i386: PIT stop only, when in periodic or oneshot mode
[linux-2.6/openmoko-kernel/knife-kernel.git] / arch / i386 / kernel / i8253.c
blobbde249dda94d583a5375c99250de7dd9e19cb9a9
1 /*
2 * i8253.c 8253/PIT functions
4 */
5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
12 #include <asm/smp.h>
13 #include <asm/delay.h>
14 #include <asm/i8253.h>
15 #include <asm/io.h>
17 #include "io_ports.h"
19 DEFINE_SPINLOCK(i8253_lock);
20 EXPORT_SYMBOL(i8253_lock);
23 * HPET replaces the PIT, when enabled. So we need to know, which of
24 * the two timers is used
26 struct clock_event_device *global_clock_event;
29 * Initialize the PIT timer.
31 * This is also called after resume to bring the PIT into operation again.
33 static void init_pit_timer(enum clock_event_mode mode,
34 struct clock_event_device *evt)
36 unsigned long flags;
38 spin_lock_irqsave(&i8253_lock, flags);
40 switch(mode) {
41 case CLOCK_EVT_MODE_PERIODIC:
42 /* binary, mode 2, LSB/MSB, ch 0 */
43 outb_p(0x34, PIT_MODE);
44 outb_p(LATCH & 0xff , PIT_CH0); /* LSB */
45 outb(LATCH >> 8 , PIT_CH0); /* MSB */
46 break;
48 case CLOCK_EVT_MODE_SHUTDOWN:
49 case CLOCK_EVT_MODE_UNUSED:
50 if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
51 evt->mode == CLOCK_EVT_MODE_ONESHOT) {
52 outb_p(0x30, PIT_MODE);
53 outb_p(0, PIT_CH0);
54 outb_p(0, PIT_CH0);
56 break;
58 case CLOCK_EVT_MODE_ONESHOT:
59 /* One shot setup */
60 outb_p(0x38, PIT_MODE);
61 break;
63 case CLOCK_EVT_MODE_RESUME:
64 /* Nothing to do here */
65 break;
67 spin_unlock_irqrestore(&i8253_lock, flags);
71 * Program the next event in oneshot mode
73 * Delta is given in PIT ticks
75 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
77 unsigned long flags;
79 spin_lock_irqsave(&i8253_lock, flags);
80 outb_p(delta & 0xff , PIT_CH0); /* LSB */
81 outb(delta >> 8 , PIT_CH0); /* MSB */
82 spin_unlock_irqrestore(&i8253_lock, flags);
84 return 0;
88 * On UP the PIT can serve all of the possible timer functions. On SMP systems
89 * it can be solely used for the global tick.
91 * The profiling and update capabilites are switched off once the local apic is
92 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
93 * !using_apic_timer decisions in do_timer_interrupt_hook()
95 struct clock_event_device pit_clockevent = {
96 .name = "pit",
97 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
98 .set_mode = init_pit_timer,
99 .set_next_event = pit_next_event,
100 .shift = 32,
101 .irq = 0,
105 * Initialize the conversion factor and the min/max deltas of the clock event
106 * structure and register the clock event source with the framework.
108 void __init setup_pit_timer(void)
111 * Start pit with the boot cpu mask and make it global after the
112 * IO_APIC has been initialized.
114 pit_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
115 pit_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, 32);
116 pit_clockevent.max_delta_ns =
117 clockevent_delta2ns(0x7FFF, &pit_clockevent);
118 pit_clockevent.min_delta_ns =
119 clockevent_delta2ns(0xF, &pit_clockevent);
120 clockevents_register_device(&pit_clockevent);
121 global_clock_event = &pit_clockevent;
125 * Since the PIT overflows every tick, its not very useful
126 * to just read by itself. So use jiffies to emulate a free
127 * running counter:
129 static cycle_t pit_read(void)
131 unsigned long flags;
132 int count;
133 u32 jifs;
134 static int old_count;
135 static u32 old_jifs;
137 spin_lock_irqsave(&i8253_lock, flags);
139 * Although our caller may have the read side of xtime_lock,
140 * this is now a seqlock, and we are cheating in this routine
141 * by having side effects on state that we cannot undo if
142 * there is a collision on the seqlock and our caller has to
143 * retry. (Namely, old_jifs and old_count.) So we must treat
144 * jiffies as volatile despite the lock. We read jiffies
145 * before latching the timer count to guarantee that although
146 * the jiffies value might be older than the count (that is,
147 * the counter may underflow between the last point where
148 * jiffies was incremented and the point where we latch the
149 * count), it cannot be newer.
151 jifs = jiffies;
152 outb_p(0x00, PIT_MODE); /* latch the count ASAP */
153 count = inb_p(PIT_CH0); /* read the latched count */
154 count |= inb_p(PIT_CH0) << 8;
156 /* VIA686a test code... reset the latch if count > max + 1 */
157 if (count > LATCH) {
158 outb_p(0x34, PIT_MODE);
159 outb_p(LATCH & 0xff, PIT_CH0);
160 outb(LATCH >> 8, PIT_CH0);
161 count = LATCH - 1;
165 * It's possible for count to appear to go the wrong way for a
166 * couple of reasons:
168 * 1. The timer counter underflows, but we haven't handled the
169 * resulting interrupt and incremented jiffies yet.
170 * 2. Hardware problem with the timer, not giving us continuous time,
171 * the counter does small "jumps" upwards on some Pentium systems,
172 * (see c't 95/10 page 335 for Neptun bug.)
174 * Previous attempts to handle these cases intelligently were
175 * buggy, so we just do the simple thing now.
177 if (count > old_count && jifs == old_jifs) {
178 count = old_count;
180 old_count = count;
181 old_jifs = jifs;
183 spin_unlock_irqrestore(&i8253_lock, flags);
185 count = (LATCH - 1) - count;
187 return (cycle_t)(jifs * LATCH) + count;
190 static struct clocksource clocksource_pit = {
191 .name = "pit",
192 .rating = 110,
193 .read = pit_read,
194 .mask = CLOCKSOURCE_MASK(32),
195 .mult = 0,
196 .shift = 20,
199 static int __init init_pit_clocksource(void)
201 if (num_possible_cpus() > 1) /* PIT does not scale! */
202 return 0;
204 clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
205 return clocksource_register(&clocksource_pit);
207 arch_initcall(init_pit_clocksource);