priv = dev_get_drvdata(d);
3849 struct net_device *dev = priv->net_dev;
3850 const char *p = buf;
3852 (void)dev; /* kill unused-var warning for debug-only code */
3854 if (count < 1)
3855 return count;
3857 if (p[0] == '1' ||
3858 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3859 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3860 dev->name);
3861 priv->dump_raw = 1;
3863 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3864 tolower(p[1]) == 'f')) {
3865 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3866 dev->name);
3867 priv->dump_raw = 0;
3869 } else if (tolower(p[0]) == 'r') {
3870 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3871 ipw2100_snapshot_free(priv);
3873 } else
3874 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3875 "reset = clear memory snapshot\n", dev->name);
3877 return count;
3880 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3882 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3883 char *buf)
3885 struct ipw2100_priv *priv = dev_get_drvdata(d);
3886 u32 val = 0;
3887 int len = 0;
3888 u32 val_len;
3889 static int loop = 0;
3891 if (priv->status & STATUS_RF_KILL_MASK)
3892 return 0;
3894 if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3895 loop = 0;
3897 /* sysfs provides us PAGE_SIZE buffer */
3898 while (len < PAGE_SIZE - 128 &&
3899 loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3901 val_len = sizeof(u32);
3903 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3904 &val_len))
3905 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3906 ord_data[loop].index,
3907 ord_data[loop].desc);
3908 else
3909 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3910 ord_data[loop].index, val,
3911 ord_data[loop].desc);
3912 loop++;
3915 return len;
3918 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3920 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3921 char *buf)
3923 struct ipw2100_priv *priv = dev_get_drvdata(d);
3924 char *out = buf;
3926 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3927 priv->interrupts, priv->tx_interrupts,
3928 priv->rx_interrupts, priv->inta_other);
3929 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3930 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3931 #ifdef CONFIG_IPW2100_DEBUG
3932 out += sprintf(out, "packet mismatch image: %s\n",
3933 priv->snapshot[0] ? "YES" : "NO");
3934 #endif
3936 return out - buf;
3939 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3941 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3943 int err;
3945 if (mode == priv->ieee->iw_mode)
3946 return 0;
3948 err = ipw2100_disable_adapter(priv);
3949 if (err) {
3950 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3951 priv->net_dev->name, err);
3952 return err;
3955 switch (mode) {
3956 case IW_MODE_INFRA:
3957 priv->net_dev->type = ARPHRD_ETHER;
3958 break;
3959 case IW_MODE_ADHOC:
3960 priv->net_dev->type = ARPHRD_ETHER;
3961 break;
3962 #ifdef CONFIG_IPW2100_MONITOR
3963 case IW_MODE_MONITOR:
3964 priv->last_mode = priv->ieee->iw_mode;
3965 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3966 break;
3967 #endif /* CONFIG_IPW2100_MONITOR */
3970 priv->ieee->iw_mode = mode;
3972 #ifdef CONFIG_PM
3973 /* Indicate ipw2100_download_firmware download firmware
3974 * from disk instead of memory. */
3975 ipw2100_firmware.version = 0;
3976 #endif
3978 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3979 priv->reset_backoff = 0;
3980 schedule_reset(priv);
3982 return 0;
3985 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3986 char *buf)
3988 struct ipw2100_priv *priv = dev_get_drvdata(d);
3989 int len = 0;
3991 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3993 if (priv->status & STATUS_ASSOCIATED)
3994 len += sprintf(buf + len, "connected: %lu\n",
3995 get_seconds() - priv->connect_start);
3996 else
3997 len += sprintf(buf + len, "not connected\n");
3999 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4000 DUMP_VAR(status, "08lx");
4001 DUMP_VAR(config, "08lx");
4002 DUMP_VAR(capability, "08lx");
4004 len +=
4005 sprintf(buf + len, "last_rtc: %lu\n",
4006 (unsigned long)priv->last_rtc);
4008 DUMP_VAR(fatal_error, "d");
4009 DUMP_VAR(stop_hang_check, "d");
4010 DUMP_VAR(stop_rf_kill, "d");
4011 DUMP_VAR(messages_sent, "d");
4013 DUMP_VAR(tx_pend_stat.value, "d");
4014 DUMP_VAR(tx_pend_stat.hi, "d");
4016 DUMP_VAR(tx_free_stat.value, "d");
4017 DUMP_VAR(tx_free_stat.lo, "d");
4019 DUMP_VAR(msg_free_stat.value, "d");
4020 DUMP_VAR(msg_free_stat.lo, "d");
4022 DUMP_VAR(msg_pend_stat.value, "d");
4023 DUMP_VAR(msg_pend_stat.hi, "d");
4025 DUMP_VAR(fw_pend_stat.value, "d");
4026 DUMP_VAR(fw_pend_stat.hi, "d");
4028 DUMP_VAR(txq_stat.value, "d");
4029 DUMP_VAR(txq_stat.lo, "d");
4031 DUMP_VAR(ieee->scans, "d");
4032 DUMP_VAR(reset_backoff, "d");
4034 return len;
4037 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4039 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4040 char *buf)
4042 struct ipw2100_priv *priv = dev_get_drvdata(d);
4043 char essid[IW_ESSID_MAX_SIZE + 1];
4044 u8 bssid[ETH_ALEN];
4045 u32 chan = 0;
4046 char *out = buf;
4047 int length;
4048 int ret;
4050 if (priv->status & STATUS_RF_KILL_MASK)
4051 return 0;
4053 memset(essid, 0, sizeof(essid));
4054 memset(bssid, 0, sizeof(bssid));
4056 length = IW_ESSID_MAX_SIZE;
4057 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4058 if (ret)
4059 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4060 __LINE__);
4062 length = sizeof(bssid);
4063 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4064 bssid, &length);
4065 if (ret)
4066 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4067 __LINE__);
4069 length = sizeof(u32);
4070 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4071 if (ret)
4072 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4073 __LINE__);
4075 out += sprintf(out, "ESSID: %s\n", essid);
4076 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4077 bssid[0], bssid[1], bssid[2],
4078 bssid[3], bssid[4], bssid[5]);
4079 out += sprintf(out, "Channel: %d\n", chan);
4081 return out - buf;
4084 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4086 #ifdef CONFIG_IPW2100_DEBUG
4087 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4089 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4092 static ssize_t store_debug_level(struct device_driver *d,
4093 const char *buf, size_t count)
4095 char *p = (char *)buf;
4096 u32 val;
4098 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4099 p++;
4100 if (p[0] == 'x' || p[0] == 'X')
4101 p++;
4102 val = simple_strtoul(p, &p, 16);
4103 } else
4104 val = simple_strtoul(p, &p, 10);
4105 if (p == buf)
4106 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4107 else
4108 ipw2100_debug_level = val;
4110 return strnlen(buf, count);
4113 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4114 store_debug_level);
4115 #endif /* CONFIG_IPW2100_DEBUG */
4117 static ssize_t show_fatal_error(struct device *d,
4118 struct device_attribute *attr, char *buf)
4120 struct ipw2100_priv *priv = dev_get_drvdata(d);
4121 char *out = buf;
4122 int i;
4124 if (priv->fatal_error)
4125 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4126 else
4127 out += sprintf(out, "0\n");
4129 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4130 if (!priv->fatal_errors[(priv->fatal_index - i) %
4131 IPW2100_ERROR_QUEUE])
4132 continue;
4134 out += sprintf(out, "%d. 0x%08X\n", i,
4135 priv->fatal_errors[(priv->fatal_index - i) %
4136 IPW2100_ERROR_QUEUE]);
4139 return out - buf;
4142 static ssize_t store_fatal_error(struct device *d,
4143 struct device_attribute *attr, const char *buf,
4144 size_t count)
4146 struct ipw2100_priv *priv = dev_get_drvdata(d);
4147 schedule_reset(priv);
4148 return count;
4151 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4152 store_fatal_error);
4154 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4155 char *buf)
4157 struct ipw2100_priv *priv = dev_get_drvdata(d);
4158 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4161 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4162 const char *buf, size_t count)
4164 struct ipw2100_priv *priv = dev_get_drvdata(d);
4165 struct net_device *dev = priv->net_dev;
4166 char buffer[] = "00000000";
4167 unsigned long len =
4168 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4169 unsigned long val;
4170 char *p = buffer;
4172 (void)dev; /* kill unused-var warning for debug-only code */
4174 IPW_DEBUG_INFO("enter\n");
4176 strncpy(buffer, buf, len);
4177 buffer[len] = 0;
4179 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4180 p++;
4181 if (p[0] == 'x' || p[0] == 'X')
4182 p++;
4183 val = simple_strtoul(p, &p, 16);
4184 } else
4185 val = simple_strtoul(p, &p, 10);
4186 if (p == buffer) {
4187 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4188 } else {
4189 priv->ieee->scan_age = val;
4190 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4193 IPW_DEBUG_INFO("exit\n");
4194 return len;
4197 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4199 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4200 char *buf)
4202 /* 0 - RF kill not enabled
4203 1 - SW based RF kill active (sysfs)
4204 2 - HW based RF kill active
4205 3 - Both HW and SW baed RF kill active */
4206 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4207 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4208 (rf_kill_active(priv) ? 0x2 : 0x0);
4209 return sprintf(buf, "%i\n", val);
4212 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4214 if ((disable_radio ? 1 : 0) ==
4215 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4216 return 0;
4218 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4219 disable_radio ? "OFF" : "ON");
4221 mutex_lock(&priv->action_mutex);
4223 if (disable_radio) {
4224 priv->status |= STATUS_RF_KILL_SW;
4225 ipw2100_down(priv);
4226 } else {
4227 priv->status &= ~STATUS_RF_KILL_SW;
4228 if (rf_kill_active(priv)) {
4229 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4230 "disabled by HW switch\n");
4231 /* Make sure the RF_KILL check timer is running */
4232 priv->stop_rf_kill = 0;
4233 cancel_delayed_work(&priv->rf_kill);
4234 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4235 } else
4236 schedule_reset(priv);
4239 mutex_unlock(&priv->action_mutex);
4240 return 1;
4243 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4244 const char *buf, size_t count)
4246 struct ipw2100_priv *priv = dev_get_drvdata(d);
4247 ipw_radio_kill_sw(priv, buf[0] == '1');
4248 return count;
4251 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4253 static struct attribute *ipw2100_sysfs_entries[] = {
4254 &dev_attr_hardware.attr,
4255 &dev_attr_registers.attr,
4256 &dev_attr_ordinals.attr,
4257 &dev_attr_pci.attr,
4258 &dev_attr_stats.attr,
4259 &dev_attr_internals.attr,
4260 &dev_attr_bssinfo.attr,
4261 &dev_attr_memory.attr,
4262 &dev_attr_scan_age.attr,
4263 &dev_attr_fatal_error.attr,
4264 &dev_attr_rf_kill.attr,
4265 &dev_attr_cfg.attr,
4266 &dev_attr_status.attr,
4267 &dev_attr_capability.attr,
4268 NULL,
4271 static struct attribute_group ipw2100_attribute_group = {
4272 .attrs = ipw2100_sysfs_entries,
4275 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4277 struct ipw2100_status_queue *q = &priv->status_queue;
4279 IPW_DEBUG_INFO("enter\n");
4281 q->size = entries * sizeof(struct ipw2100_status);
4282 q->drv =
4283 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4284 q->size, &q->nic);
4285 if (!q->drv) {
4286 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4287 return -ENOMEM;
4290 memset(q->drv, 0, q->size);
4292 IPW_DEBUG_INFO("exit\n");
4294 return 0;
4297 static void status_queue_free(struct ipw2100_priv *priv)
4299 IPW_DEBUG_INFO("enter\n");
4301 if (priv->status_queue.drv) {
4302 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4303 priv->status_queue.drv,
4304 priv->status_queue.nic);
4305 priv->status_queue.drv = NULL;
4308 IPW_DEBUG_INFO("exit\n");
4311 static int bd_queue_allocate(struct ipw2100_priv *priv,
4312 struct ipw2100_bd_queue *q, int entries)
4314 IPW_DEBUG_INFO("enter\n");
4316 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4318 q->entries = entries;
4319 q->size = entries * sizeof(struct ipw2100_bd);
4320 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4321 if (!q->drv) {
4322 IPW_DEBUG_INFO
4323 ("can't allocate shared memory for buffer descriptors\n");
4324 return -ENOMEM;
4326 memset(q->drv, 0, q->size);
4328 IPW_DEBUG_INFO("exit\n");
4330 return 0;
4333 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4335 IPW_DEBUG_INFO("enter\n");
4337 if (!q)
4338 return;
4340 if (q->drv) {
4341 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4342 q->drv = NULL;
4345 IPW_DEBUG_INFO("exit\n");
4348 static void bd_queue_initialize(struct ipw2100_priv *priv,
4349 struct ipw2100_bd_queue *q, u32 base, u32 size,
4350 u32 r, u32 w)
4352 IPW_DEBUG_INFO("enter\n");
4354 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4355 (u32) q->nic);
4357 write_register(priv->net_dev, base, q->nic);
4358 write_register(priv->net_dev, size, q->entries);
4359 write_register(priv->net_dev, r, q->oldest);
4360 write_register(priv->net_dev, w, q->next);
4362 IPW_DEBUG_INFO("exit\n");
4365 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4367 if (priv->workqueue) {
4368 priv->stop_rf_kill = 1;
4369 priv->stop_hang_check = 1;
4370 cancel_delayed_work(&priv->reset_work);
4371 cancel_delayed_work(&priv->security_work);
4372 cancel_delayed_work(&priv->wx_event_work);
4373 cancel_delayed_work(&priv->hang_check);
4374 cancel_delayed_work(&priv->rf_kill);
4375 destroy_workqueue(priv->workqueue);
4376 priv->workqueue = NULL;
4380 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4382 int i, j, err = -EINVAL;
4383 void *v;
4384 dma_addr_t p;
4386 IPW_DEBUG_INFO("enter\n");
4388 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4389 if (err) {
4390 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4391 priv->net_dev->name);
4392 return err;
4395 priv->tx_buffers =
4396 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4397 sizeof(struct
4398 ipw2100_tx_packet),
4399 GFP_ATOMIC);
4400 if (!priv->tx_buffers) {
4401 printk(KERN_ERR DRV_NAME
4402 ": %s: alloc failed form tx buffers.\n",
4403 priv->net_dev->name);
4404 bd_queue_free(priv, &priv->tx_queue);
4405 return -ENOMEM;
4408 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4409 v = pci_alloc_consistent(priv->pci_dev,
4410 sizeof(struct ipw2100_data_header),
4411 &p);
4412 if (!v) {
4413 printk(KERN_ERR DRV_NAME
4414 ": %s: PCI alloc failed for tx " "buffers.\n",
4415 priv->net_dev->name);
4416 err = -ENOMEM;
4417 break;
4420 priv->tx_buffers[i].type = DATA;
4421 priv->tx_buffers[i].info.d_struct.data =
4422 (struct ipw2100_data_header *)v;
4423 priv->tx_buffers[i].info.d_struct.data_phys = p;
4424 priv->tx_buffers[i].info.d_struct.txb = NULL;
4427 if (i == TX_PENDED_QUEUE_LENGTH)
4428 return 0;
4430 for (j = 0; j < i; j++) {
4431 pci_free_consistent(priv->pci_dev,
4432 sizeof(struct ipw2100_data_header),
4433 priv->tx_buffers[j].info.d_struct.data,
4434 priv->tx_buffers[j].info.d_struct.
4435 data_phys);
4438 kfree(priv->tx_buffers);
4439 priv->tx_buffers = NULL;
4441 return err;
4444 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4446 int i;
4448 IPW_DEBUG_INFO("enter\n");
4451 * reinitialize packet info lists
4453 INIT_LIST_HEAD(&priv->fw_pend_list);
4454 INIT_STAT(&priv->fw_pend_stat);
4457 * reinitialize lists
4459 INIT_LIST_HEAD(&priv->tx_pend_list);
4460 INIT_LIST_HEAD(&priv->tx_free_list);
4461 INIT_STAT(&priv->tx_pend_stat);
4462 INIT_STAT(&priv->tx_free_stat);
4464 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4465 /* We simply drop any SKBs that have been queued for
4466 * transmit */
4467 if (priv->tx_buffers[i].info.d_struct.txb) {
4468 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4469 txb);
4470 priv->tx_buffers[i].info.d_struct.txb = NULL;
4473 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4476 SET_STAT(&priv->tx_free_stat, i);
4478 priv->tx_queue.oldest = 0;
4479 priv->tx_queue.available = priv->tx_queue.entries;
4480 priv->tx_queue.next = 0;
4481 INIT_STAT(&priv->txq_stat);
4482 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4484 bd_queue_initialize(priv, &priv->tx_queue,
4485 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4486 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4487 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4488 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4490 IPW_DEBUG_INFO("exit\n");
4494 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4496 int i;
4498 IPW_DEBUG_INFO("enter\n");
4500 bd_queue_free(priv, &priv->tx_queue);
4502 if (!priv->tx_buffers)
4503 return;
4505 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4506 if (priv->tx_buffers[i].info.d_struct.txb) {
4507 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4508 txb);
4509 priv->tx_buffers[i].info.d_struct.txb = NULL;
4511 if (priv->tx_buffers[i].info.d_struct.data)
4512 pci_free_consistent(priv->pci_dev,
4513 sizeof(struct ipw2100_data_header),
4514 priv->tx_buffers[i].info.d_struct.
4515 data,
4516 priv->tx_buffers[i].info.d_struct.
4517 data_phys);
4520 kfree(priv->tx_buffers);
4521 priv->tx_buffers = NULL;
4523 IPW_DEBUG_INFO("exit\n");
4526 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4528 int i, j, err = -EINVAL;
4530 IPW_DEBUG_INFO("enter\n");
4532 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4533 if (err) {
4534 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4535 return err;
4538 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4539 if (err) {
4540 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4541 bd_queue_free(priv, &priv->rx_queue);
4542 return err;
4546 * allocate packets
4548 priv->rx_buffers = (struct ipw2100_rx_packet *)
4549 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4550 GFP_KERNEL);
4551 if (!priv->rx_buffers) {
4552 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4554 bd_queue_free(priv, &priv->rx_queue);
4556 status_queue_free(priv);
4558 return -ENOMEM;
4561 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4562 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4564 err = ipw2100_alloc_skb(priv, packet);
4565 if (unlikely(err)) {
4566 err = -ENOMEM;
4567 break;
4570 /* The BD holds the cache aligned address */
4571 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4572 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4573 priv->status_queue.drv[i].status_fields = 0;
4576 if (i == RX_QUEUE_LENGTH)
4577 return 0;
4579 for (j = 0; j < i; j++) {
4580 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4581 sizeof(struct ipw2100_rx_packet),
4582 PCI_DMA_FROMDEVICE);
4583 dev_kfree_skb(priv->rx_buffers[j].skb);
4586 kfree(priv->rx_buffers);
4587 priv->rx_buffers = NULL;
4589 bd_queue_free(priv, &priv->rx_queue);
4591 status_queue_free(priv);
4593 return err;
4596 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4598 IPW_DEBUG_INFO("enter\n");
4600 priv->rx_queue.oldest = 0;
4601 priv->rx_queue.available = priv->rx_queue.entries - 1;
4602 priv->rx_queue.next = priv->rx_queue.entries - 1;
4604 INIT_STAT(&priv->rxq_stat);
4605 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4607 bd_queue_initialize(priv, &priv->rx_queue,
4608 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4609 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4610 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4611 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4613 /* set up the status queue */
4614 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4615 priv->status_queue.nic);
4617 IPW_DEBUG_INFO("exit\n");
4620 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4622 int i;
4624 IPW_DEBUG_INFO("enter\n");
4626 bd_queue_free(priv, &priv->rx_queue);
4627 status_queue_free(priv);
4629 if (!priv->rx_buffers)
4630 return;
4632 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4633 if (priv->rx_buffers[i].rxp) {
4634 pci_unmap_single(priv->pci_dev,
4635 priv->rx_buffers[i].dma_addr,
4636 sizeof(struct ipw2100_rx),
4637 PCI_DMA_FROMDEVICE);
4638 dev_kfree_skb(priv->rx_buffers[i].skb);
4642 kfree(priv->rx_buffers);
4643 priv->rx_buffers = NULL;
4645 IPW_DEBUG_INFO("exit\n");
4648 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4650 u32 length = ETH_ALEN;
4651 u8 mac[ETH_ALEN];
4653 int err;
4655 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4656 if (err) {
4657 IPW_DEBUG_INFO("MAC address read failed\n");
4658 return -EIO;
4660 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4661 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4663 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4665 return 0;
4668 /********************************************************************
4670 * Firmware Commands
4672 ********************************************************************/
4674 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4676 struct host_command cmd = {
4677 .host_command = ADAPTER_ADDRESS,
4678 .host_command_sequence = 0,
4679 .host_command_length = ETH_ALEN
4681 int err;
4683 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4685 IPW_DEBUG_INFO("enter\n");
4687 if (priv->config & CFG_CUSTOM_MAC) {
4688 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4689 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4690 } else
4691 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4692 ETH_ALEN);
4694 err = ipw2100_hw_send_command(priv, &cmd);
4696 IPW_DEBUG_INFO("exit\n");
4697 return err;
4700 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4701 int batch_mode)
4703 struct host_command cmd = {
4704 .host_command = PORT_TYPE,
4705 .host_command_sequence = 0,
4706 .host_command_length = sizeof(u32)
4708 int err;
4710 switch (port_type) {
4711 case IW_MODE_INFRA:
4712 cmd.host_command_parameters[0] = IPW_BSS;
4713 break;
4714 case IW_MODE_ADHOC:
4715 cmd.host_command_parameters[0] = IPW_IBSS;
4716 break;
4719 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4720 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4722 if (!batch_mode) {
4723 err = ipw2100_disable_adapter(priv);
4724 if (err) {
4725 printk(KERN_ERR DRV_NAME
4726 ": %s: Could not disable adapter %d\n",
4727 priv->net_dev->name, err);
4728 return err;
4732 /* send cmd to firmware */
4733 err = ipw2100_hw_send_command(priv, &cmd);
4735 if (!batch_mode)
4736 ipw2100_enable_adapter(priv);
4738 return err;
4741 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4742 int batch_mode)
4744 struct host_command cmd = {
4745 .host_command = CHANNEL,
4746 .host_command_sequence = 0,
4747 .host_command_length = sizeof(u32)
4749 int err;
4751 cmd.host_command_parameters[0] = channel;
4753 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4755 /* If BSS then we don't support channel selection */
4756 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4757 return 0;
4759 if ((channel != 0) &&
4760 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4761 return -EINVAL;
4763 if (!batch_mode) {
4764 err = ipw2100_disable_adapter(priv);
4765 if (err)
4766 return err;
4769 err = ipw2100_hw_send_command(priv, &cmd);
4770 if (err) {
4771 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4772 return err;
4775 if (channel)
4776 priv->config |= CFG_STATIC_CHANNEL;
4777 else
4778 priv->config &= ~CFG_STATIC_CHANNEL;
4780 priv->channel = channel;
4782 if (!batch_mode) {
4783 err = ipw2100_enable_adapter(priv);
4784 if (err)
4785 return err;
4788 return 0;
4791 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4793 struct host_command cmd = {
4794 .host_command = SYSTEM_CONFIG,
4795 .host_command_sequence = 0,
4796 .host_command_length = 12,
4798 u32 ibss_mask, len = sizeof(u32);
4799 int err;
4801 /* Set system configuration */
4803 if (!batch_mode) {
4804 err = ipw2100_disable_adapter(priv);
4805 if (err)
4806 return err;
4809 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4810 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4812 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4813 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4815 if (!(priv->config & CFG_LONG_PREAMBLE))
4816 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4818 err = ipw2100_get_ordinal(priv,
4819 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4820 &ibss_mask, &len);
4821 if (err)
4822 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4824 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4825 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4827 /* 11b only */
4828 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4830 err = ipw2100_hw_send_command(priv, &cmd);
4831 if (err)
4832 return err;
4834 /* If IPv6 is configured in the kernel then we don't want to filter out all
4835 * of the multicast packets as IPv6 needs some. */
4836 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4837 cmd.host_command = ADD_MULTICAST;
4838 cmd.host_command_sequence = 0;
4839 cmd.host_command_length = 0;
4841 ipw2100_hw_send_command(priv, &cmd);
4842 #endif
4843 if (!batch_mode) {
4844 err = ipw2100_enable_adapter(priv);
4845 if (err)
4846 return err;
4849 return 0;
4852 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4853 int batch_mode)
4855 struct host_command cmd = {
4856 .host_command = BASIC_TX_RATES,
4857 .host_command_sequence = 0,
4858 .host_command_length = 4
4860 int err;
4862 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4864 if (!batch_mode) {
4865 err = ipw2100_disable_adapter(priv);
4866 if (err)
4867 return err;
4870 /* Set BASIC TX Rate first */
4871 ipw2100_hw_send_command(priv, &cmd);
4873 /* Set TX Rate */
4874 cmd.host_command = TX_RATES;
4875 ipw2100_hw_send_command(priv, &cmd);
4877 /* Set MSDU TX Rate */
4878 cmd.host_command = MSDU_TX_RATES;
4879 ipw2100_hw_send_command(priv, &cmd);
4881 if (!batch_mode) {
4882 err = ipw2100_enable_adapter(priv);
4883 if (err)
4884 return err;
4887 priv->tx_rates = rate;
4889 return 0;
4892 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4894 struct host_command cmd = {
4895 .host_command = POWER_MODE,
4896 .host_command_sequence = 0,
4897 .host_command_length = 4
4899 int err;
4901 cmd.host_command_parameters[0] = power_level;
4903 err = ipw2100_hw_send_command(priv, &cmd);
4904 if (err)
4905 return err;
4907 if (power_level == IPW_POWER_MODE_CAM)
4908 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4909 else
4910 priv->power_mode = IPW_POWER_ENABLED | power_level;
4912 #ifdef CONFIG_IPW2100_TX_POWER
4913 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4914 /* Set beacon interval */
4915 cmd.host_command = TX_POWER_INDEX;
4916 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4918 err = ipw2100_hw_send_command(priv, &cmd);
4919 if (err)
4920 return err;
4922 #endif
4924 return 0;
4927 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4929 struct host_command cmd = {
4930 .host_command = RTS_THRESHOLD,
4931 .host_command_sequence = 0,
4932 .host_command_length = 4
4934 int err;
4936 if (threshold & RTS_DISABLED)
4937 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4938 else
4939 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4941 err = ipw2100_hw_send_command(priv, &cmd);
4942 if (err)
4943 return err;
4945 priv->rts_threshold = threshold;
4947 return 0;
4950 #if 0
4951 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4952 u32 threshold, int batch_mode)
4954 struct host_command cmd = {
4955 .host_command = FRAG_THRESHOLD,
4956 .host_command_sequence = 0,
4957 .host_command_length = 4,
4958 .host_command_parameters[0] = 0,
4960 int err;
4962 if (!batch_mode) {
4963 err = ipw2100_disable_adapter(priv);
4964 if (err)
4965 return err;
4968 if (threshold == 0)
4969 threshold = DEFAULT_FRAG_THRESHOLD;
4970 else {
4971 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4972 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4975 cmd.host_command_parameters[0] = threshold;
4977 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4979 err = ipw2100_hw_send_command(priv, &cmd);
4981 if (!batch_mode)
4982 ipw2100_enable_adapter(priv);
4984 if (!err)
4985 priv->frag_threshold = threshold;
4987 return err;
4989 #endif
4991 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4993 struct host_command cmd = {
4994 .host_command = SHORT_RETRY_LIMIT,
4995 .host_command_sequence = 0,
4996 .host_command_length = 4
4998 int err;
5000 cmd.host_command_parameters[0] = retry;
5002 err = ipw2100_hw_send_command(priv, &cmd);
5003 if (err)
5004 return err;
5006 priv->short_retry_limit = retry;
5008 return 0;
5011 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5013 struct host_command cmd = {
5014 .host_command = LONG_RETRY_LIMIT,
5015 .host_command_sequence = 0,
5016 .host_command_length = 4
5018 int err;
5020 cmd.host_command_parameters[0] = retry;
5022 err = ipw2100_hw_send_command(priv, &cmd);
5023 if (err)
5024 return err;
5026 priv->long_retry_limit = retry;
5028 return 0;
5031 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5032 int batch_mode)
5034 struct host_command cmd = {
5035 .host_command = MANDATORY_BSSID,
5036 .host_command_sequence = 0,
5037 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5039 int err;
5041 #ifdef CONFIG_IPW2100_DEBUG
5042 if (bssid != NULL)
5043 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5044 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5045 bssid[5]);
5046 else
5047 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5048 #endif
5049 /* if BSSID is empty then we disable mandatory bssid mode */
5050 if (bssid != NULL)
5051 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5053 if (!batch_mode) {
5054 err = ipw2100_disable_adapter(priv);
5055 if (err)
5056 return err;
5059 err = ipw2100_hw_send_command(priv, &cmd);
5061 if (!batch_mode)
5062 ipw2100_enable_adapter(priv);
5064 return err;
5067 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5069 struct host_command cmd = {
5070 .host_command = DISASSOCIATION_BSSID,
5071 .host_command_sequence = 0,
5072 .host_command_length = ETH_ALEN
5074 int err;
5075 int len;
5077 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5079 len = ETH_ALEN;
5080 /* The Firmware currently ignores the BSSID and just disassociates from
5081 * the currently associated AP -- but in the off chance that a future
5082 * firmware does use the BSSID provided here, we go ahead and try and
5083 * set it to the currently associated AP's BSSID */
5084 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5086 err = ipw2100_hw_send_command(priv, &cmd);
5088 return err;
5091 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5092 struct ipw2100_wpa_assoc_frame *, int)
5093 __attribute__ ((unused));
5095 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5096 struct ipw2100_wpa_assoc_frame *wpa_frame,
5097 int batch_mode)
5099 struct host_command cmd = {
5100 .host_command = SET_WPA_IE,
5101 .host_command_sequence = 0,
5102 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5104 int err;
5106 IPW_DEBUG_HC("SET_WPA_IE\n");
5108 if (!batch_mode) {
5109 err = ipw2100_disable_adapter(priv);
5110 if (err)
5111 return err;
5114 memcpy(cmd.host_command_parameters, wpa_frame,
5115 sizeof(struct ipw2100_wpa_assoc_frame));
5117 err = ipw2100_hw_send_command(priv, &cmd);
5119 if (!batch_mode) {
5120 if (ipw2100_enable_adapter(priv))
5121 err = -EIO;
5124 return err;
5127 struct security_info_params {
5128 u32 allowed_ciphers;
5129 u16 version;
5130 u8 auth_mode;
5131 u8 replay_counters_number;
5132 u8 unicast_using_group;
5133 } __attribute__ ((packed));
5135 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5136 int auth_mode,
5137 int security_level,
5138 int unicast_using_group,
5139 int batch_mode)
5141 struct host_command cmd = {
5142 .host_command = SET_SECURITY_INFORMATION,
5143 .host_command_sequence = 0,
5144 .host_command_length = sizeof(struct security_info_params)
5146 struct security_info_params *security =
5147 (struct security_info_params *)&cmd.host_command_parameters;
5148 int err;
5149 memset(security, 0, sizeof(*security));
5151 /* If shared key AP authentication is turned on, then we need to
5152 * configure the firmware to try and use it.
5154 * Actual data encryption/decryption is handled by the host. */
5155 security->auth_mode = auth_mode;
5156 security->unicast_using_group = unicast_using_group;
5158 switch (security_level) {
5159 default:
5160 case SEC_LEVEL_0:
5161 security->allowed_ciphers = IPW_NONE_CIPHER;
5162 break;
5163 case SEC_LEVEL_1:
5164 security->allowed_ciphers = IPW_WEP40_CIPHER |
5165 IPW_WEP104_CIPHER;
5166 break;
5167 case SEC_LEVEL_2:
5168 security->allowed_ciphers = IPW_WEP40_CIPHER |
5169 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5170 break;
5171 case SEC_LEVEL_2_CKIP:
5172 security->allowed_ciphers = IPW_WEP40_CIPHER |
5173 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5174 break;
5175 case SEC_LEVEL_3:
5176 security->allowed_ciphers = IPW_WEP40_CIPHER |
5177 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5178 break;
5181 IPW_DEBUG_HC
5182 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5183 security->auth_mode, security->allowed_ciphers, security_level);
5185 security->replay_counters_number = 0;
5187 if (!batch_mode) {
5188 err = ipw2100_disable_adapter(priv);
5189 if (err)
5190 return err;
5193 err = ipw2100_hw_send_command(priv, &cmd);
5195 if (!batch_mode)
5196 ipw2100_enable_adapter(priv);
5198 return err;
5201 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5203 struct host_command cmd = {
5204 .host_command = TX_POWER_INDEX,
5205 .host_command_sequence = 0,
5206 .host_command_length = 4
5208 int err = 0;
5209 u32 tmp = tx_power;
5211 if (tx_power != IPW_TX_POWER_DEFAULT)
5212 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5213 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5215 cmd.host_command_parameters[0] = tmp;
5217 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5218 err = ipw2100_hw_send_command(priv, &cmd);
5219 if (!err)
5220 priv->tx_power = tx_power;
5222 return 0;
5225 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5226 u32 interval, int batch_mode)
5228 struct host_command cmd = {
5229 .host_command = BEACON_INTERVAL,
5230 .host_command_sequence = 0,
5231 .host_command_length = 4
5233 int err;
5235 cmd.host_command_parameters[0] = interval;
5237 IPW_DEBUG_INFO("enter\n");
5239 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5240 if (!batch_mode) {
5241 err = ipw2100_disable_adapter(priv);
5242 if (err)
5243 return err;
5246 ipw2100_hw_send_command(priv, &cmd);
5248 if (!batch_mode) {
5249 err = ipw2100_enable_adapter(priv);
5250 if (err)
5251 return err;
5255 IPW_DEBUG_INFO("exit\n");
5257 return 0;
5260 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5262 ipw2100_tx_initialize(priv);
5263 ipw2100_rx_initialize(priv);
5264 ipw2100_msg_initialize(priv);
5267 void ipw2100_queues_free(struct ipw2100_priv *priv)
5269 ipw2100_tx_free(priv);
5270 ipw2100_rx_free(priv);
5271 ipw2100_msg_free(priv);
5274 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5276 if (ipw2100_tx_allocate(priv) ||
5277 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5278 goto fail;
5280 return 0;
5282 fail:
5283 ipw2100_tx_free(priv);
5284 ipw2100_rx_free(priv);
5285 ipw2100_msg_free(priv);
5286 return -ENOMEM;
5289 #define IPW_PRIVACY_CAPABLE 0x0008
5291 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5292 int batch_mode)
5294 struct host_command cmd = {
5295 .host_command = WEP_FLAGS,
5296 .host_command_sequence = 0,
5297 .host_command_length = 4
5299 int err;
5301 cmd.host_command_parameters[0] = flags;
5303 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5305 if (!batch_mode) {
5306 err = ipw2100_disable_adapter(priv);
5307 if (err) {
5308 printk(KERN_ERR DRV_NAME
5309 ": %s: Could not disable adapter %d\n",
5310 priv->net_dev->name, err);
5311 return err;
5315 /* send cmd to firmware */
5316 err = ipw2100_hw_send_command(priv, &cmd);
5318 if (!batch_mode)
5319 ipw2100_enable_adapter(priv);
5321 return err;
5324 struct ipw2100_wep_key {
5325 u8 idx;
5326 u8 len;
5327 u8 key[13];
5330 /* Macros to ease up priting WEP keys */
5331 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5332 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5333 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5334 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5337 * Set a the wep key
5339 * @priv: struct to work on
5340 * @idx: index of the key we want to set
5341 * @key: ptr to the key data to set
5342 * @len: length of the buffer at @key
5343 * @batch_mode: FIXME perform the operation in batch mode, not
5344 * disabling the device.
5346 * @returns 0 if OK, < 0 errno code on error.
5348 * Fill out a command structure with the new wep key, length an
5349 * index and send it down the wire.
5351 static int ipw2100_set_key(struct ipw2100_priv *priv,
5352 int idx, char *key, int len, int batch_mode)
5354 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5355 struct host_command cmd = {
5356 .host_command = WEP_KEY_INFO,
5357 .host_command_sequence = 0,
5358 .host_command_length = sizeof(struct ipw2100_wep_key),
5360 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5361 int err;
5363 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5364 idx, keylen, len);
5366 /* NOTE: We don't check cached values in case the firmware was reset
5367 * or some other problem is occurring. If the user is setting the key,
5368 * then we push the change */
5370 wep_key->idx = idx;
5371 wep_key->len = keylen;
5373 if (keylen) {
5374 memcpy(wep_key->key, key, len);
5375 memset(wep_key->key + len, 0, keylen - len);
5378 /* Will be optimized out on debug not being configured in */
5379 if (keylen == 0)
5380 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5381 priv->net_dev->name, wep_key->idx);
5382 else if (keylen == 5)
5383 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5384 priv->net_dev->name, wep_key->idx, wep_key->len,
5385 WEP_STR_64(wep_key->key));
5386 else
5387 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5388 "\n",
5389 priv->net_dev->name, wep_key->idx, wep_key->len,
5390 WEP_STR_128(wep_key->key));
5392 if (!batch_mode) {
5393 err = ipw2100_disable_adapter(priv);
5394 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5395 if (err) {
5396 printk(KERN_ERR DRV_NAME
5397 ": %s: Could not disable adapter %d\n",
5398 priv->net_dev->name, err);
5399 return err;
5403 /* send cmd to firmware */
5404 err = ipw2100_hw_send_command(priv, &cmd);
5406 if (!batch_mode) {
5407 int err2 = ipw2100_enable_adapter(priv);
5408 if (err == 0)
5409 err = err2;
5411 return err;
5414 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5415 int idx, int batch_mode)
5417 struct host_command cmd = {
5418 .host_command = WEP_KEY_INDEX,
5419 .host_command_sequence = 0,
5420 .host_command_length = 4,
5421 .host_command_parameters = {idx},
5423 int err;
5425 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5427 if (idx < 0 || idx > 3)
5428 return -EINVAL;
5430 if (!batch_mode) {
5431 err = ipw2100_disable_adapter(priv);
5432 if (err) {
5433 printk(KERN_ERR DRV_NAME
5434 ": %s: Could not disable adapter %d\n",
5435 priv->net_dev->name, err);
5436 return err;
5440 /* send cmd to firmware */
5441 err = ipw2100_hw_send_command(priv, &cmd);
5443 if (!batch_mode)
5444 ipw2100_enable_adapter(priv);
5446 return err;
5449 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5451 int i, err, auth_mode, sec_level, use_group;
5453 if (!(priv->status & STATUS_RUNNING))
5454 return 0;
5456 if (!batch_mode) {
5457 err = ipw2100_disable_adapter(priv);
5458 if (err)
5459 return err;
5462 if (!priv->ieee->sec.enabled) {
5463 err =
5464 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5465 SEC_LEVEL_0, 0, 1);
5466 } else {
5467 auth_mode = IPW_AUTH_OPEN;
5468 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5469 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5470 auth_mode = IPW_AUTH_SHARED;
5471 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5472 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5475 sec_level = SEC_LEVEL_0;
5476 if (priv->ieee->sec.flags & SEC_LEVEL)
5477 sec_level = priv->ieee->sec.level;
5479 use_group = 0;
5480 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5481 use_group = priv->ieee->sec.unicast_uses_group;
5483 err =
5484 ipw2100_set_security_information(priv, auth_mode, sec_level,
5485 use_group, 1);
5488 if (err)
5489 goto exit;
5491 if (priv->ieee->sec.enabled) {
5492 for (i = 0; i < 4; i++) {
5493 if (!(priv->ieee->sec.flags & (1 << i))) {
5494 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5495 priv->ieee->sec.key_sizes[i] = 0;
5496 } else {
5497 err = ipw2100_set_key(priv, i,
5498 priv->ieee->sec.keys[i],
5499 priv->ieee->sec.
5500 key_sizes[i], 1);
5501 if (err)
5502 goto exit;
5506 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5509 /* Always enable privacy so the Host can filter WEP packets if
5510 * encrypted data is sent up */
5511 err =
5512 ipw2100_set_wep_flags(priv,
5513 priv->ieee->sec.
5514 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5515 if (err)
5516 goto exit;
5518 priv->status &= ~STATUS_SECURITY_UPDATED;
5520 exit:
5521 if (!batch_mode)
5522 ipw2100_enable_adapter(priv);
5524 return err;
5527 static void ipw2100_security_work(struct ipw2100_priv *priv)
5529 /* If we happen to have reconnected before we get a chance to
5530 * process this, then update the security settings--which causes
5531 * a disassociation to occur */
5532 if (!(priv->status & STATUS_ASSOCIATED) &&
5533 priv->status & STATUS_SECURITY_UPDATED)
5534 ipw2100_configure_security(priv, 0);
5537 static void shim__set_security(struct net_device *dev,
5538 struct ieee80211_security *sec)
5540 struct ipw2100_priv *priv = ieee80211_priv(dev);
5541 int i, force_update = 0;
5543 mutex_lock(&priv->action_mutex);
5544 if (!(priv->status & STATUS_INITIALIZED))
5545 goto done;
5547 for (i = 0; i < 4; i++) {
5548 if (sec->flags & (1 << i)) {
5549 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5550 if (sec->key_sizes[i] == 0)
5551 priv->ieee->sec.flags &= ~(1 << i);
5552 else
5553 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5554 sec->key_sizes[i]);
5555 if (sec->level == SEC_LEVEL_1) {
5556 priv->ieee->sec.flags |= (1 << i);
5557 priv->status |= STATUS_SECURITY_UPDATED;
5558 } else
5559 priv->ieee->sec.flags &= ~(1 << i);
5563 if ((sec->flags & SEC_ACTIVE_KEY) &&
5564 priv->ieee->sec.active_key != sec->active_key) {
5565 if (sec->active_key <= 3) {
5566 priv->ieee->sec.active_key = sec->active_key;
5567 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5568 } else
5569 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5571 priv->status |= STATUS_SECURITY_UPDATED;
5574 if ((sec->flags & SEC_AUTH_MODE) &&
5575 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5576 priv->ieee->sec.auth_mode = sec->auth_mode;
5577 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5578 priv->status |= STATUS_SECURITY_UPDATED;
5581 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5582 priv->ieee->sec.flags |= SEC_ENABLED;
5583 priv->ieee->sec.enabled = sec->enabled;
5584 priv->status |= STATUS_SECURITY_UPDATED;
5585 force_update = 1;
5588 if (sec->flags & SEC_ENCRYPT)
5589 priv->ieee->sec.encrypt = sec->encrypt;
5591 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5592 priv->ieee->sec.level = sec->level;
5593 priv->ieee->sec.flags |= SEC_LEVEL;
5594 priv->status |= STATUS_SECURITY_UPDATED;
5597 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5598 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5599 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5600 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5601 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5602 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5603 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5604 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5605 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5608 /* As a temporary work around to enable WPA until we figure out why
5609 * wpa_supplicant toggles the security capability of the driver, which
5610 * forces a disassocation with force_update...
5612 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5613 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5614 ipw2100_configure_security(priv, 0);
5615 done:
5616 mutex_unlock(&priv->action_mutex);
5619 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5621 int err;
5622 int batch_mode = 1;
5623 u8 *bssid;
5625 IPW_DEBUG_INFO("enter\n");
5627 err = ipw2100_disable_adapter(priv);
5628 if (err)
5629 return err;
5630 #ifdef CONFIG_IPW2100_MONITOR
5631 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5632 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5633 if (err)
5634 return err;
5636 IPW_DEBUG_INFO("exit\n");
5638 return 0;
5640 #endif /* CONFIG_IPW2100_MONITOR */
5642 err = ipw2100_read_mac_address(priv);
5643 if (err)
5644 return -EIO;
5646 err = ipw2100_set_mac_address(priv, batch_mode);
5647 if (err)
5648 return err;
5650 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5651 if (err)
5652 return err;
5654 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5655 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5656 if (err)
5657 return err;
5660 err = ipw2100_system_config(priv, batch_mode);
5661 if (err)
5662 return err;
5664 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5665 if (err)
5666 return err;
5668 /* Default to power mode OFF */
5669 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5670 if (err)
5671 return err;
5673 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5674 if (err)
5675 return err;
5677 if (priv->config & CFG_STATIC_BSSID)
5678 bssid = priv->bssid;
5679 else
5680 bssid = NULL;
5681 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5682 if (err)
5683 return err;
5685 if (priv->config & CFG_STATIC_ESSID)
5686 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5687 batch_mode);
5688 else
5689 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5690 if (err)
5691 return err;
5693 err = ipw2100_configure_security(priv, batch_mode);
5694 if (err)
5695 return err;
5697 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5698 err =
5699 ipw2100_set_ibss_beacon_interval(priv,
5700 priv->beacon_interval,
5701 batch_mode);
5702 if (err)
5703 return err;
5705 err = ipw2100_set_tx_power(priv, priv->tx_power);
5706 if (err)
5707 return err;
5711 err = ipw2100_set_fragmentation_threshold(
5712 priv, priv->frag_threshold, batch_mode);
5713 if (err)
5714 return err;
5717 IPW_DEBUG_INFO("exit\n");
5719 return 0;
5722 /*************************************************************************
5724 * EXTERNALLY CALLED METHODS
5726 *************************************************************************/
5728 /* This method is called by the network layer -- not to be confused with
5729 * ipw2100_set_mac_address() declared above called by this driver (and this
5730 * method as well) to talk to the firmware */
5731 static int ipw2100_set_address(struct net_device *dev, void *p)
5733 struct ipw2100_priv *priv = ieee80211_priv(dev);
5734 struct sockaddr *addr = p;
5735 int err = 0;
5737 if (!is_valid_ether_addr(addr->sa_data))
5738 return -EADDRNOTAVAIL;
5740 mutex_lock(&priv->action_mutex);
5742 priv->config |= CFG_CUSTOM_MAC;
5743 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5745 err = ipw2100_set_mac_address(priv, 0);
5746 if (err)
5747 goto done;
5749 priv->reset_backoff = 0;
5750 mutex_unlock(&priv->action_mutex);
5751 ipw2100_reset_adapter(priv);
5752 return 0;
5754 done:
5755 mutex_unlock(&priv->action_mutex);
5756 return err;
5759 static int ipw2100_open(struct net_device *dev)
5761 struct ipw2100_priv *priv = ieee80211_priv(dev);
5762 unsigned long flags;
5763 IPW_DEBUG_INFO("dev->open\n");
5765 spin_lock_irqsave(&priv->low_lock, flags);
5766 if (priv->status & STATUS_ASSOCIATED) {
5767 netif_carrier_on(dev);
5768 netif_start_queue(dev);
5770 spin_unlock_irqrestore(&priv->low_lock, flags);
5772 return 0;
5775 static int ipw2100_close(struct net_device *dev)
5777 struct ipw2100_priv *priv = ieee80211_priv(dev);
5778 unsigned long flags;
5779 struct list_head *element;
5780 struct ipw2100_tx_packet *packet;
5782 IPW_DEBUG_INFO("enter\n");
5784 spin_lock_irqsave(&priv->low_lock, flags);
5786 if (priv->status & STATUS_ASSOCIATED)
5787 netif_carrier_off(dev);
5788 netif_stop_queue(dev);
5790 /* Flush the TX queue ... */
5791 while (!list_empty(&priv->tx_pend_list)) {
5792 element = priv->tx_pend_list.next;
5793 packet = list_entry(element, struct ipw2100_tx_packet, list);
5795 list_del(element);
5796 DEC_STAT(&priv->tx_pend_stat);
5798 ieee80211_txb_free(packet->info.d_struct.txb);
5799 packet->info.d_struct.txb = NULL;
5801 list_add_tail(element, &priv->tx_free_list);
5802 INC_STAT(&priv->tx_free_stat);
5804 spin_unlock_irqrestore(&priv->low_lock, flags);
5806 IPW_DEBUG_INFO("exit\n");
5808 return 0;
5812 * TODO: Fix this function... its just wrong
5814 static void ipw2100_tx_timeout(struct net_device *dev)
5816 struct ipw2100_priv *priv = ieee80211_priv(dev);
5818 priv->ieee->stats.tx_errors++;
5820 #ifdef CONFIG_IPW2100_MONITOR
5821 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5822 return;
5823 #endif
5825 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5826 dev->name);
5827 schedule_reset(priv);
5831 * TODO: reimplement it so that it reads statistics
5832 * from the adapter using ordinal tables
5833 * instead of/in addition to collecting them
5834 * in the driver
5836 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5838 struct ipw2100_priv *priv = ieee80211_priv(dev);
5840 return &priv->ieee->stats;
5843 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5845 /* This is called when wpa_supplicant loads and closes the driver
5846 * interface. */
5847 priv->ieee->wpa_enabled = value;
5848 return 0;
5851 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5854 struct ieee80211_device *ieee = priv->ieee;
5855 struct ieee80211_security sec = {
5856 .flags = SEC_AUTH_MODE,
5858 int ret = 0;
5860 if (value & IW_AUTH_ALG_SHARED_KEY) {
5861 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5862 ieee->open_wep = 0;
5863 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5864 sec.auth_mode = WLAN_AUTH_OPEN;
5865 ieee->open_wep = 1;
5866 } else if (value & IW_AUTH_ALG_LEAP) {
5867 sec.auth_mode = WLAN_AUTH_LEAP;
5868 ieee->open_wep = 1;
5869 } else
5870 return -EINVAL;
5872 if (ieee->set_security)
5873 ieee->set_security(ieee->dev, &sec);
5874 else
5875 ret = -EOPNOTSUPP;
5877 return ret;
5880 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5881 char *wpa_ie, int wpa_ie_len)
5884 struct ipw2100_wpa_assoc_frame frame;
5886 frame.fixed_ie_mask = 0;
5888 /* copy WPA IE */
5889 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5890 frame.var_ie_len = wpa_ie_len;
5892 /* make sure WPA is enabled */
5893 ipw2100_wpa_enable(priv, 1);
5894 ipw2100_set_wpa_ie(priv, &frame, 0);
5897 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5898 struct ethtool_drvinfo *info)
5900 struct ipw2100_priv *priv = ieee80211_priv(dev);
5901 char fw_ver[64], ucode_ver[64];
5903 strcpy(info->driver, DRV_NAME);
5904 strcpy(info->version, DRV_VERSION);
5906 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5907 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5909 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5910 fw_ver, priv->eeprom_version, ucode_ver);
5912 strcpy(info->bus_info, pci_name(priv->pci_dev));
5915 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5917 struct ipw2100_priv *priv = ieee80211_priv(dev);
5918 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5921 static const struct ethtool_ops ipw2100_ethtool_ops = {
5922 .get_link = ipw2100_ethtool_get_link,
5923 .get_drvinfo = ipw_ethtool_get_drvinfo,
5926 static void ipw2100_hang_check(void *adapter)
5928 struct ipw2100_priv *priv = adapter;
5929 unsigned long flags;
5930 u32 rtc = 0xa5a5a5a5;
5931 u32 len = sizeof(rtc);
5932 int restart = 0;
5934 spin_lock_irqsave(&priv->low_lock, flags);
5936 if (priv->fatal_error != 0) {
5937 /* If fatal_error is set then we need to restart */
5938 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5939 priv->net_dev->name);
5941 restart = 1;
5942 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5943 (rtc == priv->last_rtc)) {
5944 /* Check if firmware is hung */
5945 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5946 priv->net_dev->name);
5948 restart = 1;
5951 if (restart) {
5952 /* Kill timer */
5953 priv->stop_hang_check = 1;
5954 priv->hangs++;
5956 /* Restart the NIC */
5957 schedule_reset(priv);
5960 priv->last_rtc = rtc;
5962 if (!priv->stop_hang_check)
5963 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5965 spin_unlock_irqrestore(&priv->low_lock, flags);
5968 static void ipw2100_rf_kill(void *adapter)
5970 struct ipw2100_priv *priv = adapter;
5971 unsigned long flags;
5973 spin_lock_irqsave(&priv->low_lock, flags);
5975 if (rf_kill_active(priv)) {
5976 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5977 if (!priv->stop_rf_kill)
5978 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5979 goto exit_unlock;
5982 /* RF Kill is now disabled, so bring the device back up */
5984 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5985 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5986 "device\n");
5987 schedule_reset(priv);
5988 } else
5989 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5990 "enabled\n");
5992 exit_unlock:
5993 spin_unlock_irqrestore(&priv->low_lock, flags);
5996 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5998 /* Look into using netdev destructor to shutdown ieee80211? */
6000 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6001 void __iomem * base_addr,
6002 unsigned long mem_start,
6003 unsigned long mem_len)
6005 struct ipw2100_priv *priv;
6006 struct net_device *dev;
6008 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6009 if (!dev)
6010 return NULL;
6011 priv = ieee80211_priv(dev);
6012 priv->ieee = netdev_priv(dev);
6013 priv->pci_dev = pci_dev;
6014 priv->net_dev = dev;
6016 priv->ieee->hard_start_xmit = ipw2100_tx;
6017 priv->ieee->set_security = shim__set_security;
6019 priv->ieee->perfect_rssi = -20;
6020 priv->ieee->worst_rssi = -85;
6022 dev->open = ipw2100_open;
6023 dev->stop = ipw2100_close;
6024 dev->init = ipw2100_net_init;
6025 dev->get_stats = ipw2100_stats;
6026 dev->ethtool_ops = &ipw2100_ethtool_ops;
6027 dev->tx_timeout = ipw2100_tx_timeout;
6028 dev->wireless_handlers = &ipw2100_wx_handler_def;
6029 priv->wireless_data.ieee80211 = priv->ieee;
6030 dev->wireless_data = &priv->wireless_data;
6031 dev->set_mac_address = ipw2100_set_address;
6032 dev->watchdog_timeo = 3 * HZ;
6033 dev->irq = 0;
6035 dev->base_addr = (unsigned long)base_addr;
6036 dev->mem_start = mem_start;
6037 dev->mem_end = dev->mem_start + mem_len - 1;
6039 /* NOTE: We don't use the wireless_handlers hook
6040 * in dev as the system will start throwing WX requests
6041 * to us before we're actually initialized and it just
6042 * ends up causing problems. So, we just handle
6043 * the WX extensions through the ipw2100_ioctl interface */
6045 /* memset() puts everything to 0, so we only have explicitely set
6046 * those values that need to be something else */
6048 /* If power management is turned on, default to AUTO mode */
6049 priv->power_mode = IPW_POWER_AUTO;
6051 #ifdef CONFIG_IPW2100_MONITOR
6052 priv->config |= CFG_CRC_CHECK;
6053 #endif
6054 priv->ieee->wpa_enabled = 0;
6055 priv->ieee->drop_unencrypted = 0;
6056 priv->ieee->privacy_invoked = 0;
6057 priv->ieee->ieee802_1x = 1;
6059 /* Set module parameters */
6060 switch (mode) {
6061 case 1:
6062 priv->ieee->iw_mode = IW_MODE_ADHOC;
6063 break;
6064 #ifdef CONFIG_IPW2100_MONITOR
6065 case 2:
6066 priv->ieee->iw_mode = IW_MODE_MONITOR;
6067 break;
6068 #endif
6069 default:
6070 case 0:
6071 priv->ieee->iw_mode = IW_MODE_INFRA;
6072 break;
6075 if (disable == 1)
6076 priv->status |= STATUS_RF_KILL_SW;
6078 if (channel != 0 &&
6079 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6080 priv->config |= CFG_STATIC_CHANNEL;
6081 priv->channel = channel;
6084 if (associate)
6085 priv->config |= CFG_ASSOCIATE;
6087 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6088 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6089 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6090 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6091 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6092 priv->tx_power = IPW_TX_POWER_DEFAULT;
6093 priv->tx_rates = DEFAULT_TX_RATES;
6095 strcpy(priv->nick, "ipw2100");
6097 spin_lock_init(&priv->low_lock);
6098 mutex_init(&priv->action_mutex);
6099 mutex_init(&priv->adapter_mutex);
6101 init_waitqueue_head(&priv->wait_command_queue);
6103 netif_carrier_off(dev);
6105 INIT_LIST_HEAD(&priv->msg_free_list);
6106 INIT_LIST_HEAD(&priv->msg_pend_list);
6107 INIT_STAT(&priv->msg_free_stat);
6108 INIT_STAT(&priv->msg_pend_stat);
6110 INIT_LIST_HEAD(&priv->tx_free_list);
6111 INIT_LIST_HEAD(&priv->tx_pend_list);
6112 INIT_STAT(&priv->tx_free_stat);
6113 INIT_STAT(&priv->tx_pend_stat);
6115 INIT_LIST_HEAD(&priv->fw_pend_list);
6116 INIT_STAT(&priv->fw_pend_stat);
6118 priv->workqueue = create_workqueue(DRV_NAME);
6120 INIT_WORK(&priv->reset_work,
6121 (void (*)(void *))ipw2100_reset_adapter, priv);
6122 INIT_WORK(&priv->security_work,
6123 (void (*)(void *))ipw2100_security_work, priv);
6124 INIT_WORK(&priv->wx_event_work,
6125 (void (*)(void *))ipw2100_wx_event_work, priv);
6126 INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6127 INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6129 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6130 ipw2100_irq_tasklet, (unsigned long)priv);
6132 /* NOTE: We do not start the deferred work for status checks yet */
6133 priv->stop_rf_kill = 1;
6134 priv->stop_hang_check = 1;
6136 return dev;
6139 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6140 const struct pci_device_id *ent)
6142 unsigned long mem_start, mem_len, mem_flags;
6143 void __iomem *base_addr = NULL;
6144 struct net_device *dev = NULL;
6145 struct ipw2100_priv *priv = NULL;
6146 int err = 0;
6147 int registered = 0;
6148 u32 val;
6150 IPW_DEBUG_INFO("enter\n");
6152 mem_start = pci_resource_start(pci_dev, 0);
6153 mem_len = pci_resource_len(pci_dev, 0);
6154 mem_flags = pci_resource_flags(pci_dev, 0);
6156 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6157 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6158 err = -ENODEV;
6159 goto fail;
6162 base_addr = ioremap_nocache(mem_start, mem_len);
6163 if (!base_addr) {
6164 printk(KERN_WARNING DRV_NAME
6165 "Error calling ioremap_nocache.\n");
6166 err = -EIO;
6167 goto fail;
6170 /* allocate and initialize our net_device */
6171 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6172 if (!dev) {
6173 printk(KERN_WARNING DRV_NAME
6174 "Error calling ipw2100_alloc_device.\n");
6175 err = -ENOMEM;
6176 goto fail;
6179 /* set up PCI mappings for device */
6180 err = pci_enable_device(pci_dev);
6181 if (err) {
6182 printk(KERN_WARNING DRV_NAME
6183 "Error calling pci_enable_device.\n");
6184 return err;
6187 priv = ieee80211_priv(dev);
6189 pci_set_master(pci_dev);
6190 pci_set_drvdata(pci_dev, priv);
6192 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6193 if (err) {
6194 printk(KERN_WARNING DRV_NAME
6195 "Error calling pci_set_dma_mask.\n");
6196 pci_disable_device(pci_dev);
6197 return err;
6200 err = pci_request_regions(pci_dev, DRV_NAME);
6201 if (err) {
6202 printk(KERN_WARNING DRV_NAME
6203 "Error calling pci_request_regions.\n");
6204 pci_disable_device(pci_dev);
6205 return err;
6208 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6209 * PCI Tx retries from interfering with C3 CPU state */
6210 pci_read_config_dword(pci_dev, 0x40, &val);
6211 if ((val & 0x0000ff00) != 0)
6212 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6214 pci_set_power_state(pci_dev, PCI_D0);
6216 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6217 printk(KERN_WARNING DRV_NAME
6218 "Device not found via register read.\n");
6219 err = -ENODEV;
6220 goto fail;
6223 SET_NETDEV_DEV(dev, &pci_dev->dev);
6225 /* Force interrupts to be shut off on the device */
6226 priv->status |= STATUS_INT_ENABLED;
6227 ipw2100_disable_interrupts(priv);
6229 /* Allocate and initialize the Tx/Rx queues and lists */
6230 if (ipw2100_queues_allocate(priv)) {
6231 printk(KERN_WARNING DRV_NAME
6232 "Error calilng ipw2100_queues_allocate.\n");
6233 err = -ENOMEM;
6234 goto fail;
6236 ipw2100_queues_initialize(priv);
6238 err = request_irq(pci_dev->irq,
6239 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6240 if (err) {
6241 printk(KERN_WARNING DRV_NAME
6242 "Error calling request_irq: %d.\n", pci_dev->irq);
6243 goto fail;
6245 dev->irq = pci_dev->irq;
6247 IPW_DEBUG_INFO("Attempting to register device...\n");
6249 SET_MODULE_OWNER(dev);
6251 printk(KERN_INFO DRV_NAME
6252 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6254 /* Bring up the interface. Pre 0.46, after we registered the
6255 * network device we would call ipw2100_up. This introduced a race
6256 * condition with newer hotplug configurations (network was coming
6257 * up and making calls before the device was initialized).
6259 * If we called ipw2100_up before we registered the device, then the
6260 * device name wasn't registered. So, we instead use the net_dev->init
6261 * member to call a function that then just turns and calls ipw2100_up.
6262 * net_dev->init is called after name allocation but before the
6263 * notifier chain is called */
6264 err = register_netdev(dev);
6265 if (err) {
6266 printk(KERN_WARNING DRV_NAME
6267 "Error calling register_netdev.\n");
6268 goto fail;
6271 mutex_lock(&priv->action_mutex);
6272 registered = 1;
6274 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6276 /* perform this after register_netdev so that dev->name is set */
6277 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6278 if (err)
6279 goto fail_unlock;
6281 /* If the RF Kill switch is disabled, go ahead and complete the
6282 * startup sequence */
6283 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6284 /* Enable the adapter - sends HOST_COMPLETE */
6285 if (ipw2100_enable_adapter(priv)) {
6286 printk(KERN_WARNING DRV_NAME
6287 ": %s: failed in call to enable adapter.\n",
6288 priv->net_dev->name);
6289 ipw2100_hw_stop_adapter(priv);
6290 err = -EIO;
6291 goto fail_unlock;
6294 /* Start a scan . . . */
6295 ipw2100_set_scan_options(priv);
6296 ipw2100_start_scan(priv);
6299 IPW_DEBUG_INFO("exit\n");
6301 priv->status |= STATUS_INITIALIZED;
6303 mutex_unlock(&priv->action_mutex);
6305 return 0;
6307 fail_unlock:
6308 mutex_unlock(&priv->action_mutex);
6310 fail:
6311 if (dev) {
6312 if (registered)
6313 unregister_netdev(dev);
6315 ipw2100_hw_stop_adapter(priv);
6317 ipw2100_disable_interrupts(priv);
6319 if (dev->irq)
6320 free_irq(dev->irq, priv);
6322 ipw2100_kill_workqueue(priv);
6324 /* These are safe to call even if they weren't allocated */
6325 ipw2100_queues_free(priv);
6326 sysfs_remove_group(&pci_dev->dev.kobj,
6327 &ipw2100_attribute_group);
6329 free_ieee80211(dev);
6330 pci_set_drvdata(pci_dev, NULL);
6333 if (base_addr)
6334 iounmap(base_addr);
6336 pci_release_regions(pci_dev);
6337 pci_disable_device(pci_dev);
6339 return err;
6342 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6344 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6345 struct net_device *dev;
6347 if (priv) {
6348 mutex_lock(&priv->action_mutex);
6350 priv->status &= ~STATUS_INITIALIZED;
6352 dev = priv->net_dev;
6353 sysfs_remove_group(&pci_dev->dev.kobj,
6354 &ipw2100_attribute_group);
6356 #ifdef CONFIG_PM
6357 if (ipw2100_firmware.version)
6358 ipw2100_release_firmware(priv, &ipw2100_firmware);
6359 #endif
6360 /* Take down the hardware */
6361 ipw2100_down(priv);
6363 /* Release the mutex so that the network subsystem can
6364 * complete any needed calls into the driver... */
6365 mutex_unlock(&priv->action_mutex);
6367 /* Unregister the device first - this results in close()
6368 * being called if the device is open. If we free storage
6369 * first, then close() will crash. */
6370 unregister_netdev(dev);
6372 /* ipw2100_down will ensure that there is no more pending work
6373 * in the workqueue's, so we can safely remove them now. */
6374 ipw2100_kill_workqueue(priv);
6376 ipw2100_queues_free(priv);
6378 /* Free potential debugging firmware snapshot */
6379 ipw2100_snapshot_free(priv);
6381 if (dev->irq)
6382 free_irq(dev->irq, priv);
6384 if (dev->base_addr)
6385 iounmap((void __iomem *)dev->base_addr);
6387 free_ieee80211(dev);
6390 pci_release_regions(pci_dev);
6391 pci_disable_device(pci_dev);
6393 IPW_DEBUG_INFO("exit\n");
6396 #ifdef CONFIG_PM
6397 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6399 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6400 struct net_device *dev = priv->net_dev;
6402 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6404 mutex_lock(&priv->action_mutex);
6405 if (priv->status & STATUS_INITIALIZED) {
6406 /* Take down the device; powers it off, etc. */
6407 ipw2100_down(priv);
6410 /* Remove the PRESENT state of the device */
6411 netif_device_detach(dev);
6413 pci_save_state(pci_dev);
6414 pci_disable_device(pci_dev);
6415 pci_set_power_state(pci_dev, PCI_D3hot);
6417 mutex_unlock(&priv->action_mutex);
6419 return 0;
6422 static int ipw2100_resume(struct pci_dev *pci_dev)
6424 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6425 struct net_device *dev = priv->net_dev;
6426 u32 val;
6428 if (IPW2100_PM_DISABLED)
6429 return 0;
6431 mutex_lock(&priv->action_mutex);
6433 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6435 pci_set_power_state(pci_dev, PCI_D0);
6436 pci_enable_device(pci_dev);
6437 pci_restore_state(pci_dev);
6440 * Suspend/Resume resets the PCI configuration space, so we have to
6441 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6442 * from interfering with C3 CPU state. pci_restore_state won't help
6443 * here since it only restores the first 64 bytes pci config header.
6445 pci_read_config_dword(pci_dev, 0x40, &val);
6446 if ((val & 0x0000ff00) != 0)
6447 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6449 /* Set the device back into the PRESENT state; this will also wake
6450 * the queue of needed */
6451 netif_device_attach(dev);
6453 /* Bring the device back up */
6454 if (!(priv->status & STATUS_RF_KILL_SW))
6455 ipw2100_up(priv, 0);
6457 mutex_unlock(&priv->action_mutex);
6459 return 0;
6461 #endif
6463 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6465 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6466 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6467 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6468 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6469 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6470 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6471 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6472 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6473 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6474 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6475 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6476 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6477 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6478 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6480 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6481 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6482 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6483 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6484 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6486 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6487 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6488 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6489 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6490 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6491 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6492 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6494 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6496 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6497 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6498 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6499 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6500 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6501 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6502 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6504 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6505 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6506 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6507 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6508 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6509 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6511 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6512 {0,},
6515 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6517 static struct pci_driver ipw2100_pci_driver = {
6518 .name = DRV_NAME,
6519 .id_table = ipw2100_pci_id_table,
6520 .probe = ipw2100_pci_init_one,
6521 .remove = __devexit_p(ipw2100_pci_remove_one),
6522 #ifdef CONFIG_PM
6523 .suspend = ipw2100_suspend,
6524 .resume = ipw2100_resume,
6525 #endif
6529 * Initialize the ipw2100 driver/module
6531 * @returns 0 if ok, < 0 errno node con error.
6533 * Note: we cannot init the /proc stuff until the PCI driver is there,
6534 * or we risk an unlikely race condition on someone accessing
6535 * uninitialized data in the PCI dev struct through /proc.
6537 static int __init ipw2100_init(void)
6539 int ret;
6541 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6542 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6544 ret = pci_register_driver(&ipw2100_pci_driver);
6545 if (ret)
6546 goto out;
6548 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6549 #ifdef CONFIG_IPW2100_DEBUG
6550 ipw2100_debug_level = debug;
6551 ret = driver_create_file(&ipw2100_pci_driver.driver,
6552 &driver_attr_debug_level);
6553 #endif
6555 out:
6556 return ret;
6560 * Cleanup ipw2100 driver registration
6562 static void __exit ipw2100_exit(void)
6564 /* FIXME: IPG: check that we have no instances of the devices open */
6565 #ifdef CONFIG_IPW2100_DEBUG
6566 driver_remove_file(&ipw2100_pci_driver.driver,
6567 &driver_attr_debug_level);
6568 #endif
6569 pci_unregister_driver(&ipw2100_pci_driver);
6570 remove_acceptable_latency("ipw2100");
6573 module_init(ipw2100_init);
6574 module_exit(ipw2100_exit);
6576 #define WEXT_USECHANNELS 1
6578 static const long ipw2100_frequencies[] = {
6579 2412, 2417, 2422, 2427,
6580 2432, 2437, 2442, 2447,
6581 2452, 2457, 2462, 2467,
6582 2472, 2484
6585 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6586 sizeof(ipw2100_frequencies[0]))
6588 static const long ipw2100_rates_11b[] = {
6589 1000000,
6590 2000000,
6591 5500000,
6592 11000000
6595 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6597 static int ipw2100_wx_get_name(struct net_device *dev,
6598 struct iw_request_info *info,
6599 union iwreq_data *wrqu, char *extra)
6602 * This can be called at any time. No action lock required
6605 struct ipw2100_priv *priv = ieee80211_priv(dev);
6606 if (!(priv->status & STATUS_ASSOCIATED))
6607 strcpy(wrqu->name, "unassociated");
6608 else
6609 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6611 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6612 return 0;
6615 static int ipw2100_wx_set_freq(struct net_device *dev,
6616 struct iw_request_info *info,
6617 union iwreq_data *wrqu, char *extra)
6619 struct ipw2100_priv *priv = ieee80211_priv(dev);
6620 struct iw_freq *fwrq = &wrqu->freq;
6621 int err = 0;
6623 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6624 return -EOPNOTSUPP;
6626 mutex_lock(&priv->action_mutex);
6627 if (!(priv->status & STATUS_INITIALIZED)) {
6628 err = -EIO;
6629 goto done;
6632 /* if setting by freq convert to channel */
6633 if (fwrq->e == 1) {
6634 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6635 int f = fwrq->m / 100000;
6636 int c = 0;
6638 while ((c < REG_MAX_CHANNEL) &&
6639 (f != ipw2100_frequencies[c]))
6640 c++;
6642 /* hack to fall through */
6643 fwrq->e = 0;
6644 fwrq->m = c + 1;
6648 if (fwrq->e > 0 || fwrq->m > 1000) {
6649 err = -EOPNOTSUPP;
6650 goto done;
6651 } else { /* Set the channel */
6652 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6653 err = ipw2100_set_channel(priv, fwrq->m, 0);
6656 done:
6657 mutex_unlock(&priv->action_mutex);
6658 return err;
6661 static int ipw2100_wx_get_freq(struct net_device *dev,
6662 struct iw_request_info *info,
6663 union iwreq_data *wrqu, char *extra)
6666 * This can be called at any time. No action lock required
6669 struct ipw2100_priv *priv = ieee80211_priv(dev);
6671 wrqu->freq.e = 0;
6673 /* If we are associated, trying to associate, or have a statically
6674 * configured CHANNEL then return that; otherwise return ANY */
6675 if (priv->config & CFG_STATIC_CHANNEL ||
6676 priv->status & STATUS_ASSOCIATED)
6677 wrqu->freq.m = priv->channel;
6678 else
6679 wrqu->freq.m = 0;
6681 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6682 return 0;
6686 static int ipw2100_wx_set_mode(struct net_device *dev,
6687 struct iw_request_info *info,
6688 union iwreq_data *wrqu, char *extra)
6690 struct ipw2100_priv *priv = ieee80211_priv(dev);
6691 int err = 0;
6693 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6695 if (wrqu->mode == priv->ieee->iw_mode)
6696 return 0;
6698 mutex_lock(&priv->action_mutex);
6699 if (!(priv->status & STATUS_INITIALIZED)) {
6700 err = -EIO;
6701 goto done;
6704 switch (wrqu->mode) {
6705 #ifdef CONFIG_IPW2100_MONITOR
6706 case IW_MODE_MONITOR:
6707 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6708 break;
6709 #endif /* CONFIG_IPW2100_MONITOR */
6710 case IW_MODE_ADHOC:
6711 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6712 break;
6713 case IW_MODE_INFRA:
6714 case IW_MODE_AUTO:
6715 default:
6716 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6717 break;
6720 done:
6721 mutex_unlock(&priv->action_mutex);
6722 return err;
6725 static int ipw2100_wx_get_mode(struct net_device *dev,
6726 struct iw_request_info *info,
6727 union iwreq_data *wrqu, char *extra)
6730 * This can be called at any time. No action lock required
6733 struct ipw2100_priv *priv = ieee80211_priv(dev);
6735 wrqu->mode = priv->ieee->iw_mode;
6736 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6738 return 0;
6741 #define POWER_MODES 5
6743 /* Values are in microsecond */
6744 static const s32 timeout_duration[POWER_MODES] = {
6745 350000,
6746 250000,
6747 75000,
6748 37000,
6749 25000,
6752 static const s32 period_duration[POWER_MODES] = {
6753 400000,
6754 700000,
6755 1000000,
6756 1000000,
6757 1000000
6760 static int ipw2100_wx_get_range(struct net_device *dev,
6761 struct iw_request_info *info,
6762 union iwreq_data *wrqu, char *extra)
6765 * This can be called at any time. No action lock required
6768 struct ipw2100_priv *priv = ieee80211_priv(dev);
6769 struct iw_range *range = (struct iw_range *)extra;
6770 u16 val;
6771 int i, level;
6773 wrqu->data.length = sizeof(*range);
6774 memset(range, 0, sizeof(*range));
6776 /* Let's try to keep this struct in the same order as in
6777 * linux/include/wireless.h
6780 /* TODO: See what values we can set, and remove the ones we can't
6781 * set, or fill them with some default data.
6784 /* ~5 Mb/s real (802.11b) */
6785 range->throughput = 5 * 1000 * 1000;
6787 // range->sensitivity; /* signal level threshold range */
6789 range->max_qual.qual = 100;
6790 /* TODO: Find real max RSSI and stick here */
6791 range->max_qual.level = 0;
6792 range->max_qual.noise = 0;
6793 range->max_qual.updated = 7; /* Updated all three */
6795 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6796 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6797 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6798 range->avg_qual.noise = 0;
6799 range->avg_qual.updated = 7; /* Updated all three */
6801 range->num_bitrates = RATE_COUNT;
6803 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6804 range->bitrate[i] = ipw2100_rates_11b[i];
6807 range->min_rts = MIN_RTS_THRESHOLD;
6808 range->max_rts = MAX_RTS_THRESHOLD;
6809 range->min_frag = MIN_FRAG_THRESHOLD;
6810 range->max_frag = MAX_FRAG_THRESHOLD;
6812 range->min_pmp = period_duration[0]; /* Minimal PM period */
6813 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6814 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6815 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6817 /* How to decode max/min PM period */
6818 range->pmp_flags = IW_POWER_PERIOD;
6819 /* How to decode max/min PM period */
6820 range->pmt_flags = IW_POWER_TIMEOUT;
6821 /* What PM options are supported */
6822 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6824 range->encoding_size[0] = 5;
6825 range->encoding_size[1] = 13; /* Different token sizes */
6826 range->num_encoding_sizes = 2; /* Number of entry in the list */
6827 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6828 // range->encoding_login_index; /* token index for login token */
6830 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6831 range->txpower_capa = IW_TXPOW_DBM;
6832 range->num_txpower = IW_MAX_TXPOWER;
6833 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6834 i < IW_MAX_TXPOWER;
6835 i++, level -=
6836 ((IPW_TX_POWER_MAX_DBM -
6837 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6838 range->txpower[i] = level / 16;
6839 } else {
6840 range->txpower_capa = 0;
6841 range->num_txpower = 0;
6844 /* Set the Wireless Extension versions */
6845 range->we_version_compiled = WIRELESS_EXT;
6846 range->we_version_source = 18;
6848 // range->retry_capa; /* What retry options are supported */
6849 // range->retry_flags; /* How to decode max/min retry limit */
6850 // range->r_time_flags; /* How to decode max/min retry life */
6851 // range->min_retry; /* Minimal number of retries */
6852 // range->max_retry; /* Maximal number of retries */
6853 // range->min_r_time; /* Minimal retry lifetime */
6854 // range->max_r_time; /* Maximal retry lifetime */
6856 range->num_channels = FREQ_COUNT;
6858 val = 0;
6859 for (i = 0; i < FREQ_COUNT; i++) {
6860 // TODO: Include only legal frequencies for some countries
6861 // if (local->channel_mask & (1 << i)) {
6862 range->freq[val].i = i + 1;
6863 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6864 range->freq[val].e = 1;
6865 val++;
6866 // }
6867 if (val == IW_MAX_FREQUENCIES)
6868 break;
6870 range->num_frequency = val;
6872 /* Event capability (kernel + driver) */
6873 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6874 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6875 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6877 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6878 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6880 IPW_DEBUG_WX("GET Range\n");
6882 return 0;
6885 static int ipw2100_wx_set_wap(struct net_device *dev,
6886 struct iw_request_info *info,
6887 union iwreq_data *wrqu, char *extra)
6889 struct ipw2100_priv *priv = ieee80211_priv(dev);
6890 int err = 0;
6892 static const unsigned char any[] = {
6893 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6895 static const unsigned char off[] = {
6896 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6899 // sanity checks
6900 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6901 return -EINVAL;
6903 mutex_lock(&priv->action_mutex);
6904 if (!(priv->status & STATUS_INITIALIZED)) {
6905 err = -EIO;
6906 goto done;
6909 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6910 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6911 /* we disable mandatory BSSID association */
6912 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6913 priv->config &= ~CFG_STATIC_BSSID;
6914 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6915 goto done;
6918 priv->config |= CFG_STATIC_BSSID;
6919 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6921 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6923 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6924 wrqu->ap_addr.sa_data[0] & 0xff,
6925 wrqu->ap_addr.sa_data[1] & 0xff,
6926 wrqu->ap_addr.sa_data[2] & 0xff,
6927 wrqu->ap_addr.sa_data[3] & 0xff,
6928 wrqu->ap_addr.sa_data[4] & 0xff,
6929 wrqu->ap_addr.sa_data[5] & 0xff);
6931 done:
6932 mutex_unlock(&priv->action_mutex);
6933 return err;
6936 static int ipw2100_wx_get_wap(struct net_device *dev,
6937 struct iw_request_info *info,
6938 union iwreq_data *wrqu, char *extra)
6941 * This can be called at any time. No action lock required
6944 struct ipw2100_priv *priv = ieee80211_priv(dev);
6946 /* If we are associated, trying to associate, or have a statically
6947 * configured BSSID then return that; otherwise return ANY */
6948 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6949 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6950 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6951 } else
6952 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6954 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6955 MAC_ARG(wrqu->ap_addr.sa_data));
6956 return 0;
6959 static int ipw2100_wx_set_essid(struct net_device *dev,
6960 struct iw_request_info *info,
6961 union iwreq_data *wrqu, char *extra)
6963 struct ipw2100_priv *priv = ieee80211_priv(dev);
6964 char *essid = ""; /* ANY */
6965 int length = 0;
6966 int err = 0;
6968 mutex_lock(&priv->action_mutex);
6969 if (!(priv->status & STATUS_INITIALIZED)) {
6970 err = -EIO;
6971 goto done;
6974 if (wrqu->essid.flags && wrqu->essid.length) {
6975 length = wrqu->essid.length;
6976 essid = extra;
6979 if (length == 0) {
6980 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6981 priv->config &= ~CFG_STATIC_ESSID;
6982 err = ipw2100_set_essid(priv, NULL, 0, 0);
6983 goto done;
6986 length = min(length, IW_ESSID_MAX_SIZE);
6988 priv->config |= CFG_STATIC_ESSID;
6990 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6991 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6992 err = 0;
6993 goto done;
6996 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6997 length);
6999 priv->essid_len = length;
7000 memcpy(priv->essid, essid, priv->essid_len);
7002 err = ipw2100_set_essid(priv, essid, length, 0);
7004 done:
7005 mutex_unlock(&priv->action_mutex);
7006 return err;
7009 static int ipw2100_wx_get_essid(struct net_device *dev,
7010 struct iw_request_info *info,
7011 union iwreq_data *wrqu, char *extra)
7014 * This can be called at any time. No action lock required
7017 struct ipw2100_priv *priv = ieee80211_priv(dev);
7019 /* If we are associated, trying to associate, or have a statically
7020 * configured ESSID then return that; otherwise return ANY */
7021 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7022 IPW_DEBUG_WX("Getting essid: '%s'\n",
7023 escape_essid(priv->essid, priv->essid_len));
7024 memcpy(extra, priv->essid, priv->essid_len);
7025 wrqu->essid.length = priv->essid_len;
7026 wrqu->essid.flags = 1; /* active */
7027 } else {
7028 IPW_DEBUG_WX("Getting essid: ANY\n");
7029 wrqu->essid.length = 0;
7030 wrqu->essid.flags = 0; /* active */
7033 return 0;
7036 static int ipw2100_wx_set_nick(struct net_device *dev,
7037 struct iw_request_info *info,
7038 union iwreq_data *wrqu, char *extra)
7041 * This can be called at any time. No action lock required
7044 struct ipw2100_priv *priv = ieee80211_priv(dev);
7046 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7047 return -E2BIG;
7049 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7050 memset(priv->nick, 0, sizeof(priv->nick));
7051 memcpy(priv->nick, extra, wrqu->data.length);
7053 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7055 return 0;
7058 static int ipw2100_wx_get_nick(struct net_device *dev,
7059 struct iw_request_info *info,
7060 union iwreq_data *wrqu, char *extra)
7063 * This can be called at any time. No action lock required
7066 struct ipw2100_priv *priv = ieee80211_priv(dev);
7068 wrqu->data.length = strlen(priv->nick);
7069 memcpy(extra, priv->nick, wrqu->data.length);
7070 wrqu->data.flags = 1; /* active */
7072 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7074 return 0;
7077 static int ipw2100_wx_set_rate(struct net_device *dev,
7078 struct iw_request_info *info,
7079 union iwreq_data *wrqu, char *extra)
7081 struct ipw2100_priv *priv = ieee80211_priv(dev);
7082 u32 target_rate = wrqu->bitrate.value;
7083 u32 rate;
7084 int err = 0;
7086 mutex_lock(&priv->action_mutex);
7087 if (!(priv->status & STATUS_INITIALIZED)) {
7088 err = -EIO;
7089 goto done;
7092 rate = 0;
7094 if (target_rate == 1000000 ||
7095 (!wrqu->bitrate.fixed && target_rate > 1000000))
7096 rate |= TX_RATE_1_MBIT;
7097 if (target_rate == 2000000 ||
7098 (!wrqu->bitrate.fixed && target_rate > 2000000))
7099 rate |= TX_RATE_2_MBIT;
7100 if (target_rate == 5500000 ||
7101 (!wrqu->bitrate.fixed && target_rate > 5500000))
7102 rate |= TX_RATE_5_5_MBIT;
7103 if (target_rate == 11000000 ||
7104 (!wrqu->bitrate.fixed && target_rate > 11000000))
7105 rate |= TX_RATE_11_MBIT;
7106 if (rate == 0)
7107 rate = DEFAULT_TX_RATES;
7109 err = ipw2100_set_tx_rates(priv, rate, 0);
7111 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7112 done:
7113 mutex_unlock(&priv->action_mutex);
7114 return err;
7117 static int ipw2100_wx_get_rate(struct net_device *dev,
7118 struct iw_request_info *info,
7119 union iwreq_data *wrqu, char *extra)
7121 struct ipw2100_priv *priv = ieee80211_priv(dev);
7122 int val;
7123 int len = sizeof(val);
7124 int err = 0;
7126 if (!(priv->status & STATUS_ENABLED) ||
7127 priv->status & STATUS_RF_KILL_MASK ||
7128 !(priv->status & STATUS_ASSOCIATED)) {
7129 wrqu->bitrate.value = 0;
7130 return 0;
7133 mutex_lock(&priv->action_mutex);
7134 if (!(priv->status & STATUS_INITIALIZED)) {
7135 err = -EIO;
7136 goto done;
7139 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7140 if (err) {
7141 IPW_DEBUG_WX("failed querying ordinals.\n");
7142 return err;
7145 switch (val & TX_RATE_MASK) {
7146 case TX_RATE_1_MBIT:
7147 wrqu->bitrate.value = 1000000;
7148 break;
7149 case TX_RATE_2_MBIT:
7150 wrqu->bitrate.value = 2000000;
7151 break;
7152 case TX_RATE_5_5_MBIT:
7153 wrqu->bitrate.value = 5500000;
7154 break;
7155 case TX_RATE_11_MBIT:
7156 wrqu->bitrate.value = 11000000;
7157 break;
7158 default:
7159 wrqu->bitrate.value = 0;
7162 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7164 done:
7165 mutex_unlock(&priv->action_mutex);
7166 return err;
7169 static int ipw2100_wx_set_rts(struct net_device *dev,
7170 struct iw_request_info *info,
7171 union iwreq_data *wrqu, char *extra)
7173 struct ipw2100_priv *priv = ieee80211_priv(dev);
7174 int value, err;
7176 /* Auto RTS not yet supported */
7177 if (wrqu->rts.fixed == 0)
7178 return -EINVAL;
7180 mutex_lock(&priv->action_mutex);
7181 if (!(priv->status & STATUS_INITIALIZED)) {
7182 err = -EIO;
7183 goto done;
7186 if (wrqu->rts.disabled)
7187 value = priv->rts_threshold | RTS_DISABLED;
7188 else {
7189 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7190 err = -EINVAL;
7191 goto done;
7193 value = wrqu->rts.value;
7196 err = ipw2100_set_rts_threshold(priv, value);
7198 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7199 done:
7200 mutex_unlock(&priv->action_mutex);
7201 return err;
7204 static int ipw2100_wx_get_rts(struct net_device *dev,
7205 struct iw_request_info *info,
7206 union iwreq_data *wrqu, char *extra)
7209 * This can be called at any time. No action lock required
7212 struct ipw2100_priv *priv = ieee80211_priv(dev);
7214 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7215 wrqu->rts.fixed = 1; /* no auto select */
7217 /* If RTS is set to the default value, then it is disabled */
7218 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7220 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7222 return 0;
7225 static int ipw2100_wx_set_txpow(struct net_device *dev,
7226 struct iw_request_info *info,
7227 union iwreq_data *wrqu, char *extra)
7229 struct ipw2100_priv *priv = ieee80211_priv(dev);
7230 int err = 0, value;
7232 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7233 return -EINPROGRESS;
7235 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7236 return 0;
7238 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7239 return -EINVAL;
7241 if (wrqu->txpower.fixed == 0)
7242 value = IPW_TX_POWER_DEFAULT;
7243 else {
7244 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7245 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7246 return -EINVAL;
7248 value = wrqu->txpower.value;
7251 mutex_lock(&priv->action_mutex);
7252 if (!(priv->status & STATUS_INITIALIZED)) {
7253 err = -EIO;
7254 goto done;
7257 err = ipw2100_set_tx_power(priv, value);
7259 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7261 done:
7262 mutex_unlock(&priv->action_mutex);
7263 return err;
7266 static int ipw2100_wx_get_txpow(struct net_device *dev,
7267 struct iw_request_info *info,
7268 union iwreq_data *wrqu, char *extra)
7271 * This can be called at any time. No action lock required
7274 struct ipw2100_priv *priv = ieee80211_priv(dev);
7276 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7278 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7279 wrqu->txpower.fixed = 0;
7280 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7281 } else {
7282 wrqu->txpower.fixed = 1;
7283 wrqu->txpower.value = priv->tx_power;
7286 wrqu->txpower.flags = IW_TXPOW_DBM;
7288 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7290 return 0;
7293 static int ipw2100_wx_set_frag(struct net_device *dev,
7294 struct iw_request_info *info,
7295 union iwreq_data *wrqu, char *extra)
7298 * This can be called at any time. No action lock required
7301 struct ipw2100_priv *priv = ieee80211_priv(dev);
7303 if (!wrqu->frag.fixed)
7304 return -EINVAL;
7306 if (wrqu->frag.disabled) {
7307 priv->frag_threshold |= FRAG_DISABLED;
7308 priv->ieee->fts = DEFAULT_FTS;
7309 } else {
7310 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7311 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7312 return -EINVAL;
7314 priv->ieee->fts = wrqu->frag.value & ~0x1;
7315 priv->frag_threshold = priv->ieee->fts;
7318 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7320 return 0;
7323 static int ipw2100_wx_get_frag(struct net_device *dev,
7324 struct iw_request_info *info,
7325 union iwreq_data *wrqu, char *extra)
7328 * This can be called at any time. No action lock required
7331 struct ipw2100_priv *priv = ieee80211_priv(dev);
7332 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7333 wrqu->frag.fixed = 0; /* no auto select */
7334 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7336 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7338 return 0;
7341 static int ipw2100_wx_set_retry(struct net_device *dev,
7342 struct iw_request_info *info,
7343 union iwreq_data *wrqu, char *extra)
7345 struct ipw2100_priv *priv = ieee80211_priv(dev);
7346 int err = 0;
7348 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7349 return -EINVAL;
7351 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7352 return 0;
7354 mutex_lock(&priv->action_mutex);
7355 if (!(priv->status & STATUS_INITIALIZED)) {
7356 err = -EIO;
7357 goto done;
7360 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7361 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7362 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7363 wrqu->retry.value);
7364 goto done;
7367 if (wrqu->retry.flags & IW_RETRY_LONG) {
7368 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7369 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7370 wrqu->retry.value);
7371 goto done;
7374 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7375 if (!err)
7376 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7378 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7380 done:
7381 mutex_unlock(&priv->action_mutex);
7382 return err;
7385 static int ipw2100_wx_get_retry(struct net_device *dev,
7386 struct iw_request_info *info,
7387 union iwreq_data *wrqu, char *extra)
7390 * This can be called at any time. No action lock required
7393 struct ipw2100_priv *priv = ieee80211_priv(dev);
7395 wrqu->retry.disabled = 0; /* can't be disabled */
7397 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7398 return -EINVAL;
7400 if (wrqu->retry.flags & IW_RETRY_LONG) {
7401 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7402 wrqu->retry.value = priv->long_retry_limit;
7403 } else {
7404 wrqu->retry.flags =
7405 (priv->short_retry_limit !=
7406 priv->long_retry_limit) ?
7407 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7409 wrqu->retry.value = priv->short_retry_limit;
7412 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7414 return 0;
7417 static int ipw2100_wx_set_scan(struct net_device *dev,
7418 struct iw_request_info *info,
7419 union iwreq_data *wrqu, char *extra)
7421 struct ipw2100_priv *priv = ieee80211_priv(dev);
7422 int err = 0;
7424 mutex_lock(&priv->action_mutex);
7425 if (!(priv->status & STATUS_INITIALIZED)) {
7426 err = -EIO;
7427 goto done;
7430 IPW_DEBUG_WX("Initiating scan...\n");
7431 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7432 IPW_DEBUG_WX("Start scan failed.\n");
7434 /* TODO: Mark a scan as pending so when hardware initialized
7435 * a scan starts */
7438 done:
7439 mutex_unlock(&priv->action_mutex);
7440 return err;
7443 static int ipw2100_wx_get_scan(struct net_device *dev,
7444 struct iw_request_info *info,
7445 union iwreq_data *wrqu, char *extra)
7448 * This can be called at any time. No action lock required
7451 struct ipw2100_priv *priv = ieee80211_priv(dev);
7452 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7456 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7458 static int ipw2100_wx_set_encode(struct net_device *dev,
7459 struct iw_request_info *info,
7460 union iwreq_data *wrqu, char *key)
7463 * No check of STATUS_INITIALIZED required
7466 struct ipw2100_priv *priv = ieee80211_priv(dev);
7467 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7470 static int ipw2100_wx_get_encode(struct net_device *dev,
7471 struct iw_request_info *info,
7472 union iwreq_data *wrqu, char *key)
7475 * This can be called at any time. No action lock required
7478 struct ipw2100_priv *priv = ieee80211_priv(dev);
7479 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7482 static int ipw2100_wx_set_power(struct net_device *dev,
7483 struct iw_request_info *info,
7484 union iwreq_data *wrqu, char *extra)
7486 struct ipw2100_priv *priv = ieee80211_priv(dev);
7487 int err = 0;
7489 mutex_lock(&priv->action_mutex);
7490 if (!(priv->status & STATUS_INITIALIZED)) {
7491 err = -EIO;
7492 goto done;
7495 if (wrqu->power.disabled) {
7496 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7497 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7498 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7499 goto done;
7502 switch (wrqu->power.flags & IW_POWER_MODE) {
7503 case IW_POWER_ON: /* If not specified */
7504 case IW_POWER_MODE: /* If set all mask */
7505 case IW_POWER_ALL_R: /* If explicitely state all */
7506 break;
7507 default: /* Otherwise we don't support it */
7508 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7509 wrqu->power.flags);
7510 err = -EOPNOTSUPP;
7511 goto done;
7514 /* If the user hasn't specified a power management mode yet, default
7515 * to BATTERY */
7516 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7517 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7519 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7521 done:
7522 mutex_unlock(&priv->action_mutex);
7523 return err;
7527 static int ipw2100_wx_get_power(struct net_device *dev,
7528 struct iw_request_info *info,
7529 union iwreq_data *wrqu, char *extra)
7532 * This can be called at any time. No action lock required
7535 struct ipw2100_priv *priv = ieee80211_priv(dev);
7537 if (!(priv->power_mode & IPW_POWER_ENABLED))
7538 wrqu->power.disabled = 1;
7539 else {
7540 wrqu->power.disabled = 0;
7541 wrqu->power.flags = 0;
7544 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7546 return 0;
7550 * WE-18 WPA support
7553 /* SIOCSIWGENIE */
7554 static int ipw2100_wx_set_genie(struct net_device *dev,
7555 struct iw_request_info *info,
7556 union iwreq_data *wrqu, char *extra)
7559 struct ipw2100_priv *priv = ieee80211_priv(dev);
7560 struct ieee80211_device *ieee = priv->ieee;
7561 u8 *buf;
7563 if (!ieee->wpa_enabled)
7564 return -EOPNOTSUPP;
7566 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7567 (wrqu->data.length && extra == NULL))
7568 return -EINVAL;
7570 if (wrqu->data.length) {
7571 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7572 if (buf == NULL)
7573 return -ENOMEM;
7575 memcpy(buf, extra, wrqu->data.length);
7576 kfree(ieee->wpa_ie);
7577 ieee->wpa_ie = buf;
7578 ieee->wpa_ie_len = wrqu->data.length;
7579 } else {
7580 kfree(ieee->wpa_ie);
7581 ieee->wpa_ie = NULL;
7582 ieee->wpa_ie_len = 0;
7585 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7587 return 0;
7590 /* SIOCGIWGENIE */
7591 static int ipw2100_wx_get_genie(struct net_device *dev,
7592 struct iw_request_info *info,
7593 union iwreq_data *wrqu, char *extra)
7595 struct ipw2100_priv *priv = ieee80211_priv(dev);
7596 struct ieee80211_device *ieee = priv->ieee;
7598 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7599 wrqu->data.length = 0;
7600 return 0;
7603 if (wrqu->data.length < ieee->wpa_ie_len)
7604 return -E2BIG;
7606 wrqu->data.length = ieee->wpa_ie_len;
7607 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7609 return 0;
7612 /* SIOCSIWAUTH */
7613 static int ipw2100_wx_set_auth(struct net_device *dev,
7614 struct iw_request_info *info,
7615 union iwreq_data *wrqu, char *extra)
7617 struct ipw2100_priv *priv = ieee80211_priv(dev);
7618 struct ieee80211_device *ieee = priv->ieee;
7619 struct iw_param *param = &wrqu->param;
7620 struct ieee80211_crypt_data *crypt;
7621 unsigned long flags;
7622 int ret = 0;
7624 switch (param->flags & IW_AUTH_INDEX) {
7625 case IW_AUTH_WPA_VERSION:
7626 case IW_AUTH_CIPHER_PAIRWISE:
7627 case IW_AUTH_CIPHER_GROUP:
7628 case IW_AUTH_KEY_MGMT:
7630 * ipw2200 does not use these parameters
7632 break;
7634 case IW_AUTH_TKIP_COUNTERMEASURES:
7635 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7636 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7637 break;
7639 flags = crypt->ops->get_flags(crypt->priv);
7641 if (param->value)
7642 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7643 else
7644 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7646 crypt->ops->set_flags(flags, crypt->priv);
7648 break;
7650 case IW_AUTH_DROP_UNENCRYPTED:{
7651 /* HACK:
7653 * wpa_supplicant calls set_wpa_enabled when the driver
7654 * is loaded and unloaded, regardless of if WPA is being
7655 * used. No other calls are made which can be used to
7656 * determine if encryption will be used or not prior to
7657 * association being expected. If encryption is not being
7658 * used, drop_unencrypted is set to false, else true -- we
7659 * can use this to determine if the CAP_PRIVACY_ON bit should
7660 * be set.
7662 struct ieee80211_security sec = {
7663 .flags = SEC_ENABLED,
7664 .enabled = param->value,
7666 priv->ieee->drop_unencrypted = param->value;
7667 /* We only change SEC_LEVEL for open mode. Others
7668 * are set by ipw_wpa_set_encryption.
7670 if (!param->value) {
7671 sec.flags |= SEC_LEVEL;
7672 sec.level = SEC_LEVEL_0;
7673 } else {
7674 sec.flags |= SEC_LEVEL;
7675 sec.level = SEC_LEVEL_1;
7677 if (priv->ieee->set_security)
7678 priv->ieee->set_security(priv->ieee->dev, &sec);
7679 break;
7682 case IW_AUTH_80211_AUTH_ALG:
7683 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7684 break;
7686 case IW_AUTH_WPA_ENABLED:
7687 ret = ipw2100_wpa_enable(priv, param->value);
7688 break;
7690 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7691 ieee->ieee802_1x = param->value;
7692 break;
7694 //case IW_AUTH_ROAMING_CONTROL:
7695 case IW_AUTH_PRIVACY_INVOKED:
7696 ieee->privacy_invoked = param->value;
7697 break;
7699 default:
7700 return -EOPNOTSUPP;
7702 return ret;
7705 /* SIOCGIWAUTH */
7706 static int ipw2100_wx_get_auth(struct net_device *dev,
7707 struct iw_request_info *info,
7708 union iwreq_data *wrqu, char *extra)
7710 struct ipw2100_priv *priv = ieee80211_priv(dev);
7711 struct ieee80211_device *ieee = priv->ieee;
7712 struct ieee80211_crypt_data *crypt;
7713 struct iw_param *param = &wrqu->param;
7714 int ret = 0;
7716 switch (param->flags & IW_AUTH_INDEX) {
7717 case IW_AUTH_WPA_VERSION:
7718 case IW_AUTH_CIPHER_PAIRWISE:
7719 case IW_AUTH_CIPHER_GROUP:
7720 case IW_AUTH_KEY_MGMT:
7722 * wpa_supplicant will control these internally
7724 ret = -EOPNOTSUPP;
7725 break;
7727 case IW_AUTH_TKIP_COUNTERMEASURES:
7728 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7729 if (!crypt || !crypt->ops->get_flags) {
7730 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7731 "crypt not set!\n");
7732 break;
7735 param->value = (crypt->ops->get_flags(crypt->priv) &
7736 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7738 break;
7740 case IW_AUTH_DROP_UNENCRYPTED:
7741 param->value = ieee->drop_unencrypted;
7742 break;
7744 case IW_AUTH_80211_AUTH_ALG:
7745 param->value = priv->ieee->sec.auth_mode;
7746 break;
7748 case IW_AUTH_WPA_ENABLED:
7749 param->value = ieee->wpa_enabled;
7750 break;
7752 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7753 param->value = ieee->ieee802_1x;
7754 break;
7756 case IW_AUTH_ROAMING_CONTROL:
7757 case IW_AUTH_PRIVACY_INVOKED:
7758 param->value = ieee->privacy_invoked;
7759 break;
7761 default:
7762 return -EOPNOTSUPP;
7764 return 0;
7767 /* SIOCSIWENCODEEXT */
7768 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7769 struct iw_request_info *info,
7770 union iwreq_data *wrqu, char *extra)
7772 struct ipw2100_priv *priv = ieee80211_priv(dev);
7773 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7776 /* SIOCGIWENCODEEXT */
7777 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7778 struct iw_request_info *info,
7779 union iwreq_data *wrqu, char *extra)
7781 struct ipw2100_priv *priv = ieee80211_priv(dev);
7782 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7785 /* SIOCSIWMLME */
7786 static int ipw2100_wx_set_mlme(struct net_device *dev,
7787 struct iw_request_info *info,
7788 union iwreq_data *wrqu, char *extra)
7790 struct ipw2100_priv *priv = ieee80211_priv(dev);
7791 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7792 u16 reason;
7794 reason = cpu_to_le16(mlme->reason_code);
7796 switch (mlme->cmd) {
7797 case IW_MLME_DEAUTH:
7798 // silently ignore
7799 break;
7801 case IW_MLME_DISASSOC:
7802 ipw2100_disassociate_bssid(priv);
7803 break;
7805 default:
7806 return -EOPNOTSUPP;
7808 return 0;
7813 * IWPRIV handlers
7816 #ifdef CONFIG_IPW2100_MONITOR
7817 static int ipw2100_wx_set_promisc(struct net_device *dev,
7818 struct iw_request_info *info,
7819 union iwreq_data *wrqu, char *extra)
7821 struct ipw2100_priv *priv = ieee80211_priv(dev);
7822 int *parms = (int *)extra;
7823 int enable = (parms[0] > 0);
7824 int err = 0;
7826 mutex_lock(&priv->action_mutex);
7827 if (!(priv->status & STATUS_INITIALIZED)) {
7828 err = -EIO;
7829 goto done;
7832 if (enable) {
7833 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7834 err = ipw2100_set_channel(priv, parms[1], 0);
7835 goto done;
7837 priv->channel = parms[1];
7838 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7839 } else {
7840 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7841 err = ipw2100_switch_mode(priv, priv->last_mode);
7843 done:
7844 mutex_unlock(&priv->action_mutex);
7845 return err;
7848 static int ipw2100_wx_reset(struct net_device *dev,
7849 struct iw_request_info *info,
7850 union iwreq_data *wrqu, char *extra)
7852 struct ipw2100_priv *priv = ieee80211_priv(dev);
7853 if (priv->status & STATUS_INITIALIZED)
7854 schedule_reset(priv);
7855 return 0;
7858 #endif
7860 static int ipw2100_wx_set_powermode(struct net_device *dev,
7861 struct iw_request_info *info,
7862 union iwreq_data *wrqu, char *extra)
7864 struct ipw2100_priv *priv = ieee80211_priv(dev);
7865 int err = 0, mode = *(int *)extra;
7867 mutex_lock(&priv->action_mutex);
7868 if (!(priv->status & STATUS_INITIALIZED)) {
7869 err = -EIO;
7870 goto done;
7873 if ((mode < 1) || (mode > POWER_MODES))
7874 mode = IPW_POWER_AUTO;
7876 if (priv->power_mode != mode)
7877 err = ipw2100_set_power_mode(priv, mode);
7878 done:
7879 mutex_unlock(&priv->action_mutex);
7880 return err;
7883 #define MAX_POWER_STRING 80
7884 static int ipw2100_wx_get_powermode(struct net_device *dev,
7885 struct iw_request_info *info,
7886 union iwreq_data *wrqu, char *extra)
7889 * This can be called at any time. No action lock required
7892 struct ipw2100_priv *priv = ieee80211_priv(dev);
7893 int level = IPW_POWER_LEVEL(priv->power_mode);
7894 s32 timeout, period;
7896 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7897 snprintf(extra, MAX_POWER_STRING,
7898 "Power save level: %d (Off)", level);
7899 } else {
7900 switch (level) {
7901 case IPW_POWER_MODE_CAM:
7902 snprintf(extra, MAX_POWER_STRING,
7903 "Power save level: %d (None)", level);
7904 break;
7905 case IPW_POWER_AUTO:
7906 snprintf(extra, MAX_POWER_STRING,
7907 "Power save level: %d (Auto)", 0);
7908 break;
7909 default:
7910 timeout = timeout_duration[level - 1] / 1000;
7911 period = period_duration[level - 1] / 1000;
7912 snprintf(extra, MAX_POWER_STRING,
7913 "Power save level: %d "
7914 "(Timeout %dms, Period %dms)",
7915 level, timeout, period);
7919 wrqu->data.length = strlen(extra) + 1;
7921 return 0;
7924 static int ipw2100_wx_set_preamble(struct net_device *dev,
7925 struct iw_request_info *info,
7926 union iwreq_data *wrqu, char *extra)
7928 struct ipw2100_priv *priv = ieee80211_priv(dev);
7929 int err, mode = *(int *)extra;
7931 mutex_lock(&priv->action_mutex);
7932 if (!(priv->status & STATUS_INITIALIZED)) {
7933 err = -EIO;
7934 goto done;
7937 if (mode == 1)
7938 priv->config |= CFG_LONG_PREAMBLE;
7939 else if (mode == 0)
7940 priv->config &= ~CFG_LONG_PREAMBLE;
7941 else {
7942 err = -EINVAL;
7943 goto done;
7946 err = ipw2100_system_config(priv, 0);
7948 done:
7949 mutex_unlock(&priv->action_mutex);
7950 return err;
7953 static int ipw2100_wx_get_preamble(struct net_device *dev,
7954 struct iw_request_info *info,
7955 union iwreq_data *wrqu, char *extra)
7958 * This can be called at any time. No action lock required
7961 struct ipw2100_priv *priv = ieee80211_priv(dev);
7963 if (priv->config & CFG_LONG_PREAMBLE)
7964 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7965 else
7966 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7968 return 0;
7971 #ifdef CONFIG_IPW2100_MONITOR
7972 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7973 struct iw_request_info *info,
7974 union iwreq_data *wrqu, char *extra)
7976 struct ipw2100_priv *priv = ieee80211_priv(dev);
7977 int err, mode = *(int *)extra;
7979 mutex_lock(&priv->action_mutex);
7980 if (!(priv->status & STATUS_INITIALIZED)) {
7981 err = -EIO;
7982 goto done;
7985 if (mode == 1)
7986 priv->config |= CFG_CRC_CHECK;
7987 else if (mode == 0)
7988 priv->config &= ~CFG_CRC_CHECK;
7989 else {
7990 err = -EINVAL;
7991 goto done;
7993 err = 0;
7995 done:
7996 mutex_unlock(&priv->action_mutex);
7997 return err;
8000 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8001 struct iw_request_info *info,
8002 union iwreq_data *wrqu, char *extra)
8005 * This can be called at any time. No action lock required
8008 struct ipw2100_priv *priv = ieee80211_priv(dev);
8010 if (priv->config & CFG_CRC_CHECK)
8011 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8012 else
8013 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8015 return 0;
8017 #endif /* CONFIG_IPW2100_MONITOR */
8019 static iw_handler ipw2100_wx_handlers[] = {
8020 NULL, /* SIOCSIWCOMMIT */
8021 ipw2100_wx_get_name, /* SIOCGIWNAME */
8022 NULL, /* SIOCSIWNWID */
8023 NULL, /* SIOCGIWNWID */
8024 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8025 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8026 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8027 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8028 NULL, /* SIOCSIWSENS */
8029 NULL, /* SIOCGIWSENS */
8030 NULL, /* SIOCSIWRANGE */
8031 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8032 NULL, /* SIOCSIWPRIV */
8033 NULL, /* SIOCGIWPRIV */
8034 NULL, /* SIOCSIWSTATS */
8035 NULL, /* SIOCGIWSTATS */
8036 NULL, /* SIOCSIWSPY */
8037 NULL, /* SIOCGIWSPY */
8038 NULL, /* SIOCGIWTHRSPY */
8039 NULL, /* SIOCWIWTHRSPY */
8040 ipw2100_wx_set_wap, /* SIOCSIWAP */
8041 ipw2100_wx_get_wap, /* SIOCGIWAP */
8042 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8043 NULL, /* SIOCGIWAPLIST -- deprecated */
8044 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8045 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8046 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8047 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8048 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8049 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8050 NULL, /* -- hole -- */
8051 NULL, /* -- hole -- */
8052 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8053 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8054 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8055 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8056 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8057 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8058 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8059 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8060 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8061 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8062 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8063 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8064 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8065 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8066 NULL, /* -- hole -- */
8067 NULL, /* -- hole -- */
8068 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8069 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8070 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8071 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8072 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8073 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8074 NULL, /* SIOCSIWPMKSA */
8077 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8078 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8079 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8080 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8081 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8082 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8083 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8084 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8086 static const struct iw_priv_args ipw2100_private_args[] = {
8088 #ifdef CONFIG_IPW2100_MONITOR
8090 IPW2100_PRIV_SET_MONITOR,
8091 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8093 IPW2100_PRIV_RESET,
8094 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8095 #endif /* CONFIG_IPW2100_MONITOR */
8098 IPW2100_PRIV_SET_POWER,
8099 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8101 IPW2100_PRIV_GET_POWER,
8102 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8103 "get_power"},
8105 IPW2100_PRIV_SET_LONGPREAMBLE,
8106 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8108 IPW2100_PRIV_GET_LONGPREAMBLE,
8109 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8110 #ifdef CONFIG_IPW2100_MONITOR
8112 IPW2100_PRIV_SET_CRC_CHECK,
8113 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8115 IPW2100_PRIV_GET_CRC_CHECK,
8116 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8117 #endif /* CONFIG_IPW2100_MONITOR */
8120 static iw_handler ipw2100_private_handler[] = {
8121 #ifdef CONFIG_IPW2100_MONITOR
8122 ipw2100_wx_set_promisc,
8123 ipw2100_wx_reset,
8124 #else /* CONFIG_IPW2100_MONITOR */
8125 NULL,
8126 NULL,
8127 #endif /* CONFIG_IPW2100_MONITOR */
8128 ipw2100_wx_set_powermode,
8129 ipw2100_wx_get_powermode,
8130 ipw2100_wx_set_preamble,
8131 ipw2100_wx_get_preamble,
8132 #ifdef CONFIG_IPW2100_MONITOR
8133 ipw2100_wx_set_crc_check,
8134 ipw2100_wx_get_crc_check,
8135 #else /* CONFIG_IPW2100_MONITOR */
8136 NULL,
8137 NULL,
8138 #endif /* CONFIG_IPW2100_MONITOR */
8142 * Get wireless statistics.
8143 * Called by /proc/net/wireless
8144 * Also called by SIOCGIWSTATS
8146 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8148 enum {
8149 POOR = 30,
8150 FAIR = 60,
8151 GOOD = 80,
8152 VERY_GOOD = 90,
8153 EXCELLENT = 95,
8154 PERFECT = 100
8156 int rssi_qual;
8157 int tx_qual;
8158 int beacon_qual;
8160 struct ipw2100_priv *priv = ieee80211_priv(dev);
8161 struct iw_statistics *wstats;
8162 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8163 u32 ord_len = sizeof(u32);
8165 if (!priv)
8166 return (struct iw_statistics *)NULL;
8168 wstats = &priv->wstats;
8170 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8171 * ipw2100_wx_wireless_stats seems to be called before fw is
8172 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8173 * and associated; if not associcated, the values are all meaningless
8174 * anyway, so set them all to NULL and INVALID */
8175 if (!(priv->status & STATUS_ASSOCIATED)) {
8176 wstats->miss.beacon = 0;
8177 wstats->discard.retries = 0;
8178 wstats->qual.qual = 0;
8179 wstats->qual.level = 0;
8180 wstats->qual.noise = 0;
8181 wstats->qual.updated = 7;
8182 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8183 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8184 return wstats;
8187 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8188 &missed_beacons, &ord_len))
8189 goto fail_get_ordinal;
8191 /* If we don't have a connection the quality and level is 0 */
8192 if (!(priv->status & STATUS_ASSOCIATED)) {
8193 wstats->qual.qual = 0;
8194 wstats->qual.level = 0;
8195 } else {
8196 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8197 &rssi, &ord_len))
8198 goto fail_get_ordinal;
8199 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8200 if (rssi < 10)
8201 rssi_qual = rssi * POOR / 10;
8202 else if (rssi < 15)
8203 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8204 else if (rssi < 20)
8205 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8206 else if (rssi < 30)
8207 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8208 10 + GOOD;
8209 else
8210 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8211 10 + VERY_GOOD;
8213 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8214 &tx_retries, &ord_len))
8215 goto fail_get_ordinal;
8217 if (tx_retries > 75)
8218 tx_qual = (90 - tx_retries) * POOR / 15;
8219 else if (tx_retries > 70)
8220 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8221 else if (tx_retries > 65)
8222 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8223 else if (tx_retries > 50)
8224 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8225 15 + GOOD;
8226 else
8227 tx_qual = (50 - tx_retries) *
8228 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8230 if (missed_beacons > 50)
8231 beacon_qual = (60 - missed_beacons) * POOR / 10;
8232 else if (missed_beacons > 40)
8233 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8234 10 + POOR;
8235 else if (missed_beacons > 32)
8236 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8237 18 + FAIR;
8238 else if (missed_beacons > 20)
8239 beacon_qual = (32 - missed_beacons) *
8240 (VERY_GOOD - GOOD) / 20 + GOOD;
8241 else
8242 beacon_qual = (20 - missed_beacons) *
8243 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8245 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8247 #ifdef CONFIG_IPW2100_DEBUG
8248 if (beacon_qual == quality)
8249 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8250 else if (tx_qual == quality)
8251 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8252 else if (quality != 100)
8253 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8254 else
8255 IPW_DEBUG_WX("Quality not clamped.\n");
8256 #endif
8258 wstats->qual.qual = quality;
8259 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8262 wstats->qual.noise = 0;
8263 wstats->qual.updated = 7;
8264 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8266 /* FIXME: this is percent and not a # */
8267 wstats->miss.beacon = missed_beacons;
8269 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8270 &tx_failures, &ord_len))
8271 goto fail_get_ordinal;
8272 wstats->discard.retries = tx_failures;
8274 return wstats;
8276 fail_get_ordinal:
8277 IPW_DEBUG_WX("failed querying ordinals.\n");
8279 return (struct iw_statistics *)NULL;
8282 static struct iw_handler_def ipw2100_wx_handler_def = {
8283 .standard = ipw2100_wx_handlers,
8284 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8285 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8286 .num_private_args = sizeof(ipw2100_private_args) /
8287 sizeof(struct iw_priv_args),
8288 .private = (iw_handler *) ipw2100_private_handler,
8289 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8290 .get_wireless_stats = ipw2100_wx_wireless_stats,
8293 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8295 union iwreq_data wrqu;
8296 int len = ETH_ALEN;
8298 if (priv->status & STATUS_STOPPING)
8299 return;
8301 mutex_lock(&priv->action_mutex);
8303 IPW_DEBUG_WX("enter\n");
8305 mutex_unlock(&priv->action_mutex);
8307 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8309 /* Fetch BSSID from the hardware */
8310 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8311 priv->status & STATUS_RF_KILL_MASK ||
8312 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8313 &priv->bssid, &len)) {
8314 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8315 } else {
8316 /* We now have the BSSID, so can finish setting to the full
8317 * associated state */
8318 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8319 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8320 priv->status &= ~STATUS_ASSOCIATING;
8321 priv->status |= STATUS_ASSOCIATED;
8322 netif_carrier_on(priv->net_dev);
8323 netif_wake_queue(priv->net_dev);
8326 if (!(priv->status & STATUS_ASSOCIATED)) {
8327 IPW_DEBUG_WX("Configuring ESSID\n");
8328 mutex_lock(&priv->action_mutex);
8329 /* This is a disassociation event, so kick the firmware to
8330 * look for another AP */
8331 if (priv->config & CFG_STATIC_ESSID)
8332 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8334 else
8335 ipw2100_set_essid(priv, NULL, 0, 0);
8336 mutex_unlock(&priv->action_mutex);
8339 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8342 #define IPW2100_FW_MAJOR_VERSION 1
8343 #define IPW2100_FW_MINOR_VERSION 3
8345 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8346 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8348 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8349 IPW2100_FW_MAJOR_VERSION)
8351 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8352 "." __stringify(IPW2100_FW_MINOR_VERSION)
8354 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8358 BINARY FIRMWARE HEADER FORMAT
8360 offset length desc
8361 0 2 version
8362 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8363 4 4 fw_len
8364 8 4 uc_len
8365 C fw_len firmware data
8366 12 + fw_len uc_len microcode data
8370 struct ipw2100_fw_header {
8371 short version;
8372 short mode;
8373 unsigned int fw_size;
8374 unsigned int uc_size;
8375 } __attribute__ ((packed));
8377 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8379 struct ipw2100_fw_header *h =
8380 (struct ipw2100_fw_header *)fw->fw_entry->data;
8382 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8383 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8384 "(detected version id of %u). "
8385 "See Documentation/networking/README.ipw2100\n",
8386 h->version);
8387 return 1;
8390 fw->version = h->version;
8391 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8392 fw->fw.size = h->fw_size;
8393 fw->uc.data = fw->fw.data + h->fw_size;
8394 fw->uc.size = h->uc_size;
8396 return 0;
8399 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8400 struct ipw2100_fw *fw)
8402 char *fw_name;
8403 int rc;
8405 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8406 priv->net_dev->name);
8408 switch (priv->ieee->iw_mode) {
8409 case IW_MODE_ADHOC:
8410 fw_name = IPW2100_FW_NAME("-i");
8411 break;
8412 #ifdef CONFIG_IPW2100_MONITOR
8413 case IW_MODE_MONITOR:
8414 fw_name = IPW2100_FW_NAME("-p");
8415 break;
8416 #endif
8417 case IW_MODE_INFRA:
8418 default:
8419 fw_name = IPW2100_FW_NAME("");
8420 break;
8423 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8425 if (rc < 0) {
8426 printk(KERN_ERR DRV_NAME ": "
8427 "%s: Firmware '%s' not available or load failed.\n",
8428 priv->net_dev->name, fw_name);
8429 return rc;
8431 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8432 fw->fw_entry->size);
8434 ipw2100_mod_firmware_load(fw);
8436 return 0;
8439 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8440 struct ipw2100_fw *fw)
8442 fw->version = 0;
8443 if (fw->fw_entry)
8444 release_firmware(fw->fw_entry);
8445 fw->fw_entry = NULL;
8448 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8449 size_t max)
8451 char ver[MAX_FW_VERSION_LEN];
8452 u32 len = MAX_FW_VERSION_LEN;
8453 u32 tmp;
8454 int i;
8455 /* firmware version is an ascii string (max len of 14) */
8456 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8457 return -EIO;
8458 tmp = max;
8459 if (len >= max)
8460 len = max - 1;
8461 for (i = 0; i < len; i++)
8462 buf[i] = ver[i];
8463 buf[i] = '\0';
8464 return tmp;
8467 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8468 size_t max)
8470 u32 ver;
8471 u32 len = sizeof(ver);
8472 /* microcode version is a 32 bit integer */
8473 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8474 return -EIO;
8475 return snprintf(buf, max, "%08X", ver);
8479 * On exit, the firmware will have been freed from the fw list
8481 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8483 /* firmware is constructed of N contiguous entries, each entry is
8484 * structured as:
8486 * offset sie desc
8487 * 0 4 address to write to
8488 * 4 2 length of data run
8489 * 6 length data
8491 unsigned int addr;
8492 unsigned short len;
8494 const unsigned char *firmware_data = fw->fw.data;
8495 unsigned int firmware_data_left = fw->fw.size;
8497 while (firmware_data_left > 0) {
8498 addr = *(u32 *) (firmware_data);
8499 firmware_data += 4;
8500 firmware_data_left -= 4;
8502 len = *(u16 *) (firmware_data);
8503 firmware_data += 2;
8504 firmware_data_left -= 2;
8506 if (len > 32) {
8507 printk(KERN_ERR DRV_NAME ": "
8508 "Invalid firmware run-length of %d bytes\n",
8509 len);
8510 return -EINVAL;
8513 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8514 firmware_data += len;
8515 firmware_data_left -= len;
8518 return 0;
8521 struct symbol_alive_response {
8522 u8 cmd_id;
8523 u8 seq_num;
8524 u8 ucode_rev;
8525 u8 eeprom_valid;
8526 u16 valid_flags;
8527 u8 IEEE_addr[6];
8528 u16 flags;
8529 u16 pcb_rev;
8530 u16 clock_settle_time; // 1us LSB
8531 u16 powerup_settle_time; // 1us LSB
8532 u16 hop_settle_time; // 1us LSB
8533 u8 date[3]; // month, day, year
8534 u8 time[2]; // hours, minutes
8535 u8 ucode_valid;
8538 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8539 struct ipw2100_fw *fw)
8541 struct net_device *dev = priv->net_dev;
8542 const unsigned char *microcode_data = fw->uc.data;
8543 unsigned int microcode_data_left = fw->uc.size;
8544 void __iomem *reg = (void __iomem *)dev->base_addr;
8546 struct symbol_alive_response response;
8547 int i, j;
8548 u8 data;
8550 /* Symbol control */
8551 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8552 readl(reg);
8553 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8554 readl(reg);
8556 /* HW config */
8557 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8558 readl(reg);
8559 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8560 readl(reg);
8562 /* EN_CS_ACCESS bit to reset control store pointer */
8563 write_nic_byte(dev, 0x210000, 0x40);
8564 readl(reg);
8565 write_nic_byte(dev, 0x210000, 0x0);
8566 readl(reg);
8567 write_nic_byte(dev, 0x210000, 0x40);
8568 readl(reg);
8570 /* copy microcode from buffer into Symbol */
8572 while (microcode_data_left > 0) {
8573 write_nic_byte(dev, 0x210010, *microcode_data++);
8574 write_nic_byte(dev, 0x210010, *microcode_data++);
8575 microcode_data_left -= 2;
8578 /* EN_CS_ACCESS bit to reset the control store pointer */
8579 write_nic_byte(dev, 0x210000, 0x0);
8580 readl(reg);
8582 /* Enable System (Reg 0)
8583 * first enable causes garbage in RX FIFO */
8584 write_nic_byte(dev, 0x210000, 0x0);
8585 readl(reg);
8586 write_nic_byte(dev, 0x210000, 0x80);
8587 readl(reg);
8589 /* Reset External Baseband Reg */
8590 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8591 readl(reg);
8592 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8593 readl(reg);
8595 /* HW Config (Reg 5) */
8596 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8597 readl(reg);
8598 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8599 readl(reg);
8601 /* Enable System (Reg 0)
8602 * second enable should be OK */
8603 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8604 readl(reg);
8605 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8607 /* check Symbol is enabled - upped this from 5 as it wasn't always
8608 * catching the update */
8609 for (i = 0; i < 10; i++) {
8610 udelay(10);
8612 /* check Dino is enabled bit */
8613 read_nic_byte(dev, 0x210000, &data);
8614 if (data & 0x1)
8615 break;
8618 if (i == 10) {
8619 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8620 dev->name);
8621 return -EIO;
8624 /* Get Symbol alive response */
8625 for (i = 0; i < 30; i++) {
8626 /* Read alive response structure */
8627 for (j = 0;
8628 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8629 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8631 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8632 break;
8633 udelay(10);
8636 if (i == 30) {
8637 printk(KERN_ERR DRV_NAME
8638 ": %s: No response from Symbol - hw not alive\n",
8639 dev->name);
8640 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8641 return -EIO;
8644 return 0;