[PATCH] mutex subsystem, semaphore to mutex: VFS, sb->s_lock
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / acpi / processor_idle.c
blob807b0df308f18d6a31fccb0a806cd7c03195c9f7
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
48 #define ACPI_PROCESSOR_COMPONENT 0x01000000
49 #define ACPI_PROCESSOR_CLASS "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
51 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER "power"
54 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void);
58 module_param(max_cstate, uint, 0644);
60 static unsigned int nocst = 0;
61 module_param(nocst, uint, 0000);
64 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68 * reduce history for more aggressive entry into C3
70 static unsigned int bm_history =
71 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74 Power Management
75 -------------------------------------------------------------------------- */
78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79 * For now disable this. Probably a bug somewhere else.
81 * To skip this limit, boot/load with a large max_cstate limit.
83 static int set_max_cstate(struct dmi_system_id *id)
85 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 return 0;
88 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
92 max_cstate = (long)id->driver_data;
94 return 0;
97 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
98 {set_max_cstate, "IBM ThinkPad R40e", {
99 DMI_MATCH(DMI_BIOS_VENDOR,
100 "IBM"),
101 DMI_MATCH(DMI_BIOS_VERSION,
102 "1SET60WW")},
103 (void *)1},
104 {set_max_cstate, "Medion 41700", {
105 DMI_MATCH(DMI_BIOS_VENDOR,
106 "Phoenix Technologies LTD"),
107 DMI_MATCH(DMI_BIOS_VERSION,
108 "R01-A1J")}, (void *)1},
109 {set_max_cstate, "Clevo 5600D", {
110 DMI_MATCH(DMI_BIOS_VENDOR,
111 "Phoenix Technologies LTD"),
112 DMI_MATCH(DMI_BIOS_VERSION,
113 "SHE845M0.86C.0013.D.0302131307")},
114 (void *)2},
118 static inline u32 ticks_elapsed(u32 t1, u32 t2)
120 if (t2 >= t1)
121 return (t2 - t1);
122 else if (!acpi_fadt.tmr_val_ext)
123 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
124 else
125 return ((0xFFFFFFFF - t1) + t2);
128 static void
129 acpi_processor_power_activate(struct acpi_processor *pr,
130 struct acpi_processor_cx *new)
132 struct acpi_processor_cx *old;
134 if (!pr || !new)
135 return;
137 old = pr->power.state;
139 if (old)
140 old->promotion.count = 0;
141 new->demotion.count = 0;
143 /* Cleanup from old state. */
144 if (old) {
145 switch (old->type) {
146 case ACPI_STATE_C3:
147 /* Disable bus master reload */
148 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
149 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
150 ACPI_MTX_DO_NOT_LOCK);
151 break;
155 /* Prepare to use new state. */
156 switch (new->type) {
157 case ACPI_STATE_C3:
158 /* Enable bus master reload */
159 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
160 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
161 ACPI_MTX_DO_NOT_LOCK);
162 break;
165 pr->power.state = new;
167 return;
170 static void acpi_safe_halt(void)
172 clear_thread_flag(TIF_POLLING_NRFLAG);
173 smp_mb__after_clear_bit();
174 if (!need_resched())
175 safe_halt();
176 set_thread_flag(TIF_POLLING_NRFLAG);
179 static atomic_t c3_cpu_count;
181 static void acpi_processor_idle(void)
183 struct acpi_processor *pr = NULL;
184 struct acpi_processor_cx *cx = NULL;
185 struct acpi_processor_cx *next_state = NULL;
186 int sleep_ticks = 0;
187 u32 t1, t2 = 0;
189 pr = processors[smp_processor_id()];
190 if (!pr)
191 return;
194 * Interrupts must be disabled during bus mastering calculations and
195 * for C2/C3 transitions.
197 local_irq_disable();
200 * Check whether we truly need to go idle, or should
201 * reschedule:
203 if (unlikely(need_resched())) {
204 local_irq_enable();
205 return;
208 cx = pr->power.state;
209 if (!cx) {
210 if (pm_idle_save)
211 pm_idle_save();
212 else
213 acpi_safe_halt();
214 return;
218 * Check BM Activity
219 * -----------------
220 * Check for bus mastering activity (if required), record, and check
221 * for demotion.
223 if (pr->flags.bm_check) {
224 u32 bm_status = 0;
225 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
227 if (diff > 32)
228 diff = 32;
230 while (diff) {
231 /* if we didn't get called, assume there was busmaster activity */
232 diff--;
233 if (diff)
234 pr->power.bm_activity |= 0x1;
235 pr->power.bm_activity <<= 1;
238 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
239 &bm_status, ACPI_MTX_DO_NOT_LOCK);
240 if (bm_status) {
241 pr->power.bm_activity++;
242 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
243 1, ACPI_MTX_DO_NOT_LOCK);
246 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
247 * the true state of bus mastering activity; forcing us to
248 * manually check the BMIDEA bit of each IDE channel.
250 else if (errata.piix4.bmisx) {
251 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
252 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
253 pr->power.bm_activity++;
256 pr->power.bm_check_timestamp = jiffies;
259 * Apply bus mastering demotion policy. Automatically demote
260 * to avoid a faulty transition. Note that the processor
261 * won't enter a low-power state during this call (to this
262 * funciton) but should upon the next.
264 * TBD: A better policy might be to fallback to the demotion
265 * state (use it for this quantum only) istead of
266 * demoting -- and rely on duration as our sole demotion
267 * qualification. This may, however, introduce DMA
268 * issues (e.g. floppy DMA transfer overrun/underrun).
270 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
271 local_irq_enable();
272 next_state = cx->demotion.state;
273 goto end;
277 #ifdef CONFIG_HOTPLUG_CPU
279 * Check for P_LVL2_UP flag before entering C2 and above on
280 * an SMP system. We do it here instead of doing it at _CST/P_LVL
281 * detection phase, to work cleanly with logical CPU hotplug.
283 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
284 !pr->flags.has_cst && !acpi_fadt.plvl2_up)
285 cx = &pr->power.states[ACPI_STATE_C1];
286 #endif
288 cx->usage++;
291 * Sleep:
292 * ------
293 * Invoke the current Cx state to put the processor to sleep.
295 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
296 clear_thread_flag(TIF_POLLING_NRFLAG);
297 smp_mb__after_clear_bit();
298 if (need_resched()) {
299 set_thread_flag(TIF_POLLING_NRFLAG);
300 local_irq_enable();
301 return;
305 switch (cx->type) {
307 case ACPI_STATE_C1:
309 * Invoke C1.
310 * Use the appropriate idle routine, the one that would
311 * be used without acpi C-states.
313 if (pm_idle_save)
314 pm_idle_save();
315 else
316 acpi_safe_halt();
319 * TBD: Can't get time duration while in C1, as resumes
320 * go to an ISR rather than here. Need to instrument
321 * base interrupt handler.
323 sleep_ticks = 0xFFFFFFFF;
324 break;
326 case ACPI_STATE_C2:
327 /* Get start time (ticks) */
328 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
329 /* Invoke C2 */
330 inb(cx->address);
331 /* Dummy op - must do something useless after P_LVL2 read */
332 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
333 /* Get end time (ticks) */
334 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
335 /* Re-enable interrupts */
336 local_irq_enable();
337 set_thread_flag(TIF_POLLING_NRFLAG);
338 /* Compute time (ticks) that we were actually asleep */
339 sleep_ticks =
340 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
341 break;
343 case ACPI_STATE_C3:
345 if (pr->flags.bm_check) {
346 if (atomic_inc_return(&c3_cpu_count) ==
347 num_online_cpus()) {
349 * All CPUs are trying to go to C3
350 * Disable bus master arbitration
352 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
353 ACPI_MTX_DO_NOT_LOCK);
355 } else {
356 /* SMP with no shared cache... Invalidate cache */
357 ACPI_FLUSH_CPU_CACHE();
360 /* Get start time (ticks) */
361 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
362 /* Invoke C3 */
363 inb(cx->address);
364 /* Dummy op - must do something useless after P_LVL3 read */
365 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
366 /* Get end time (ticks) */
367 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
368 if (pr->flags.bm_check) {
369 /* Enable bus master arbitration */
370 atomic_dec(&c3_cpu_count);
371 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
372 ACPI_MTX_DO_NOT_LOCK);
375 /* Re-enable interrupts */
376 local_irq_enable();
377 set_thread_flag(TIF_POLLING_NRFLAG);
378 /* Compute time (ticks) that we were actually asleep */
379 sleep_ticks =
380 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
381 break;
383 default:
384 local_irq_enable();
385 return;
388 next_state = pr->power.state;
390 #ifdef CONFIG_HOTPLUG_CPU
391 /* Don't do promotion/demotion */
392 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
393 !pr->flags.has_cst && !acpi_fadt.plvl2_up) {
394 next_state = cx;
395 goto end;
397 #endif
400 * Promotion?
401 * ----------
402 * Track the number of longs (time asleep is greater than threshold)
403 * and promote when the count threshold is reached. Note that bus
404 * mastering activity may prevent promotions.
405 * Do not promote above max_cstate.
407 if (cx->promotion.state &&
408 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
409 if (sleep_ticks > cx->promotion.threshold.ticks) {
410 cx->promotion.count++;
411 cx->demotion.count = 0;
412 if (cx->promotion.count >=
413 cx->promotion.threshold.count) {
414 if (pr->flags.bm_check) {
415 if (!
416 (pr->power.bm_activity & cx->
417 promotion.threshold.bm)) {
418 next_state =
419 cx->promotion.state;
420 goto end;
422 } else {
423 next_state = cx->promotion.state;
424 goto end;
431 * Demotion?
432 * ---------
433 * Track the number of shorts (time asleep is less than time threshold)
434 * and demote when the usage threshold is reached.
436 if (cx->demotion.state) {
437 if (sleep_ticks < cx->demotion.threshold.ticks) {
438 cx->demotion.count++;
439 cx->promotion.count = 0;
440 if (cx->demotion.count >= cx->demotion.threshold.count) {
441 next_state = cx->demotion.state;
442 goto end;
447 end:
449 * Demote if current state exceeds max_cstate
451 if ((pr->power.state - pr->power.states) > max_cstate) {
452 if (cx->demotion.state)
453 next_state = cx->demotion.state;
457 * New Cx State?
458 * -------------
459 * If we're going to start using a new Cx state we must clean up
460 * from the previous and prepare to use the new.
462 if (next_state != pr->power.state)
463 acpi_processor_power_activate(pr, next_state);
466 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
468 unsigned int i;
469 unsigned int state_is_set = 0;
470 struct acpi_processor_cx *lower = NULL;
471 struct acpi_processor_cx *higher = NULL;
472 struct acpi_processor_cx *cx;
474 ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
476 if (!pr)
477 return_VALUE(-EINVAL);
480 * This function sets the default Cx state policy (OS idle handler).
481 * Our scheme is to promote quickly to C2 but more conservatively
482 * to C3. We're favoring C2 for its characteristics of low latency
483 * (quick response), good power savings, and ability to allow bus
484 * mastering activity. Note that the Cx state policy is completely
485 * customizable and can be altered dynamically.
488 /* startup state */
489 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
490 cx = &pr->power.states[i];
491 if (!cx->valid)
492 continue;
494 if (!state_is_set)
495 pr->power.state = cx;
496 state_is_set++;
497 break;
500 if (!state_is_set)
501 return_VALUE(-ENODEV);
503 /* demotion */
504 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
505 cx = &pr->power.states[i];
506 if (!cx->valid)
507 continue;
509 if (lower) {
510 cx->demotion.state = lower;
511 cx->demotion.threshold.ticks = cx->latency_ticks;
512 cx->demotion.threshold.count = 1;
513 if (cx->type == ACPI_STATE_C3)
514 cx->demotion.threshold.bm = bm_history;
517 lower = cx;
520 /* promotion */
521 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
522 cx = &pr->power.states[i];
523 if (!cx->valid)
524 continue;
526 if (higher) {
527 cx->promotion.state = higher;
528 cx->promotion.threshold.ticks = cx->latency_ticks;
529 if (cx->type >= ACPI_STATE_C2)
530 cx->promotion.threshold.count = 4;
531 else
532 cx->promotion.threshold.count = 10;
533 if (higher->type == ACPI_STATE_C3)
534 cx->promotion.threshold.bm = bm_history;
537 higher = cx;
540 return_VALUE(0);
543 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
545 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
547 if (!pr)
548 return_VALUE(-EINVAL);
550 if (!pr->pblk)
551 return_VALUE(-ENODEV);
553 memset(pr->power.states, 0, sizeof(pr->power.states));
555 /* if info is obtained from pblk/fadt, type equals state */
556 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
557 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
558 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
560 /* the C0 state only exists as a filler in our array,
561 * and all processors need to support C1 */
562 pr->power.states[ACPI_STATE_C0].valid = 1;
563 pr->power.states[ACPI_STATE_C1].valid = 1;
565 #ifndef CONFIG_HOTPLUG_CPU
567 * Check for P_LVL2_UP flag before entering C2 and above on
568 * an SMP system.
570 if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up)
571 return_VALUE(-ENODEV);
572 #endif
574 /* determine C2 and C3 address from pblk */
575 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
576 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
578 /* determine latencies from FADT */
579 pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
580 pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
582 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
583 "lvl2[0x%08x] lvl3[0x%08x]\n",
584 pr->power.states[ACPI_STATE_C2].address,
585 pr->power.states[ACPI_STATE_C3].address));
587 return_VALUE(0);
590 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
592 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
594 memset(pr->power.states, 0, sizeof(pr->power.states));
596 /* if info is obtained from pblk/fadt, type equals state */
597 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
598 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
599 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
601 /* the C0 state only exists as a filler in our array,
602 * and all processors need to support C1 */
603 pr->power.states[ACPI_STATE_C0].valid = 1;
604 pr->power.states[ACPI_STATE_C1].valid = 1;
606 return_VALUE(0);
609 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
611 acpi_status status = 0;
612 acpi_integer count;
613 int i;
614 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
615 union acpi_object *cst;
617 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
619 if (nocst)
620 return_VALUE(-ENODEV);
622 pr->power.count = 0;
623 for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
624 memset(&(pr->power.states[i]), 0,
625 sizeof(struct acpi_processor_cx));
627 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
628 if (ACPI_FAILURE(status)) {
629 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
630 return_VALUE(-ENODEV);
633 cst = (union acpi_object *)buffer.pointer;
635 /* There must be at least 2 elements */
636 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
637 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
638 "not enough elements in _CST\n"));
639 status = -EFAULT;
640 goto end;
643 count = cst->package.elements[0].integer.value;
645 /* Validate number of power states. */
646 if (count < 1 || count != cst->package.count - 1) {
647 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
648 "count given by _CST is not valid\n"));
649 status = -EFAULT;
650 goto end;
653 /* We support up to ACPI_PROCESSOR_MAX_POWER. */
654 if (count > ACPI_PROCESSOR_MAX_POWER) {
655 printk(KERN_WARNING
656 "Limiting number of power states to max (%d)\n",
657 ACPI_PROCESSOR_MAX_POWER);
658 printk(KERN_WARNING
659 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
660 count = ACPI_PROCESSOR_MAX_POWER;
663 /* Tell driver that at least _CST is supported. */
664 pr->flags.has_cst = 1;
666 for (i = 1; i <= count; i++) {
667 union acpi_object *element;
668 union acpi_object *obj;
669 struct acpi_power_register *reg;
670 struct acpi_processor_cx cx;
672 memset(&cx, 0, sizeof(cx));
674 element = (union acpi_object *)&(cst->package.elements[i]);
675 if (element->type != ACPI_TYPE_PACKAGE)
676 continue;
678 if (element->package.count != 4)
679 continue;
681 obj = (union acpi_object *)&(element->package.elements[0]);
683 if (obj->type != ACPI_TYPE_BUFFER)
684 continue;
686 reg = (struct acpi_power_register *)obj->buffer.pointer;
688 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
689 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
690 continue;
692 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
693 0 : reg->address;
695 /* There should be an easy way to extract an integer... */
696 obj = (union acpi_object *)&(element->package.elements[1]);
697 if (obj->type != ACPI_TYPE_INTEGER)
698 continue;
700 cx.type = obj->integer.value;
702 if ((cx.type != ACPI_STATE_C1) &&
703 (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
704 continue;
706 if ((cx.type < ACPI_STATE_C1) || (cx.type > ACPI_STATE_C3))
707 continue;
709 obj = (union acpi_object *)&(element->package.elements[2]);
710 if (obj->type != ACPI_TYPE_INTEGER)
711 continue;
713 cx.latency = obj->integer.value;
715 obj = (union acpi_object *)&(element->package.elements[3]);
716 if (obj->type != ACPI_TYPE_INTEGER)
717 continue;
719 cx.power = obj->integer.value;
721 (pr->power.count)++;
722 memcpy(&(pr->power.states[pr->power.count]), &cx, sizeof(cx));
725 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
726 pr->power.count));
728 /* Validate number of power states discovered */
729 if (pr->power.count < 2)
730 status = -EFAULT;
732 end:
733 acpi_os_free(buffer.pointer);
735 return_VALUE(status);
738 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
740 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
742 if (!cx->address)
743 return_VOID;
746 * C2 latency must be less than or equal to 100
747 * microseconds.
749 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
750 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
751 "latency too large [%d]\n", cx->latency));
752 return_VOID;
756 * Otherwise we've met all of our C2 requirements.
757 * Normalize the C2 latency to expidite policy
759 cx->valid = 1;
760 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
762 return_VOID;
765 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
766 struct acpi_processor_cx *cx)
768 static int bm_check_flag;
770 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
772 if (!cx->address)
773 return_VOID;
776 * C3 latency must be less than or equal to 1000
777 * microseconds.
779 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
780 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
781 "latency too large [%d]\n", cx->latency));
782 return_VOID;
786 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
787 * DMA transfers are used by any ISA device to avoid livelock.
788 * Note that we could disable Type-F DMA (as recommended by
789 * the erratum), but this is known to disrupt certain ISA
790 * devices thus we take the conservative approach.
792 else if (errata.piix4.fdma) {
793 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
794 "C3 not supported on PIIX4 with Type-F DMA\n"));
795 return_VOID;
798 /* All the logic here assumes flags.bm_check is same across all CPUs */
799 if (!bm_check_flag) {
800 /* Determine whether bm_check is needed based on CPU */
801 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
802 bm_check_flag = pr->flags.bm_check;
803 } else {
804 pr->flags.bm_check = bm_check_flag;
807 if (pr->flags.bm_check) {
808 /* bus mastering control is necessary */
809 if (!pr->flags.bm_control) {
810 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
811 "C3 support requires bus mastering control\n"));
812 return_VOID;
814 } else {
816 * WBINVD should be set in fadt, for C3 state to be
817 * supported on when bm_check is not required.
819 if (acpi_fadt.wb_invd != 1) {
820 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
821 "Cache invalidation should work properly"
822 " for C3 to be enabled on SMP systems\n"));
823 return_VOID;
825 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
826 0, ACPI_MTX_DO_NOT_LOCK);
830 * Otherwise we've met all of our C3 requirements.
831 * Normalize the C3 latency to expidite policy. Enable
832 * checking of bus mastering status (bm_check) so we can
833 * use this in our C3 policy
835 cx->valid = 1;
836 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
838 return_VOID;
841 static int acpi_processor_power_verify(struct acpi_processor *pr)
843 unsigned int i;
844 unsigned int working = 0;
846 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
847 struct acpi_processor_cx *cx = &pr->power.states[i];
849 switch (cx->type) {
850 case ACPI_STATE_C1:
851 cx->valid = 1;
852 break;
854 case ACPI_STATE_C2:
855 acpi_processor_power_verify_c2(cx);
856 break;
858 case ACPI_STATE_C3:
859 acpi_processor_power_verify_c3(pr, cx);
860 break;
863 if (cx->valid)
864 working++;
867 return (working);
870 static int acpi_processor_get_power_info(struct acpi_processor *pr)
872 unsigned int i;
873 int result;
875 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
877 /* NOTE: the idle thread may not be running while calling
878 * this function */
880 result = acpi_processor_get_power_info_cst(pr);
881 if (result == -ENODEV)
882 result = acpi_processor_get_power_info_fadt(pr);
884 if ((result) || (acpi_processor_power_verify(pr) < 2))
885 result = acpi_processor_get_power_info_default_c1(pr);
888 * Set Default Policy
889 * ------------------
890 * Now that we know which states are supported, set the default
891 * policy. Note that this policy can be changed dynamically
892 * (e.g. encourage deeper sleeps to conserve battery life when
893 * not on AC).
895 result = acpi_processor_set_power_policy(pr);
896 if (result)
897 return_VALUE(result);
900 * if one state of type C2 or C3 is available, mark this
901 * CPU as being "idle manageable"
903 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
904 if (pr->power.states[i].valid) {
905 pr->power.count = i;
906 if (pr->power.states[i].type >= ACPI_STATE_C2)
907 pr->flags.power = 1;
911 return_VALUE(0);
914 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
916 int result = 0;
918 ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
920 if (!pr)
921 return_VALUE(-EINVAL);
923 if (nocst) {
924 return_VALUE(-ENODEV);
927 if (!pr->flags.power_setup_done)
928 return_VALUE(-ENODEV);
930 /* Fall back to the default idle loop */
931 pm_idle = pm_idle_save;
932 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
934 pr->flags.power = 0;
935 result = acpi_processor_get_power_info(pr);
936 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
937 pm_idle = acpi_processor_idle;
939 return_VALUE(result);
942 /* proc interface */
944 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
946 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
947 unsigned int i;
949 ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
951 if (!pr)
952 goto end;
954 seq_printf(seq, "active state: C%zd\n"
955 "max_cstate: C%d\n"
956 "bus master activity: %08x\n",
957 pr->power.state ? pr->power.state - pr->power.states : 0,
958 max_cstate, (unsigned)pr->power.bm_activity);
960 seq_puts(seq, "states:\n");
962 for (i = 1; i <= pr->power.count; i++) {
963 seq_printf(seq, " %cC%d: ",
964 (&pr->power.states[i] ==
965 pr->power.state ? '*' : ' '), i);
967 if (!pr->power.states[i].valid) {
968 seq_puts(seq, "<not supported>\n");
969 continue;
972 switch (pr->power.states[i].type) {
973 case ACPI_STATE_C1:
974 seq_printf(seq, "type[C1] ");
975 break;
976 case ACPI_STATE_C2:
977 seq_printf(seq, "type[C2] ");
978 break;
979 case ACPI_STATE_C3:
980 seq_printf(seq, "type[C3] ");
981 break;
982 default:
983 seq_printf(seq, "type[--] ");
984 break;
987 if (pr->power.states[i].promotion.state)
988 seq_printf(seq, "promotion[C%zd] ",
989 (pr->power.states[i].promotion.state -
990 pr->power.states));
991 else
992 seq_puts(seq, "promotion[--] ");
994 if (pr->power.states[i].demotion.state)
995 seq_printf(seq, "demotion[C%zd] ",
996 (pr->power.states[i].demotion.state -
997 pr->power.states));
998 else
999 seq_puts(seq, "demotion[--] ");
1001 seq_printf(seq, "latency[%03d] usage[%08d]\n",
1002 pr->power.states[i].latency,
1003 pr->power.states[i].usage);
1006 end:
1007 return_VALUE(0);
1010 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1012 return single_open(file, acpi_processor_power_seq_show,
1013 PDE(inode)->data);
1016 static struct file_operations acpi_processor_power_fops = {
1017 .open = acpi_processor_power_open_fs,
1018 .read = seq_read,
1019 .llseek = seq_lseek,
1020 .release = single_release,
1023 int acpi_processor_power_init(struct acpi_processor *pr,
1024 struct acpi_device *device)
1026 acpi_status status = 0;
1027 static int first_run = 0;
1028 struct proc_dir_entry *entry = NULL;
1029 unsigned int i;
1031 ACPI_FUNCTION_TRACE("acpi_processor_power_init");
1033 if (!first_run) {
1034 dmi_check_system(processor_power_dmi_table);
1035 if (max_cstate < ACPI_C_STATES_MAX)
1036 printk(KERN_NOTICE
1037 "ACPI: processor limited to max C-state %d\n",
1038 max_cstate);
1039 first_run++;
1042 if (!pr)
1043 return_VALUE(-EINVAL);
1045 if (acpi_fadt.cst_cnt && !nocst) {
1046 status =
1047 acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1048 if (ACPI_FAILURE(status)) {
1049 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1050 "Notifying BIOS of _CST ability failed\n"));
1054 acpi_processor_power_init_pdc(&(pr->power), pr->id);
1055 acpi_processor_set_pdc(pr, pr->power.pdc);
1056 acpi_processor_get_power_info(pr);
1059 * Install the idle handler if processor power management is supported.
1060 * Note that we use previously set idle handler will be used on
1061 * platforms that only support C1.
1063 if ((pr->flags.power) && (!boot_option_idle_override)) {
1064 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1065 for (i = 1; i <= pr->power.count; i++)
1066 if (pr->power.states[i].valid)
1067 printk(" C%d[C%d]", i,
1068 pr->power.states[i].type);
1069 printk(")\n");
1071 if (pr->id == 0) {
1072 pm_idle_save = pm_idle;
1073 pm_idle = acpi_processor_idle;
1077 /* 'power' [R] */
1078 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1079 S_IRUGO, acpi_device_dir(device));
1080 if (!entry)
1081 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1082 "Unable to create '%s' fs entry\n",
1083 ACPI_PROCESSOR_FILE_POWER));
1084 else {
1085 entry->proc_fops = &acpi_processor_power_fops;
1086 entry->data = acpi_driver_data(device);
1087 entry->owner = THIS_MODULE;
1090 pr->flags.power_setup_done = 1;
1092 return_VALUE(0);
1095 int acpi_processor_power_exit(struct acpi_processor *pr,
1096 struct acpi_device *device)
1098 ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1100 pr->flags.power_setup_done = 0;
1102 if (acpi_device_dir(device))
1103 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1104 acpi_device_dir(device));
1106 /* Unregister the idle handler when processor #0 is removed. */
1107 if (pr->id == 0) {
1108 pm_idle = pm_idle_save;
1111 * We are about to unload the current idle thread pm callback
1112 * (pm_idle), Wait for all processors to update cached/local
1113 * copies of pm_idle before proceeding.
1115 cpu_idle_wait();
1118 return_VALUE(0);