sparc64: Add global register dumping facility.
[linux-2.6/openmoko-kernel/knife-kernel.git] / arch / sparc64 / kernel / smp.c
blobfa63c68a181941736a7809553d41538a1c5ab074
1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/lmb.h>
25 #include <asm/head.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31 #include <asm/hvtramp.h>
32 #include <asm/io.h>
33 #include <asm/timer.h>
35 #include <asm/irq.h>
36 #include <asm/irq_regs.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/oplib.h>
40 #include <asm/uaccess.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/sections.h>
44 #include <asm/prom.h>
45 #include <asm/mdesc.h>
46 #include <asm/ldc.h>
47 #include <asm/hypervisor.h>
49 int sparc64_multi_core __read_mostly;
51 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
52 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
53 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
54 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
55 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
57 EXPORT_SYMBOL(cpu_possible_map);
58 EXPORT_SYMBOL(cpu_online_map);
59 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
60 EXPORT_SYMBOL(cpu_core_map);
62 static cpumask_t smp_commenced_mask;
64 void smp_info(struct seq_file *m)
66 int i;
68 seq_printf(m, "State:\n");
69 for_each_online_cpu(i)
70 seq_printf(m, "CPU%d:\t\tonline\n", i);
73 void smp_bogo(struct seq_file *m)
75 int i;
77 for_each_online_cpu(i)
78 seq_printf(m,
79 "Cpu%dClkTck\t: %016lx\n",
80 i, cpu_data(i).clock_tick);
83 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
85 extern void setup_sparc64_timer(void);
87 static volatile unsigned long callin_flag = 0;
89 void __cpuinit smp_callin(void)
91 int cpuid = hard_smp_processor_id();
93 __local_per_cpu_offset = __per_cpu_offset(cpuid);
95 if (tlb_type == hypervisor)
96 sun4v_ktsb_register();
98 __flush_tlb_all();
100 setup_sparc64_timer();
102 if (cheetah_pcache_forced_on)
103 cheetah_enable_pcache();
105 local_irq_enable();
107 callin_flag = 1;
108 __asm__ __volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
114 current_thread_info()->new_child = 0;
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm.mm_count);
118 current->active_mm = &init_mm;
120 while (!cpu_isset(cpuid, smp_commenced_mask))
121 rmb();
123 spin_lock(&call_lock);
124 cpu_set(cpuid, cpu_online_map);
125 spin_unlock(&call_lock);
127 /* idle thread is expected to have preempt disabled */
128 preempt_disable();
131 void cpu_panic(void)
133 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
134 panic("SMP bolixed\n");
137 /* This tick register synchronization scheme is taken entirely from
138 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
140 * The only change I've made is to rework it so that the master
141 * initiates the synchonization instead of the slave. -DaveM
144 #define MASTER 0
145 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
147 #define NUM_ROUNDS 64 /* magic value */
148 #define NUM_ITERS 5 /* likewise */
150 static DEFINE_SPINLOCK(itc_sync_lock);
151 static unsigned long go[SLAVE + 1];
153 #define DEBUG_TICK_SYNC 0
155 static inline long get_delta (long *rt, long *master)
157 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
158 unsigned long tcenter, t0, t1, tm;
159 unsigned long i;
161 for (i = 0; i < NUM_ITERS; i++) {
162 t0 = tick_ops->get_tick();
163 go[MASTER] = 1;
164 membar_storeload();
165 while (!(tm = go[SLAVE]))
166 rmb();
167 go[SLAVE] = 0;
168 wmb();
169 t1 = tick_ops->get_tick();
171 if (t1 - t0 < best_t1 - best_t0)
172 best_t0 = t0, best_t1 = t1, best_tm = tm;
175 *rt = best_t1 - best_t0;
176 *master = best_tm - best_t0;
178 /* average best_t0 and best_t1 without overflow: */
179 tcenter = (best_t0/2 + best_t1/2);
180 if (best_t0 % 2 + best_t1 % 2 == 2)
181 tcenter++;
182 return tcenter - best_tm;
185 void smp_synchronize_tick_client(void)
187 long i, delta, adj, adjust_latency = 0, done = 0;
188 unsigned long flags, rt, master_time_stamp, bound;
189 #if DEBUG_TICK_SYNC
190 struct {
191 long rt; /* roundtrip time */
192 long master; /* master's timestamp */
193 long diff; /* difference between midpoint and master's timestamp */
194 long lat; /* estimate of itc adjustment latency */
195 } t[NUM_ROUNDS];
196 #endif
198 go[MASTER] = 1;
200 while (go[MASTER])
201 rmb();
203 local_irq_save(flags);
205 for (i = 0; i < NUM_ROUNDS; i++) {
206 delta = get_delta(&rt, &master_time_stamp);
207 if (delta == 0) {
208 done = 1; /* let's lock on to this... */
209 bound = rt;
212 if (!done) {
213 if (i > 0) {
214 adjust_latency += -delta;
215 adj = -delta + adjust_latency/4;
216 } else
217 adj = -delta;
219 tick_ops->add_tick(adj);
221 #if DEBUG_TICK_SYNC
222 t[i].rt = rt;
223 t[i].master = master_time_stamp;
224 t[i].diff = delta;
225 t[i].lat = adjust_latency/4;
226 #endif
229 local_irq_restore(flags);
231 #if DEBUG_TICK_SYNC
232 for (i = 0; i < NUM_ROUNDS; i++)
233 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
234 t[i].rt, t[i].master, t[i].diff, t[i].lat);
235 #endif
237 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
238 "(last diff %ld cycles, maxerr %lu cycles)\n",
239 smp_processor_id(), delta, rt);
242 static void smp_start_sync_tick_client(int cpu);
244 static void smp_synchronize_one_tick(int cpu)
246 unsigned long flags, i;
248 go[MASTER] = 0;
250 smp_start_sync_tick_client(cpu);
252 /* wait for client to be ready */
253 while (!go[MASTER])
254 rmb();
256 /* now let the client proceed into his loop */
257 go[MASTER] = 0;
258 membar_storeload();
260 spin_lock_irqsave(&itc_sync_lock, flags);
262 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
263 while (!go[MASTER])
264 rmb();
265 go[MASTER] = 0;
266 wmb();
267 go[SLAVE] = tick_ops->get_tick();
268 membar_storeload();
271 spin_unlock_irqrestore(&itc_sync_lock, flags);
274 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
275 /* XXX Put this in some common place. XXX */
276 static unsigned long kimage_addr_to_ra(void *p)
278 unsigned long val = (unsigned long) p;
280 return kern_base + (val - KERNBASE);
283 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
285 extern unsigned long sparc64_ttable_tl0;
286 extern unsigned long kern_locked_tte_data;
287 struct hvtramp_descr *hdesc;
288 unsigned long trampoline_ra;
289 struct trap_per_cpu *tb;
290 u64 tte_vaddr, tte_data;
291 unsigned long hv_err;
292 int i;
294 hdesc = kzalloc(sizeof(*hdesc) +
295 (sizeof(struct hvtramp_mapping) *
296 num_kernel_image_mappings - 1),
297 GFP_KERNEL);
298 if (!hdesc) {
299 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
300 "hvtramp_descr.\n");
301 return;
304 hdesc->cpu = cpu;
305 hdesc->num_mappings = num_kernel_image_mappings;
307 tb = &trap_block[cpu];
308 tb->hdesc = hdesc;
310 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
313 hdesc->thread_reg = thread_reg;
315 tte_vaddr = (unsigned long) KERNBASE;
316 tte_data = kern_locked_tte_data;
318 for (i = 0; i < hdesc->num_mappings; i++) {
319 hdesc->maps[i].vaddr = tte_vaddr;
320 hdesc->maps[i].tte = tte_data;
321 tte_vaddr += 0x400000;
322 tte_data += 0x400000;
325 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
327 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328 kimage_addr_to_ra(&sparc64_ttable_tl0),
329 __pa(hdesc));
330 if (hv_err)
331 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332 "gives error %lu\n", hv_err);
334 #endif
336 extern unsigned long sparc64_cpu_startup;
338 /* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
342 static struct thread_info *cpu_new_thread = NULL;
344 static int __devinit smp_boot_one_cpu(unsigned int cpu)
346 struct trap_per_cpu *tb = &trap_block[cpu];
347 unsigned long entry =
348 (unsigned long)(&sparc64_cpu_startup);
349 unsigned long cookie =
350 (unsigned long)(&cpu_new_thread);
351 struct task_struct *p;
352 int timeout, ret;
354 p = fork_idle(cpu);
355 if (IS_ERR(p))
356 return PTR_ERR(p);
357 callin_flag = 0;
358 cpu_new_thread = task_thread_info(p);
360 if (tlb_type == hypervisor) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362 if (ldom_domaining_enabled)
363 ldom_startcpu_cpuid(cpu,
364 (unsigned long) cpu_new_thread);
365 else
366 #endif
367 prom_startcpu_cpuid(cpu, entry, cookie);
368 } else {
369 struct device_node *dp = of_find_node_by_cpuid(cpu);
371 prom_startcpu(dp->node, entry, cookie);
374 for (timeout = 0; timeout < 50000; timeout++) {
375 if (callin_flag)
376 break;
377 udelay(100);
380 if (callin_flag) {
381 ret = 0;
382 } else {
383 printk("Processor %d is stuck.\n", cpu);
384 ret = -ENODEV;
386 cpu_new_thread = NULL;
388 if (tb->hdesc) {
389 kfree(tb->hdesc);
390 tb->hdesc = NULL;
393 return ret;
396 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
398 u64 result, target;
399 int stuck, tmp;
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
405 (cpu & 0x3));
408 target = (cpu << 14) | 0x70;
409 again:
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
417 tmp = 0x40;
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
422 "add %0, %8, %0\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
424 "membar #Sync\n\t"
425 "stxa %%g0, [%7] %3\n\t"
426 "membar #Sync\n\t"
427 "mov 0x20, %%g1\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 "membar #Sync"
430 : "=r" (tmp)
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
434 : "g1");
436 /* NOTE: PSTATE_IE is still clear. */
437 stuck = 100000;
438 do {
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "=r" (result)
441 : "i" (ASI_INTR_DISPATCH_STAT));
442 if (result == 0) {
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444 : : "r" (pstate));
445 return;
447 stuck -= 1;
448 if (stuck == 0)
449 break;
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 : : "r" (pstate));
453 if (stuck == 0) {
454 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
455 smp_processor_id(), result);
456 } else {
457 udelay(2);
458 goto again;
462 static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
464 u64 pstate;
465 int i;
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468 for_each_cpu_mask(i, mask)
469 spitfire_xcall_helper(data0, data1, data2, pstate, i);
472 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473 * packet, but we have no use for that. However we do take advantage of
474 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
478 u64 pstate, ver, busy_mask;
479 int nack_busy_id, is_jbus, need_more;
481 if (cpus_empty(mask))
482 return;
484 /* Unfortunately, someone at Sun had the brilliant idea to make the
485 * busy/nack fields hard-coded by ITID number for this Ultra-III
486 * derivative processor.
488 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
489 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
490 (ver >> 32) == __SERRANO_ID);
492 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
494 retry:
495 need_more = 0;
496 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
497 : : "r" (pstate), "i" (PSTATE_IE));
499 /* Setup the dispatch data registers. */
500 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
501 "stxa %1, [%4] %6\n\t"
502 "stxa %2, [%5] %6\n\t"
503 "membar #Sync\n\t"
504 : /* no outputs */
505 : "r" (data0), "r" (data1), "r" (data2),
506 "r" (0x40), "r" (0x50), "r" (0x60),
507 "i" (ASI_INTR_W));
509 nack_busy_id = 0;
510 busy_mask = 0;
512 int i;
514 for_each_cpu_mask(i, mask) {
515 u64 target = (i << 14) | 0x70;
517 if (is_jbus) {
518 busy_mask |= (0x1UL << (i * 2));
519 } else {
520 target |= (nack_busy_id << 24);
521 busy_mask |= (0x1UL <<
522 (nack_busy_id * 2));
524 __asm__ __volatile__(
525 "stxa %%g0, [%0] %1\n\t"
526 "membar #Sync\n\t"
527 : /* no outputs */
528 : "r" (target), "i" (ASI_INTR_W));
529 nack_busy_id++;
530 if (nack_busy_id == 32) {
531 need_more = 1;
532 break;
537 /* Now, poll for completion. */
539 u64 dispatch_stat, nack_mask;
540 long stuck;
542 stuck = 100000 * nack_busy_id;
543 nack_mask = busy_mask << 1;
544 do {
545 __asm__ __volatile__("ldxa [%%g0] %1, %0"
546 : "=r" (dispatch_stat)
547 : "i" (ASI_INTR_DISPATCH_STAT));
548 if (!(dispatch_stat & (busy_mask | nack_mask))) {
549 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
550 : : "r" (pstate));
551 if (unlikely(need_more)) {
552 int i, cnt = 0;
553 for_each_cpu_mask(i, mask) {
554 cpu_clear(i, mask);
555 cnt++;
556 if (cnt == 32)
557 break;
559 goto retry;
561 return;
563 if (!--stuck)
564 break;
565 } while (dispatch_stat & busy_mask);
567 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
568 : : "r" (pstate));
570 if (dispatch_stat & busy_mask) {
571 /* Busy bits will not clear, continue instead
572 * of freezing up on this cpu.
574 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
575 smp_processor_id(), dispatch_stat);
576 } else {
577 int i, this_busy_nack = 0;
579 /* Delay some random time with interrupts enabled
580 * to prevent deadlock.
582 udelay(2 * nack_busy_id);
584 /* Clear out the mask bits for cpus which did not
585 * NACK us.
587 for_each_cpu_mask(i, mask) {
588 u64 check_mask;
590 if (is_jbus)
591 check_mask = (0x2UL << (2*i));
592 else
593 check_mask = (0x2UL <<
594 this_busy_nack);
595 if ((dispatch_stat & check_mask) == 0)
596 cpu_clear(i, mask);
597 this_busy_nack += 2;
598 if (this_busy_nack == 64)
599 break;
602 goto retry;
607 /* Multi-cpu list version. */
608 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
610 struct trap_per_cpu *tb;
611 u16 *cpu_list;
612 u64 *mondo;
613 cpumask_t error_mask;
614 unsigned long flags, status;
615 int cnt, retries, this_cpu, prev_sent, i;
617 if (cpus_empty(mask))
618 return;
620 /* We have to do this whole thing with interrupts fully disabled.
621 * Otherwise if we send an xcall from interrupt context it will
622 * corrupt both our mondo block and cpu list state.
624 * One consequence of this is that we cannot use timeout mechanisms
625 * that depend upon interrupts being delivered locally. So, for
626 * example, we cannot sample jiffies and expect it to advance.
628 * Fortunately, udelay() uses %stick/%tick so we can use that.
630 local_irq_save(flags);
632 this_cpu = smp_processor_id();
633 tb = &trap_block[this_cpu];
635 mondo = __va(tb->cpu_mondo_block_pa);
636 mondo[0] = data0;
637 mondo[1] = data1;
638 mondo[2] = data2;
639 wmb();
641 cpu_list = __va(tb->cpu_list_pa);
643 /* Setup the initial cpu list. */
644 cnt = 0;
645 for_each_cpu_mask(i, mask)
646 cpu_list[cnt++] = i;
648 cpus_clear(error_mask);
649 retries = 0;
650 prev_sent = 0;
651 do {
652 int forward_progress, n_sent;
654 status = sun4v_cpu_mondo_send(cnt,
655 tb->cpu_list_pa,
656 tb->cpu_mondo_block_pa);
658 /* HV_EOK means all cpus received the xcall, we're done. */
659 if (likely(status == HV_EOK))
660 break;
662 /* First, see if we made any forward progress.
664 * The hypervisor indicates successful sends by setting
665 * cpu list entries to the value 0xffff.
667 n_sent = 0;
668 for (i = 0; i < cnt; i++) {
669 if (likely(cpu_list[i] == 0xffff))
670 n_sent++;
673 forward_progress = 0;
674 if (n_sent > prev_sent)
675 forward_progress = 1;
677 prev_sent = n_sent;
679 /* If we get a HV_ECPUERROR, then one or more of the cpus
680 * in the list are in error state. Use the cpu_state()
681 * hypervisor call to find out which cpus are in error state.
683 if (unlikely(status == HV_ECPUERROR)) {
684 for (i = 0; i < cnt; i++) {
685 long err;
686 u16 cpu;
688 cpu = cpu_list[i];
689 if (cpu == 0xffff)
690 continue;
692 err = sun4v_cpu_state(cpu);
693 if (err >= 0 &&
694 err == HV_CPU_STATE_ERROR) {
695 cpu_list[i] = 0xffff;
696 cpu_set(cpu, error_mask);
699 } else if (unlikely(status != HV_EWOULDBLOCK))
700 goto fatal_mondo_error;
702 /* Don't bother rewriting the CPU list, just leave the
703 * 0xffff and non-0xffff entries in there and the
704 * hypervisor will do the right thing.
706 * Only advance timeout state if we didn't make any
707 * forward progress.
709 if (unlikely(!forward_progress)) {
710 if (unlikely(++retries > 10000))
711 goto fatal_mondo_timeout;
713 /* Delay a little bit to let other cpus catch up
714 * on their cpu mondo queue work.
716 udelay(2 * cnt);
718 } while (1);
720 local_irq_restore(flags);
722 if (unlikely(!cpus_empty(error_mask)))
723 goto fatal_mondo_cpu_error;
725 return;
727 fatal_mondo_cpu_error:
728 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
729 "were in error state\n",
730 this_cpu);
731 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
732 for_each_cpu_mask(i, error_mask)
733 printk("%d ", i);
734 printk("]\n");
735 return;
737 fatal_mondo_timeout:
738 local_irq_restore(flags);
739 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
740 " progress after %d retries.\n",
741 this_cpu, retries);
742 goto dump_cpu_list_and_out;
744 fatal_mondo_error:
745 local_irq_restore(flags);
746 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
747 this_cpu, status);
748 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
749 "mondo_block_pa(%lx)\n",
750 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
752 dump_cpu_list_and_out:
753 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
754 for (i = 0; i < cnt; i++)
755 printk("%u ", cpu_list[i]);
756 printk("]\n");
759 /* Send cross call to all processors mentioned in MASK
760 * except self.
762 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
764 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
765 int this_cpu = get_cpu();
767 cpus_and(mask, mask, cpu_online_map);
768 cpu_clear(this_cpu, mask);
770 if (tlb_type == spitfire)
771 spitfire_xcall_deliver(data0, data1, data2, mask);
772 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
773 cheetah_xcall_deliver(data0, data1, data2, mask);
774 else
775 hypervisor_xcall_deliver(data0, data1, data2, mask);
776 /* NOTE: Caller runs local copy on master. */
778 put_cpu();
781 extern unsigned long xcall_sync_tick;
783 static void smp_start_sync_tick_client(int cpu)
785 cpumask_t mask = cpumask_of_cpu(cpu);
787 smp_cross_call_masked(&xcall_sync_tick,
788 0, 0, 0, mask);
791 /* Send cross call to all processors except self. */
792 #define smp_cross_call(func, ctx, data1, data2) \
793 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
795 struct call_data_struct {
796 void (*func) (void *info);
797 void *info;
798 atomic_t finished;
799 int wait;
802 static struct call_data_struct *call_data;
804 extern unsigned long xcall_call_function;
807 * smp_call_function(): Run a function on all other CPUs.
808 * @func: The function to run. This must be fast and non-blocking.
809 * @info: An arbitrary pointer to pass to the function.
810 * @nonatomic: currently unused.
811 * @wait: If true, wait (atomically) until function has completed on other CPUs.
813 * Returns 0 on success, else a negative status code. Does not return until
814 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
816 * You must not call this function with disabled interrupts or from a
817 * hardware interrupt handler or from a bottom half handler.
819 static int smp_call_function_mask(void (*func)(void *info), void *info,
820 int nonatomic, int wait, cpumask_t mask)
822 struct call_data_struct data;
823 int cpus;
825 /* Can deadlock when called with interrupts disabled */
826 WARN_ON(irqs_disabled());
828 data.func = func;
829 data.info = info;
830 atomic_set(&data.finished, 0);
831 data.wait = wait;
833 spin_lock(&call_lock);
835 cpu_clear(smp_processor_id(), mask);
836 cpus = cpus_weight(mask);
837 if (!cpus)
838 goto out_unlock;
840 call_data = &data;
841 mb();
843 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
845 /* Wait for response */
846 while (atomic_read(&data.finished) != cpus)
847 cpu_relax();
849 out_unlock:
850 spin_unlock(&call_lock);
852 return 0;
855 int smp_call_function(void (*func)(void *info), void *info,
856 int nonatomic, int wait)
858 return smp_call_function_mask(func, info, nonatomic, wait,
859 cpu_online_map);
862 void smp_call_function_client(int irq, struct pt_regs *regs)
864 void (*func) (void *info) = call_data->func;
865 void *info = call_data->info;
867 clear_softint(1 << irq);
868 if (call_data->wait) {
869 /* let initiator proceed only after completion */
870 func(info);
871 atomic_inc(&call_data->finished);
872 } else {
873 /* let initiator proceed after getting data */
874 atomic_inc(&call_data->finished);
875 func(info);
879 static void tsb_sync(void *info)
881 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
882 struct mm_struct *mm = info;
884 /* It is not valid to test "currrent->active_mm == mm" here.
886 * The value of "current" is not changed atomically with
887 * switch_mm(). But that's OK, we just need to check the
888 * current cpu's trap block PGD physical address.
890 if (tp->pgd_paddr == __pa(mm->pgd))
891 tsb_context_switch(mm);
894 void smp_tsb_sync(struct mm_struct *mm)
896 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
899 extern unsigned long xcall_flush_tlb_mm;
900 extern unsigned long xcall_flush_tlb_pending;
901 extern unsigned long xcall_flush_tlb_kernel_range;
902 extern unsigned long xcall_report_regs;
903 #ifdef CONFIG_MAGIC_SYSRQ
904 extern unsigned long xcall_fetch_glob_regs;
905 #endif
906 extern unsigned long xcall_receive_signal;
907 extern unsigned long xcall_new_mmu_context_version;
908 #ifdef CONFIG_KGDB
909 extern unsigned long xcall_kgdb_capture;
910 #endif
912 #ifdef DCACHE_ALIASING_POSSIBLE
913 extern unsigned long xcall_flush_dcache_page_cheetah;
914 #endif
915 extern unsigned long xcall_flush_dcache_page_spitfire;
917 #ifdef CONFIG_DEBUG_DCFLUSH
918 extern atomic_t dcpage_flushes;
919 extern atomic_t dcpage_flushes_xcall;
920 #endif
922 static inline void __local_flush_dcache_page(struct page *page)
924 #ifdef DCACHE_ALIASING_POSSIBLE
925 __flush_dcache_page(page_address(page),
926 ((tlb_type == spitfire) &&
927 page_mapping(page) != NULL));
928 #else
929 if (page_mapping(page) != NULL &&
930 tlb_type == spitfire)
931 __flush_icache_page(__pa(page_address(page)));
932 #endif
935 void smp_flush_dcache_page_impl(struct page *page, int cpu)
937 cpumask_t mask = cpumask_of_cpu(cpu);
938 int this_cpu;
940 if (tlb_type == hypervisor)
941 return;
943 #ifdef CONFIG_DEBUG_DCFLUSH
944 atomic_inc(&dcpage_flushes);
945 #endif
947 this_cpu = get_cpu();
949 if (cpu == this_cpu) {
950 __local_flush_dcache_page(page);
951 } else if (cpu_online(cpu)) {
952 void *pg_addr = page_address(page);
953 u64 data0;
955 if (tlb_type == spitfire) {
956 data0 =
957 ((u64)&xcall_flush_dcache_page_spitfire);
958 if (page_mapping(page) != NULL)
959 data0 |= ((u64)1 << 32);
960 spitfire_xcall_deliver(data0,
961 __pa(pg_addr),
962 (u64) pg_addr,
963 mask);
964 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
965 #ifdef DCACHE_ALIASING_POSSIBLE
966 data0 =
967 ((u64)&xcall_flush_dcache_page_cheetah);
968 cheetah_xcall_deliver(data0,
969 __pa(pg_addr),
970 0, mask);
971 #endif
973 #ifdef CONFIG_DEBUG_DCFLUSH
974 atomic_inc(&dcpage_flushes_xcall);
975 #endif
978 put_cpu();
981 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
983 void *pg_addr = page_address(page);
984 cpumask_t mask = cpu_online_map;
985 u64 data0;
986 int this_cpu;
988 if (tlb_type == hypervisor)
989 return;
991 this_cpu = get_cpu();
993 cpu_clear(this_cpu, mask);
995 #ifdef CONFIG_DEBUG_DCFLUSH
996 atomic_inc(&dcpage_flushes);
997 #endif
998 if (cpus_empty(mask))
999 goto flush_self;
1000 if (tlb_type == spitfire) {
1001 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1002 if (page_mapping(page) != NULL)
1003 data0 |= ((u64)1 << 32);
1004 spitfire_xcall_deliver(data0,
1005 __pa(pg_addr),
1006 (u64) pg_addr,
1007 mask);
1008 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1009 #ifdef DCACHE_ALIASING_POSSIBLE
1010 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1011 cheetah_xcall_deliver(data0,
1012 __pa(pg_addr),
1013 0, mask);
1014 #endif
1016 #ifdef CONFIG_DEBUG_DCFLUSH
1017 atomic_inc(&dcpage_flushes_xcall);
1018 #endif
1019 flush_self:
1020 __local_flush_dcache_page(page);
1022 put_cpu();
1025 static void __smp_receive_signal_mask(cpumask_t mask)
1027 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1030 void smp_receive_signal(int cpu)
1032 cpumask_t mask = cpumask_of_cpu(cpu);
1034 if (cpu_online(cpu))
1035 __smp_receive_signal_mask(mask);
1038 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1040 clear_softint(1 << irq);
1043 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1045 struct mm_struct *mm;
1046 unsigned long flags;
1048 clear_softint(1 << irq);
1050 /* See if we need to allocate a new TLB context because
1051 * the version of the one we are using is now out of date.
1053 mm = current->active_mm;
1054 if (unlikely(!mm || (mm == &init_mm)))
1055 return;
1057 spin_lock_irqsave(&mm->context.lock, flags);
1059 if (unlikely(!CTX_VALID(mm->context)))
1060 get_new_mmu_context(mm);
1062 spin_unlock_irqrestore(&mm->context.lock, flags);
1064 load_secondary_context(mm);
1065 __flush_tlb_mm(CTX_HWBITS(mm->context),
1066 SECONDARY_CONTEXT);
1069 void smp_new_mmu_context_version(void)
1071 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1074 #ifdef CONFIG_KGDB
1075 void kgdb_roundup_cpus(unsigned long flags)
1077 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1079 #endif
1081 void smp_report_regs(void)
1083 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1086 #ifdef CONFIG_MAGIC_SYSRQ
1087 void smp_fetch_global_regs(void)
1089 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1091 #endif
1093 /* We know that the window frames of the user have been flushed
1094 * to the stack before we get here because all callers of us
1095 * are flush_tlb_*() routines, and these run after flush_cache_*()
1096 * which performs the flushw.
1098 * The SMP TLB coherency scheme we use works as follows:
1100 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1101 * space has (potentially) executed on, this is the heuristic
1102 * we use to avoid doing cross calls.
1104 * Also, for flushing from kswapd and also for clones, we
1105 * use cpu_vm_mask as the list of cpus to make run the TLB.
1107 * 2) TLB context numbers are shared globally across all processors
1108 * in the system, this allows us to play several games to avoid
1109 * cross calls.
1111 * One invariant is that when a cpu switches to a process, and
1112 * that processes tsk->active_mm->cpu_vm_mask does not have the
1113 * current cpu's bit set, that tlb context is flushed locally.
1115 * If the address space is non-shared (ie. mm->count == 1) we avoid
1116 * cross calls when we want to flush the currently running process's
1117 * tlb state. This is done by clearing all cpu bits except the current
1118 * processor's in current->active_mm->cpu_vm_mask and performing the
1119 * flush locally only. This will force any subsequent cpus which run
1120 * this task to flush the context from the local tlb if the process
1121 * migrates to another cpu (again).
1123 * 3) For shared address spaces (threads) and swapping we bite the
1124 * bullet for most cases and perform the cross call (but only to
1125 * the cpus listed in cpu_vm_mask).
1127 * The performance gain from "optimizing" away the cross call for threads is
1128 * questionable (in theory the big win for threads is the massive sharing of
1129 * address space state across processors).
1132 /* This currently is only used by the hugetlb arch pre-fault
1133 * hook on UltraSPARC-III+ and later when changing the pagesize
1134 * bits of the context register for an address space.
1136 void smp_flush_tlb_mm(struct mm_struct *mm)
1138 u32 ctx = CTX_HWBITS(mm->context);
1139 int cpu = get_cpu();
1141 if (atomic_read(&mm->mm_users) == 1) {
1142 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1143 goto local_flush_and_out;
1146 smp_cross_call_masked(&xcall_flush_tlb_mm,
1147 ctx, 0, 0,
1148 mm->cpu_vm_mask);
1150 local_flush_and_out:
1151 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1153 put_cpu();
1156 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1158 u32 ctx = CTX_HWBITS(mm->context);
1159 int cpu = get_cpu();
1161 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1162 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1163 else
1164 smp_cross_call_masked(&xcall_flush_tlb_pending,
1165 ctx, nr, (unsigned long) vaddrs,
1166 mm->cpu_vm_mask);
1168 __flush_tlb_pending(ctx, nr, vaddrs);
1170 put_cpu();
1173 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1175 start &= PAGE_MASK;
1176 end = PAGE_ALIGN(end);
1177 if (start != end) {
1178 smp_cross_call(&xcall_flush_tlb_kernel_range,
1179 0, start, end);
1181 __flush_tlb_kernel_range(start, end);
1185 /* CPU capture. */
1186 /* #define CAPTURE_DEBUG */
1187 extern unsigned long xcall_capture;
1189 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1190 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1191 static unsigned long penguins_are_doing_time;
1193 void smp_capture(void)
1195 int result = atomic_add_ret(1, &smp_capture_depth);
1197 if (result == 1) {
1198 int ncpus = num_online_cpus();
1200 #ifdef CAPTURE_DEBUG
1201 printk("CPU[%d]: Sending penguins to jail...",
1202 smp_processor_id());
1203 #endif
1204 penguins_are_doing_time = 1;
1205 membar_storestore_loadstore();
1206 atomic_inc(&smp_capture_registry);
1207 smp_cross_call(&xcall_capture, 0, 0, 0);
1208 while (atomic_read(&smp_capture_registry) != ncpus)
1209 rmb();
1210 #ifdef CAPTURE_DEBUG
1211 printk("done\n");
1212 #endif
1216 void smp_release(void)
1218 if (atomic_dec_and_test(&smp_capture_depth)) {
1219 #ifdef CAPTURE_DEBUG
1220 printk("CPU[%d]: Giving pardon to "
1221 "imprisoned penguins\n",
1222 smp_processor_id());
1223 #endif
1224 penguins_are_doing_time = 0;
1225 membar_storeload_storestore();
1226 atomic_dec(&smp_capture_registry);
1230 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1231 * can service tlb flush xcalls...
1233 extern void prom_world(int);
1235 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1237 clear_softint(1 << irq);
1239 preempt_disable();
1241 __asm__ __volatile__("flushw");
1242 prom_world(1);
1243 atomic_inc(&smp_capture_registry);
1244 membar_storeload_storestore();
1245 while (penguins_are_doing_time)
1246 rmb();
1247 atomic_dec(&smp_capture_registry);
1248 prom_world(0);
1250 preempt_enable();
1253 /* /proc/profile writes can call this, don't __init it please. */
1254 int setup_profiling_timer(unsigned int multiplier)
1256 return -EINVAL;
1259 void __init smp_prepare_cpus(unsigned int max_cpus)
1263 void __devinit smp_prepare_boot_cpu(void)
1267 void __devinit smp_fill_in_sib_core_maps(void)
1269 unsigned int i;
1271 for_each_present_cpu(i) {
1272 unsigned int j;
1274 cpus_clear(cpu_core_map[i]);
1275 if (cpu_data(i).core_id == 0) {
1276 cpu_set(i, cpu_core_map[i]);
1277 continue;
1280 for_each_present_cpu(j) {
1281 if (cpu_data(i).core_id ==
1282 cpu_data(j).core_id)
1283 cpu_set(j, cpu_core_map[i]);
1287 for_each_present_cpu(i) {
1288 unsigned int j;
1290 cpus_clear(per_cpu(cpu_sibling_map, i));
1291 if (cpu_data(i).proc_id == -1) {
1292 cpu_set(i, per_cpu(cpu_sibling_map, i));
1293 continue;
1296 for_each_present_cpu(j) {
1297 if (cpu_data(i).proc_id ==
1298 cpu_data(j).proc_id)
1299 cpu_set(j, per_cpu(cpu_sibling_map, i));
1304 int __cpuinit __cpu_up(unsigned int cpu)
1306 int ret = smp_boot_one_cpu(cpu);
1308 if (!ret) {
1309 cpu_set(cpu, smp_commenced_mask);
1310 while (!cpu_isset(cpu, cpu_online_map))
1311 mb();
1312 if (!cpu_isset(cpu, cpu_online_map)) {
1313 ret = -ENODEV;
1314 } else {
1315 /* On SUN4V, writes to %tick and %stick are
1316 * not allowed.
1318 if (tlb_type != hypervisor)
1319 smp_synchronize_one_tick(cpu);
1322 return ret;
1325 #ifdef CONFIG_HOTPLUG_CPU
1326 void cpu_play_dead(void)
1328 int cpu = smp_processor_id();
1329 unsigned long pstate;
1331 idle_task_exit();
1333 if (tlb_type == hypervisor) {
1334 struct trap_per_cpu *tb = &trap_block[cpu];
1336 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1337 tb->cpu_mondo_pa, 0);
1338 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1339 tb->dev_mondo_pa, 0);
1340 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1341 tb->resum_mondo_pa, 0);
1342 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1343 tb->nonresum_mondo_pa, 0);
1346 cpu_clear(cpu, smp_commenced_mask);
1347 membar_safe("#Sync");
1349 local_irq_disable();
1351 __asm__ __volatile__(
1352 "rdpr %%pstate, %0\n\t"
1353 "wrpr %0, %1, %%pstate"
1354 : "=r" (pstate)
1355 : "i" (PSTATE_IE));
1357 while (1)
1358 barrier();
1361 int __cpu_disable(void)
1363 int cpu = smp_processor_id();
1364 cpuinfo_sparc *c;
1365 int i;
1367 for_each_cpu_mask(i, cpu_core_map[cpu])
1368 cpu_clear(cpu, cpu_core_map[i]);
1369 cpus_clear(cpu_core_map[cpu]);
1371 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1372 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1373 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1375 c = &cpu_data(cpu);
1377 c->core_id = 0;
1378 c->proc_id = -1;
1380 spin_lock(&call_lock);
1381 cpu_clear(cpu, cpu_online_map);
1382 spin_unlock(&call_lock);
1384 smp_wmb();
1386 /* Make sure no interrupts point to this cpu. */
1387 fixup_irqs();
1389 local_irq_enable();
1390 mdelay(1);
1391 local_irq_disable();
1393 return 0;
1396 void __cpu_die(unsigned int cpu)
1398 int i;
1400 for (i = 0; i < 100; i++) {
1401 smp_rmb();
1402 if (!cpu_isset(cpu, smp_commenced_mask))
1403 break;
1404 msleep(100);
1406 if (cpu_isset(cpu, smp_commenced_mask)) {
1407 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1408 } else {
1409 #if defined(CONFIG_SUN_LDOMS)
1410 unsigned long hv_err;
1411 int limit = 100;
1413 do {
1414 hv_err = sun4v_cpu_stop(cpu);
1415 if (hv_err == HV_EOK) {
1416 cpu_clear(cpu, cpu_present_map);
1417 break;
1419 } while (--limit > 0);
1420 if (limit <= 0) {
1421 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1422 hv_err);
1424 #endif
1427 #endif
1429 void __init smp_cpus_done(unsigned int max_cpus)
1433 void smp_send_reschedule(int cpu)
1435 smp_receive_signal(cpu);
1438 /* This is a nop because we capture all other cpus
1439 * anyways when making the PROM active.
1441 void smp_send_stop(void)
1445 unsigned long __per_cpu_base __read_mostly;
1446 unsigned long __per_cpu_shift __read_mostly;
1448 EXPORT_SYMBOL(__per_cpu_base);
1449 EXPORT_SYMBOL(__per_cpu_shift);
1451 void __init real_setup_per_cpu_areas(void)
1453 unsigned long paddr, goal, size, i;
1454 char *ptr;
1456 /* Copy section for each CPU (we discard the original) */
1457 goal = PERCPU_ENOUGH_ROOM;
1459 __per_cpu_shift = PAGE_SHIFT;
1460 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1461 __per_cpu_shift++;
1463 paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
1464 if (!paddr) {
1465 prom_printf("Cannot allocate per-cpu memory.\n");
1466 prom_halt();
1469 ptr = __va(paddr);
1470 __per_cpu_base = ptr - __per_cpu_start;
1472 for (i = 0; i < NR_CPUS; i++, ptr += size)
1473 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1475 /* Setup %g5 for the boot cpu. */
1476 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());