[PATCH] e1000: Fix mulitple queues
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / e1000 / e1000_main.c
blob4016264a79190b4203a31e4d9bde7a4e76ffd3b3
1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
31 /* Change Log
32 * 6.0.58 4/20/05
33 * o Accepted ethtool cleanup patch from Stephen Hemminger
34 * 6.0.44+ 2/15/05
35 * o applied Anton's patch to resolve tx hang in hardware
36 * o Applied Andrew Mortons patch - e1000 stops working after resume
39 char e1000_driver_name[] = "e1000";
40 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
42 #define DRIVERNAPI
43 #else
44 #define DRIVERNAPI "-NAPI"
45 #endif
46 #define DRV_VERSION "6.3.9-k2"DRIVERNAPI
47 char e1000_driver_version[] = DRV_VERSION;
48 static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
50 /* e1000_pci_tbl - PCI Device ID Table
52 * Last entry must be all 0s
54 * Macro expands to...
55 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
57 static struct pci_device_id e1000_pci_tbl[] = {
58 INTEL_E1000_ETHERNET_DEVICE(0x1000),
59 INTEL_E1000_ETHERNET_DEVICE(0x1001),
60 INTEL_E1000_ETHERNET_DEVICE(0x1004),
61 INTEL_E1000_ETHERNET_DEVICE(0x1008),
62 INTEL_E1000_ETHERNET_DEVICE(0x1009),
63 INTEL_E1000_ETHERNET_DEVICE(0x100C),
64 INTEL_E1000_ETHERNET_DEVICE(0x100D),
65 INTEL_E1000_ETHERNET_DEVICE(0x100E),
66 INTEL_E1000_ETHERNET_DEVICE(0x100F),
67 INTEL_E1000_ETHERNET_DEVICE(0x1010),
68 INTEL_E1000_ETHERNET_DEVICE(0x1011),
69 INTEL_E1000_ETHERNET_DEVICE(0x1012),
70 INTEL_E1000_ETHERNET_DEVICE(0x1013),
71 INTEL_E1000_ETHERNET_DEVICE(0x1014),
72 INTEL_E1000_ETHERNET_DEVICE(0x1015),
73 INTEL_E1000_ETHERNET_DEVICE(0x1016),
74 INTEL_E1000_ETHERNET_DEVICE(0x1017),
75 INTEL_E1000_ETHERNET_DEVICE(0x1018),
76 INTEL_E1000_ETHERNET_DEVICE(0x1019),
77 INTEL_E1000_ETHERNET_DEVICE(0x101A),
78 INTEL_E1000_ETHERNET_DEVICE(0x101D),
79 INTEL_E1000_ETHERNET_DEVICE(0x101E),
80 INTEL_E1000_ETHERNET_DEVICE(0x1026),
81 INTEL_E1000_ETHERNET_DEVICE(0x1027),
82 INTEL_E1000_ETHERNET_DEVICE(0x1028),
83 INTEL_E1000_ETHERNET_DEVICE(0x105E),
84 INTEL_E1000_ETHERNET_DEVICE(0x105F),
85 INTEL_E1000_ETHERNET_DEVICE(0x1060),
86 INTEL_E1000_ETHERNET_DEVICE(0x1075),
87 INTEL_E1000_ETHERNET_DEVICE(0x1076),
88 INTEL_E1000_ETHERNET_DEVICE(0x1077),
89 INTEL_E1000_ETHERNET_DEVICE(0x1078),
90 INTEL_E1000_ETHERNET_DEVICE(0x1079),
91 INTEL_E1000_ETHERNET_DEVICE(0x107A),
92 INTEL_E1000_ETHERNET_DEVICE(0x107B),
93 INTEL_E1000_ETHERNET_DEVICE(0x107C),
94 INTEL_E1000_ETHERNET_DEVICE(0x107D),
95 INTEL_E1000_ETHERNET_DEVICE(0x107E),
96 INTEL_E1000_ETHERNET_DEVICE(0x107F),
97 INTEL_E1000_ETHERNET_DEVICE(0x108A),
98 INTEL_E1000_ETHERNET_DEVICE(0x108B),
99 INTEL_E1000_ETHERNET_DEVICE(0x108C),
100 INTEL_E1000_ETHERNET_DEVICE(0x109A),
101 /* required last entry */
102 {0,}
105 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
107 int e1000_up(struct e1000_adapter *adapter);
108 void e1000_down(struct e1000_adapter *adapter);
109 void e1000_reset(struct e1000_adapter *adapter);
110 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
111 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
112 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
113 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
114 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
115 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
116 struct e1000_tx_ring *txdr);
117 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
118 struct e1000_rx_ring *rxdr);
119 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
120 struct e1000_tx_ring *tx_ring);
121 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
122 struct e1000_rx_ring *rx_ring);
123 void e1000_update_stats(struct e1000_adapter *adapter);
125 /* Local Function Prototypes */
127 static int e1000_init_module(void);
128 static void e1000_exit_module(void);
129 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
130 static void __devexit e1000_remove(struct pci_dev *pdev);
131 static int e1000_alloc_queues(struct e1000_adapter *adapter);
132 #ifdef CONFIG_E1000_MQ
133 static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
134 #endif
135 static int e1000_sw_init(struct e1000_adapter *adapter);
136 static int e1000_open(struct net_device *netdev);
137 static int e1000_close(struct net_device *netdev);
138 static void e1000_configure_tx(struct e1000_adapter *adapter);
139 static void e1000_configure_rx(struct e1000_adapter *adapter);
140 static void e1000_setup_rctl(struct e1000_adapter *adapter);
141 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
142 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
144 struct e1000_tx_ring *tx_ring);
145 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
146 struct e1000_rx_ring *rx_ring);
147 static void e1000_set_multi(struct net_device *netdev);
148 static void e1000_update_phy_info(unsigned long data);
149 static void e1000_watchdog(unsigned long data);
150 static void e1000_watchdog_task(struct e1000_adapter *adapter);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158 struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162 struct e1000_rx_ring *rx_ring,
163 int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165 struct e1000_rx_ring *rx_ring,
166 int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171 struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174 struct e1000_rx_ring *rx_ring);
175 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
176 struct e1000_rx_ring *rx_ring);
177 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
178 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
179 int cmd);
180 void e1000_set_ethtool_ops(struct net_device *netdev);
181 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
182 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
183 static void e1000_tx_timeout(struct net_device *dev);
184 static void e1000_tx_timeout_task(struct net_device *dev);
185 static void e1000_smartspeed(struct e1000_adapter *adapter);
186 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
187 struct sk_buff *skb);
189 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
190 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
191 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
192 static void e1000_restore_vlan(struct e1000_adapter *adapter);
194 #ifdef CONFIG_PM
195 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
196 static int e1000_resume(struct pci_dev *pdev);
197 #endif
199 #ifdef CONFIG_NET_POLL_CONTROLLER
200 /* for netdump / net console */
201 static void e1000_netpoll (struct net_device *netdev);
202 #endif
204 #ifdef CONFIG_E1000_MQ
205 /* for multiple Rx queues */
206 void e1000_rx_schedule(void *data);
207 #endif
209 /* Exported from other modules */
211 extern void e1000_check_options(struct e1000_adapter *adapter);
213 static struct pci_driver e1000_driver = {
214 .name = e1000_driver_name,
215 .id_table = e1000_pci_tbl,
216 .probe = e1000_probe,
217 .remove = __devexit_p(e1000_remove),
218 /* Power Managment Hooks */
219 #ifdef CONFIG_PM
220 .suspend = e1000_suspend,
221 .resume = e1000_resume
222 #endif
225 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
226 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
227 MODULE_LICENSE("GPL");
228 MODULE_VERSION(DRV_VERSION);
230 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
231 module_param(debug, int, 0);
232 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
235 * e1000_init_module - Driver Registration Routine
237 * e1000_init_module is the first routine called when the driver is
238 * loaded. All it does is register with the PCI subsystem.
241 static int __init
242 e1000_init_module(void)
244 int ret;
245 printk(KERN_INFO "%s - version %s\n",
246 e1000_driver_string, e1000_driver_version);
248 printk(KERN_INFO "%s\n", e1000_copyright);
250 ret = pci_module_init(&e1000_driver);
252 return ret;
255 module_init(e1000_init_module);
258 * e1000_exit_module - Driver Exit Cleanup Routine
260 * e1000_exit_module is called just before the driver is removed
261 * from memory.
264 static void __exit
265 e1000_exit_module(void)
267 pci_unregister_driver(&e1000_driver);
270 module_exit(e1000_exit_module);
273 * e1000_irq_disable - Mask off interrupt generation on the NIC
274 * @adapter: board private structure
277 static inline void
278 e1000_irq_disable(struct e1000_adapter *adapter)
280 atomic_inc(&adapter->irq_sem);
281 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
282 E1000_WRITE_FLUSH(&adapter->hw);
283 synchronize_irq(adapter->pdev->irq);
287 * e1000_irq_enable - Enable default interrupt generation settings
288 * @adapter: board private structure
291 static inline void
292 e1000_irq_enable(struct e1000_adapter *adapter)
294 if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
295 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
296 E1000_WRITE_FLUSH(&adapter->hw);
300 static void
301 e1000_update_mng_vlan(struct e1000_adapter *adapter)
303 struct net_device *netdev = adapter->netdev;
304 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
305 uint16_t old_vid = adapter->mng_vlan_id;
306 if(adapter->vlgrp) {
307 if(!adapter->vlgrp->vlan_devices[vid]) {
308 if(adapter->hw.mng_cookie.status &
309 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
310 e1000_vlan_rx_add_vid(netdev, vid);
311 adapter->mng_vlan_id = vid;
312 } else
313 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
315 if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
316 (vid != old_vid) &&
317 !adapter->vlgrp->vlan_devices[old_vid])
318 e1000_vlan_rx_kill_vid(netdev, old_vid);
324 * e1000_release_hw_control - release control of the h/w to f/w
325 * @adapter: address of board private structure
327 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
328 * For ASF and Pass Through versions of f/w this means that the
329 * driver is no longer loaded. For AMT version (only with 82573) i
330 * of the f/w this means that the netowrk i/f is closed.
334 static inline void
335 e1000_release_hw_control(struct e1000_adapter *adapter)
337 uint32_t ctrl_ext;
338 uint32_t swsm;
340 /* Let firmware taken over control of h/w */
341 switch (adapter->hw.mac_type) {
342 case e1000_82571:
343 case e1000_82572:
344 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
345 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
346 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
347 break;
348 case e1000_82573:
349 swsm = E1000_READ_REG(&adapter->hw, SWSM);
350 E1000_WRITE_REG(&adapter->hw, SWSM,
351 swsm & ~E1000_SWSM_DRV_LOAD);
352 default:
353 break;
358 * e1000_get_hw_control - get control of the h/w from f/w
359 * @adapter: address of board private structure
361 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
362 * For ASF and Pass Through versions of f/w this means that
363 * the driver is loaded. For AMT version (only with 82573)
364 * of the f/w this means that the netowrk i/f is open.
368 static inline void
369 e1000_get_hw_control(struct e1000_adapter *adapter)
371 uint32_t ctrl_ext;
372 uint32_t swsm;
373 /* Let firmware know the driver has taken over */
374 switch (adapter->hw.mac_type) {
375 case e1000_82571:
376 case e1000_82572:
377 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
378 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
379 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
380 break;
381 case e1000_82573:
382 swsm = E1000_READ_REG(&adapter->hw, SWSM);
383 E1000_WRITE_REG(&adapter->hw, SWSM,
384 swsm | E1000_SWSM_DRV_LOAD);
385 break;
386 default:
387 break;
392 e1000_up(struct e1000_adapter *adapter)
394 struct net_device *netdev = adapter->netdev;
395 int i, err;
397 /* hardware has been reset, we need to reload some things */
399 /* Reset the PHY if it was previously powered down */
400 if(adapter->hw.media_type == e1000_media_type_copper) {
401 uint16_t mii_reg;
402 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
403 if(mii_reg & MII_CR_POWER_DOWN)
404 e1000_phy_reset(&adapter->hw);
407 e1000_set_multi(netdev);
409 e1000_restore_vlan(adapter);
411 e1000_configure_tx(adapter);
412 e1000_setup_rctl(adapter);
413 e1000_configure_rx(adapter);
414 for (i = 0; i < adapter->num_rx_queues; i++) {
415 adapter->alloc_rx_buf(adapter, &adapter->rx_ring[i]);
418 #ifdef CONFIG_PCI_MSI
419 if(adapter->hw.mac_type > e1000_82547_rev_2) {
420 adapter->have_msi = TRUE;
421 if((err = pci_enable_msi(adapter->pdev))) {
422 DPRINTK(PROBE, ERR,
423 "Unable to allocate MSI interrupt Error: %d\n", err);
424 adapter->have_msi = FALSE;
427 #endif
428 if((err = request_irq(adapter->pdev->irq, &e1000_intr,
429 SA_SHIRQ | SA_SAMPLE_RANDOM,
430 netdev->name, netdev))) {
431 DPRINTK(PROBE, ERR,
432 "Unable to allocate interrupt Error: %d\n", err);
433 return err;
436 #ifdef CONFIG_E1000_MQ
437 e1000_setup_queue_mapping(adapter);
438 #endif
440 adapter->tx_queue_len = netdev->tx_queue_len;
442 mod_timer(&adapter->watchdog_timer, jiffies);
444 #ifdef CONFIG_E1000_NAPI
445 netif_poll_enable(netdev);
446 #endif
447 e1000_irq_enable(adapter);
449 return 0;
452 void
453 e1000_down(struct e1000_adapter *adapter)
455 struct net_device *netdev = adapter->netdev;
456 boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
457 e1000_check_mng_mode(&adapter->hw);
459 e1000_irq_disable(adapter);
460 #ifdef CONFIG_E1000_MQ
461 while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
462 #endif
463 free_irq(adapter->pdev->irq, netdev);
464 #ifdef CONFIG_PCI_MSI
465 if(adapter->hw.mac_type > e1000_82547_rev_2 &&
466 adapter->have_msi == TRUE)
467 pci_disable_msi(adapter->pdev);
468 #endif
469 del_timer_sync(&adapter->tx_fifo_stall_timer);
470 del_timer_sync(&adapter->watchdog_timer);
471 del_timer_sync(&adapter->phy_info_timer);
473 #ifdef CONFIG_E1000_NAPI
474 netif_poll_disable(netdev);
475 #endif
476 netdev->tx_queue_len = adapter->tx_queue_len;
477 adapter->link_speed = 0;
478 adapter->link_duplex = 0;
479 netif_carrier_off(netdev);
480 netif_stop_queue(netdev);
482 e1000_reset(adapter);
483 e1000_clean_all_tx_rings(adapter);
484 e1000_clean_all_rx_rings(adapter);
486 /* Power down the PHY so no link is implied when interface is down *
487 * The PHY cannot be powered down if any of the following is TRUE *
488 * (a) WoL is enabled
489 * (b) AMT is active
490 * (c) SoL/IDER session is active */
491 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
492 adapter->hw.media_type == e1000_media_type_copper &&
493 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
494 !mng_mode_enabled &&
495 !e1000_check_phy_reset_block(&adapter->hw)) {
496 uint16_t mii_reg;
497 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
498 mii_reg |= MII_CR_POWER_DOWN;
499 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
500 mdelay(1);
504 void
505 e1000_reset(struct e1000_adapter *adapter)
507 struct net_device *netdev = adapter->netdev;
508 uint32_t pba, manc;
509 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
510 uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
512 /* Repartition Pba for greater than 9k mtu
513 * To take effect CTRL.RST is required.
516 switch (adapter->hw.mac_type) {
517 case e1000_82547:
518 case e1000_82547_rev_2:
519 pba = E1000_PBA_30K;
520 break;
521 case e1000_82571:
522 case e1000_82572:
523 pba = E1000_PBA_38K;
524 break;
525 case e1000_82573:
526 pba = E1000_PBA_12K;
527 break;
528 default:
529 pba = E1000_PBA_48K;
530 break;
533 if((adapter->hw.mac_type != e1000_82573) &&
534 (adapter->netdev->mtu > E1000_RXBUFFER_8192)) {
535 pba -= 8; /* allocate more FIFO for Tx */
536 /* send an XOFF when there is enough space in the
537 * Rx FIFO to hold one extra full size Rx packet
539 fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE +
540 ETHERNET_FCS_SIZE + 1;
541 fc_low_water_mark = fc_high_water_mark + 8;
545 if(adapter->hw.mac_type == e1000_82547) {
546 adapter->tx_fifo_head = 0;
547 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
548 adapter->tx_fifo_size =
549 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
550 atomic_set(&adapter->tx_fifo_stall, 0);
553 E1000_WRITE_REG(&adapter->hw, PBA, pba);
555 /* flow control settings */
556 adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
557 fc_high_water_mark;
558 adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
559 fc_low_water_mark;
560 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
561 adapter->hw.fc_send_xon = 1;
562 adapter->hw.fc = adapter->hw.original_fc;
564 /* Allow time for pending master requests to run */
565 e1000_reset_hw(&adapter->hw);
566 if(adapter->hw.mac_type >= e1000_82544)
567 E1000_WRITE_REG(&adapter->hw, WUC, 0);
568 if(e1000_init_hw(&adapter->hw))
569 DPRINTK(PROBE, ERR, "Hardware Error\n");
570 e1000_update_mng_vlan(adapter);
571 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
572 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
574 e1000_reset_adaptive(&adapter->hw);
575 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
576 if (adapter->en_mng_pt) {
577 manc = E1000_READ_REG(&adapter->hw, MANC);
578 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
579 E1000_WRITE_REG(&adapter->hw, MANC, manc);
584 * e1000_probe - Device Initialization Routine
585 * @pdev: PCI device information struct
586 * @ent: entry in e1000_pci_tbl
588 * Returns 0 on success, negative on failure
590 * e1000_probe initializes an adapter identified by a pci_dev structure.
591 * The OS initialization, configuring of the adapter private structure,
592 * and a hardware reset occur.
595 static int __devinit
596 e1000_probe(struct pci_dev *pdev,
597 const struct pci_device_id *ent)
599 struct net_device *netdev;
600 struct e1000_adapter *adapter;
601 unsigned long mmio_start, mmio_len;
603 static int cards_found = 0;
604 int i, err, pci_using_dac;
605 uint16_t eeprom_data;
606 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
607 if((err = pci_enable_device(pdev)))
608 return err;
610 if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
611 pci_using_dac = 1;
612 } else {
613 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
614 E1000_ERR("No usable DMA configuration, aborting\n");
615 return err;
617 pci_using_dac = 0;
620 if((err = pci_request_regions(pdev, e1000_driver_name)))
621 return err;
623 pci_set_master(pdev);
625 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
626 if(!netdev) {
627 err = -ENOMEM;
628 goto err_alloc_etherdev;
631 SET_MODULE_OWNER(netdev);
632 SET_NETDEV_DEV(netdev, &pdev->dev);
634 pci_set_drvdata(pdev, netdev);
635 adapter = netdev_priv(netdev);
636 adapter->netdev = netdev;
637 adapter->pdev = pdev;
638 adapter->hw.back = adapter;
639 adapter->msg_enable = (1 << debug) - 1;
641 mmio_start = pci_resource_start(pdev, BAR_0);
642 mmio_len = pci_resource_len(pdev, BAR_0);
644 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
645 if(!adapter->hw.hw_addr) {
646 err = -EIO;
647 goto err_ioremap;
650 for(i = BAR_1; i <= BAR_5; i++) {
651 if(pci_resource_len(pdev, i) == 0)
652 continue;
653 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
654 adapter->hw.io_base = pci_resource_start(pdev, i);
655 break;
659 netdev->open = &e1000_open;
660 netdev->stop = &e1000_close;
661 netdev->hard_start_xmit = &e1000_xmit_frame;
662 netdev->get_stats = &e1000_get_stats;
663 netdev->set_multicast_list = &e1000_set_multi;
664 netdev->set_mac_address = &e1000_set_mac;
665 netdev->change_mtu = &e1000_change_mtu;
666 netdev->do_ioctl = &e1000_ioctl;
667 e1000_set_ethtool_ops(netdev);
668 netdev->tx_timeout = &e1000_tx_timeout;
669 netdev->watchdog_timeo = 5 * HZ;
670 #ifdef CONFIG_E1000_NAPI
671 netdev->poll = &e1000_clean;
672 netdev->weight = 64;
673 #endif
674 netdev->vlan_rx_register = e1000_vlan_rx_register;
675 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
676 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
677 #ifdef CONFIG_NET_POLL_CONTROLLER
678 netdev->poll_controller = e1000_netpoll;
679 #endif
680 strcpy(netdev->name, pci_name(pdev));
682 netdev->mem_start = mmio_start;
683 netdev->mem_end = mmio_start + mmio_len;
684 netdev->base_addr = adapter->hw.io_base;
686 adapter->bd_number = cards_found;
688 /* setup the private structure */
690 if((err = e1000_sw_init(adapter)))
691 goto err_sw_init;
693 if((err = e1000_check_phy_reset_block(&adapter->hw)))
694 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
696 if(adapter->hw.mac_type >= e1000_82543) {
697 netdev->features = NETIF_F_SG |
698 NETIF_F_HW_CSUM |
699 NETIF_F_HW_VLAN_TX |
700 NETIF_F_HW_VLAN_RX |
701 NETIF_F_HW_VLAN_FILTER;
704 #ifdef NETIF_F_TSO
705 if((adapter->hw.mac_type >= e1000_82544) &&
706 (adapter->hw.mac_type != e1000_82547))
707 netdev->features |= NETIF_F_TSO;
709 #ifdef NETIF_F_TSO_IPV6
710 if(adapter->hw.mac_type > e1000_82547_rev_2)
711 netdev->features |= NETIF_F_TSO_IPV6;
712 #endif
713 #endif
714 if(pci_using_dac)
715 netdev->features |= NETIF_F_HIGHDMA;
717 /* hard_start_xmit is safe against parallel locking */
718 netdev->features |= NETIF_F_LLTX;
720 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
722 /* before reading the EEPROM, reset the controller to
723 * put the device in a known good starting state */
725 e1000_reset_hw(&adapter->hw);
727 /* make sure the EEPROM is good */
729 if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
730 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
731 err = -EIO;
732 goto err_eeprom;
735 /* copy the MAC address out of the EEPROM */
737 if(e1000_read_mac_addr(&adapter->hw))
738 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
739 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
740 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
742 if(!is_valid_ether_addr(netdev->perm_addr)) {
743 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
744 err = -EIO;
745 goto err_eeprom;
748 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
750 e1000_get_bus_info(&adapter->hw);
752 init_timer(&adapter->tx_fifo_stall_timer);
753 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
754 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
756 init_timer(&adapter->watchdog_timer);
757 adapter->watchdog_timer.function = &e1000_watchdog;
758 adapter->watchdog_timer.data = (unsigned long) adapter;
760 INIT_WORK(&adapter->watchdog_task,
761 (void (*)(void *))e1000_watchdog_task, adapter);
763 init_timer(&adapter->phy_info_timer);
764 adapter->phy_info_timer.function = &e1000_update_phy_info;
765 adapter->phy_info_timer.data = (unsigned long) adapter;
767 INIT_WORK(&adapter->tx_timeout_task,
768 (void (*)(void *))e1000_tx_timeout_task, netdev);
770 /* we're going to reset, so assume we have no link for now */
772 netif_carrier_off(netdev);
773 netif_stop_queue(netdev);
775 e1000_check_options(adapter);
777 /* Initial Wake on LAN setting
778 * If APM wake is enabled in the EEPROM,
779 * enable the ACPI Magic Packet filter
782 switch(adapter->hw.mac_type) {
783 case e1000_82542_rev2_0:
784 case e1000_82542_rev2_1:
785 case e1000_82543:
786 break;
787 case e1000_82544:
788 e1000_read_eeprom(&adapter->hw,
789 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
790 eeprom_apme_mask = E1000_EEPROM_82544_APM;
791 break;
792 case e1000_82546:
793 case e1000_82546_rev_3:
794 case e1000_82571:
795 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
796 && (adapter->hw.media_type == e1000_media_type_copper)) {
797 e1000_read_eeprom(&adapter->hw,
798 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
799 break;
801 /* Fall Through */
802 default:
803 e1000_read_eeprom(&adapter->hw,
804 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
805 break;
807 if(eeprom_data & eeprom_apme_mask)
808 adapter->wol |= E1000_WUFC_MAG;
810 /* reset the hardware with the new settings */
811 e1000_reset(adapter);
813 /* If the controller is 82573 and f/w is AMT, do not set
814 * DRV_LOAD until the interface is up. For all other cases,
815 * let the f/w know that the h/w is now under the control
816 * of the driver. */
817 if (adapter->hw.mac_type != e1000_82573 ||
818 !e1000_check_mng_mode(&adapter->hw))
819 e1000_get_hw_control(adapter);
821 strcpy(netdev->name, "eth%d");
822 if((err = register_netdev(netdev)))
823 goto err_register;
825 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
827 cards_found++;
828 return 0;
830 err_register:
831 err_sw_init:
832 err_eeprom:
833 iounmap(adapter->hw.hw_addr);
834 err_ioremap:
835 free_netdev(netdev);
836 err_alloc_etherdev:
837 pci_release_regions(pdev);
838 return err;
842 * e1000_remove - Device Removal Routine
843 * @pdev: PCI device information struct
845 * e1000_remove is called by the PCI subsystem to alert the driver
846 * that it should release a PCI device. The could be caused by a
847 * Hot-Plug event, or because the driver is going to be removed from
848 * memory.
851 static void __devexit
852 e1000_remove(struct pci_dev *pdev)
854 struct net_device *netdev = pci_get_drvdata(pdev);
855 struct e1000_adapter *adapter = netdev_priv(netdev);
856 uint32_t manc;
857 #ifdef CONFIG_E1000_NAPI
858 int i;
859 #endif
861 flush_scheduled_work();
863 if(adapter->hw.mac_type >= e1000_82540 &&
864 adapter->hw.media_type == e1000_media_type_copper) {
865 manc = E1000_READ_REG(&adapter->hw, MANC);
866 if(manc & E1000_MANC_SMBUS_EN) {
867 manc |= E1000_MANC_ARP_EN;
868 E1000_WRITE_REG(&adapter->hw, MANC, manc);
872 /* Release control of h/w to f/w. If f/w is AMT enabled, this
873 * would have already happened in close and is redundant. */
874 e1000_release_hw_control(adapter);
876 unregister_netdev(netdev);
877 #ifdef CONFIG_E1000_NAPI
878 for (i = 0; i < adapter->num_rx_queues; i++)
879 __dev_put(&adapter->polling_netdev[i]);
880 #endif
882 if(!e1000_check_phy_reset_block(&adapter->hw))
883 e1000_phy_hw_reset(&adapter->hw);
885 kfree(adapter->tx_ring);
886 kfree(adapter->rx_ring);
887 #ifdef CONFIG_E1000_NAPI
888 kfree(adapter->polling_netdev);
889 #endif
891 iounmap(adapter->hw.hw_addr);
892 pci_release_regions(pdev);
894 #ifdef CONFIG_E1000_MQ
895 free_percpu(adapter->cpu_netdev);
896 free_percpu(adapter->cpu_tx_ring);
897 #endif
898 free_netdev(netdev);
900 pci_disable_device(pdev);
904 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
905 * @adapter: board private structure to initialize
907 * e1000_sw_init initializes the Adapter private data structure.
908 * Fields are initialized based on PCI device information and
909 * OS network device settings (MTU size).
912 static int __devinit
913 e1000_sw_init(struct e1000_adapter *adapter)
915 struct e1000_hw *hw = &adapter->hw;
916 struct net_device *netdev = adapter->netdev;
917 struct pci_dev *pdev = adapter->pdev;
918 #ifdef CONFIG_E1000_NAPI
919 int i;
920 #endif
922 /* PCI config space info */
924 hw->vendor_id = pdev->vendor;
925 hw->device_id = pdev->device;
926 hw->subsystem_vendor_id = pdev->subsystem_vendor;
927 hw->subsystem_id = pdev->subsystem_device;
929 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
931 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
933 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
934 adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
935 hw->max_frame_size = netdev->mtu +
936 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
937 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
939 /* identify the MAC */
941 if(e1000_set_mac_type(hw)) {
942 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
943 return -EIO;
946 /* initialize eeprom parameters */
948 if(e1000_init_eeprom_params(hw)) {
949 E1000_ERR("EEPROM initialization failed\n");
950 return -EIO;
953 switch(hw->mac_type) {
954 default:
955 break;
956 case e1000_82541:
957 case e1000_82547:
958 case e1000_82541_rev_2:
959 case e1000_82547_rev_2:
960 hw->phy_init_script = 1;
961 break;
964 e1000_set_media_type(hw);
966 hw->wait_autoneg_complete = FALSE;
967 hw->tbi_compatibility_en = TRUE;
968 hw->adaptive_ifs = TRUE;
970 /* Copper options */
972 if(hw->media_type == e1000_media_type_copper) {
973 hw->mdix = AUTO_ALL_MODES;
974 hw->disable_polarity_correction = FALSE;
975 hw->master_slave = E1000_MASTER_SLAVE;
978 #ifdef CONFIG_E1000_MQ
979 /* Number of supported queues */
980 switch (hw->mac_type) {
981 case e1000_82571:
982 case e1000_82572:
983 /* These controllers support 2 tx queues, but with a single
984 * qdisc implementation, multiple tx queues aren't quite as
985 * interesting. If we can find a logical way of mapping
986 * flows to a queue, then perhaps we can up the num_tx_queue
987 * count back to its default. Until then, we run the risk of
988 * terrible performance due to SACK overload. */
989 adapter->num_tx_queues = 1;
990 adapter->num_rx_queues = 2;
991 break;
992 default:
993 adapter->num_tx_queues = 1;
994 adapter->num_rx_queues = 1;
995 break;
997 adapter->num_rx_queues = min(adapter->num_rx_queues, num_online_cpus());
998 adapter->num_tx_queues = min(adapter->num_tx_queues, num_online_cpus());
999 DPRINTK(DRV, INFO, "Multiqueue Enabled: Rx Queue count = %u %s\n",
1000 adapter->num_rx_queues,
1001 ((adapter->num_rx_queues == 1)
1002 ? ((num_online_cpus() > 1)
1003 ? "(due to unsupported feature in current adapter)"
1004 : "(due to unsupported system configuration)")
1005 : ""));
1006 DPRINTK(DRV, INFO, "Multiqueue Enabled: Tx Queue count = %u\n",
1007 adapter->num_tx_queues);
1008 #else
1009 adapter->num_tx_queues = 1;
1010 adapter->num_rx_queues = 1;
1011 #endif
1013 if (e1000_alloc_queues(adapter)) {
1014 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1015 return -ENOMEM;
1018 #ifdef CONFIG_E1000_NAPI
1019 for (i = 0; i < adapter->num_rx_queues; i++) {
1020 adapter->polling_netdev[i].priv = adapter;
1021 adapter->polling_netdev[i].poll = &e1000_clean;
1022 adapter->polling_netdev[i].weight = 64;
1023 dev_hold(&adapter->polling_netdev[i]);
1024 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1026 spin_lock_init(&adapter->tx_queue_lock);
1027 #endif
1029 atomic_set(&adapter->irq_sem, 1);
1030 spin_lock_init(&adapter->stats_lock);
1032 return 0;
1036 * e1000_alloc_queues - Allocate memory for all rings
1037 * @adapter: board private structure to initialize
1039 * We allocate one ring per queue at run-time since we don't know the
1040 * number of queues at compile-time. The polling_netdev array is
1041 * intended for Multiqueue, but should work fine with a single queue.
1044 static int __devinit
1045 e1000_alloc_queues(struct e1000_adapter *adapter)
1047 int size;
1049 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1050 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1051 if (!adapter->tx_ring)
1052 return -ENOMEM;
1053 memset(adapter->tx_ring, 0, size);
1055 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1056 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1057 if (!adapter->rx_ring) {
1058 kfree(adapter->tx_ring);
1059 return -ENOMEM;
1061 memset(adapter->rx_ring, 0, size);
1063 #ifdef CONFIG_E1000_NAPI
1064 size = sizeof(struct net_device) * adapter->num_rx_queues;
1065 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1066 if (!adapter->polling_netdev) {
1067 kfree(adapter->tx_ring);
1068 kfree(adapter->rx_ring);
1069 return -ENOMEM;
1071 memset(adapter->polling_netdev, 0, size);
1072 #endif
1074 #ifdef CONFIG_E1000_MQ
1075 adapter->rx_sched_call_data.func = e1000_rx_schedule;
1076 adapter->rx_sched_call_data.info = adapter->netdev;
1078 adapter->cpu_netdev = alloc_percpu(struct net_device *);
1079 adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1080 #endif
1082 return E1000_SUCCESS;
1085 #ifdef CONFIG_E1000_MQ
1086 static void __devinit
1087 e1000_setup_queue_mapping(struct e1000_adapter *adapter)
1089 int i, cpu;
1091 adapter->rx_sched_call_data.func = e1000_rx_schedule;
1092 adapter->rx_sched_call_data.info = adapter->netdev;
1093 cpus_clear(adapter->rx_sched_call_data.cpumask);
1095 adapter->cpu_netdev = alloc_percpu(struct net_device *);
1096 adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1098 lock_cpu_hotplug();
1099 i = 0;
1100 for_each_online_cpu(cpu) {
1101 *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_tx_queues];
1102 /* This is incomplete because we'd like to assign separate
1103 * physical cpus to these netdev polling structures and
1104 * avoid saturating a subset of cpus.
1106 if (i < adapter->num_rx_queues) {
1107 *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
1108 adapter->rx_ring[i].cpu = cpu;
1109 cpu_set(cpu, adapter->cpumask);
1110 } else
1111 *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
1113 i++;
1115 unlock_cpu_hotplug();
1117 #endif
1120 * e1000_open - Called when a network interface is made active
1121 * @netdev: network interface device structure
1123 * Returns 0 on success, negative value on failure
1125 * The open entry point is called when a network interface is made
1126 * active by the system (IFF_UP). At this point all resources needed
1127 * for transmit and receive operations are allocated, the interrupt
1128 * handler is registered with the OS, the watchdog timer is started,
1129 * and the stack is notified that the interface is ready.
1132 static int
1133 e1000_open(struct net_device *netdev)
1135 struct e1000_adapter *adapter = netdev_priv(netdev);
1136 int err;
1138 /* allocate transmit descriptors */
1140 if ((err = e1000_setup_all_tx_resources(adapter)))
1141 goto err_setup_tx;
1143 /* allocate receive descriptors */
1145 if ((err = e1000_setup_all_rx_resources(adapter)))
1146 goto err_setup_rx;
1148 if((err = e1000_up(adapter)))
1149 goto err_up;
1150 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1151 if((adapter->hw.mng_cookie.status &
1152 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1153 e1000_update_mng_vlan(adapter);
1156 /* If AMT is enabled, let the firmware know that the network
1157 * interface is now open */
1158 if (adapter->hw.mac_type == e1000_82573 &&
1159 e1000_check_mng_mode(&adapter->hw))
1160 e1000_get_hw_control(adapter);
1162 return E1000_SUCCESS;
1164 err_up:
1165 e1000_free_all_rx_resources(adapter);
1166 err_setup_rx:
1167 e1000_free_all_tx_resources(adapter);
1168 err_setup_tx:
1169 e1000_reset(adapter);
1171 return err;
1175 * e1000_close - Disables a network interface
1176 * @netdev: network interface device structure
1178 * Returns 0, this is not allowed to fail
1180 * The close entry point is called when an interface is de-activated
1181 * by the OS. The hardware is still under the drivers control, but
1182 * needs to be disabled. A global MAC reset is issued to stop the
1183 * hardware, and all transmit and receive resources are freed.
1186 static int
1187 e1000_close(struct net_device *netdev)
1189 struct e1000_adapter *adapter = netdev_priv(netdev);
1191 e1000_down(adapter);
1193 e1000_free_all_tx_resources(adapter);
1194 e1000_free_all_rx_resources(adapter);
1196 if((adapter->hw.mng_cookie.status &
1197 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1198 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1201 /* If AMT is enabled, let the firmware know that the network
1202 * interface is now closed */
1203 if (adapter->hw.mac_type == e1000_82573 &&
1204 e1000_check_mng_mode(&adapter->hw))
1205 e1000_release_hw_control(adapter);
1207 return 0;
1211 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1212 * @adapter: address of board private structure
1213 * @start: address of beginning of memory
1214 * @len: length of memory
1216 static inline boolean_t
1217 e1000_check_64k_bound(struct e1000_adapter *adapter,
1218 void *start, unsigned long len)
1220 unsigned long begin = (unsigned long) start;
1221 unsigned long end = begin + len;
1223 /* First rev 82545 and 82546 need to not allow any memory
1224 * write location to cross 64k boundary due to errata 23 */
1225 if (adapter->hw.mac_type == e1000_82545 ||
1226 adapter->hw.mac_type == e1000_82546) {
1227 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1230 return TRUE;
1234 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1235 * @adapter: board private structure
1236 * @txdr: tx descriptor ring (for a specific queue) to setup
1238 * Return 0 on success, negative on failure
1241 static int
1242 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1243 struct e1000_tx_ring *txdr)
1245 struct pci_dev *pdev = adapter->pdev;
1246 int size;
1248 size = sizeof(struct e1000_buffer) * txdr->count;
1250 txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1251 if(!txdr->buffer_info) {
1252 DPRINTK(PROBE, ERR,
1253 "Unable to allocate memory for the transmit descriptor ring\n");
1254 return -ENOMEM;
1256 memset(txdr->buffer_info, 0, size);
1258 /* round up to nearest 4K */
1260 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1261 E1000_ROUNDUP(txdr->size, 4096);
1263 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1264 if(!txdr->desc) {
1265 setup_tx_desc_die:
1266 vfree(txdr->buffer_info);
1267 DPRINTK(PROBE, ERR,
1268 "Unable to allocate memory for the transmit descriptor ring\n");
1269 return -ENOMEM;
1272 /* Fix for errata 23, can't cross 64kB boundary */
1273 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1274 void *olddesc = txdr->desc;
1275 dma_addr_t olddma = txdr->dma;
1276 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1277 "at %p\n", txdr->size, txdr->desc);
1278 /* Try again, without freeing the previous */
1279 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1280 if(!txdr->desc) {
1281 /* Failed allocation, critical failure */
1282 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1283 goto setup_tx_desc_die;
1286 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1287 /* give up */
1288 pci_free_consistent(pdev, txdr->size, txdr->desc,
1289 txdr->dma);
1290 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1291 DPRINTK(PROBE, ERR,
1292 "Unable to allocate aligned memory "
1293 "for the transmit descriptor ring\n");
1294 vfree(txdr->buffer_info);
1295 return -ENOMEM;
1296 } else {
1297 /* Free old allocation, new allocation was successful */
1298 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1301 memset(txdr->desc, 0, txdr->size);
1303 txdr->next_to_use = 0;
1304 txdr->next_to_clean = 0;
1305 spin_lock_init(&txdr->tx_lock);
1307 return 0;
1311 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1312 * (Descriptors) for all queues
1313 * @adapter: board private structure
1315 * If this function returns with an error, then it's possible one or
1316 * more of the rings is populated (while the rest are not). It is the
1317 * callers duty to clean those orphaned rings.
1319 * Return 0 on success, negative on failure
1323 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1325 int i, err = 0;
1327 for (i = 0; i < adapter->num_tx_queues; i++) {
1328 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1329 if (err) {
1330 DPRINTK(PROBE, ERR,
1331 "Allocation for Tx Queue %u failed\n", i);
1332 break;
1336 return err;
1340 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1341 * @adapter: board private structure
1343 * Configure the Tx unit of the MAC after a reset.
1346 static void
1347 e1000_configure_tx(struct e1000_adapter *adapter)
1349 uint64_t tdba;
1350 struct e1000_hw *hw = &adapter->hw;
1351 uint32_t tdlen, tctl, tipg, tarc;
1353 /* Setup the HW Tx Head and Tail descriptor pointers */
1355 switch (adapter->num_tx_queues) {
1356 case 2:
1357 tdba = adapter->tx_ring[1].dma;
1358 tdlen = adapter->tx_ring[1].count *
1359 sizeof(struct e1000_tx_desc);
1360 E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
1361 E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
1362 E1000_WRITE_REG(hw, TDLEN1, tdlen);
1363 E1000_WRITE_REG(hw, TDH1, 0);
1364 E1000_WRITE_REG(hw, TDT1, 0);
1365 adapter->tx_ring[1].tdh = E1000_TDH1;
1366 adapter->tx_ring[1].tdt = E1000_TDT1;
1367 /* Fall Through */
1368 case 1:
1369 default:
1370 tdba = adapter->tx_ring[0].dma;
1371 tdlen = adapter->tx_ring[0].count *
1372 sizeof(struct e1000_tx_desc);
1373 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1374 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1375 E1000_WRITE_REG(hw, TDLEN, tdlen);
1376 E1000_WRITE_REG(hw, TDH, 0);
1377 E1000_WRITE_REG(hw, TDT, 0);
1378 adapter->tx_ring[0].tdh = E1000_TDH;
1379 adapter->tx_ring[0].tdt = E1000_TDT;
1380 break;
1383 /* Set the default values for the Tx Inter Packet Gap timer */
1385 switch (hw->mac_type) {
1386 case e1000_82542_rev2_0:
1387 case e1000_82542_rev2_1:
1388 tipg = DEFAULT_82542_TIPG_IPGT;
1389 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1390 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1391 break;
1392 default:
1393 if (hw->media_type == e1000_media_type_fiber ||
1394 hw->media_type == e1000_media_type_internal_serdes)
1395 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1396 else
1397 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1398 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1399 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1401 E1000_WRITE_REG(hw, TIPG, tipg);
1403 /* Set the Tx Interrupt Delay register */
1405 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1406 if (hw->mac_type >= e1000_82540)
1407 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1409 /* Program the Transmit Control Register */
1411 tctl = E1000_READ_REG(hw, TCTL);
1413 tctl &= ~E1000_TCTL_CT;
1414 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1415 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1417 E1000_WRITE_REG(hw, TCTL, tctl);
1419 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1420 tarc = E1000_READ_REG(hw, TARC0);
1421 tarc |= ((1 << 25) | (1 << 21));
1422 E1000_WRITE_REG(hw, TARC0, tarc);
1423 tarc = E1000_READ_REG(hw, TARC1);
1424 tarc |= (1 << 25);
1425 if (tctl & E1000_TCTL_MULR)
1426 tarc &= ~(1 << 28);
1427 else
1428 tarc |= (1 << 28);
1429 E1000_WRITE_REG(hw, TARC1, tarc);
1432 e1000_config_collision_dist(hw);
1434 /* Setup Transmit Descriptor Settings for eop descriptor */
1435 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1436 E1000_TXD_CMD_IFCS;
1438 if (hw->mac_type < e1000_82543)
1439 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1440 else
1441 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1443 /* Cache if we're 82544 running in PCI-X because we'll
1444 * need this to apply a workaround later in the send path. */
1445 if (hw->mac_type == e1000_82544 &&
1446 hw->bus_type == e1000_bus_type_pcix)
1447 adapter->pcix_82544 = 1;
1451 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1452 * @adapter: board private structure
1453 * @rxdr: rx descriptor ring (for a specific queue) to setup
1455 * Returns 0 on success, negative on failure
1458 static int
1459 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1460 struct e1000_rx_ring *rxdr)
1462 struct pci_dev *pdev = adapter->pdev;
1463 int size, desc_len;
1465 size = sizeof(struct e1000_buffer) * rxdr->count;
1466 rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1467 if (!rxdr->buffer_info) {
1468 DPRINTK(PROBE, ERR,
1469 "Unable to allocate memory for the receive descriptor ring\n");
1470 return -ENOMEM;
1472 memset(rxdr->buffer_info, 0, size);
1474 size = sizeof(struct e1000_ps_page) * rxdr->count;
1475 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1476 if(!rxdr->ps_page) {
1477 vfree(rxdr->buffer_info);
1478 DPRINTK(PROBE, ERR,
1479 "Unable to allocate memory for the receive descriptor ring\n");
1480 return -ENOMEM;
1482 memset(rxdr->ps_page, 0, size);
1484 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1485 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1486 if(!rxdr->ps_page_dma) {
1487 vfree(rxdr->buffer_info);
1488 kfree(rxdr->ps_page);
1489 DPRINTK(PROBE, ERR,
1490 "Unable to allocate memory for the receive descriptor ring\n");
1491 return -ENOMEM;
1493 memset(rxdr->ps_page_dma, 0, size);
1495 if(adapter->hw.mac_type <= e1000_82547_rev_2)
1496 desc_len = sizeof(struct e1000_rx_desc);
1497 else
1498 desc_len = sizeof(union e1000_rx_desc_packet_split);
1500 /* Round up to nearest 4K */
1502 rxdr->size = rxdr->count * desc_len;
1503 E1000_ROUNDUP(rxdr->size, 4096);
1505 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1507 if (!rxdr->desc) {
1508 DPRINTK(PROBE, ERR,
1509 "Unable to allocate memory for the receive descriptor ring\n");
1510 setup_rx_desc_die:
1511 vfree(rxdr->buffer_info);
1512 kfree(rxdr->ps_page);
1513 kfree(rxdr->ps_page_dma);
1514 return -ENOMEM;
1517 /* Fix for errata 23, can't cross 64kB boundary */
1518 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1519 void *olddesc = rxdr->desc;
1520 dma_addr_t olddma = rxdr->dma;
1521 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1522 "at %p\n", rxdr->size, rxdr->desc);
1523 /* Try again, without freeing the previous */
1524 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1525 /* Failed allocation, critical failure */
1526 if (!rxdr->desc) {
1527 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1528 DPRINTK(PROBE, ERR,
1529 "Unable to allocate memory "
1530 "for the receive descriptor ring\n");
1531 goto setup_rx_desc_die;
1534 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1535 /* give up */
1536 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1537 rxdr->dma);
1538 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1539 DPRINTK(PROBE, ERR,
1540 "Unable to allocate aligned memory "
1541 "for the receive descriptor ring\n");
1542 goto setup_rx_desc_die;
1543 } else {
1544 /* Free old allocation, new allocation was successful */
1545 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1548 memset(rxdr->desc, 0, rxdr->size);
1550 rxdr->next_to_clean = 0;
1551 rxdr->next_to_use = 0;
1553 return 0;
1557 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1558 * (Descriptors) for all queues
1559 * @adapter: board private structure
1561 * If this function returns with an error, then it's possible one or
1562 * more of the rings is populated (while the rest are not). It is the
1563 * callers duty to clean those orphaned rings.
1565 * Return 0 on success, negative on failure
1569 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1571 int i, err = 0;
1573 for (i = 0; i < adapter->num_rx_queues; i++) {
1574 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1575 if (err) {
1576 DPRINTK(PROBE, ERR,
1577 "Allocation for Rx Queue %u failed\n", i);
1578 break;
1582 return err;
1586 * e1000_setup_rctl - configure the receive control registers
1587 * @adapter: Board private structure
1589 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1590 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1591 static void
1592 e1000_setup_rctl(struct e1000_adapter *adapter)
1594 uint32_t rctl, rfctl;
1595 uint32_t psrctl = 0;
1596 #ifdef CONFIG_E1000_PACKET_SPLIT
1597 uint32_t pages = 0;
1598 #endif
1600 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1602 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1604 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1605 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1606 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1608 if(adapter->hw.tbi_compatibility_on == 1)
1609 rctl |= E1000_RCTL_SBP;
1610 else
1611 rctl &= ~E1000_RCTL_SBP;
1613 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1614 rctl &= ~E1000_RCTL_LPE;
1615 else
1616 rctl |= E1000_RCTL_LPE;
1618 /* Setup buffer sizes */
1619 if(adapter->hw.mac_type >= e1000_82571) {
1620 /* We can now specify buffers in 1K increments.
1621 * BSIZE and BSEX are ignored in this case. */
1622 rctl |= adapter->rx_buffer_len << 0x11;
1623 } else {
1624 rctl &= ~E1000_RCTL_SZ_4096;
1625 rctl |= E1000_RCTL_BSEX;
1626 switch (adapter->rx_buffer_len) {
1627 case E1000_RXBUFFER_2048:
1628 default:
1629 rctl |= E1000_RCTL_SZ_2048;
1630 rctl &= ~E1000_RCTL_BSEX;
1631 break;
1632 case E1000_RXBUFFER_4096:
1633 rctl |= E1000_RCTL_SZ_4096;
1634 break;
1635 case E1000_RXBUFFER_8192:
1636 rctl |= E1000_RCTL_SZ_8192;
1637 break;
1638 case E1000_RXBUFFER_16384:
1639 rctl |= E1000_RCTL_SZ_16384;
1640 break;
1644 #ifdef CONFIG_E1000_PACKET_SPLIT
1645 /* 82571 and greater support packet-split where the protocol
1646 * header is placed in skb->data and the packet data is
1647 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1648 * In the case of a non-split, skb->data is linearly filled,
1649 * followed by the page buffers. Therefore, skb->data is
1650 * sized to hold the largest protocol header.
1652 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1653 if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1654 PAGE_SIZE <= 16384)
1655 adapter->rx_ps_pages = pages;
1656 else
1657 adapter->rx_ps_pages = 0;
1658 #endif
1659 if (adapter->rx_ps_pages) {
1660 /* Configure extra packet-split registers */
1661 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1662 rfctl |= E1000_RFCTL_EXTEN;
1663 /* disable IPv6 packet split support */
1664 rfctl |= E1000_RFCTL_IPV6_DIS;
1665 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1667 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1669 psrctl |= adapter->rx_ps_bsize0 >>
1670 E1000_PSRCTL_BSIZE0_SHIFT;
1672 switch (adapter->rx_ps_pages) {
1673 case 3:
1674 psrctl |= PAGE_SIZE <<
1675 E1000_PSRCTL_BSIZE3_SHIFT;
1676 case 2:
1677 psrctl |= PAGE_SIZE <<
1678 E1000_PSRCTL_BSIZE2_SHIFT;
1679 case 1:
1680 psrctl |= PAGE_SIZE >>
1681 E1000_PSRCTL_BSIZE1_SHIFT;
1682 break;
1685 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1688 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1692 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1693 * @adapter: board private structure
1695 * Configure the Rx unit of the MAC after a reset.
1698 static void
1699 e1000_configure_rx(struct e1000_adapter *adapter)
1701 uint64_t rdba;
1702 struct e1000_hw *hw = &adapter->hw;
1703 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1704 #ifdef CONFIG_E1000_MQ
1705 uint32_t reta, mrqc;
1706 int i;
1707 #endif
1709 if (adapter->rx_ps_pages) {
1710 rdlen = adapter->rx_ring[0].count *
1711 sizeof(union e1000_rx_desc_packet_split);
1712 adapter->clean_rx = e1000_clean_rx_irq_ps;
1713 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1714 } else {
1715 rdlen = adapter->rx_ring[0].count *
1716 sizeof(struct e1000_rx_desc);
1717 adapter->clean_rx = e1000_clean_rx_irq;
1718 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1721 /* disable receives while setting up the descriptors */
1722 rctl = E1000_READ_REG(hw, RCTL);
1723 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1725 /* set the Receive Delay Timer Register */
1726 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1728 if (hw->mac_type >= e1000_82540) {
1729 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1730 if(adapter->itr > 1)
1731 E1000_WRITE_REG(hw, ITR,
1732 1000000000 / (adapter->itr * 256));
1735 if (hw->mac_type >= e1000_82571) {
1736 /* Reset delay timers after every interrupt */
1737 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1738 ctrl_ext |= E1000_CTRL_EXT_CANC;
1739 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1740 E1000_WRITE_FLUSH(hw);
1743 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1744 * the Base and Length of the Rx Descriptor Ring */
1745 switch (adapter->num_rx_queues) {
1746 #ifdef CONFIG_E1000_MQ
1747 case 2:
1748 rdba = adapter->rx_ring[1].dma;
1749 E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
1750 E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
1751 E1000_WRITE_REG(hw, RDLEN1, rdlen);
1752 E1000_WRITE_REG(hw, RDH1, 0);
1753 E1000_WRITE_REG(hw, RDT1, 0);
1754 adapter->rx_ring[1].rdh = E1000_RDH1;
1755 adapter->rx_ring[1].rdt = E1000_RDT1;
1756 /* Fall Through */
1757 #endif
1758 case 1:
1759 default:
1760 rdba = adapter->rx_ring[0].dma;
1761 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1762 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1763 E1000_WRITE_REG(hw, RDLEN, rdlen);
1764 E1000_WRITE_REG(hw, RDH, 0);
1765 E1000_WRITE_REG(hw, RDT, 0);
1766 adapter->rx_ring[0].rdh = E1000_RDH;
1767 adapter->rx_ring[0].rdt = E1000_RDT;
1768 break;
1771 #ifdef CONFIG_E1000_MQ
1772 if (adapter->num_rx_queues > 1) {
1773 uint32_t random[10];
1775 get_random_bytes(&random[0], 40);
1777 if (hw->mac_type <= e1000_82572) {
1778 E1000_WRITE_REG(hw, RSSIR, 0);
1779 E1000_WRITE_REG(hw, RSSIM, 0);
1782 switch (adapter->num_rx_queues) {
1783 case 2:
1784 default:
1785 reta = 0x00800080;
1786 mrqc = E1000_MRQC_ENABLE_RSS_2Q;
1787 break;
1790 /* Fill out redirection table */
1791 for (i = 0; i < 32; i++)
1792 E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
1793 /* Fill out hash function seeds */
1794 for (i = 0; i < 10; i++)
1795 E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
1797 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1798 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1799 E1000_WRITE_REG(hw, MRQC, mrqc);
1802 /* Multiqueue and packet checksumming are mutually exclusive. */
1803 if (hw->mac_type >= e1000_82571) {
1804 rxcsum = E1000_READ_REG(hw, RXCSUM);
1805 rxcsum |= E1000_RXCSUM_PCSD;
1806 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1809 #else
1811 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1812 if (hw->mac_type >= e1000_82543) {
1813 rxcsum = E1000_READ_REG(hw, RXCSUM);
1814 if(adapter->rx_csum == TRUE) {
1815 rxcsum |= E1000_RXCSUM_TUOFL;
1817 /* Enable 82571 IPv4 payload checksum for UDP fragments
1818 * Must be used in conjunction with packet-split. */
1819 if ((hw->mac_type >= e1000_82571) &&
1820 (adapter->rx_ps_pages)) {
1821 rxcsum |= E1000_RXCSUM_IPPCSE;
1823 } else {
1824 rxcsum &= ~E1000_RXCSUM_TUOFL;
1825 /* don't need to clear IPPCSE as it defaults to 0 */
1827 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1829 #endif /* CONFIG_E1000_MQ */
1831 if (hw->mac_type == e1000_82573)
1832 E1000_WRITE_REG(hw, ERT, 0x0100);
1834 /* Enable Receives */
1835 E1000_WRITE_REG(hw, RCTL, rctl);
1839 * e1000_free_tx_resources - Free Tx Resources per Queue
1840 * @adapter: board private structure
1841 * @tx_ring: Tx descriptor ring for a specific queue
1843 * Free all transmit software resources
1846 static void
1847 e1000_free_tx_resources(struct e1000_adapter *adapter,
1848 struct e1000_tx_ring *tx_ring)
1850 struct pci_dev *pdev = adapter->pdev;
1852 e1000_clean_tx_ring(adapter, tx_ring);
1854 vfree(tx_ring->buffer_info);
1855 tx_ring->buffer_info = NULL;
1857 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1859 tx_ring->desc = NULL;
1863 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1864 * @adapter: board private structure
1866 * Free all transmit software resources
1869 void
1870 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1872 int i;
1874 for (i = 0; i < adapter->num_tx_queues; i++)
1875 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1878 static inline void
1879 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1880 struct e1000_buffer *buffer_info)
1882 if(buffer_info->dma) {
1883 pci_unmap_page(adapter->pdev,
1884 buffer_info->dma,
1885 buffer_info->length,
1886 PCI_DMA_TODEVICE);
1887 buffer_info->dma = 0;
1889 if(buffer_info->skb) {
1890 dev_kfree_skb_any(buffer_info->skb);
1891 buffer_info->skb = NULL;
1896 * e1000_clean_tx_ring - Free Tx Buffers
1897 * @adapter: board private structure
1898 * @tx_ring: ring to be cleaned
1901 static void
1902 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1903 struct e1000_tx_ring *tx_ring)
1905 struct e1000_buffer *buffer_info;
1906 unsigned long size;
1907 unsigned int i;
1909 /* Free all the Tx ring sk_buffs */
1911 for(i = 0; i < tx_ring->count; i++) {
1912 buffer_info = &tx_ring->buffer_info[i];
1913 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1916 size = sizeof(struct e1000_buffer) * tx_ring->count;
1917 memset(tx_ring->buffer_info, 0, size);
1919 /* Zero out the descriptor ring */
1921 memset(tx_ring->desc, 0, tx_ring->size);
1923 tx_ring->next_to_use = 0;
1924 tx_ring->next_to_clean = 0;
1925 tx_ring->last_tx_tso = 0;
1927 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1928 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1932 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1933 * @adapter: board private structure
1936 static void
1937 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1939 int i;
1941 for (i = 0; i < adapter->num_tx_queues; i++)
1942 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1946 * e1000_free_rx_resources - Free Rx Resources
1947 * @adapter: board private structure
1948 * @rx_ring: ring to clean the resources from
1950 * Free all receive software resources
1953 static void
1954 e1000_free_rx_resources(struct e1000_adapter *adapter,
1955 struct e1000_rx_ring *rx_ring)
1957 struct pci_dev *pdev = adapter->pdev;
1959 e1000_clean_rx_ring(adapter, rx_ring);
1961 vfree(rx_ring->buffer_info);
1962 rx_ring->buffer_info = NULL;
1963 kfree(rx_ring->ps_page);
1964 rx_ring->ps_page = NULL;
1965 kfree(rx_ring->ps_page_dma);
1966 rx_ring->ps_page_dma = NULL;
1968 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1970 rx_ring->desc = NULL;
1974 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1975 * @adapter: board private structure
1977 * Free all receive software resources
1980 void
1981 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1983 int i;
1985 for (i = 0; i < adapter->num_rx_queues; i++)
1986 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1990 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1991 * @adapter: board private structure
1992 * @rx_ring: ring to free buffers from
1995 static void
1996 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1997 struct e1000_rx_ring *rx_ring)
1999 struct e1000_buffer *buffer_info;
2000 struct e1000_ps_page *ps_page;
2001 struct e1000_ps_page_dma *ps_page_dma;
2002 struct pci_dev *pdev = adapter->pdev;
2003 unsigned long size;
2004 unsigned int i, j;
2006 /* Free all the Rx ring sk_buffs */
2008 for(i = 0; i < rx_ring->count; i++) {
2009 buffer_info = &rx_ring->buffer_info[i];
2010 if(buffer_info->skb) {
2011 ps_page = &rx_ring->ps_page[i];
2012 ps_page_dma = &rx_ring->ps_page_dma[i];
2013 pci_unmap_single(pdev,
2014 buffer_info->dma,
2015 buffer_info->length,
2016 PCI_DMA_FROMDEVICE);
2018 dev_kfree_skb(buffer_info->skb);
2019 buffer_info->skb = NULL;
2021 for(j = 0; j < adapter->rx_ps_pages; j++) {
2022 if(!ps_page->ps_page[j]) break;
2023 pci_unmap_single(pdev,
2024 ps_page_dma->ps_page_dma[j],
2025 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2026 ps_page_dma->ps_page_dma[j] = 0;
2027 put_page(ps_page->ps_page[j]);
2028 ps_page->ps_page[j] = NULL;
2033 size = sizeof(struct e1000_buffer) * rx_ring->count;
2034 memset(rx_ring->buffer_info, 0, size);
2035 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2036 memset(rx_ring->ps_page, 0, size);
2037 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2038 memset(rx_ring->ps_page_dma, 0, size);
2040 /* Zero out the descriptor ring */
2042 memset(rx_ring->desc, 0, rx_ring->size);
2044 rx_ring->next_to_clean = 0;
2045 rx_ring->next_to_use = 0;
2047 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2048 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2052 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2053 * @adapter: board private structure
2056 static void
2057 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2059 int i;
2061 for (i = 0; i < adapter->num_rx_queues; i++)
2062 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2065 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2066 * and memory write and invalidate disabled for certain operations
2068 static void
2069 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2071 struct net_device *netdev = adapter->netdev;
2072 uint32_t rctl;
2074 e1000_pci_clear_mwi(&adapter->hw);
2076 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2077 rctl |= E1000_RCTL_RST;
2078 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2079 E1000_WRITE_FLUSH(&adapter->hw);
2080 mdelay(5);
2082 if(netif_running(netdev))
2083 e1000_clean_all_rx_rings(adapter);
2086 static void
2087 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2089 struct net_device *netdev = adapter->netdev;
2090 uint32_t rctl;
2092 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2093 rctl &= ~E1000_RCTL_RST;
2094 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2095 E1000_WRITE_FLUSH(&adapter->hw);
2096 mdelay(5);
2098 if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2099 e1000_pci_set_mwi(&adapter->hw);
2101 if(netif_running(netdev)) {
2102 e1000_configure_rx(adapter);
2103 e1000_alloc_rx_buffers(adapter, &adapter->rx_ring[0]);
2108 * e1000_set_mac - Change the Ethernet Address of the NIC
2109 * @netdev: network interface device structure
2110 * @p: pointer to an address structure
2112 * Returns 0 on success, negative on failure
2115 static int
2116 e1000_set_mac(struct net_device *netdev, void *p)
2118 struct e1000_adapter *adapter = netdev_priv(netdev);
2119 struct sockaddr *addr = p;
2121 if(!is_valid_ether_addr(addr->sa_data))
2122 return -EADDRNOTAVAIL;
2124 /* 82542 2.0 needs to be in reset to write receive address registers */
2126 if(adapter->hw.mac_type == e1000_82542_rev2_0)
2127 e1000_enter_82542_rst(adapter);
2129 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2130 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2132 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2134 /* With 82571 controllers, LAA may be overwritten (with the default)
2135 * due to controller reset from the other port. */
2136 if (adapter->hw.mac_type == e1000_82571) {
2137 /* activate the work around */
2138 adapter->hw.laa_is_present = 1;
2140 /* Hold a copy of the LAA in RAR[14] This is done so that
2141 * between the time RAR[0] gets clobbered and the time it
2142 * gets fixed (in e1000_watchdog), the actual LAA is in one
2143 * of the RARs and no incoming packets directed to this port
2144 * are dropped. Eventaully the LAA will be in RAR[0] and
2145 * RAR[14] */
2146 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2147 E1000_RAR_ENTRIES - 1);
2150 if(adapter->hw.mac_type == e1000_82542_rev2_0)
2151 e1000_leave_82542_rst(adapter);
2153 return 0;
2157 * e1000_set_multi - Multicast and Promiscuous mode set
2158 * @netdev: network interface device structure
2160 * The set_multi entry point is called whenever the multicast address
2161 * list or the network interface flags are updated. This routine is
2162 * responsible for configuring the hardware for proper multicast,
2163 * promiscuous mode, and all-multi behavior.
2166 static void
2167 e1000_set_multi(struct net_device *netdev)
2169 struct e1000_adapter *adapter = netdev_priv(netdev);
2170 struct e1000_hw *hw = &adapter->hw;
2171 struct dev_mc_list *mc_ptr;
2172 uint32_t rctl;
2173 uint32_t hash_value;
2174 int i, rar_entries = E1000_RAR_ENTRIES;
2176 /* reserve RAR[14] for LAA over-write work-around */
2177 if (adapter->hw.mac_type == e1000_82571)
2178 rar_entries--;
2180 /* Check for Promiscuous and All Multicast modes */
2182 rctl = E1000_READ_REG(hw, RCTL);
2184 if(netdev->flags & IFF_PROMISC) {
2185 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2186 } else if(netdev->flags & IFF_ALLMULTI) {
2187 rctl |= E1000_RCTL_MPE;
2188 rctl &= ~E1000_RCTL_UPE;
2189 } else {
2190 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2193 E1000_WRITE_REG(hw, RCTL, rctl);
2195 /* 82542 2.0 needs to be in reset to write receive address registers */
2197 if(hw->mac_type == e1000_82542_rev2_0)
2198 e1000_enter_82542_rst(adapter);
2200 /* load the first 14 multicast address into the exact filters 1-14
2201 * RAR 0 is used for the station MAC adddress
2202 * if there are not 14 addresses, go ahead and clear the filters
2203 * -- with 82571 controllers only 0-13 entries are filled here
2205 mc_ptr = netdev->mc_list;
2207 for(i = 1; i < rar_entries; i++) {
2208 if (mc_ptr) {
2209 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2210 mc_ptr = mc_ptr->next;
2211 } else {
2212 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2213 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2217 /* clear the old settings from the multicast hash table */
2219 for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2220 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2222 /* load any remaining addresses into the hash table */
2224 for(; mc_ptr; mc_ptr = mc_ptr->next) {
2225 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2226 e1000_mta_set(hw, hash_value);
2229 if(hw->mac_type == e1000_82542_rev2_0)
2230 e1000_leave_82542_rst(adapter);
2233 /* Need to wait a few seconds after link up to get diagnostic information from
2234 * the phy */
2236 static void
2237 e1000_update_phy_info(unsigned long data)
2239 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2240 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2244 * e1000_82547_tx_fifo_stall - Timer Call-back
2245 * @data: pointer to adapter cast into an unsigned long
2248 static void
2249 e1000_82547_tx_fifo_stall(unsigned long data)
2251 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2252 struct net_device *netdev = adapter->netdev;
2253 uint32_t tctl;
2255 if(atomic_read(&adapter->tx_fifo_stall)) {
2256 if((E1000_READ_REG(&adapter->hw, TDT) ==
2257 E1000_READ_REG(&adapter->hw, TDH)) &&
2258 (E1000_READ_REG(&adapter->hw, TDFT) ==
2259 E1000_READ_REG(&adapter->hw, TDFH)) &&
2260 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2261 E1000_READ_REG(&adapter->hw, TDFHS))) {
2262 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2263 E1000_WRITE_REG(&adapter->hw, TCTL,
2264 tctl & ~E1000_TCTL_EN);
2265 E1000_WRITE_REG(&adapter->hw, TDFT,
2266 adapter->tx_head_addr);
2267 E1000_WRITE_REG(&adapter->hw, TDFH,
2268 adapter->tx_head_addr);
2269 E1000_WRITE_REG(&adapter->hw, TDFTS,
2270 adapter->tx_head_addr);
2271 E1000_WRITE_REG(&adapter->hw, TDFHS,
2272 adapter->tx_head_addr);
2273 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2274 E1000_WRITE_FLUSH(&adapter->hw);
2276 adapter->tx_fifo_head = 0;
2277 atomic_set(&adapter->tx_fifo_stall, 0);
2278 netif_wake_queue(netdev);
2279 } else {
2280 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2286 * e1000_watchdog - Timer Call-back
2287 * @data: pointer to adapter cast into an unsigned long
2289 static void
2290 e1000_watchdog(unsigned long data)
2292 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2294 /* Do the rest outside of interrupt context */
2295 schedule_work(&adapter->watchdog_task);
2298 static void
2299 e1000_watchdog_task(struct e1000_adapter *adapter)
2301 struct net_device *netdev = adapter->netdev;
2302 struct e1000_tx_ring *txdr = adapter->tx_ring;
2303 uint32_t link;
2305 e1000_check_for_link(&adapter->hw);
2306 if (adapter->hw.mac_type == e1000_82573) {
2307 e1000_enable_tx_pkt_filtering(&adapter->hw);
2308 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2309 e1000_update_mng_vlan(adapter);
2312 if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2313 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2314 link = !adapter->hw.serdes_link_down;
2315 else
2316 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2318 if(link) {
2319 if(!netif_carrier_ok(netdev)) {
2320 e1000_get_speed_and_duplex(&adapter->hw,
2321 &adapter->link_speed,
2322 &adapter->link_duplex);
2324 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2325 adapter->link_speed,
2326 adapter->link_duplex == FULL_DUPLEX ?
2327 "Full Duplex" : "Half Duplex");
2329 netif_carrier_on(netdev);
2330 netif_wake_queue(netdev);
2331 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2332 adapter->smartspeed = 0;
2334 } else {
2335 if(netif_carrier_ok(netdev)) {
2336 adapter->link_speed = 0;
2337 adapter->link_duplex = 0;
2338 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2339 netif_carrier_off(netdev);
2340 netif_stop_queue(netdev);
2341 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2344 e1000_smartspeed(adapter);
2347 e1000_update_stats(adapter);
2349 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2350 adapter->tpt_old = adapter->stats.tpt;
2351 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2352 adapter->colc_old = adapter->stats.colc;
2354 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2355 adapter->gorcl_old = adapter->stats.gorcl;
2356 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2357 adapter->gotcl_old = adapter->stats.gotcl;
2359 e1000_update_adaptive(&adapter->hw);
2361 #ifdef CONFIG_E1000_MQ
2362 txdr = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2363 #endif
2364 if (!netif_carrier_ok(netdev)) {
2365 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2366 /* We've lost link, so the controller stops DMA,
2367 * but we've got queued Tx work that's never going
2368 * to get done, so reset controller to flush Tx.
2369 * (Do the reset outside of interrupt context). */
2370 schedule_work(&adapter->tx_timeout_task);
2374 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2375 if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2376 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2377 * asymmetrical Tx or Rx gets ITR=8000; everyone
2378 * else is between 2000-8000. */
2379 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2380 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2381 adapter->gotcl - adapter->gorcl :
2382 adapter->gorcl - adapter->gotcl) / 10000;
2383 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2384 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2387 /* Cause software interrupt to ensure rx ring is cleaned */
2388 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2390 /* Force detection of hung controller every watchdog period */
2391 adapter->detect_tx_hung = TRUE;
2393 /* With 82571 controllers, LAA may be overwritten due to controller
2394 * reset from the other port. Set the appropriate LAA in RAR[0] */
2395 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2396 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2398 /* Reset the timer */
2399 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2402 #define E1000_TX_FLAGS_CSUM 0x00000001
2403 #define E1000_TX_FLAGS_VLAN 0x00000002
2404 #define E1000_TX_FLAGS_TSO 0x00000004
2405 #define E1000_TX_FLAGS_IPV4 0x00000008
2406 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2407 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2409 static inline int
2410 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2411 struct sk_buff *skb)
2413 #ifdef NETIF_F_TSO
2414 struct e1000_context_desc *context_desc;
2415 struct e1000_buffer *buffer_info;
2416 unsigned int i;
2417 uint32_t cmd_length = 0;
2418 uint16_t ipcse = 0, tucse, mss;
2419 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2420 int err;
2422 if(skb_shinfo(skb)->tso_size) {
2423 if (skb_header_cloned(skb)) {
2424 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2425 if (err)
2426 return err;
2429 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2430 mss = skb_shinfo(skb)->tso_size;
2431 if(skb->protocol == ntohs(ETH_P_IP)) {
2432 skb->nh.iph->tot_len = 0;
2433 skb->nh.iph->check = 0;
2434 skb->h.th->check =
2435 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2436 skb->nh.iph->daddr,
2438 IPPROTO_TCP,
2440 cmd_length = E1000_TXD_CMD_IP;
2441 ipcse = skb->h.raw - skb->data - 1;
2442 #ifdef NETIF_F_TSO_IPV6
2443 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
2444 skb->nh.ipv6h->payload_len = 0;
2445 skb->h.th->check =
2446 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2447 &skb->nh.ipv6h->daddr,
2449 IPPROTO_TCP,
2451 ipcse = 0;
2452 #endif
2454 ipcss = skb->nh.raw - skb->data;
2455 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2456 tucss = skb->h.raw - skb->data;
2457 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2458 tucse = 0;
2460 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2461 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2463 i = tx_ring->next_to_use;
2464 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2465 buffer_info = &tx_ring->buffer_info[i];
2467 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2468 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2469 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2470 context_desc->upper_setup.tcp_fields.tucss = tucss;
2471 context_desc->upper_setup.tcp_fields.tucso = tucso;
2472 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2473 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2474 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2475 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2477 buffer_info->time_stamp = jiffies;
2479 if (++i == tx_ring->count) i = 0;
2480 tx_ring->next_to_use = i;
2482 return 1;
2484 #endif
2486 return 0;
2489 static inline boolean_t
2490 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2491 struct sk_buff *skb)
2493 struct e1000_context_desc *context_desc;
2494 struct e1000_buffer *buffer_info;
2495 unsigned int i;
2496 uint8_t css;
2498 if(likely(skb->ip_summed == CHECKSUM_HW)) {
2499 css = skb->h.raw - skb->data;
2501 i = tx_ring->next_to_use;
2502 buffer_info = &tx_ring->buffer_info[i];
2503 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2505 context_desc->upper_setup.tcp_fields.tucss = css;
2506 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2507 context_desc->upper_setup.tcp_fields.tucse = 0;
2508 context_desc->tcp_seg_setup.data = 0;
2509 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2511 buffer_info->time_stamp = jiffies;
2513 if (unlikely(++i == tx_ring->count)) i = 0;
2514 tx_ring->next_to_use = i;
2516 return TRUE;
2519 return FALSE;
2522 #define E1000_MAX_TXD_PWR 12
2523 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2525 static inline int
2526 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2527 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2528 unsigned int nr_frags, unsigned int mss)
2530 struct e1000_buffer *buffer_info;
2531 unsigned int len = skb->len;
2532 unsigned int offset = 0, size, count = 0, i;
2533 unsigned int f;
2534 len -= skb->data_len;
2536 i = tx_ring->next_to_use;
2538 while(len) {
2539 buffer_info = &tx_ring->buffer_info[i];
2540 size = min(len, max_per_txd);
2541 #ifdef NETIF_F_TSO
2542 /* Workaround for Controller erratum --
2543 * descriptor for non-tso packet in a linear SKB that follows a
2544 * tso gets written back prematurely before the data is fully
2545 * DMAd to the controller */
2546 if (!skb->data_len && tx_ring->last_tx_tso &&
2547 !skb_shinfo(skb)->tso_size) {
2548 tx_ring->last_tx_tso = 0;
2549 size -= 4;
2552 /* Workaround for premature desc write-backs
2553 * in TSO mode. Append 4-byte sentinel desc */
2554 if(unlikely(mss && !nr_frags && size == len && size > 8))
2555 size -= 4;
2556 #endif
2557 /* work-around for errata 10 and it applies
2558 * to all controllers in PCI-X mode
2559 * The fix is to make sure that the first descriptor of a
2560 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2562 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2563 (size > 2015) && count == 0))
2564 size = 2015;
2566 /* Workaround for potential 82544 hang in PCI-X. Avoid
2567 * terminating buffers within evenly-aligned dwords. */
2568 if(unlikely(adapter->pcix_82544 &&
2569 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2570 size > 4))
2571 size -= 4;
2573 buffer_info->length = size;
2574 buffer_info->dma =
2575 pci_map_single(adapter->pdev,
2576 skb->data + offset,
2577 size,
2578 PCI_DMA_TODEVICE);
2579 buffer_info->time_stamp = jiffies;
2581 len -= size;
2582 offset += size;
2583 count++;
2584 if(unlikely(++i == tx_ring->count)) i = 0;
2587 for(f = 0; f < nr_frags; f++) {
2588 struct skb_frag_struct *frag;
2590 frag = &skb_shinfo(skb)->frags[f];
2591 len = frag->size;
2592 offset = frag->page_offset;
2594 while(len) {
2595 buffer_info = &tx_ring->buffer_info[i];
2596 size = min(len, max_per_txd);
2597 #ifdef NETIF_F_TSO
2598 /* Workaround for premature desc write-backs
2599 * in TSO mode. Append 4-byte sentinel desc */
2600 if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2601 size -= 4;
2602 #endif
2603 /* Workaround for potential 82544 hang in PCI-X.
2604 * Avoid terminating buffers within evenly-aligned
2605 * dwords. */
2606 if(unlikely(adapter->pcix_82544 &&
2607 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2608 size > 4))
2609 size -= 4;
2611 buffer_info->length = size;
2612 buffer_info->dma =
2613 pci_map_page(adapter->pdev,
2614 frag->page,
2615 offset,
2616 size,
2617 PCI_DMA_TODEVICE);
2618 buffer_info->time_stamp = jiffies;
2620 len -= size;
2621 offset += size;
2622 count++;
2623 if(unlikely(++i == tx_ring->count)) i = 0;
2627 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2628 tx_ring->buffer_info[i].skb = skb;
2629 tx_ring->buffer_info[first].next_to_watch = i;
2631 return count;
2634 static inline void
2635 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2636 int tx_flags, int count)
2638 struct e1000_tx_desc *tx_desc = NULL;
2639 struct e1000_buffer *buffer_info;
2640 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2641 unsigned int i;
2643 if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2644 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2645 E1000_TXD_CMD_TSE;
2646 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2648 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2649 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2652 if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2653 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2654 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2657 if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2658 txd_lower |= E1000_TXD_CMD_VLE;
2659 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2662 i = tx_ring->next_to_use;
2664 while(count--) {
2665 buffer_info = &tx_ring->buffer_info[i];
2666 tx_desc = E1000_TX_DESC(*tx_ring, i);
2667 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2668 tx_desc->lower.data =
2669 cpu_to_le32(txd_lower | buffer_info->length);
2670 tx_desc->upper.data = cpu_to_le32(txd_upper);
2671 if(unlikely(++i == tx_ring->count)) i = 0;
2674 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2676 /* Force memory writes to complete before letting h/w
2677 * know there are new descriptors to fetch. (Only
2678 * applicable for weak-ordered memory model archs,
2679 * such as IA-64). */
2680 wmb();
2682 tx_ring->next_to_use = i;
2683 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2687 * 82547 workaround to avoid controller hang in half-duplex environment.
2688 * The workaround is to avoid queuing a large packet that would span
2689 * the internal Tx FIFO ring boundary by notifying the stack to resend
2690 * the packet at a later time. This gives the Tx FIFO an opportunity to
2691 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2692 * to the beginning of the Tx FIFO.
2695 #define E1000_FIFO_HDR 0x10
2696 #define E1000_82547_PAD_LEN 0x3E0
2698 static inline int
2699 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2701 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2702 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2704 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2706 if(adapter->link_duplex != HALF_DUPLEX)
2707 goto no_fifo_stall_required;
2709 if(atomic_read(&adapter->tx_fifo_stall))
2710 return 1;
2712 if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2713 atomic_set(&adapter->tx_fifo_stall, 1);
2714 return 1;
2717 no_fifo_stall_required:
2718 adapter->tx_fifo_head += skb_fifo_len;
2719 if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2720 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2721 return 0;
2724 #define MINIMUM_DHCP_PACKET_SIZE 282
2725 static inline int
2726 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2728 struct e1000_hw *hw = &adapter->hw;
2729 uint16_t length, offset;
2730 if(vlan_tx_tag_present(skb)) {
2731 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2732 ( adapter->hw.mng_cookie.status &
2733 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2734 return 0;
2736 if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2737 struct ethhdr *eth = (struct ethhdr *) skb->data;
2738 if((htons(ETH_P_IP) == eth->h_proto)) {
2739 const struct iphdr *ip =
2740 (struct iphdr *)((uint8_t *)skb->data+14);
2741 if(IPPROTO_UDP == ip->protocol) {
2742 struct udphdr *udp =
2743 (struct udphdr *)((uint8_t *)ip +
2744 (ip->ihl << 2));
2745 if(ntohs(udp->dest) == 67) {
2746 offset = (uint8_t *)udp + 8 - skb->data;
2747 length = skb->len - offset;
2749 return e1000_mng_write_dhcp_info(hw,
2750 (uint8_t *)udp + 8,
2751 length);
2756 return 0;
2759 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2760 static int
2761 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2763 struct e1000_adapter *adapter = netdev_priv(netdev);
2764 struct e1000_tx_ring *tx_ring;
2765 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2766 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2767 unsigned int tx_flags = 0;
2768 unsigned int len = skb->len;
2769 unsigned long flags;
2770 unsigned int nr_frags = 0;
2771 unsigned int mss = 0;
2772 int count = 0;
2773 int tso;
2774 unsigned int f;
2775 len -= skb->data_len;
2777 #ifdef CONFIG_E1000_MQ
2778 tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2779 #else
2780 tx_ring = adapter->tx_ring;
2781 #endif
2783 if (unlikely(skb->len <= 0)) {
2784 dev_kfree_skb_any(skb);
2785 return NETDEV_TX_OK;
2788 #ifdef NETIF_F_TSO
2789 mss = skb_shinfo(skb)->tso_size;
2790 /* The controller does a simple calculation to
2791 * make sure there is enough room in the FIFO before
2792 * initiating the DMA for each buffer. The calc is:
2793 * 4 = ceil(buffer len/mss). To make sure we don't
2794 * overrun the FIFO, adjust the max buffer len if mss
2795 * drops. */
2796 if(mss) {
2797 uint8_t hdr_len;
2798 max_per_txd = min(mss << 2, max_per_txd);
2799 max_txd_pwr = fls(max_per_txd) - 1;
2801 /* TSO Workaround for 82571/2 Controllers -- if skb->data
2802 * points to just header, pull a few bytes of payload from
2803 * frags into skb->data */
2804 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2805 if (skb->data_len && (hdr_len == (skb->len - skb->data_len)) &&
2806 (adapter->hw.mac_type == e1000_82571 ||
2807 adapter->hw.mac_type == e1000_82572)) {
2808 len = skb->len - skb->data_len;
2812 if((mss) || (skb->ip_summed == CHECKSUM_HW))
2813 /* reserve a descriptor for the offload context */
2814 count++;
2815 count++;
2816 #else
2817 if(skb->ip_summed == CHECKSUM_HW)
2818 count++;
2819 #endif
2821 #ifdef NETIF_F_TSO
2822 /* Controller Erratum workaround */
2823 if (!skb->data_len && tx_ring->last_tx_tso &&
2824 !skb_shinfo(skb)->tso_size)
2825 count++;
2826 #endif
2828 count += TXD_USE_COUNT(len, max_txd_pwr);
2830 if(adapter->pcix_82544)
2831 count++;
2833 /* work-around for errata 10 and it applies to all controllers
2834 * in PCI-X mode, so add one more descriptor to the count
2836 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2837 (len > 2015)))
2838 count++;
2840 nr_frags = skb_shinfo(skb)->nr_frags;
2841 for(f = 0; f < nr_frags; f++)
2842 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2843 max_txd_pwr);
2844 if(adapter->pcix_82544)
2845 count += nr_frags;
2847 unsigned int pull_size;
2848 pull_size = min((unsigned int)4, skb->data_len);
2849 if (!__pskb_pull_tail(skb, pull_size)) {
2850 printk(KERN_ERR "__pskb_pull_tail failed.\n");
2851 dev_kfree_skb_any(skb);
2852 return -EFAULT;
2855 if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2856 e1000_transfer_dhcp_info(adapter, skb);
2858 local_irq_save(flags);
2859 if (!spin_trylock(&tx_ring->tx_lock)) {
2860 /* Collision - tell upper layer to requeue */
2861 local_irq_restore(flags);
2862 return NETDEV_TX_LOCKED;
2865 /* need: count + 2 desc gap to keep tail from touching
2866 * head, otherwise try next time */
2867 if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2868 netif_stop_queue(netdev);
2869 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2870 return NETDEV_TX_BUSY;
2873 if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2874 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2875 netif_stop_queue(netdev);
2876 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2877 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2878 return NETDEV_TX_BUSY;
2882 if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2883 tx_flags |= E1000_TX_FLAGS_VLAN;
2884 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2887 first = tx_ring->next_to_use;
2889 tso = e1000_tso(adapter, tx_ring, skb);
2890 if (tso < 0) {
2891 dev_kfree_skb_any(skb);
2892 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2893 return NETDEV_TX_OK;
2896 if (likely(tso)) {
2897 tx_ring->last_tx_tso = 1;
2898 tx_flags |= E1000_TX_FLAGS_TSO;
2899 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2900 tx_flags |= E1000_TX_FLAGS_CSUM;
2902 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2903 * 82571 hardware supports TSO capabilities for IPv6 as well...
2904 * no longer assume, we must. */
2905 if (likely(skb->protocol == ntohs(ETH_P_IP)))
2906 tx_flags |= E1000_TX_FLAGS_IPV4;
2908 e1000_tx_queue(adapter, tx_ring, tx_flags,
2909 e1000_tx_map(adapter, tx_ring, skb, first,
2910 max_per_txd, nr_frags, mss));
2912 netdev->trans_start = jiffies;
2914 /* Make sure there is space in the ring for the next send. */
2915 if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2916 netif_stop_queue(netdev);
2918 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2919 return NETDEV_TX_OK;
2923 * e1000_tx_timeout - Respond to a Tx Hang
2924 * @netdev: network interface device structure
2927 static void
2928 e1000_tx_timeout(struct net_device *netdev)
2930 struct e1000_adapter *adapter = netdev_priv(netdev);
2932 /* Do the reset outside of interrupt context */
2933 schedule_work(&adapter->tx_timeout_task);
2936 static void
2937 e1000_tx_timeout_task(struct net_device *netdev)
2939 struct e1000_adapter *adapter = netdev_priv(netdev);
2941 adapter->tx_timeout_count++;
2942 e1000_down(adapter);
2943 e1000_up(adapter);
2947 * e1000_get_stats - Get System Network Statistics
2948 * @netdev: network interface device structure
2950 * Returns the address of the device statistics structure.
2951 * The statistics are actually updated from the timer callback.
2954 static struct net_device_stats *
2955 e1000_get_stats(struct net_device *netdev)
2957 struct e1000_adapter *adapter = netdev_priv(netdev);
2959 /* only return the current stats */
2960 return &adapter->net_stats;
2964 * e1000_change_mtu - Change the Maximum Transfer Unit
2965 * @netdev: network interface device structure
2966 * @new_mtu: new value for maximum frame size
2968 * Returns 0 on success, negative on failure
2971 static int
2972 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2974 struct e1000_adapter *adapter = netdev_priv(netdev);
2975 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2977 if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2978 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2979 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2980 return -EINVAL;
2983 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2984 /* might want this to be bigger enum check... */
2985 /* 82571 controllers limit jumbo frame size to 10500 bytes */
2986 if ((adapter->hw.mac_type == e1000_82571 ||
2987 adapter->hw.mac_type == e1000_82572) &&
2988 max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2989 DPRINTK(PROBE, ERR, "MTU > 9216 bytes not supported "
2990 "on 82571 and 82572 controllers.\n");
2991 return -EINVAL;
2994 if(adapter->hw.mac_type == e1000_82573 &&
2995 max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2996 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2997 "on 82573\n");
2998 return -EINVAL;
3001 if(adapter->hw.mac_type > e1000_82547_rev_2) {
3002 adapter->rx_buffer_len = max_frame;
3003 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
3004 } else {
3005 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
3006 (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
3007 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
3008 "on 82542\n");
3009 return -EINVAL;
3011 } else {
3012 if(max_frame <= E1000_RXBUFFER_2048) {
3013 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3014 } else if(max_frame <= E1000_RXBUFFER_4096) {
3015 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3016 } else if(max_frame <= E1000_RXBUFFER_8192) {
3017 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3018 } else if(max_frame <= E1000_RXBUFFER_16384) {
3019 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3024 netdev->mtu = new_mtu;
3026 if(netif_running(netdev)) {
3027 e1000_down(adapter);
3028 e1000_up(adapter);
3031 adapter->hw.max_frame_size = max_frame;
3033 return 0;
3037 * e1000_update_stats - Update the board statistics counters
3038 * @adapter: board private structure
3041 void
3042 e1000_update_stats(struct e1000_adapter *adapter)
3044 struct e1000_hw *hw = &adapter->hw;
3045 unsigned long flags;
3046 uint16_t phy_tmp;
3048 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3050 spin_lock_irqsave(&adapter->stats_lock, flags);
3052 /* these counters are modified from e1000_adjust_tbi_stats,
3053 * called from the interrupt context, so they must only
3054 * be written while holding adapter->stats_lock
3057 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3058 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3059 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3060 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3061 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3062 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3063 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3064 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3065 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3066 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3067 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3068 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3069 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3071 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3072 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3073 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3074 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3075 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3076 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3077 adapter->stats.dc += E1000_READ_REG(hw, DC);
3078 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3079 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3080 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3081 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3082 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3083 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3084 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3085 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3086 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3087 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3088 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3089 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3090 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3091 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3092 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3093 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3094 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3095 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3096 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3097 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3098 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3099 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3100 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3101 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3102 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3103 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3104 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3106 /* used for adaptive IFS */
3108 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3109 adapter->stats.tpt += hw->tx_packet_delta;
3110 hw->collision_delta = E1000_READ_REG(hw, COLC);
3111 adapter->stats.colc += hw->collision_delta;
3113 if(hw->mac_type >= e1000_82543) {
3114 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3115 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3116 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3117 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3118 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3119 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3121 if(hw->mac_type > e1000_82547_rev_2) {
3122 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3123 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3124 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3125 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3126 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3127 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3128 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3129 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3130 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3133 /* Fill out the OS statistics structure */
3135 adapter->net_stats.rx_packets = adapter->stats.gprc;
3136 adapter->net_stats.tx_packets = adapter->stats.gptc;
3137 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3138 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3139 adapter->net_stats.multicast = adapter->stats.mprc;
3140 adapter->net_stats.collisions = adapter->stats.colc;
3142 /* Rx Errors */
3144 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3145 adapter->stats.crcerrs + adapter->stats.algnerrc +
3146 adapter->stats.rlec + adapter->stats.cexterr;
3147 adapter->net_stats.rx_dropped = 0;
3148 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3149 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3150 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3151 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3153 /* Tx Errors */
3155 adapter->net_stats.tx_errors = adapter->stats.ecol +
3156 adapter->stats.latecol;
3157 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3158 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3159 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3161 /* Tx Dropped needs to be maintained elsewhere */
3163 /* Phy Stats */
3165 if(hw->media_type == e1000_media_type_copper) {
3166 if((adapter->link_speed == SPEED_1000) &&
3167 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3168 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3169 adapter->phy_stats.idle_errors += phy_tmp;
3172 if((hw->mac_type <= e1000_82546) &&
3173 (hw->phy_type == e1000_phy_m88) &&
3174 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3175 adapter->phy_stats.receive_errors += phy_tmp;
3178 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3181 #ifdef CONFIG_E1000_MQ
3182 void
3183 e1000_rx_schedule(void *data)
3185 struct net_device *poll_dev, *netdev = data;
3186 struct e1000_adapter *adapter = netdev->priv;
3187 int this_cpu = get_cpu();
3189 poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
3190 if (poll_dev == NULL) {
3191 put_cpu();
3192 return;
3195 if (likely(netif_rx_schedule_prep(poll_dev)))
3196 __netif_rx_schedule(poll_dev);
3197 else
3198 e1000_irq_enable(adapter);
3200 put_cpu();
3202 #endif
3205 * e1000_intr - Interrupt Handler
3206 * @irq: interrupt number
3207 * @data: pointer to a network interface device structure
3208 * @pt_regs: CPU registers structure
3211 static irqreturn_t
3212 e1000_intr(int irq, void *data, struct pt_regs *regs)
3214 struct net_device *netdev = data;
3215 struct e1000_adapter *adapter = netdev_priv(netdev);
3216 struct e1000_hw *hw = &adapter->hw;
3217 uint32_t icr = E1000_READ_REG(hw, ICR);
3218 #if defined(CONFIG_E1000_NAPI) && defined(CONFIG_E1000_MQ) || !defined(CONFIG_E1000_NAPI)
3219 int i;
3220 #endif
3222 if(unlikely(!icr))
3223 return IRQ_NONE; /* Not our interrupt */
3225 if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3226 hw->get_link_status = 1;
3227 mod_timer(&adapter->watchdog_timer, jiffies);
3230 #ifdef CONFIG_E1000_NAPI
3231 atomic_inc(&adapter->irq_sem);
3232 E1000_WRITE_REG(hw, IMC, ~0);
3233 E1000_WRITE_FLUSH(hw);
3234 #ifdef CONFIG_E1000_MQ
3235 if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
3236 /* We must setup the cpumask once count == 0 since
3237 * each cpu bit is cleared when the work is done. */
3238 adapter->rx_sched_call_data.cpumask = adapter->cpumask;
3239 atomic_add(adapter->num_rx_queues - 1, &adapter->irq_sem);
3240 atomic_set(&adapter->rx_sched_call_data.count,
3241 adapter->num_rx_queues);
3242 smp_call_async_mask(&adapter->rx_sched_call_data);
3243 } else {
3244 printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
3246 #else /* if !CONFIG_E1000_MQ */
3247 if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3248 __netif_rx_schedule(&adapter->polling_netdev[0]);
3249 else
3250 e1000_irq_enable(adapter);
3251 #endif /* CONFIG_E1000_MQ */
3253 #else /* if !CONFIG_E1000_NAPI */
3254 /* Writing IMC and IMS is needed for 82547.
3255 Due to Hub Link bus being occupied, an interrupt
3256 de-assertion message is not able to be sent.
3257 When an interrupt assertion message is generated later,
3258 two messages are re-ordered and sent out.
3259 That causes APIC to think 82547 is in de-assertion
3260 state, while 82547 is in assertion state, resulting
3261 in dead lock. Writing IMC forces 82547 into
3262 de-assertion state.
3264 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
3265 atomic_inc(&adapter->irq_sem);
3266 E1000_WRITE_REG(hw, IMC, ~0);
3269 for(i = 0; i < E1000_MAX_INTR; i++)
3270 if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3271 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3272 break;
3274 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3275 e1000_irq_enable(adapter);
3277 #endif /* CONFIG_E1000_NAPI */
3279 return IRQ_HANDLED;
3282 #ifdef CONFIG_E1000_NAPI
3284 * e1000_clean - NAPI Rx polling callback
3285 * @adapter: board private structure
3288 static int
3289 e1000_clean(struct net_device *poll_dev, int *budget)
3291 struct e1000_adapter *adapter;
3292 int work_to_do = min(*budget, poll_dev->quota);
3293 int tx_cleaned, i = 0, work_done = 0;
3295 /* Must NOT use netdev_priv macro here. */
3296 adapter = poll_dev->priv;
3298 /* Keep link state information with original netdev */
3299 if (!netif_carrier_ok(adapter->netdev))
3300 goto quit_polling;
3302 while (poll_dev != &adapter->polling_netdev[i]) {
3303 i++;
3304 if (unlikely(i == adapter->num_rx_queues))
3305 BUG();
3308 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3309 adapter->clean_rx(adapter, &adapter->rx_ring[i],
3310 &work_done, work_to_do);
3312 *budget -= work_done;
3313 poll_dev->quota -= work_done;
3315 /* If no Tx and not enough Rx work done, exit the polling mode */
3316 if((!tx_cleaned && (work_done == 0)) ||
3317 !netif_running(adapter->netdev)) {
3318 quit_polling:
3319 netif_rx_complete(poll_dev);
3320 e1000_irq_enable(adapter);
3321 return 0;
3324 return 1;
3327 #endif
3329 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3330 * @adapter: board private structure
3333 static boolean_t
3334 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3335 struct e1000_tx_ring *tx_ring)
3337 struct net_device *netdev = adapter->netdev;
3338 struct e1000_tx_desc *tx_desc, *eop_desc;
3339 struct e1000_buffer *buffer_info;
3340 unsigned int i, eop;
3341 boolean_t cleaned = FALSE;
3343 i = tx_ring->next_to_clean;
3344 eop = tx_ring->buffer_info[i].next_to_watch;
3345 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3347 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3348 for(cleaned = FALSE; !cleaned; ) {
3349 tx_desc = E1000_TX_DESC(*tx_ring, i);
3350 buffer_info = &tx_ring->buffer_info[i];
3351 cleaned = (i == eop);
3353 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3355 tx_desc->buffer_addr = 0;
3356 tx_desc->lower.data = 0;
3357 tx_desc->upper.data = 0;
3359 if(unlikely(++i == tx_ring->count)) i = 0;
3362 #ifdef CONFIG_E1000_MQ
3363 tx_ring->tx_stats.packets++;
3364 #endif
3366 eop = tx_ring->buffer_info[i].next_to_watch;
3367 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3370 tx_ring->next_to_clean = i;
3372 spin_lock(&tx_ring->tx_lock);
3374 if(unlikely(cleaned && netif_queue_stopped(netdev) &&
3375 netif_carrier_ok(netdev)))
3376 netif_wake_queue(netdev);
3378 spin_unlock(&tx_ring->tx_lock);
3380 if (adapter->detect_tx_hung) {
3381 /* Detect a transmit hang in hardware, this serializes the
3382 * check with the clearing of time_stamp and movement of i */
3383 adapter->detect_tx_hung = FALSE;
3384 if (tx_ring->buffer_info[i].dma &&
3385 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
3386 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3387 E1000_STATUS_TXOFF)) {
3389 /* detected Tx unit hang */
3390 i = tx_ring->next_to_clean;
3391 eop = tx_ring->buffer_info[i].next_to_watch;
3392 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3393 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3394 " Tx Queue <%lu>\n"
3395 " TDH <%x>\n"
3396 " TDT <%x>\n"
3397 " next_to_use <%x>\n"
3398 " next_to_clean <%x>\n"
3399 "buffer_info[next_to_clean]\n"
3400 " dma <%llx>\n"
3401 " time_stamp <%lx>\n"
3402 " next_to_watch <%x>\n"
3403 " jiffies <%lx>\n"
3404 " next_to_watch.status <%x>\n",
3405 (unsigned long)((tx_ring - adapter->tx_ring) /
3406 sizeof(struct e1000_tx_ring)),
3407 readl(adapter->hw.hw_addr + tx_ring->tdh),
3408 readl(adapter->hw.hw_addr + tx_ring->tdt),
3409 tx_ring->next_to_use,
3411 (unsigned long long)tx_ring->buffer_info[i].dma,
3412 tx_ring->buffer_info[i].time_stamp,
3413 eop,
3414 jiffies,
3415 eop_desc->upper.fields.status);
3416 netif_stop_queue(netdev);
3419 return cleaned;
3423 * e1000_rx_checksum - Receive Checksum Offload for 82543
3424 * @adapter: board private structure
3425 * @status_err: receive descriptor status and error fields
3426 * @csum: receive descriptor csum field
3427 * @sk_buff: socket buffer with received data
3430 static inline void
3431 e1000_rx_checksum(struct e1000_adapter *adapter,
3432 uint32_t status_err, uint32_t csum,
3433 struct sk_buff *skb)
3435 uint16_t status = (uint16_t)status_err;
3436 uint8_t errors = (uint8_t)(status_err >> 24);
3437 skb->ip_summed = CHECKSUM_NONE;
3439 /* 82543 or newer only */
3440 if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
3441 /* Ignore Checksum bit is set */
3442 if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
3443 /* TCP/UDP checksum error bit is set */
3444 if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
3445 /* let the stack verify checksum errors */
3446 adapter->hw_csum_err++;
3447 return;
3449 /* TCP/UDP Checksum has not been calculated */
3450 if(adapter->hw.mac_type <= e1000_82547_rev_2) {
3451 if(!(status & E1000_RXD_STAT_TCPCS))
3452 return;
3453 } else {
3454 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3455 return;
3457 /* It must be a TCP or UDP packet with a valid checksum */
3458 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3459 /* TCP checksum is good */
3460 skb->ip_summed = CHECKSUM_UNNECESSARY;
3461 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3462 /* IP fragment with UDP payload */
3463 /* Hardware complements the payload checksum, so we undo it
3464 * and then put the value in host order for further stack use.
3466 csum = ntohl(csum ^ 0xFFFF);
3467 skb->csum = csum;
3468 skb->ip_summed = CHECKSUM_HW;
3470 adapter->hw_csum_good++;
3474 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3475 * @adapter: board private structure
3478 static boolean_t
3479 #ifdef CONFIG_E1000_NAPI
3480 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3481 struct e1000_rx_ring *rx_ring,
3482 int *work_done, int work_to_do)
3483 #else
3484 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3485 struct e1000_rx_ring *rx_ring)
3486 #endif
3488 struct net_device *netdev = adapter->netdev;
3489 struct pci_dev *pdev = adapter->pdev;
3490 struct e1000_rx_desc *rx_desc;
3491 struct e1000_buffer *buffer_info;
3492 struct sk_buff *skb;
3493 unsigned long flags;
3494 uint32_t length;
3495 uint8_t last_byte;
3496 unsigned int i;
3497 boolean_t cleaned = FALSE;
3499 i = rx_ring->next_to_clean;
3500 rx_desc = E1000_RX_DESC(*rx_ring, i);
3502 while(rx_desc->status & E1000_RXD_STAT_DD) {
3503 buffer_info = &rx_ring->buffer_info[i];
3504 #ifdef CONFIG_E1000_NAPI
3505 if(*work_done >= work_to_do)
3506 break;
3507 (*work_done)++;
3508 #endif
3509 cleaned = TRUE;
3511 pci_unmap_single(pdev,
3512 buffer_info->dma,
3513 buffer_info->length,
3514 PCI_DMA_FROMDEVICE);
3516 skb = buffer_info->skb;
3517 length = le16_to_cpu(rx_desc->length);
3519 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
3520 /* All receives must fit into a single buffer */
3521 E1000_DBG("%s: Receive packet consumed multiple"
3522 " buffers\n", netdev->name);
3523 dev_kfree_skb_irq(skb);
3524 goto next_desc;
3527 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3528 last_byte = *(skb->data + length - 1);
3529 if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
3530 rx_desc->errors, length, last_byte)) {
3531 spin_lock_irqsave(&adapter->stats_lock, flags);
3532 e1000_tbi_adjust_stats(&adapter->hw,
3533 &adapter->stats,
3534 length, skb->data);
3535 spin_unlock_irqrestore(&adapter->stats_lock,
3536 flags);
3537 length--;
3538 } else {
3539 dev_kfree_skb_irq(skb);
3540 goto next_desc;
3544 /* Good Receive */
3545 skb_put(skb, length - ETHERNET_FCS_SIZE);
3547 /* Receive Checksum Offload */
3548 e1000_rx_checksum(adapter,
3549 (uint32_t)(rx_desc->status) |
3550 ((uint32_t)(rx_desc->errors) << 24),
3551 rx_desc->csum, skb);
3552 skb->protocol = eth_type_trans(skb, netdev);
3553 #ifdef CONFIG_E1000_NAPI
3554 if(unlikely(adapter->vlgrp &&
3555 (rx_desc->status & E1000_RXD_STAT_VP))) {
3556 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3557 le16_to_cpu(rx_desc->special) &
3558 E1000_RXD_SPC_VLAN_MASK);
3559 } else {
3560 netif_receive_skb(skb);
3562 #else /* CONFIG_E1000_NAPI */
3563 if(unlikely(adapter->vlgrp &&
3564 (rx_desc->status & E1000_RXD_STAT_VP))) {
3565 vlan_hwaccel_rx(skb, adapter->vlgrp,
3566 le16_to_cpu(rx_desc->special) &
3567 E1000_RXD_SPC_VLAN_MASK);
3568 } else {
3569 netif_rx(skb);
3571 #endif /* CONFIG_E1000_NAPI */
3572 netdev->last_rx = jiffies;
3573 #ifdef CONFIG_E1000_MQ
3574 rx_ring->rx_stats.packets++;
3575 rx_ring->rx_stats.bytes += length;
3576 #endif
3578 next_desc:
3579 rx_desc->status = 0;
3580 buffer_info->skb = NULL;
3581 if(unlikely(++i == rx_ring->count)) i = 0;
3583 rx_desc = E1000_RX_DESC(*rx_ring, i);
3585 rx_ring->next_to_clean = i;
3586 adapter->alloc_rx_buf(adapter, rx_ring);
3588 return cleaned;
3592 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3593 * @adapter: board private structure
3596 static boolean_t
3597 #ifdef CONFIG_E1000_NAPI
3598 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3599 struct e1000_rx_ring *rx_ring,
3600 int *work_done, int work_to_do)
3601 #else
3602 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3603 struct e1000_rx_ring *rx_ring)
3604 #endif
3606 union e1000_rx_desc_packet_split *rx_desc;
3607 struct net_device *netdev = adapter->netdev;
3608 struct pci_dev *pdev = adapter->pdev;
3609 struct e1000_buffer *buffer_info;
3610 struct e1000_ps_page *ps_page;
3611 struct e1000_ps_page_dma *ps_page_dma;
3612 struct sk_buff *skb;
3613 unsigned int i, j;
3614 uint32_t length, staterr;
3615 boolean_t cleaned = FALSE;
3617 i = rx_ring->next_to_clean;
3618 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3619 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3621 while(staterr & E1000_RXD_STAT_DD) {
3622 buffer_info = &rx_ring->buffer_info[i];
3623 ps_page = &rx_ring->ps_page[i];
3624 ps_page_dma = &rx_ring->ps_page_dma[i];
3625 #ifdef CONFIG_E1000_NAPI
3626 if(unlikely(*work_done >= work_to_do))
3627 break;
3628 (*work_done)++;
3629 #endif
3630 cleaned = TRUE;
3631 pci_unmap_single(pdev, buffer_info->dma,
3632 buffer_info->length,
3633 PCI_DMA_FROMDEVICE);
3635 skb = buffer_info->skb;
3637 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3638 E1000_DBG("%s: Packet Split buffers didn't pick up"
3639 " the full packet\n", netdev->name);
3640 dev_kfree_skb_irq(skb);
3641 goto next_desc;
3644 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3645 dev_kfree_skb_irq(skb);
3646 goto next_desc;
3649 length = le16_to_cpu(rx_desc->wb.middle.length0);
3651 if(unlikely(!length)) {
3652 E1000_DBG("%s: Last part of the packet spanning"
3653 " multiple descriptors\n", netdev->name);
3654 dev_kfree_skb_irq(skb);
3655 goto next_desc;
3658 /* Good Receive */
3659 skb_put(skb, length);
3661 for(j = 0; j < adapter->rx_ps_pages; j++) {
3662 if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3663 break;
3665 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3666 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3667 ps_page_dma->ps_page_dma[j] = 0;
3668 skb_shinfo(skb)->frags[j].page =
3669 ps_page->ps_page[j];
3670 ps_page->ps_page[j] = NULL;
3671 skb_shinfo(skb)->frags[j].page_offset = 0;
3672 skb_shinfo(skb)->frags[j].size = length;
3673 skb_shinfo(skb)->nr_frags++;
3674 skb->len += length;
3675 skb->data_len += length;
3678 e1000_rx_checksum(adapter, staterr,
3679 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3680 skb->protocol = eth_type_trans(skb, netdev);
3682 if(likely(rx_desc->wb.upper.header_status &
3683 E1000_RXDPS_HDRSTAT_HDRSP)) {
3684 adapter->rx_hdr_split++;
3685 #ifdef HAVE_RX_ZERO_COPY
3686 skb_shinfo(skb)->zero_copy = TRUE;
3687 #endif
3689 #ifdef CONFIG_E1000_NAPI
3690 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3691 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3692 le16_to_cpu(rx_desc->wb.middle.vlan) &
3693 E1000_RXD_SPC_VLAN_MASK);
3694 } else {
3695 netif_receive_skb(skb);
3697 #else /* CONFIG_E1000_NAPI */
3698 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3699 vlan_hwaccel_rx(skb, adapter->vlgrp,
3700 le16_to_cpu(rx_desc->wb.middle.vlan) &
3701 E1000_RXD_SPC_VLAN_MASK);
3702 } else {
3703 netif_rx(skb);
3705 #endif /* CONFIG_E1000_NAPI */
3706 netdev->last_rx = jiffies;
3707 #ifdef CONFIG_E1000_MQ
3708 rx_ring->rx_stats.packets++;
3709 rx_ring->rx_stats.bytes += length;
3710 #endif
3712 next_desc:
3713 rx_desc->wb.middle.status_error &= ~0xFF;
3714 buffer_info->skb = NULL;
3715 if(unlikely(++i == rx_ring->count)) i = 0;
3717 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3718 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3720 rx_ring->next_to_clean = i;
3721 adapter->alloc_rx_buf(adapter, rx_ring);
3723 return cleaned;
3727 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3728 * @adapter: address of board private structure
3731 static void
3732 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3733 struct e1000_rx_ring *rx_ring)
3735 struct net_device *netdev = adapter->netdev;
3736 struct pci_dev *pdev = adapter->pdev;
3737 struct e1000_rx_desc *rx_desc;
3738 struct e1000_buffer *buffer_info;
3739 struct sk_buff *skb;
3740 unsigned int i;
3741 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3743 i = rx_ring->next_to_use;
3744 buffer_info = &rx_ring->buffer_info[i];
3746 while(!buffer_info->skb) {
3747 skb = dev_alloc_skb(bufsz);
3749 if(unlikely(!skb)) {
3750 /* Better luck next round */
3751 break;
3754 /* Fix for errata 23, can't cross 64kB boundary */
3755 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3756 struct sk_buff *oldskb = skb;
3757 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3758 "at %p\n", bufsz, skb->data);
3759 /* Try again, without freeing the previous */
3760 skb = dev_alloc_skb(bufsz);
3761 /* Failed allocation, critical failure */
3762 if (!skb) {
3763 dev_kfree_skb(oldskb);
3764 break;
3767 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3768 /* give up */
3769 dev_kfree_skb(skb);
3770 dev_kfree_skb(oldskb);
3771 break; /* while !buffer_info->skb */
3772 } else {
3773 /* Use new allocation */
3774 dev_kfree_skb(oldskb);
3777 /* Make buffer alignment 2 beyond a 16 byte boundary
3778 * this will result in a 16 byte aligned IP header after
3779 * the 14 byte MAC header is removed
3781 skb_reserve(skb, NET_IP_ALIGN);
3783 skb->dev = netdev;
3785 buffer_info->skb = skb;
3786 buffer_info->length = adapter->rx_buffer_len;
3787 buffer_info->dma = pci_map_single(pdev,
3788 skb->data,
3789 adapter->rx_buffer_len,
3790 PCI_DMA_FROMDEVICE);
3792 /* Fix for errata 23, can't cross 64kB boundary */
3793 if (!e1000_check_64k_bound(adapter,
3794 (void *)(unsigned long)buffer_info->dma,
3795 adapter->rx_buffer_len)) {
3796 DPRINTK(RX_ERR, ERR,
3797 "dma align check failed: %u bytes at %p\n",
3798 adapter->rx_buffer_len,
3799 (void *)(unsigned long)buffer_info->dma);
3800 dev_kfree_skb(skb);
3801 buffer_info->skb = NULL;
3803 pci_unmap_single(pdev, buffer_info->dma,
3804 adapter->rx_buffer_len,
3805 PCI_DMA_FROMDEVICE);
3807 break; /* while !buffer_info->skb */
3809 rx_desc = E1000_RX_DESC(*rx_ring, i);
3810 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3812 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3813 /* Force memory writes to complete before letting h/w
3814 * know there are new descriptors to fetch. (Only
3815 * applicable for weak-ordered memory model archs,
3816 * such as IA-64). */
3817 wmb();
3818 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3821 if(unlikely(++i == rx_ring->count)) i = 0;
3822 buffer_info = &rx_ring->buffer_info[i];
3825 rx_ring->next_to_use = i;
3829 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3830 * @adapter: address of board private structure
3833 static void
3834 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3835 struct e1000_rx_ring *rx_ring)
3837 struct net_device *netdev = adapter->netdev;
3838 struct pci_dev *pdev = adapter->pdev;
3839 union e1000_rx_desc_packet_split *rx_desc;
3840 struct e1000_buffer *buffer_info;
3841 struct e1000_ps_page *ps_page;
3842 struct e1000_ps_page_dma *ps_page_dma;
3843 struct sk_buff *skb;
3844 unsigned int i, j;
3846 i = rx_ring->next_to_use;
3847 buffer_info = &rx_ring->buffer_info[i];
3848 ps_page = &rx_ring->ps_page[i];
3849 ps_page_dma = &rx_ring->ps_page_dma[i];
3851 while(!buffer_info->skb) {
3852 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3854 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3855 if (j < adapter->rx_ps_pages) {
3856 if (likely(!ps_page->ps_page[j])) {
3857 ps_page->ps_page[j] =
3858 alloc_page(GFP_ATOMIC);
3859 if (unlikely(!ps_page->ps_page[j]))
3860 goto no_buffers;
3861 ps_page_dma->ps_page_dma[j] =
3862 pci_map_page(pdev,
3863 ps_page->ps_page[j],
3864 0, PAGE_SIZE,
3865 PCI_DMA_FROMDEVICE);
3867 /* Refresh the desc even if buffer_addrs didn't
3868 * change because each write-back erases
3869 * this info.
3871 rx_desc->read.buffer_addr[j+1] =
3872 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3873 } else
3874 rx_desc->read.buffer_addr[j+1] = ~0;
3877 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3879 if(unlikely(!skb))
3880 break;
3882 /* Make buffer alignment 2 beyond a 16 byte boundary
3883 * this will result in a 16 byte aligned IP header after
3884 * the 14 byte MAC header is removed
3886 skb_reserve(skb, NET_IP_ALIGN);
3888 skb->dev = netdev;
3890 buffer_info->skb = skb;
3891 buffer_info->length = adapter->rx_ps_bsize0;
3892 buffer_info->dma = pci_map_single(pdev, skb->data,
3893 adapter->rx_ps_bsize0,
3894 PCI_DMA_FROMDEVICE);
3896 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3898 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3899 /* Force memory writes to complete before letting h/w
3900 * know there are new descriptors to fetch. (Only
3901 * applicable for weak-ordered memory model archs,
3902 * such as IA-64). */
3903 wmb();
3904 /* Hardware increments by 16 bytes, but packet split
3905 * descriptors are 32 bytes...so we increment tail
3906 * twice as much.
3908 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
3911 if(unlikely(++i == rx_ring->count)) i = 0;
3912 buffer_info = &rx_ring->buffer_info[i];
3913 ps_page = &rx_ring->ps_page[i];
3914 ps_page_dma = &rx_ring->ps_page_dma[i];
3917 no_buffers:
3918 rx_ring->next_to_use = i;
3922 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3923 * @adapter:
3926 static void
3927 e1000_smartspeed(struct e1000_adapter *adapter)
3929 uint16_t phy_status;
3930 uint16_t phy_ctrl;
3932 if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3933 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3934 return;
3936 if(adapter->smartspeed == 0) {
3937 /* If Master/Slave config fault is asserted twice,
3938 * we assume back-to-back */
3939 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3940 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3941 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3942 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3943 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3944 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3945 phy_ctrl &= ~CR_1000T_MS_ENABLE;
3946 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3947 phy_ctrl);
3948 adapter->smartspeed++;
3949 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3950 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3951 &phy_ctrl)) {
3952 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3953 MII_CR_RESTART_AUTO_NEG);
3954 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3955 phy_ctrl);
3958 return;
3959 } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3960 /* If still no link, perhaps using 2/3 pair cable */
3961 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3962 phy_ctrl |= CR_1000T_MS_ENABLE;
3963 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3964 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3965 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3966 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3967 MII_CR_RESTART_AUTO_NEG);
3968 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3971 /* Restart process after E1000_SMARTSPEED_MAX iterations */
3972 if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3973 adapter->smartspeed = 0;
3977 * e1000_ioctl -
3978 * @netdev:
3979 * @ifreq:
3980 * @cmd:
3983 static int
3984 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3986 switch (cmd) {
3987 case SIOCGMIIPHY:
3988 case SIOCGMIIREG:
3989 case SIOCSMIIREG:
3990 return e1000_mii_ioctl(netdev, ifr, cmd);
3991 default:
3992 return -EOPNOTSUPP;
3997 * e1000_mii_ioctl -
3998 * @netdev:
3999 * @ifreq:
4000 * @cmd:
4003 static int
4004 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4006 struct e1000_adapter *adapter = netdev_priv(netdev);
4007 struct mii_ioctl_data *data = if_mii(ifr);
4008 int retval;
4009 uint16_t mii_reg;
4010 uint16_t spddplx;
4011 unsigned long flags;
4013 if(adapter->hw.media_type != e1000_media_type_copper)
4014 return -EOPNOTSUPP;
4016 switch (cmd) {
4017 case SIOCGMIIPHY:
4018 data->phy_id = adapter->hw.phy_addr;
4019 break;
4020 case SIOCGMIIREG:
4021 if(!capable(CAP_NET_ADMIN))
4022 return -EPERM;
4023 spin_lock_irqsave(&adapter->stats_lock, flags);
4024 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4025 &data->val_out)) {
4026 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4027 return -EIO;
4029 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4030 break;
4031 case SIOCSMIIREG:
4032 if(!capable(CAP_NET_ADMIN))
4033 return -EPERM;
4034 if(data->reg_num & ~(0x1F))
4035 return -EFAULT;
4036 mii_reg = data->val_in;
4037 spin_lock_irqsave(&adapter->stats_lock, flags);
4038 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
4039 mii_reg)) {
4040 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4041 return -EIO;
4043 if(adapter->hw.phy_type == e1000_phy_m88) {
4044 switch (data->reg_num) {
4045 case PHY_CTRL:
4046 if(mii_reg & MII_CR_POWER_DOWN)
4047 break;
4048 if(mii_reg & MII_CR_AUTO_NEG_EN) {
4049 adapter->hw.autoneg = 1;
4050 adapter->hw.autoneg_advertised = 0x2F;
4051 } else {
4052 if (mii_reg & 0x40)
4053 spddplx = SPEED_1000;
4054 else if (mii_reg & 0x2000)
4055 spddplx = SPEED_100;
4056 else
4057 spddplx = SPEED_10;
4058 spddplx += (mii_reg & 0x100)
4059 ? FULL_DUPLEX :
4060 HALF_DUPLEX;
4061 retval = e1000_set_spd_dplx(adapter,
4062 spddplx);
4063 if(retval) {
4064 spin_unlock_irqrestore(
4065 &adapter->stats_lock,
4066 flags);
4067 return retval;
4070 if(netif_running(adapter->netdev)) {
4071 e1000_down(adapter);
4072 e1000_up(adapter);
4073 } else
4074 e1000_reset(adapter);
4075 break;
4076 case M88E1000_PHY_SPEC_CTRL:
4077 case M88E1000_EXT_PHY_SPEC_CTRL:
4078 if(e1000_phy_reset(&adapter->hw)) {
4079 spin_unlock_irqrestore(
4080 &adapter->stats_lock, flags);
4081 return -EIO;
4083 break;
4085 } else {
4086 switch (data->reg_num) {
4087 case PHY_CTRL:
4088 if(mii_reg & MII_CR_POWER_DOWN)
4089 break;
4090 if(netif_running(adapter->netdev)) {
4091 e1000_down(adapter);
4092 e1000_up(adapter);
4093 } else
4094 e1000_reset(adapter);
4095 break;
4098 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4099 break;
4100 default:
4101 return -EOPNOTSUPP;
4103 return E1000_SUCCESS;
4106 void
4107 e1000_pci_set_mwi(struct e1000_hw *hw)
4109 struct e1000_adapter *adapter = hw->back;
4110 int ret_val = pci_set_mwi(adapter->pdev);
4112 if(ret_val)
4113 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4116 void
4117 e1000_pci_clear_mwi(struct e1000_hw *hw)
4119 struct e1000_adapter *adapter = hw->back;
4121 pci_clear_mwi(adapter->pdev);
4124 void
4125 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4127 struct e1000_adapter *adapter = hw->back;
4129 pci_read_config_word(adapter->pdev, reg, value);
4132 void
4133 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4135 struct e1000_adapter *adapter = hw->back;
4137 pci_write_config_word(adapter->pdev, reg, *value);
4140 uint32_t
4141 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4143 return inl(port);
4146 void
4147 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4149 outl(value, port);
4152 static void
4153 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4155 struct e1000_adapter *adapter = netdev_priv(netdev);
4156 uint32_t ctrl, rctl;
4158 e1000_irq_disable(adapter);
4159 adapter->vlgrp = grp;
4161 if(grp) {
4162 /* enable VLAN tag insert/strip */
4163 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4164 ctrl |= E1000_CTRL_VME;
4165 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4167 /* enable VLAN receive filtering */
4168 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4169 rctl |= E1000_RCTL_VFE;
4170 rctl &= ~E1000_RCTL_CFIEN;
4171 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4172 e1000_update_mng_vlan(adapter);
4173 } else {
4174 /* disable VLAN tag insert/strip */
4175 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4176 ctrl &= ~E1000_CTRL_VME;
4177 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4179 /* disable VLAN filtering */
4180 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4181 rctl &= ~E1000_RCTL_VFE;
4182 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4183 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4184 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4185 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4189 e1000_irq_enable(adapter);
4192 static void
4193 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4195 struct e1000_adapter *adapter = netdev_priv(netdev);
4196 uint32_t vfta, index;
4197 if((adapter->hw.mng_cookie.status &
4198 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4199 (vid == adapter->mng_vlan_id))
4200 return;
4201 /* add VID to filter table */
4202 index = (vid >> 5) & 0x7F;
4203 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4204 vfta |= (1 << (vid & 0x1F));
4205 e1000_write_vfta(&adapter->hw, index, vfta);
4208 static void
4209 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4211 struct e1000_adapter *adapter = netdev_priv(netdev);
4212 uint32_t vfta, index;
4214 e1000_irq_disable(adapter);
4216 if(adapter->vlgrp)
4217 adapter->vlgrp->vlan_devices[vid] = NULL;
4219 e1000_irq_enable(adapter);
4221 if((adapter->hw.mng_cookie.status &
4222 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4223 (vid == adapter->mng_vlan_id))
4224 return;
4225 /* remove VID from filter table */
4226 index = (vid >> 5) & 0x7F;
4227 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4228 vfta &= ~(1 << (vid & 0x1F));
4229 e1000_write_vfta(&adapter->hw, index, vfta);
4232 static void
4233 e1000_restore_vlan(struct e1000_adapter *adapter)
4235 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4237 if(adapter->vlgrp) {
4238 uint16_t vid;
4239 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4240 if(!adapter->vlgrp->vlan_devices[vid])
4241 continue;
4242 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4248 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4250 adapter->hw.autoneg = 0;
4252 /* Fiber NICs only allow 1000 gbps Full duplex */
4253 if((adapter->hw.media_type == e1000_media_type_fiber) &&
4254 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4255 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4256 return -EINVAL;
4259 switch(spddplx) {
4260 case SPEED_10 + DUPLEX_HALF:
4261 adapter->hw.forced_speed_duplex = e1000_10_half;
4262 break;
4263 case SPEED_10 + DUPLEX_FULL:
4264 adapter->hw.forced_speed_duplex = e1000_10_full;
4265 break;
4266 case SPEED_100 + DUPLEX_HALF:
4267 adapter->hw.forced_speed_duplex = e1000_100_half;
4268 break;
4269 case SPEED_100 + DUPLEX_FULL:
4270 adapter->hw.forced_speed_duplex = e1000_100_full;
4271 break;
4272 case SPEED_1000 + DUPLEX_FULL:
4273 adapter->hw.autoneg = 1;
4274 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4275 break;
4276 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4277 default:
4278 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4279 return -EINVAL;
4281 return 0;
4284 #ifdef CONFIG_PM
4285 static int
4286 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4288 struct net_device *netdev = pci_get_drvdata(pdev);
4289 struct e1000_adapter *adapter = netdev_priv(netdev);
4290 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4291 uint32_t wufc = adapter->wol;
4293 netif_device_detach(netdev);
4295 if(netif_running(netdev))
4296 e1000_down(adapter);
4298 status = E1000_READ_REG(&adapter->hw, STATUS);
4299 if(status & E1000_STATUS_LU)
4300 wufc &= ~E1000_WUFC_LNKC;
4302 if(wufc) {
4303 e1000_setup_rctl(adapter);
4304 e1000_set_multi(netdev);
4306 /* turn on all-multi mode if wake on multicast is enabled */
4307 if(adapter->wol & E1000_WUFC_MC) {
4308 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4309 rctl |= E1000_RCTL_MPE;
4310 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4313 if(adapter->hw.mac_type >= e1000_82540) {
4314 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4315 /* advertise wake from D3Cold */
4316 #define E1000_CTRL_ADVD3WUC 0x00100000
4317 /* phy power management enable */
4318 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4319 ctrl |= E1000_CTRL_ADVD3WUC |
4320 E1000_CTRL_EN_PHY_PWR_MGMT;
4321 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4324 if(adapter->hw.media_type == e1000_media_type_fiber ||
4325 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4326 /* keep the laser running in D3 */
4327 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4328 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4329 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4332 /* Allow time for pending master requests to run */
4333 e1000_disable_pciex_master(&adapter->hw);
4335 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4336 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4337 pci_enable_wake(pdev, 3, 1);
4338 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4339 } else {
4340 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4341 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4342 pci_enable_wake(pdev, 3, 0);
4343 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4346 pci_save_state(pdev);
4348 if(adapter->hw.mac_type >= e1000_82540 &&
4349 adapter->hw.media_type == e1000_media_type_copper) {
4350 manc = E1000_READ_REG(&adapter->hw, MANC);
4351 if(manc & E1000_MANC_SMBUS_EN) {
4352 manc |= E1000_MANC_ARP_EN;
4353 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4354 pci_enable_wake(pdev, 3, 1);
4355 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4359 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4360 * would have already happened in close and is redundant. */
4361 e1000_release_hw_control(adapter);
4363 pci_disable_device(pdev);
4364 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4366 return 0;
4369 static int
4370 e1000_resume(struct pci_dev *pdev)
4372 struct net_device *netdev = pci_get_drvdata(pdev);
4373 struct e1000_adapter *adapter = netdev_priv(netdev);
4374 uint32_t manc, ret_val;
4376 pci_set_power_state(pdev, PCI_D0);
4377 pci_restore_state(pdev);
4378 ret_val = pci_enable_device(pdev);
4379 pci_set_master(pdev);
4381 pci_enable_wake(pdev, PCI_D3hot, 0);
4382 pci_enable_wake(pdev, PCI_D3cold, 0);
4384 e1000_reset(adapter);
4385 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4387 if(netif_running(netdev))
4388 e1000_up(adapter);
4390 netif_device_attach(netdev);
4392 if(adapter->hw.mac_type >= e1000_82540 &&
4393 adapter->hw.media_type == e1000_media_type_copper) {
4394 manc = E1000_READ_REG(&adapter->hw, MANC);
4395 manc &= ~(E1000_MANC_ARP_EN);
4396 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4399 /* If the controller is 82573 and f/w is AMT, do not set
4400 * DRV_LOAD until the interface is up. For all other cases,
4401 * let the f/w know that the h/w is now under the control
4402 * of the driver. */
4403 if (adapter->hw.mac_type != e1000_82573 ||
4404 !e1000_check_mng_mode(&adapter->hw))
4405 e1000_get_hw_control(adapter);
4407 return 0;
4409 #endif
4410 #ifdef CONFIG_NET_POLL_CONTROLLER
4412 * Polling 'interrupt' - used by things like netconsole to send skbs
4413 * without having to re-enable interrupts. It's not called while
4414 * the interrupt routine is executing.
4416 static void
4417 e1000_netpoll(struct net_device *netdev)
4419 struct e1000_adapter *adapter = netdev_priv(netdev);
4420 disable_irq(adapter->pdev->irq);
4421 e1000_intr(adapter->pdev->irq, netdev, NULL);
4422 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4423 enable_irq(adapter->pdev->irq);
4425 #endif
4427 /* e1000_main.c */