natsemi: Support Aculab E1/T1 PMXc cPCI carrier cards
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / natsemi.c
blobadf29dd66798d575e89413068f3666e3f6027bc2
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
19 Annapolis MD 21403
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
23 [link no longer provides useful info -jgarzik]
26 TODO:
27 * big endian support with CFG:BEM instead of cpu_to_le32
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h> /* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
56 #define DRV_NAME "natsemi"
57 #define DRV_VERSION "2.1"
58 #define DRV_RELDATE "Sept 11, 2006"
60 #define RX_OFFSET 2
62 /* Updated to recommendations in pci-skeleton v2.03. */
64 /* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72 static int debug = -1;
74 static int mtu;
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
78 static const int multicast_filter_limit = 100;
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
84 /* Used to pass the media type, etc.
85 Both 'options[]' and 'full_duplex[]' should exist for driver
86 interoperability.
87 The media type is usually passed in 'options[]'.
89 #define MAX_UNITS 8 /* More are supported, limit only on options */
90 static int options[MAX_UNITS];
91 static int full_duplex[MAX_UNITS];
93 /* Operational parameters that are set at compile time. */
95 /* Keep the ring sizes a power of two for compile efficiency.
96 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
97 Making the Tx ring too large decreases the effectiveness of channel
98 bonding and packet priority.
99 There are no ill effects from too-large receive rings. */
100 #define TX_RING_SIZE 16
101 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
102 #define RX_RING_SIZE 32
104 /* Operational parameters that usually are not changed. */
105 /* Time in jiffies before concluding the transmitter is hung. */
106 #define TX_TIMEOUT (2*HZ)
108 #define NATSEMI_HW_TIMEOUT 400
109 #define NATSEMI_TIMER_FREQ 3*HZ
110 #define NATSEMI_PG0_NREGS 64
111 #define NATSEMI_RFDR_NREGS 8
112 #define NATSEMI_PG1_NREGS 4
113 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
114 NATSEMI_PG1_NREGS)
115 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
116 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
118 /* Buffer sizes:
119 * The nic writes 32-bit values, even if the upper bytes of
120 * a 32-bit value are beyond the end of the buffer.
122 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
123 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
124 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
125 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
127 /* These identify the driver base version and may not be removed. */
128 static const char version[] __devinitdata =
129 KERN_INFO DRV_NAME " dp8381x driver, version "
130 DRV_VERSION ", " DRV_RELDATE "\n"
131 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
132 KERN_INFO " http://www.scyld.com/network/natsemi.html\n"
133 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
136 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
137 MODULE_LICENSE("GPL");
139 module_param(mtu, int, 0);
140 module_param(debug, int, 0);
141 module_param(rx_copybreak, int, 0);
142 module_param_array(options, int, NULL, 0);
143 module_param_array(full_duplex, int, NULL, 0);
144 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
145 MODULE_PARM_DESC(debug, "DP8381x default debug level");
146 MODULE_PARM_DESC(rx_copybreak,
147 "DP8381x copy breakpoint for copy-only-tiny-frames");
148 MODULE_PARM_DESC(options,
149 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
150 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
153 Theory of Operation
155 I. Board Compatibility
157 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
158 It also works with other chips in in the DP83810 series.
160 II. Board-specific settings
162 This driver requires the PCI interrupt line to be valid.
163 It honors the EEPROM-set values.
165 III. Driver operation
167 IIIa. Ring buffers
169 This driver uses two statically allocated fixed-size descriptor lists
170 formed into rings by a branch from the final descriptor to the beginning of
171 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
172 The NatSemi design uses a 'next descriptor' pointer that the driver forms
173 into a list.
175 IIIb/c. Transmit/Receive Structure
177 This driver uses a zero-copy receive and transmit scheme.
178 The driver allocates full frame size skbuffs for the Rx ring buffers at
179 open() time and passes the skb->data field to the chip as receive data
180 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
181 a fresh skbuff is allocated and the frame is copied to the new skbuff.
182 When the incoming frame is larger, the skbuff is passed directly up the
183 protocol stack. Buffers consumed this way are replaced by newly allocated
184 skbuffs in a later phase of receives.
186 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
187 using a full-sized skbuff for small frames vs. the copying costs of larger
188 frames. New boards are typically used in generously configured machines
189 and the underfilled buffers have negligible impact compared to the benefit of
190 a single allocation size, so the default value of zero results in never
191 copying packets. When copying is done, the cost is usually mitigated by using
192 a combined copy/checksum routine. Copying also preloads the cache, which is
193 most useful with small frames.
195 A subtle aspect of the operation is that unaligned buffers are not permitted
196 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
197 longword aligned for further processing. On copies frames are put into the
198 skbuff at an offset of "+2", 16-byte aligning the IP header.
200 IIId. Synchronization
202 Most operations are synchronized on the np->lock irq spinlock, except the
203 performance critical codepaths:
205 The rx process only runs in the interrupt handler. Access from outside
206 the interrupt handler is only permitted after disable_irq().
208 The rx process usually runs under the netif_tx_lock. If np->intr_tx_reap
209 is set, then access is permitted under spin_lock_irq(&np->lock).
211 Thus configuration functions that want to access everything must call
212 disable_irq(dev->irq);
213 netif_tx_lock_bh(dev);
214 spin_lock_irq(&np->lock);
216 IV. Notes
218 NatSemi PCI network controllers are very uncommon.
220 IVb. References
222 http://www.scyld.com/expert/100mbps.html
223 http://www.scyld.com/expert/NWay.html
224 Datasheet is available from:
225 http://www.national.com/pf/DP/DP83815.html
227 IVc. Errata
229 None characterised.
235 * Support for fibre connections on Am79C874:
236 * This phy needs a special setup when connected to a fibre cable.
237 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
239 #define PHYID_AM79C874 0x0022561b
241 enum {
242 MII_MCTRL = 0x15, /* mode control register */
243 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
244 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
247 enum {
248 NATSEMI_FLAG_IGNORE_PHY = 0x1,
251 /* array of board data directly indexed by pci_tbl[x].driver_data */
252 static const struct {
253 const char *name;
254 unsigned long flags;
255 unsigned int eeprom_size;
256 } natsemi_pci_info[] __devinitdata = {
257 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
258 { "NatSemi DP8381[56]", 0, 24 },
261 static const struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
262 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
263 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
264 { } /* terminate list */
266 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
268 /* Offsets to the device registers.
269 Unlike software-only systems, device drivers interact with complex hardware.
270 It's not useful to define symbolic names for every register bit in the
271 device.
273 enum register_offsets {
274 ChipCmd = 0x00,
275 ChipConfig = 0x04,
276 EECtrl = 0x08,
277 PCIBusCfg = 0x0C,
278 IntrStatus = 0x10,
279 IntrMask = 0x14,
280 IntrEnable = 0x18,
281 IntrHoldoff = 0x1C, /* DP83816 only */
282 TxRingPtr = 0x20,
283 TxConfig = 0x24,
284 RxRingPtr = 0x30,
285 RxConfig = 0x34,
286 ClkRun = 0x3C,
287 WOLCmd = 0x40,
288 PauseCmd = 0x44,
289 RxFilterAddr = 0x48,
290 RxFilterData = 0x4C,
291 BootRomAddr = 0x50,
292 BootRomData = 0x54,
293 SiliconRev = 0x58,
294 StatsCtrl = 0x5C,
295 StatsData = 0x60,
296 RxPktErrs = 0x60,
297 RxMissed = 0x68,
298 RxCRCErrs = 0x64,
299 BasicControl = 0x80,
300 BasicStatus = 0x84,
301 AnegAdv = 0x90,
302 AnegPeer = 0x94,
303 PhyStatus = 0xC0,
304 MIntrCtrl = 0xC4,
305 MIntrStatus = 0xC8,
306 PhyCtrl = 0xE4,
308 /* These are from the spec, around page 78... on a separate table.
309 * The meaning of these registers depend on the value of PGSEL. */
310 PGSEL = 0xCC,
311 PMDCSR = 0xE4,
312 TSTDAT = 0xFC,
313 DSPCFG = 0xF4,
314 SDCFG = 0xF8
316 /* the values for the 'magic' registers above (PGSEL=1) */
317 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
318 #define TSTDAT_VAL 0x0
319 #define DSPCFG_VAL 0x5040
320 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
321 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
322 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
323 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
325 /* misc PCI space registers */
326 enum pci_register_offsets {
327 PCIPM = 0x44,
330 enum ChipCmd_bits {
331 ChipReset = 0x100,
332 RxReset = 0x20,
333 TxReset = 0x10,
334 RxOff = 0x08,
335 RxOn = 0x04,
336 TxOff = 0x02,
337 TxOn = 0x01,
340 enum ChipConfig_bits {
341 CfgPhyDis = 0x200,
342 CfgPhyRst = 0x400,
343 CfgExtPhy = 0x1000,
344 CfgAnegEnable = 0x2000,
345 CfgAneg100 = 0x4000,
346 CfgAnegFull = 0x8000,
347 CfgAnegDone = 0x8000000,
348 CfgFullDuplex = 0x20000000,
349 CfgSpeed100 = 0x40000000,
350 CfgLink = 0x80000000,
353 enum EECtrl_bits {
354 EE_ShiftClk = 0x04,
355 EE_DataIn = 0x01,
356 EE_ChipSelect = 0x08,
357 EE_DataOut = 0x02,
358 MII_Data = 0x10,
359 MII_Write = 0x20,
360 MII_ShiftClk = 0x40,
363 enum PCIBusCfg_bits {
364 EepromReload = 0x4,
367 /* Bits in the interrupt status/mask registers. */
368 enum IntrStatus_bits {
369 IntrRxDone = 0x0001,
370 IntrRxIntr = 0x0002,
371 IntrRxErr = 0x0004,
372 IntrRxEarly = 0x0008,
373 IntrRxIdle = 0x0010,
374 IntrRxOverrun = 0x0020,
375 IntrTxDone = 0x0040,
376 IntrTxIntr = 0x0080,
377 IntrTxErr = 0x0100,
378 IntrTxIdle = 0x0200,
379 IntrTxUnderrun = 0x0400,
380 StatsMax = 0x0800,
381 SWInt = 0x1000,
382 WOLPkt = 0x2000,
383 LinkChange = 0x4000,
384 IntrHighBits = 0x8000,
385 RxStatusFIFOOver = 0x10000,
386 IntrPCIErr = 0xf00000,
387 RxResetDone = 0x1000000,
388 TxResetDone = 0x2000000,
389 IntrAbnormalSummary = 0xCD20,
393 * Default Interrupts:
394 * Rx OK, Rx Packet Error, Rx Overrun,
395 * Tx OK, Tx Packet Error, Tx Underrun,
396 * MIB Service, Phy Interrupt, High Bits,
397 * Rx Status FIFO overrun,
398 * Received Target Abort, Received Master Abort,
399 * Signalled System Error, Received Parity Error
401 #define DEFAULT_INTR 0x00f1cd65
403 enum TxConfig_bits {
404 TxDrthMask = 0x3f,
405 TxFlthMask = 0x3f00,
406 TxMxdmaMask = 0x700000,
407 TxMxdma_512 = 0x0,
408 TxMxdma_4 = 0x100000,
409 TxMxdma_8 = 0x200000,
410 TxMxdma_16 = 0x300000,
411 TxMxdma_32 = 0x400000,
412 TxMxdma_64 = 0x500000,
413 TxMxdma_128 = 0x600000,
414 TxMxdma_256 = 0x700000,
415 TxCollRetry = 0x800000,
416 TxAutoPad = 0x10000000,
417 TxMacLoop = 0x20000000,
418 TxHeartIgn = 0x40000000,
419 TxCarrierIgn = 0x80000000
423 * Tx Configuration:
424 * - 256 byte DMA burst length
425 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
426 * - 64 bytes initial drain threshold (i.e. begin actual transmission
427 * when 64 byte are in the fifo)
428 * - on tx underruns, increase drain threshold by 64.
429 * - at most use a drain threshold of 1472 bytes: The sum of the fill
430 * threshold and the drain threshold must be less than 2016 bytes.
433 #define TX_FLTH_VAL ((512/32) << 8)
434 #define TX_DRTH_VAL_START (64/32)
435 #define TX_DRTH_VAL_INC 2
436 #define TX_DRTH_VAL_LIMIT (1472/32)
438 enum RxConfig_bits {
439 RxDrthMask = 0x3e,
440 RxMxdmaMask = 0x700000,
441 RxMxdma_512 = 0x0,
442 RxMxdma_4 = 0x100000,
443 RxMxdma_8 = 0x200000,
444 RxMxdma_16 = 0x300000,
445 RxMxdma_32 = 0x400000,
446 RxMxdma_64 = 0x500000,
447 RxMxdma_128 = 0x600000,
448 RxMxdma_256 = 0x700000,
449 RxAcceptLong = 0x8000000,
450 RxAcceptTx = 0x10000000,
451 RxAcceptRunt = 0x40000000,
452 RxAcceptErr = 0x80000000
454 #define RX_DRTH_VAL (128/8)
456 enum ClkRun_bits {
457 PMEEnable = 0x100,
458 PMEStatus = 0x8000,
461 enum WolCmd_bits {
462 WakePhy = 0x1,
463 WakeUnicast = 0x2,
464 WakeMulticast = 0x4,
465 WakeBroadcast = 0x8,
466 WakeArp = 0x10,
467 WakePMatch0 = 0x20,
468 WakePMatch1 = 0x40,
469 WakePMatch2 = 0x80,
470 WakePMatch3 = 0x100,
471 WakeMagic = 0x200,
472 WakeMagicSecure = 0x400,
473 SecureHack = 0x100000,
474 WokePhy = 0x400000,
475 WokeUnicast = 0x800000,
476 WokeMulticast = 0x1000000,
477 WokeBroadcast = 0x2000000,
478 WokeArp = 0x4000000,
479 WokePMatch0 = 0x8000000,
480 WokePMatch1 = 0x10000000,
481 WokePMatch2 = 0x20000000,
482 WokePMatch3 = 0x40000000,
483 WokeMagic = 0x80000000,
484 WakeOptsSummary = 0x7ff
487 enum RxFilterAddr_bits {
488 RFCRAddressMask = 0x3ff,
489 AcceptMulticast = 0x00200000,
490 AcceptMyPhys = 0x08000000,
491 AcceptAllPhys = 0x10000000,
492 AcceptAllMulticast = 0x20000000,
493 AcceptBroadcast = 0x40000000,
494 RxFilterEnable = 0x80000000
497 enum StatsCtrl_bits {
498 StatsWarn = 0x1,
499 StatsFreeze = 0x2,
500 StatsClear = 0x4,
501 StatsStrobe = 0x8,
504 enum MIntrCtrl_bits {
505 MICRIntEn = 0x2,
508 enum PhyCtrl_bits {
509 PhyAddrMask = 0x1f,
512 #define PHY_ADDR_NONE 32
513 #define PHY_ADDR_INTERNAL 1
515 /* values we might find in the silicon revision register */
516 #define SRR_DP83815_C 0x0302
517 #define SRR_DP83815_D 0x0403
518 #define SRR_DP83816_A4 0x0504
519 #define SRR_DP83816_A5 0x0505
521 /* The Rx and Tx buffer descriptors. */
522 /* Note that using only 32 bit fields simplifies conversion to big-endian
523 architectures. */
524 struct netdev_desc {
525 u32 next_desc;
526 s32 cmd_status;
527 u32 addr;
528 u32 software_use;
531 /* Bits in network_desc.status */
532 enum desc_status_bits {
533 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
534 DescNoCRC=0x10000000, DescPktOK=0x08000000,
535 DescSizeMask=0xfff,
537 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
538 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
539 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
540 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
542 DescRxAbort=0x04000000, DescRxOver=0x02000000,
543 DescRxDest=0x01800000, DescRxLong=0x00400000,
544 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
545 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
546 DescRxLoop=0x00020000, DesRxColl=0x00010000,
549 struct netdev_private {
550 /* Descriptor rings first for alignment */
551 dma_addr_t ring_dma;
552 struct netdev_desc *rx_ring;
553 struct netdev_desc *tx_ring;
554 /* The addresses of receive-in-place skbuffs */
555 struct sk_buff *rx_skbuff[RX_RING_SIZE];
556 dma_addr_t rx_dma[RX_RING_SIZE];
557 /* address of a sent-in-place packet/buffer, for later free() */
558 struct sk_buff *tx_skbuff[TX_RING_SIZE];
559 dma_addr_t tx_dma[TX_RING_SIZE];
560 struct net_device_stats stats;
561 /* Media monitoring timer */
562 struct timer_list timer;
563 /* Frequently used values: keep some adjacent for cache effect */
564 struct pci_dev *pci_dev;
565 struct netdev_desc *rx_head_desc;
566 /* Producer/consumer ring indices */
567 unsigned int cur_rx, dirty_rx;
568 unsigned int cur_tx, dirty_tx;
569 /* Based on MTU+slack. */
570 unsigned int rx_buf_sz;
571 int oom;
572 /* Interrupt status */
573 u32 intr_status;
574 /* Do not touch the nic registers */
575 int hands_off;
576 /* Don't pay attention to the reported link state. */
577 int ignore_phy;
578 /* external phy that is used: only valid if dev->if_port != PORT_TP */
579 int mii;
580 int phy_addr_external;
581 unsigned int full_duplex;
582 /* Rx filter */
583 u32 cur_rx_mode;
584 u32 rx_filter[16];
585 /* FIFO and PCI burst thresholds */
586 u32 tx_config, rx_config;
587 /* original contents of ClkRun register */
588 u32 SavedClkRun;
589 /* silicon revision */
590 u32 srr;
591 /* expected DSPCFG value */
592 u16 dspcfg;
593 /* parms saved in ethtool format */
594 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
595 u8 duplex; /* Duplex, half or full */
596 u8 autoneg; /* Autonegotiation enabled */
597 /* MII transceiver section */
598 u16 advertising;
599 unsigned int iosize;
600 spinlock_t lock;
601 u32 msg_enable;
602 /* EEPROM data */
603 int eeprom_size;
606 static void move_int_phy(struct net_device *dev, int addr);
607 static int eeprom_read(void __iomem *ioaddr, int location);
608 static int mdio_read(struct net_device *dev, int reg);
609 static void mdio_write(struct net_device *dev, int reg, u16 data);
610 static void init_phy_fixup(struct net_device *dev);
611 static int miiport_read(struct net_device *dev, int phy_id, int reg);
612 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
613 static int find_mii(struct net_device *dev);
614 static void natsemi_reset(struct net_device *dev);
615 static void natsemi_reload_eeprom(struct net_device *dev);
616 static void natsemi_stop_rxtx(struct net_device *dev);
617 static int netdev_open(struct net_device *dev);
618 static void do_cable_magic(struct net_device *dev);
619 static void undo_cable_magic(struct net_device *dev);
620 static void check_link(struct net_device *dev);
621 static void netdev_timer(unsigned long data);
622 static void dump_ring(struct net_device *dev);
623 static void tx_timeout(struct net_device *dev);
624 static int alloc_ring(struct net_device *dev);
625 static void refill_rx(struct net_device *dev);
626 static void init_ring(struct net_device *dev);
627 static void drain_tx(struct net_device *dev);
628 static void drain_ring(struct net_device *dev);
629 static void free_ring(struct net_device *dev);
630 static void reinit_ring(struct net_device *dev);
631 static void init_registers(struct net_device *dev);
632 static int start_tx(struct sk_buff *skb, struct net_device *dev);
633 static irqreturn_t intr_handler(int irq, void *dev_instance);
634 static void netdev_error(struct net_device *dev, int intr_status);
635 static int natsemi_poll(struct net_device *dev, int *budget);
636 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
637 static void netdev_tx_done(struct net_device *dev);
638 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
639 #ifdef CONFIG_NET_POLL_CONTROLLER
640 static void natsemi_poll_controller(struct net_device *dev);
641 #endif
642 static void __set_rx_mode(struct net_device *dev);
643 static void set_rx_mode(struct net_device *dev);
644 static void __get_stats(struct net_device *dev);
645 static struct net_device_stats *get_stats(struct net_device *dev);
646 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
647 static int netdev_set_wol(struct net_device *dev, u32 newval);
648 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
649 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
650 static int netdev_get_sopass(struct net_device *dev, u8 *data);
651 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
652 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
653 static void enable_wol_mode(struct net_device *dev, int enable_intr);
654 static int netdev_close(struct net_device *dev);
655 static int netdev_get_regs(struct net_device *dev, u8 *buf);
656 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
657 static const struct ethtool_ops ethtool_ops;
659 static inline void __iomem *ns_ioaddr(struct net_device *dev)
661 return (void __iomem *) dev->base_addr;
664 static inline void natsemi_irq_enable(struct net_device *dev)
666 writel(1, ns_ioaddr(dev) + IntrEnable);
667 readl(ns_ioaddr(dev) + IntrEnable);
670 static inline void natsemi_irq_disable(struct net_device *dev)
672 writel(0, ns_ioaddr(dev) + IntrEnable);
673 readl(ns_ioaddr(dev) + IntrEnable);
676 static void move_int_phy(struct net_device *dev, int addr)
678 struct netdev_private *np = netdev_priv(dev);
679 void __iomem *ioaddr = ns_ioaddr(dev);
680 int target = 31;
683 * The internal phy is visible on the external mii bus. Therefore we must
684 * move it away before we can send commands to an external phy.
685 * There are two addresses we must avoid:
686 * - the address on the external phy that is used for transmission.
687 * - the address that we want to access. User space can access phys
688 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
689 * phy that is used for transmission.
692 if (target == addr)
693 target--;
694 if (target == np->phy_addr_external)
695 target--;
696 writew(target, ioaddr + PhyCtrl);
697 readw(ioaddr + PhyCtrl);
698 udelay(1);
701 static void __devinit natsemi_init_media (struct net_device *dev)
703 struct netdev_private *np = netdev_priv(dev);
704 u32 tmp;
706 if (np->ignore_phy)
707 netif_carrier_on(dev);
708 else
709 netif_carrier_off(dev);
711 /* get the initial settings from hardware */
712 tmp = mdio_read(dev, MII_BMCR);
713 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
714 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
715 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
716 np->advertising= mdio_read(dev, MII_ADVERTISE);
718 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
719 && netif_msg_probe(np)) {
720 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
721 "10%s %s duplex.\n",
722 pci_name(np->pci_dev),
723 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
724 "enabled, advertise" : "disabled, force",
725 (np->advertising &
726 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
727 "0" : "",
728 (np->advertising &
729 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
730 "full" : "half");
732 if (netif_msg_probe(np))
733 printk(KERN_INFO
734 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
735 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
736 np->advertising);
740 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
741 const struct pci_device_id *ent)
743 struct net_device *dev;
744 struct netdev_private *np;
745 int i, option, irq, chip_idx = ent->driver_data;
746 static int find_cnt = -1;
747 unsigned long iostart, iosize;
748 void __iomem *ioaddr;
749 const int pcibar = 1; /* PCI base address register */
750 int prev_eedata;
751 u32 tmp;
753 /* when built into the kernel, we only print version if device is found */
754 #ifndef MODULE
755 static int printed_version;
756 if (!printed_version++)
757 printk(version);
758 #endif
760 i = pci_enable_device(pdev);
761 if (i) return i;
763 /* natsemi has a non-standard PM control register
764 * in PCI config space. Some boards apparently need
765 * to be brought to D0 in this manner.
767 pci_read_config_dword(pdev, PCIPM, &tmp);
768 if (tmp & PCI_PM_CTRL_STATE_MASK) {
769 /* D0 state, disable PME assertion */
770 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
771 pci_write_config_dword(pdev, PCIPM, newtmp);
774 find_cnt++;
775 iostart = pci_resource_start(pdev, pcibar);
776 iosize = pci_resource_len(pdev, pcibar);
777 irq = pdev->irq;
779 pci_set_master(pdev);
781 dev = alloc_etherdev(sizeof (struct netdev_private));
782 if (!dev)
783 return -ENOMEM;
784 SET_MODULE_OWNER(dev);
785 SET_NETDEV_DEV(dev, &pdev->dev);
787 i = pci_request_regions(pdev, DRV_NAME);
788 if (i)
789 goto err_pci_request_regions;
791 ioaddr = ioremap(iostart, iosize);
792 if (!ioaddr) {
793 i = -ENOMEM;
794 goto err_ioremap;
797 /* Work around the dropped serial bit. */
798 prev_eedata = eeprom_read(ioaddr, 6);
799 for (i = 0; i < 3; i++) {
800 int eedata = eeprom_read(ioaddr, i + 7);
801 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
802 dev->dev_addr[i*2+1] = eedata >> 7;
803 prev_eedata = eedata;
806 dev->base_addr = (unsigned long __force) ioaddr;
807 dev->irq = irq;
809 np = netdev_priv(dev);
811 np->pci_dev = pdev;
812 pci_set_drvdata(pdev, dev);
813 np->iosize = iosize;
814 spin_lock_init(&np->lock);
815 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
816 np->hands_off = 0;
817 np->intr_status = 0;
818 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
819 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
820 np->ignore_phy = 1;
821 else
822 np->ignore_phy = 0;
824 /* Initial port:
825 * - If configured to ignore the PHY set up for external.
826 * - If the nic was configured to use an external phy and if find_mii
827 * finds a phy: use external port, first phy that replies.
828 * - Otherwise: internal port.
829 * Note that the phy address for the internal phy doesn't matter:
830 * The address would be used to access a phy over the mii bus, but
831 * the internal phy is accessed through mapped registers.
833 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
834 dev->if_port = PORT_MII;
835 else
836 dev->if_port = PORT_TP;
837 /* Reset the chip to erase previous misconfiguration. */
838 natsemi_reload_eeprom(dev);
839 natsemi_reset(dev);
841 if (dev->if_port != PORT_TP) {
842 np->phy_addr_external = find_mii(dev);
843 /* If we're ignoring the PHY it doesn't matter if we can't
844 * find one. */
845 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
846 dev->if_port = PORT_TP;
847 np->phy_addr_external = PHY_ADDR_INTERNAL;
849 } else {
850 np->phy_addr_external = PHY_ADDR_INTERNAL;
853 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
854 if (dev->mem_start)
855 option = dev->mem_start;
857 /* The lower four bits are the media type. */
858 if (option) {
859 if (option & 0x200)
860 np->full_duplex = 1;
861 if (option & 15)
862 printk(KERN_INFO
863 "natsemi %s: ignoring user supplied media type %d",
864 pci_name(np->pci_dev), option & 15);
866 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
867 np->full_duplex = 1;
869 /* The chip-specific entries in the device structure. */
870 dev->open = &netdev_open;
871 dev->hard_start_xmit = &start_tx;
872 dev->stop = &netdev_close;
873 dev->get_stats = &get_stats;
874 dev->set_multicast_list = &set_rx_mode;
875 dev->change_mtu = &natsemi_change_mtu;
876 dev->do_ioctl = &netdev_ioctl;
877 dev->tx_timeout = &tx_timeout;
878 dev->watchdog_timeo = TX_TIMEOUT;
879 dev->poll = natsemi_poll;
880 dev->weight = 64;
882 #ifdef CONFIG_NET_POLL_CONTROLLER
883 dev->poll_controller = &natsemi_poll_controller;
884 #endif
885 SET_ETHTOOL_OPS(dev, &ethtool_ops);
887 if (mtu)
888 dev->mtu = mtu;
890 natsemi_init_media(dev);
892 /* save the silicon revision for later querying */
893 np->srr = readl(ioaddr + SiliconRev);
894 if (netif_msg_hw(np))
895 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
896 pci_name(np->pci_dev), np->srr);
898 i = register_netdev(dev);
899 if (i)
900 goto err_register_netdev;
902 if (netif_msg_drv(np)) {
903 printk(KERN_INFO "natsemi %s: %s at %#08lx (%s), ",
904 dev->name, natsemi_pci_info[chip_idx].name, iostart,
905 pci_name(np->pci_dev));
906 for (i = 0; i < ETH_ALEN-1; i++)
907 printk("%02x:", dev->dev_addr[i]);
908 printk("%02x, IRQ %d", dev->dev_addr[i], irq);
909 if (dev->if_port == PORT_TP)
910 printk(", port TP.\n");
911 else if (np->ignore_phy)
912 printk(", port MII, ignoring PHY\n");
913 else
914 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
916 return 0;
918 err_register_netdev:
919 iounmap(ioaddr);
921 err_ioremap:
922 pci_release_regions(pdev);
923 pci_set_drvdata(pdev, NULL);
925 err_pci_request_regions:
926 free_netdev(dev);
927 return i;
931 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
932 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
934 /* Delay between EEPROM clock transitions.
935 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
936 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
937 made udelay() unreliable.
938 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
939 depricated.
941 #define eeprom_delay(ee_addr) readl(ee_addr)
943 #define EE_Write0 (EE_ChipSelect)
944 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
946 /* The EEPROM commands include the alway-set leading bit. */
947 enum EEPROM_Cmds {
948 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
951 static int eeprom_read(void __iomem *addr, int location)
953 int i;
954 int retval = 0;
955 void __iomem *ee_addr = addr + EECtrl;
956 int read_cmd = location | EE_ReadCmd;
958 writel(EE_Write0, ee_addr);
960 /* Shift the read command bits out. */
961 for (i = 10; i >= 0; i--) {
962 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
963 writel(dataval, ee_addr);
964 eeprom_delay(ee_addr);
965 writel(dataval | EE_ShiftClk, ee_addr);
966 eeprom_delay(ee_addr);
968 writel(EE_ChipSelect, ee_addr);
969 eeprom_delay(ee_addr);
971 for (i = 0; i < 16; i++) {
972 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
973 eeprom_delay(ee_addr);
974 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
975 writel(EE_ChipSelect, ee_addr);
976 eeprom_delay(ee_addr);
979 /* Terminate the EEPROM access. */
980 writel(EE_Write0, ee_addr);
981 writel(0, ee_addr);
982 return retval;
985 /* MII transceiver control section.
986 * The 83815 series has an internal transceiver, and we present the
987 * internal management registers as if they were MII connected.
988 * External Phy registers are referenced through the MII interface.
991 /* clock transitions >= 20ns (25MHz)
992 * One readl should be good to PCI @ 100MHz
994 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
996 static int mii_getbit (struct net_device *dev)
998 int data;
999 void __iomem *ioaddr = ns_ioaddr(dev);
1001 writel(MII_ShiftClk, ioaddr + EECtrl);
1002 data = readl(ioaddr + EECtrl);
1003 writel(0, ioaddr + EECtrl);
1004 mii_delay(ioaddr);
1005 return (data & MII_Data)? 1 : 0;
1008 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1010 u32 i;
1011 void __iomem *ioaddr = ns_ioaddr(dev);
1013 for (i = (1 << (len-1)); i; i >>= 1)
1015 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1016 writel(mdio_val, ioaddr + EECtrl);
1017 mii_delay(ioaddr);
1018 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1019 mii_delay(ioaddr);
1021 writel(0, ioaddr + EECtrl);
1022 mii_delay(ioaddr);
1025 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1027 u32 cmd;
1028 int i;
1029 u32 retval = 0;
1031 /* Ensure sync */
1032 mii_send_bits (dev, 0xffffffff, 32);
1033 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1034 /* ST,OP = 0110'b for read operation */
1035 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1036 mii_send_bits (dev, cmd, 14);
1037 /* Turnaround */
1038 if (mii_getbit (dev))
1039 return 0;
1040 /* Read data */
1041 for (i = 0; i < 16; i++) {
1042 retval <<= 1;
1043 retval |= mii_getbit (dev);
1045 /* End cycle */
1046 mii_getbit (dev);
1047 return retval;
1050 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1052 u32 cmd;
1054 /* Ensure sync */
1055 mii_send_bits (dev, 0xffffffff, 32);
1056 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1057 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1058 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1059 mii_send_bits (dev, cmd, 32);
1060 /* End cycle */
1061 mii_getbit (dev);
1064 static int mdio_read(struct net_device *dev, int reg)
1066 struct netdev_private *np = netdev_priv(dev);
1067 void __iomem *ioaddr = ns_ioaddr(dev);
1069 /* The 83815 series has two ports:
1070 * - an internal transceiver
1071 * - an external mii bus
1073 if (dev->if_port == PORT_TP)
1074 return readw(ioaddr+BasicControl+(reg<<2));
1075 else
1076 return miiport_read(dev, np->phy_addr_external, reg);
1079 static void mdio_write(struct net_device *dev, int reg, u16 data)
1081 struct netdev_private *np = netdev_priv(dev);
1082 void __iomem *ioaddr = ns_ioaddr(dev);
1084 /* The 83815 series has an internal transceiver; handle separately */
1085 if (dev->if_port == PORT_TP)
1086 writew(data, ioaddr+BasicControl+(reg<<2));
1087 else
1088 miiport_write(dev, np->phy_addr_external, reg, data);
1091 static void init_phy_fixup(struct net_device *dev)
1093 struct netdev_private *np = netdev_priv(dev);
1094 void __iomem *ioaddr = ns_ioaddr(dev);
1095 int i;
1096 u32 cfg;
1097 u16 tmp;
1099 /* restore stuff lost when power was out */
1100 tmp = mdio_read(dev, MII_BMCR);
1101 if (np->autoneg == AUTONEG_ENABLE) {
1102 /* renegotiate if something changed */
1103 if ((tmp & BMCR_ANENABLE) == 0
1104 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1106 /* turn on autonegotiation and force negotiation */
1107 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1108 mdio_write(dev, MII_ADVERTISE, np->advertising);
1110 } else {
1111 /* turn off auto negotiation, set speed and duplexity */
1112 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1113 if (np->speed == SPEED_100)
1114 tmp |= BMCR_SPEED100;
1115 if (np->duplex == DUPLEX_FULL)
1116 tmp |= BMCR_FULLDPLX;
1118 * Note: there is no good way to inform the link partner
1119 * that our capabilities changed. The user has to unplug
1120 * and replug the network cable after some changes, e.g.
1121 * after switching from 10HD, autoneg off to 100 HD,
1122 * autoneg off.
1125 mdio_write(dev, MII_BMCR, tmp);
1126 readl(ioaddr + ChipConfig);
1127 udelay(1);
1129 /* find out what phy this is */
1130 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1131 + mdio_read(dev, MII_PHYSID2);
1133 /* handle external phys here */
1134 switch (np->mii) {
1135 case PHYID_AM79C874:
1136 /* phy specific configuration for fibre/tp operation */
1137 tmp = mdio_read(dev, MII_MCTRL);
1138 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1139 if (dev->if_port == PORT_FIBRE)
1140 tmp |= MII_FX_SEL;
1141 else
1142 tmp |= MII_EN_SCRM;
1143 mdio_write(dev, MII_MCTRL, tmp);
1144 break;
1145 default:
1146 break;
1148 cfg = readl(ioaddr + ChipConfig);
1149 if (cfg & CfgExtPhy)
1150 return;
1152 /* On page 78 of the spec, they recommend some settings for "optimum
1153 performance" to be done in sequence. These settings optimize some
1154 of the 100Mbit autodetection circuitry. They say we only want to
1155 do this for rev C of the chip, but engineers at NSC (Bradley
1156 Kennedy) recommends always setting them. If you don't, you get
1157 errors on some autonegotiations that make the device unusable.
1159 It seems that the DSP needs a few usec to reinitialize after
1160 the start of the phy. Just retry writing these values until they
1161 stick.
1163 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1165 int dspcfg;
1166 writew(1, ioaddr + PGSEL);
1167 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1168 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1169 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1170 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1171 writew(np->dspcfg, ioaddr + DSPCFG);
1172 writew(SDCFG_VAL, ioaddr + SDCFG);
1173 writew(0, ioaddr + PGSEL);
1174 readl(ioaddr + ChipConfig);
1175 udelay(10);
1177 writew(1, ioaddr + PGSEL);
1178 dspcfg = readw(ioaddr + DSPCFG);
1179 writew(0, ioaddr + PGSEL);
1180 if (np->dspcfg == dspcfg)
1181 break;
1184 if (netif_msg_link(np)) {
1185 if (i==NATSEMI_HW_TIMEOUT) {
1186 printk(KERN_INFO
1187 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1188 dev->name, i*10);
1189 } else {
1190 printk(KERN_INFO
1191 "%s: DSPCFG accepted after %d usec.\n",
1192 dev->name, i*10);
1196 * Enable PHY Specific event based interrupts. Link state change
1197 * and Auto-Negotiation Completion are among the affected.
1198 * Read the intr status to clear it (needed for wake events).
1200 readw(ioaddr + MIntrStatus);
1201 writew(MICRIntEn, ioaddr + MIntrCtrl);
1204 static int switch_port_external(struct net_device *dev)
1206 struct netdev_private *np = netdev_priv(dev);
1207 void __iomem *ioaddr = ns_ioaddr(dev);
1208 u32 cfg;
1210 cfg = readl(ioaddr + ChipConfig);
1211 if (cfg & CfgExtPhy)
1212 return 0;
1214 if (netif_msg_link(np)) {
1215 printk(KERN_INFO "%s: switching to external transceiver.\n",
1216 dev->name);
1219 /* 1) switch back to external phy */
1220 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1221 readl(ioaddr + ChipConfig);
1222 udelay(1);
1224 /* 2) reset the external phy: */
1225 /* resetting the external PHY has been known to cause a hub supplying
1226 * power over Ethernet to kill the power. We don't want to kill
1227 * power to this computer, so we avoid resetting the phy.
1230 /* 3) reinit the phy fixup, it got lost during power down. */
1231 move_int_phy(dev, np->phy_addr_external);
1232 init_phy_fixup(dev);
1234 return 1;
1237 static int switch_port_internal(struct net_device *dev)
1239 struct netdev_private *np = netdev_priv(dev);
1240 void __iomem *ioaddr = ns_ioaddr(dev);
1241 int i;
1242 u32 cfg;
1243 u16 bmcr;
1245 cfg = readl(ioaddr + ChipConfig);
1246 if (!(cfg &CfgExtPhy))
1247 return 0;
1249 if (netif_msg_link(np)) {
1250 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1251 dev->name);
1253 /* 1) switch back to internal phy: */
1254 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1255 writel(cfg, ioaddr + ChipConfig);
1256 readl(ioaddr + ChipConfig);
1257 udelay(1);
1259 /* 2) reset the internal phy: */
1260 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1261 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1262 readl(ioaddr + ChipConfig);
1263 udelay(10);
1264 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1265 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1266 if (!(bmcr & BMCR_RESET))
1267 break;
1268 udelay(10);
1270 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1271 printk(KERN_INFO
1272 "%s: phy reset did not complete in %d usec.\n",
1273 dev->name, i*10);
1275 /* 3) reinit the phy fixup, it got lost during power down. */
1276 init_phy_fixup(dev);
1278 return 1;
1281 /* Scan for a PHY on the external mii bus.
1282 * There are two tricky points:
1283 * - Do not scan while the internal phy is enabled. The internal phy will
1284 * crash: e.g. reads from the DSPCFG register will return odd values and
1285 * the nasty random phy reset code will reset the nic every few seconds.
1286 * - The internal phy must be moved around, an external phy could
1287 * have the same address as the internal phy.
1289 static int find_mii(struct net_device *dev)
1291 struct netdev_private *np = netdev_priv(dev);
1292 int tmp;
1293 int i;
1294 int did_switch;
1296 /* Switch to external phy */
1297 did_switch = switch_port_external(dev);
1299 /* Scan the possible phy addresses:
1301 * PHY address 0 means that the phy is in isolate mode. Not yet
1302 * supported due to lack of test hardware. User space should
1303 * handle it through ethtool.
1305 for (i = 1; i <= 31; i++) {
1306 move_int_phy(dev, i);
1307 tmp = miiport_read(dev, i, MII_BMSR);
1308 if (tmp != 0xffff && tmp != 0x0000) {
1309 /* found something! */
1310 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1311 + mdio_read(dev, MII_PHYSID2);
1312 if (netif_msg_probe(np)) {
1313 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1314 pci_name(np->pci_dev), np->mii, i);
1316 break;
1319 /* And switch back to internal phy: */
1320 if (did_switch)
1321 switch_port_internal(dev);
1322 return i;
1325 /* CFG bits [13:16] [18:23] */
1326 #define CFG_RESET_SAVE 0xfde000
1327 /* WCSR bits [0:4] [9:10] */
1328 #define WCSR_RESET_SAVE 0x61f
1329 /* RFCR bits [20] [22] [27:31] */
1330 #define RFCR_RESET_SAVE 0xf8500000;
1332 static void natsemi_reset(struct net_device *dev)
1334 int i;
1335 u32 cfg;
1336 u32 wcsr;
1337 u32 rfcr;
1338 u16 pmatch[3];
1339 u16 sopass[3];
1340 struct netdev_private *np = netdev_priv(dev);
1341 void __iomem *ioaddr = ns_ioaddr(dev);
1344 * Resetting the chip causes some registers to be lost.
1345 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1346 * we save the state that would have been loaded from EEPROM
1347 * on a normal power-up (see the spec EEPROM map). This assumes
1348 * whoever calls this will follow up with init_registers() eventually.
1351 /* CFG */
1352 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1353 /* WCSR */
1354 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1355 /* RFCR */
1356 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1357 /* PMATCH */
1358 for (i = 0; i < 3; i++) {
1359 writel(i*2, ioaddr + RxFilterAddr);
1360 pmatch[i] = readw(ioaddr + RxFilterData);
1362 /* SOPAS */
1363 for (i = 0; i < 3; i++) {
1364 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1365 sopass[i] = readw(ioaddr + RxFilterData);
1368 /* now whack the chip */
1369 writel(ChipReset, ioaddr + ChipCmd);
1370 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1371 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1372 break;
1373 udelay(5);
1375 if (i==NATSEMI_HW_TIMEOUT) {
1376 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1377 dev->name, i*5);
1378 } else if (netif_msg_hw(np)) {
1379 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1380 dev->name, i*5);
1383 /* restore CFG */
1384 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1385 /* turn on external phy if it was selected */
1386 if (dev->if_port == PORT_TP)
1387 cfg &= ~(CfgExtPhy | CfgPhyDis);
1388 else
1389 cfg |= (CfgExtPhy | CfgPhyDis);
1390 writel(cfg, ioaddr + ChipConfig);
1391 /* restore WCSR */
1392 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1393 writel(wcsr, ioaddr + WOLCmd);
1394 /* read RFCR */
1395 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1396 /* restore PMATCH */
1397 for (i = 0; i < 3; i++) {
1398 writel(i*2, ioaddr + RxFilterAddr);
1399 writew(pmatch[i], ioaddr + RxFilterData);
1401 for (i = 0; i < 3; i++) {
1402 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1403 writew(sopass[i], ioaddr + RxFilterData);
1405 /* restore RFCR */
1406 writel(rfcr, ioaddr + RxFilterAddr);
1409 static void reset_rx(struct net_device *dev)
1411 int i;
1412 struct netdev_private *np = netdev_priv(dev);
1413 void __iomem *ioaddr = ns_ioaddr(dev);
1415 np->intr_status &= ~RxResetDone;
1417 writel(RxReset, ioaddr + ChipCmd);
1419 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1420 np->intr_status |= readl(ioaddr + IntrStatus);
1421 if (np->intr_status & RxResetDone)
1422 break;
1423 udelay(15);
1425 if (i==NATSEMI_HW_TIMEOUT) {
1426 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1427 dev->name, i*15);
1428 } else if (netif_msg_hw(np)) {
1429 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1430 dev->name, i*15);
1434 static void natsemi_reload_eeprom(struct net_device *dev)
1436 struct netdev_private *np = netdev_priv(dev);
1437 void __iomem *ioaddr = ns_ioaddr(dev);
1438 int i;
1440 writel(EepromReload, ioaddr + PCIBusCfg);
1441 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1442 udelay(50);
1443 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1444 break;
1446 if (i==NATSEMI_HW_TIMEOUT) {
1447 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1448 pci_name(np->pci_dev), i*50);
1449 } else if (netif_msg_hw(np)) {
1450 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1451 pci_name(np->pci_dev), i*50);
1455 static void natsemi_stop_rxtx(struct net_device *dev)
1457 void __iomem * ioaddr = ns_ioaddr(dev);
1458 struct netdev_private *np = netdev_priv(dev);
1459 int i;
1461 writel(RxOff | TxOff, ioaddr + ChipCmd);
1462 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1463 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1464 break;
1465 udelay(5);
1467 if (i==NATSEMI_HW_TIMEOUT) {
1468 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1469 dev->name, i*5);
1470 } else if (netif_msg_hw(np)) {
1471 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1472 dev->name, i*5);
1476 static int netdev_open(struct net_device *dev)
1478 struct netdev_private *np = netdev_priv(dev);
1479 void __iomem * ioaddr = ns_ioaddr(dev);
1480 int i;
1482 /* Reset the chip, just in case. */
1483 natsemi_reset(dev);
1485 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1486 if (i) return i;
1488 if (netif_msg_ifup(np))
1489 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1490 dev->name, dev->irq);
1491 i = alloc_ring(dev);
1492 if (i < 0) {
1493 free_irq(dev->irq, dev);
1494 return i;
1496 init_ring(dev);
1497 spin_lock_irq(&np->lock);
1498 init_registers(dev);
1499 /* now set the MAC address according to dev->dev_addr */
1500 for (i = 0; i < 3; i++) {
1501 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1503 writel(i*2, ioaddr + RxFilterAddr);
1504 writew(mac, ioaddr + RxFilterData);
1506 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1507 spin_unlock_irq(&np->lock);
1509 netif_start_queue(dev);
1511 if (netif_msg_ifup(np))
1512 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1513 dev->name, (int)readl(ioaddr + ChipCmd));
1515 /* Set the timer to check for link beat. */
1516 init_timer(&np->timer);
1517 np->timer.expires = jiffies + NATSEMI_TIMER_FREQ;
1518 np->timer.data = (unsigned long)dev;
1519 np->timer.function = &netdev_timer; /* timer handler */
1520 add_timer(&np->timer);
1522 return 0;
1525 static void do_cable_magic(struct net_device *dev)
1527 struct netdev_private *np = netdev_priv(dev);
1528 void __iomem *ioaddr = ns_ioaddr(dev);
1530 if (dev->if_port != PORT_TP)
1531 return;
1533 if (np->srr >= SRR_DP83816_A5)
1534 return;
1537 * 100 MBit links with short cables can trip an issue with the chip.
1538 * The problem manifests as lots of CRC errors and/or flickering
1539 * activity LED while idle. This process is based on instructions
1540 * from engineers at National.
1542 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1543 u16 data;
1545 writew(1, ioaddr + PGSEL);
1547 * coefficient visibility should already be enabled via
1548 * DSPCFG | 0x1000
1550 data = readw(ioaddr + TSTDAT) & 0xff;
1552 * the value must be negative, and within certain values
1553 * (these values all come from National)
1555 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1556 struct netdev_private *np = netdev_priv(dev);
1558 /* the bug has been triggered - fix the coefficient */
1559 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1560 /* lock the value */
1561 data = readw(ioaddr + DSPCFG);
1562 np->dspcfg = data | DSPCFG_LOCK;
1563 writew(np->dspcfg, ioaddr + DSPCFG);
1565 writew(0, ioaddr + PGSEL);
1569 static void undo_cable_magic(struct net_device *dev)
1571 u16 data;
1572 struct netdev_private *np = netdev_priv(dev);
1573 void __iomem * ioaddr = ns_ioaddr(dev);
1575 if (dev->if_port != PORT_TP)
1576 return;
1578 if (np->srr >= SRR_DP83816_A5)
1579 return;
1581 writew(1, ioaddr + PGSEL);
1582 /* make sure the lock bit is clear */
1583 data = readw(ioaddr + DSPCFG);
1584 np->dspcfg = data & ~DSPCFG_LOCK;
1585 writew(np->dspcfg, ioaddr + DSPCFG);
1586 writew(0, ioaddr + PGSEL);
1589 static void check_link(struct net_device *dev)
1591 struct netdev_private *np = netdev_priv(dev);
1592 void __iomem * ioaddr = ns_ioaddr(dev);
1593 int duplex = np->duplex;
1594 u16 bmsr;
1596 /* If we are ignoring the PHY then don't try reading it. */
1597 if (np->ignore_phy)
1598 goto propagate_state;
1600 /* The link status field is latched: it remains low after a temporary
1601 * link failure until it's read. We need the current link status,
1602 * thus read twice.
1604 mdio_read(dev, MII_BMSR);
1605 bmsr = mdio_read(dev, MII_BMSR);
1607 if (!(bmsr & BMSR_LSTATUS)) {
1608 if (netif_carrier_ok(dev)) {
1609 if (netif_msg_link(np))
1610 printk(KERN_NOTICE "%s: link down.\n",
1611 dev->name);
1612 netif_carrier_off(dev);
1613 undo_cable_magic(dev);
1615 return;
1617 if (!netif_carrier_ok(dev)) {
1618 if (netif_msg_link(np))
1619 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1620 netif_carrier_on(dev);
1621 do_cable_magic(dev);
1624 duplex = np->full_duplex;
1625 if (!duplex) {
1626 if (bmsr & BMSR_ANEGCOMPLETE) {
1627 int tmp = mii_nway_result(
1628 np->advertising & mdio_read(dev, MII_LPA));
1629 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1630 duplex = 1;
1631 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1632 duplex = 1;
1635 propagate_state:
1636 /* if duplex is set then bit 28 must be set, too */
1637 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1638 if (netif_msg_link(np))
1639 printk(KERN_INFO
1640 "%s: Setting %s-duplex based on negotiated "
1641 "link capability.\n", dev->name,
1642 duplex ? "full" : "half");
1643 if (duplex) {
1644 np->rx_config |= RxAcceptTx;
1645 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1646 } else {
1647 np->rx_config &= ~RxAcceptTx;
1648 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1650 writel(np->tx_config, ioaddr + TxConfig);
1651 writel(np->rx_config, ioaddr + RxConfig);
1655 static void init_registers(struct net_device *dev)
1657 struct netdev_private *np = netdev_priv(dev);
1658 void __iomem * ioaddr = ns_ioaddr(dev);
1660 init_phy_fixup(dev);
1662 /* clear any interrupts that are pending, such as wake events */
1663 readl(ioaddr + IntrStatus);
1665 writel(np->ring_dma, ioaddr + RxRingPtr);
1666 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1667 ioaddr + TxRingPtr);
1669 /* Initialize other registers.
1670 * Configure the PCI bus bursts and FIFO thresholds.
1671 * Configure for standard, in-spec Ethernet.
1672 * Start with half-duplex. check_link will update
1673 * to the correct settings.
1676 /* DRTH: 2: start tx if 64 bytes are in the fifo
1677 * FLTH: 0x10: refill with next packet if 512 bytes are free
1678 * MXDMA: 0: up to 256 byte bursts.
1679 * MXDMA must be <= FLTH
1680 * ECRETRY=1
1681 * ATP=1
1683 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1684 TX_FLTH_VAL | TX_DRTH_VAL_START;
1685 writel(np->tx_config, ioaddr + TxConfig);
1687 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1688 * MXDMA 0: up to 256 byte bursts
1690 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1691 /* if receive ring now has bigger buffers than normal, enable jumbo */
1692 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1693 np->rx_config |= RxAcceptLong;
1695 writel(np->rx_config, ioaddr + RxConfig);
1697 /* Disable PME:
1698 * The PME bit is initialized from the EEPROM contents.
1699 * PCI cards probably have PME disabled, but motherboard
1700 * implementations may have PME set to enable WakeOnLan.
1701 * With PME set the chip will scan incoming packets but
1702 * nothing will be written to memory. */
1703 np->SavedClkRun = readl(ioaddr + ClkRun);
1704 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1705 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1706 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1707 dev->name, readl(ioaddr + WOLCmd));
1710 check_link(dev);
1711 __set_rx_mode(dev);
1713 /* Enable interrupts by setting the interrupt mask. */
1714 writel(DEFAULT_INTR, ioaddr + IntrMask);
1715 writel(1, ioaddr + IntrEnable);
1717 writel(RxOn | TxOn, ioaddr + ChipCmd);
1718 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1722 * netdev_timer:
1723 * Purpose:
1724 * 1) check for link changes. Usually they are handled by the MII interrupt
1725 * but it doesn't hurt to check twice.
1726 * 2) check for sudden death of the NIC:
1727 * It seems that a reference set for this chip went out with incorrect info,
1728 * and there exist boards that aren't quite right. An unexpected voltage
1729 * drop can cause the PHY to get itself in a weird state (basically reset).
1730 * NOTE: this only seems to affect revC chips.
1731 * 3) check of death of the RX path due to OOM
1733 static void netdev_timer(unsigned long data)
1735 struct net_device *dev = (struct net_device *)data;
1736 struct netdev_private *np = netdev_priv(dev);
1737 void __iomem * ioaddr = ns_ioaddr(dev);
1738 int next_tick = 5*HZ;
1740 if (netif_msg_timer(np)) {
1741 /* DO NOT read the IntrStatus register,
1742 * a read clears any pending interrupts.
1744 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1745 dev->name);
1748 if (dev->if_port == PORT_TP) {
1749 u16 dspcfg;
1751 spin_lock_irq(&np->lock);
1752 /* check for a nasty random phy-reset - use dspcfg as a flag */
1753 writew(1, ioaddr+PGSEL);
1754 dspcfg = readw(ioaddr+DSPCFG);
1755 writew(0, ioaddr+PGSEL);
1756 if (dspcfg != np->dspcfg) {
1757 if (!netif_queue_stopped(dev)) {
1758 spin_unlock_irq(&np->lock);
1759 if (netif_msg_hw(np))
1760 printk(KERN_NOTICE "%s: possible phy reset: "
1761 "re-initializing\n", dev->name);
1762 disable_irq(dev->irq);
1763 spin_lock_irq(&np->lock);
1764 natsemi_stop_rxtx(dev);
1765 dump_ring(dev);
1766 reinit_ring(dev);
1767 init_registers(dev);
1768 spin_unlock_irq(&np->lock);
1769 enable_irq(dev->irq);
1770 } else {
1771 /* hurry back */
1772 next_tick = HZ;
1773 spin_unlock_irq(&np->lock);
1775 } else {
1776 /* init_registers() calls check_link() for the above case */
1777 check_link(dev);
1778 spin_unlock_irq(&np->lock);
1780 } else {
1781 spin_lock_irq(&np->lock);
1782 check_link(dev);
1783 spin_unlock_irq(&np->lock);
1785 if (np->oom) {
1786 disable_irq(dev->irq);
1787 np->oom = 0;
1788 refill_rx(dev);
1789 enable_irq(dev->irq);
1790 if (!np->oom) {
1791 writel(RxOn, ioaddr + ChipCmd);
1792 } else {
1793 next_tick = 1;
1796 mod_timer(&np->timer, jiffies + next_tick);
1799 static void dump_ring(struct net_device *dev)
1801 struct netdev_private *np = netdev_priv(dev);
1803 if (netif_msg_pktdata(np)) {
1804 int i;
1805 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1806 for (i = 0; i < TX_RING_SIZE; i++) {
1807 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1808 i, np->tx_ring[i].next_desc,
1809 np->tx_ring[i].cmd_status,
1810 np->tx_ring[i].addr);
1812 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1813 for (i = 0; i < RX_RING_SIZE; i++) {
1814 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1815 i, np->rx_ring[i].next_desc,
1816 np->rx_ring[i].cmd_status,
1817 np->rx_ring[i].addr);
1822 static void tx_timeout(struct net_device *dev)
1824 struct netdev_private *np = netdev_priv(dev);
1825 void __iomem * ioaddr = ns_ioaddr(dev);
1827 disable_irq(dev->irq);
1828 spin_lock_irq(&np->lock);
1829 if (!np->hands_off) {
1830 if (netif_msg_tx_err(np))
1831 printk(KERN_WARNING
1832 "%s: Transmit timed out, status %#08x,"
1833 " resetting...\n",
1834 dev->name, readl(ioaddr + IntrStatus));
1835 dump_ring(dev);
1837 natsemi_reset(dev);
1838 reinit_ring(dev);
1839 init_registers(dev);
1840 } else {
1841 printk(KERN_WARNING
1842 "%s: tx_timeout while in hands_off state?\n",
1843 dev->name);
1845 spin_unlock_irq(&np->lock);
1846 enable_irq(dev->irq);
1848 dev->trans_start = jiffies;
1849 np->stats.tx_errors++;
1850 netif_wake_queue(dev);
1853 static int alloc_ring(struct net_device *dev)
1855 struct netdev_private *np = netdev_priv(dev);
1856 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1857 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1858 &np->ring_dma);
1859 if (!np->rx_ring)
1860 return -ENOMEM;
1861 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1862 return 0;
1865 static void refill_rx(struct net_device *dev)
1867 struct netdev_private *np = netdev_priv(dev);
1869 /* Refill the Rx ring buffers. */
1870 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1871 struct sk_buff *skb;
1872 int entry = np->dirty_rx % RX_RING_SIZE;
1873 if (np->rx_skbuff[entry] == NULL) {
1874 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1875 skb = dev_alloc_skb(buflen);
1876 np->rx_skbuff[entry] = skb;
1877 if (skb == NULL)
1878 break; /* Better luck next round. */
1879 skb->dev = dev; /* Mark as being used by this device. */
1880 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1881 skb->data, buflen, PCI_DMA_FROMDEVICE);
1882 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1884 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1886 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1887 if (netif_msg_rx_err(np))
1888 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1889 np->oom = 1;
1893 static void set_bufsize(struct net_device *dev)
1895 struct netdev_private *np = netdev_priv(dev);
1896 if (dev->mtu <= ETH_DATA_LEN)
1897 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1898 else
1899 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1902 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1903 static void init_ring(struct net_device *dev)
1905 struct netdev_private *np = netdev_priv(dev);
1906 int i;
1908 /* 1) TX ring */
1909 np->dirty_tx = np->cur_tx = 0;
1910 for (i = 0; i < TX_RING_SIZE; i++) {
1911 np->tx_skbuff[i] = NULL;
1912 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1913 +sizeof(struct netdev_desc)
1914 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1915 np->tx_ring[i].cmd_status = 0;
1918 /* 2) RX ring */
1919 np->dirty_rx = 0;
1920 np->cur_rx = RX_RING_SIZE;
1921 np->oom = 0;
1922 set_bufsize(dev);
1924 np->rx_head_desc = &np->rx_ring[0];
1926 /* Please be carefull before changing this loop - at least gcc-2.95.1
1927 * miscompiles it otherwise.
1929 /* Initialize all Rx descriptors. */
1930 for (i = 0; i < RX_RING_SIZE; i++) {
1931 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1932 +sizeof(struct netdev_desc)
1933 *((i+1)%RX_RING_SIZE));
1934 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1935 np->rx_skbuff[i] = NULL;
1937 refill_rx(dev);
1938 dump_ring(dev);
1941 static void drain_tx(struct net_device *dev)
1943 struct netdev_private *np = netdev_priv(dev);
1944 int i;
1946 for (i = 0; i < TX_RING_SIZE; i++) {
1947 if (np->tx_skbuff[i]) {
1948 pci_unmap_single(np->pci_dev,
1949 np->tx_dma[i], np->tx_skbuff[i]->len,
1950 PCI_DMA_TODEVICE);
1951 dev_kfree_skb(np->tx_skbuff[i]);
1952 np->stats.tx_dropped++;
1954 np->tx_skbuff[i] = NULL;
1958 static void drain_rx(struct net_device *dev)
1960 struct netdev_private *np = netdev_priv(dev);
1961 unsigned int buflen = np->rx_buf_sz;
1962 int i;
1964 /* Free all the skbuffs in the Rx queue. */
1965 for (i = 0; i < RX_RING_SIZE; i++) {
1966 np->rx_ring[i].cmd_status = 0;
1967 np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
1968 if (np->rx_skbuff[i]) {
1969 pci_unmap_single(np->pci_dev,
1970 np->rx_dma[i], buflen,
1971 PCI_DMA_FROMDEVICE);
1972 dev_kfree_skb(np->rx_skbuff[i]);
1974 np->rx_skbuff[i] = NULL;
1978 static void drain_ring(struct net_device *dev)
1980 drain_rx(dev);
1981 drain_tx(dev);
1984 static void free_ring(struct net_device *dev)
1986 struct netdev_private *np = netdev_priv(dev);
1987 pci_free_consistent(np->pci_dev,
1988 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1989 np->rx_ring, np->ring_dma);
1992 static void reinit_rx(struct net_device *dev)
1994 struct netdev_private *np = netdev_priv(dev);
1995 int i;
1997 /* RX Ring */
1998 np->dirty_rx = 0;
1999 np->cur_rx = RX_RING_SIZE;
2000 np->rx_head_desc = &np->rx_ring[0];
2001 /* Initialize all Rx descriptors. */
2002 for (i = 0; i < RX_RING_SIZE; i++)
2003 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2005 refill_rx(dev);
2008 static void reinit_ring(struct net_device *dev)
2010 struct netdev_private *np = netdev_priv(dev);
2011 int i;
2013 /* drain TX ring */
2014 drain_tx(dev);
2015 np->dirty_tx = np->cur_tx = 0;
2016 for (i=0;i<TX_RING_SIZE;i++)
2017 np->tx_ring[i].cmd_status = 0;
2019 reinit_rx(dev);
2022 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2024 struct netdev_private *np = netdev_priv(dev);
2025 void __iomem * ioaddr = ns_ioaddr(dev);
2026 unsigned entry;
2028 /* Note: Ordering is important here, set the field with the
2029 "ownership" bit last, and only then increment cur_tx. */
2031 /* Calculate the next Tx descriptor entry. */
2032 entry = np->cur_tx % TX_RING_SIZE;
2034 np->tx_skbuff[entry] = skb;
2035 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2036 skb->data,skb->len, PCI_DMA_TODEVICE);
2038 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2040 spin_lock_irq(&np->lock);
2042 if (!np->hands_off) {
2043 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2044 /* StrongARM: Explicitly cache flush np->tx_ring and
2045 * skb->data,skb->len. */
2046 wmb();
2047 np->cur_tx++;
2048 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2049 netdev_tx_done(dev);
2050 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2051 netif_stop_queue(dev);
2053 /* Wake the potentially-idle transmit channel. */
2054 writel(TxOn, ioaddr + ChipCmd);
2055 } else {
2056 dev_kfree_skb_irq(skb);
2057 np->stats.tx_dropped++;
2059 spin_unlock_irq(&np->lock);
2061 dev->trans_start = jiffies;
2063 if (netif_msg_tx_queued(np)) {
2064 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2065 dev->name, np->cur_tx, entry);
2067 return 0;
2070 static void netdev_tx_done(struct net_device *dev)
2072 struct netdev_private *np = netdev_priv(dev);
2074 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2075 int entry = np->dirty_tx % TX_RING_SIZE;
2076 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2077 break;
2078 if (netif_msg_tx_done(np))
2079 printk(KERN_DEBUG
2080 "%s: tx frame #%d finished, status %#08x.\n",
2081 dev->name, np->dirty_tx,
2082 le32_to_cpu(np->tx_ring[entry].cmd_status));
2083 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2084 np->stats.tx_packets++;
2085 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2086 } else { /* Various Tx errors */
2087 int tx_status =
2088 le32_to_cpu(np->tx_ring[entry].cmd_status);
2089 if (tx_status & (DescTxAbort|DescTxExcColl))
2090 np->stats.tx_aborted_errors++;
2091 if (tx_status & DescTxFIFO)
2092 np->stats.tx_fifo_errors++;
2093 if (tx_status & DescTxCarrier)
2094 np->stats.tx_carrier_errors++;
2095 if (tx_status & DescTxOOWCol)
2096 np->stats.tx_window_errors++;
2097 np->stats.tx_errors++;
2099 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2100 np->tx_skbuff[entry]->len,
2101 PCI_DMA_TODEVICE);
2102 /* Free the original skb. */
2103 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2104 np->tx_skbuff[entry] = NULL;
2106 if (netif_queue_stopped(dev)
2107 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2108 /* The ring is no longer full, wake queue. */
2109 netif_wake_queue(dev);
2113 /* The interrupt handler doesn't actually handle interrupts itself, it
2114 * schedules a NAPI poll if there is anything to do. */
2115 static irqreturn_t intr_handler(int irq, void *dev_instance)
2117 struct net_device *dev = dev_instance;
2118 struct netdev_private *np = netdev_priv(dev);
2119 void __iomem * ioaddr = ns_ioaddr(dev);
2121 if (np->hands_off)
2122 return IRQ_NONE;
2124 /* Reading automatically acknowledges. */
2125 np->intr_status = readl(ioaddr + IntrStatus);
2127 if (netif_msg_intr(np))
2128 printk(KERN_DEBUG
2129 "%s: Interrupt, status %#08x, mask %#08x.\n",
2130 dev->name, np->intr_status,
2131 readl(ioaddr + IntrMask));
2133 if (!np->intr_status)
2134 return IRQ_NONE;
2136 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2138 if (netif_rx_schedule_prep(dev)) {
2139 /* Disable interrupts and register for poll */
2140 natsemi_irq_disable(dev);
2141 __netif_rx_schedule(dev);
2143 return IRQ_HANDLED;
2146 /* This is the NAPI poll routine. As well as the standard RX handling
2147 * it also handles all other interrupts that the chip might raise.
2149 static int natsemi_poll(struct net_device *dev, int *budget)
2151 struct netdev_private *np = netdev_priv(dev);
2152 void __iomem * ioaddr = ns_ioaddr(dev);
2154 int work_to_do = min(*budget, dev->quota);
2155 int work_done = 0;
2157 do {
2158 if (np->intr_status &
2159 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2160 spin_lock(&np->lock);
2161 netdev_tx_done(dev);
2162 spin_unlock(&np->lock);
2165 /* Abnormal error summary/uncommon events handlers. */
2166 if (np->intr_status & IntrAbnormalSummary)
2167 netdev_error(dev, np->intr_status);
2169 if (np->intr_status &
2170 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2171 IntrRxErr | IntrRxOverrun)) {
2172 netdev_rx(dev, &work_done, work_to_do);
2175 *budget -= work_done;
2176 dev->quota -= work_done;
2178 if (work_done >= work_to_do)
2179 return 1;
2181 np->intr_status = readl(ioaddr + IntrStatus);
2182 } while (np->intr_status);
2184 netif_rx_complete(dev);
2186 /* Reenable interrupts providing nothing is trying to shut
2187 * the chip down. */
2188 spin_lock(&np->lock);
2189 if (!np->hands_off && netif_running(dev))
2190 natsemi_irq_enable(dev);
2191 spin_unlock(&np->lock);
2193 return 0;
2196 /* This routine is logically part of the interrupt handler, but separated
2197 for clarity and better register allocation. */
2198 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2200 struct netdev_private *np = netdev_priv(dev);
2201 int entry = np->cur_rx % RX_RING_SIZE;
2202 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2203 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2204 unsigned int buflen = np->rx_buf_sz;
2205 void __iomem * ioaddr = ns_ioaddr(dev);
2207 /* If the driver owns the next entry it's a new packet. Send it up. */
2208 while (desc_status < 0) { /* e.g. & DescOwn */
2209 int pkt_len;
2210 if (netif_msg_rx_status(np))
2211 printk(KERN_DEBUG
2212 " netdev_rx() entry %d status was %#08x.\n",
2213 entry, desc_status);
2214 if (--boguscnt < 0)
2215 break;
2217 if (*work_done >= work_to_do)
2218 break;
2220 (*work_done)++;
2222 pkt_len = (desc_status & DescSizeMask) - 4;
2223 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2224 if (desc_status & DescMore) {
2225 if (netif_msg_rx_err(np))
2226 printk(KERN_WARNING
2227 "%s: Oversized(?) Ethernet "
2228 "frame spanned multiple "
2229 "buffers, entry %#08x "
2230 "status %#08x.\n", dev->name,
2231 np->cur_rx, desc_status);
2232 np->stats.rx_length_errors++;
2234 /* The RX state machine has probably
2235 * locked up beneath us. Follow the
2236 * reset procedure documented in
2237 * AN-1287. */
2239 spin_lock_irq(&np->lock);
2240 reset_rx(dev);
2241 reinit_rx(dev);
2242 writel(np->ring_dma, ioaddr + RxRingPtr);
2243 check_link(dev);
2244 spin_unlock_irq(&np->lock);
2246 /* We'll enable RX on exit from this
2247 * function. */
2248 break;
2250 } else {
2251 /* There was an error. */
2252 np->stats.rx_errors++;
2253 if (desc_status & (DescRxAbort|DescRxOver))
2254 np->stats.rx_over_errors++;
2255 if (desc_status & (DescRxLong|DescRxRunt))
2256 np->stats.rx_length_errors++;
2257 if (desc_status & (DescRxInvalid|DescRxAlign))
2258 np->stats.rx_frame_errors++;
2259 if (desc_status & DescRxCRC)
2260 np->stats.rx_crc_errors++;
2262 } else if (pkt_len > np->rx_buf_sz) {
2263 /* if this is the tail of a double buffer
2264 * packet, we've already counted the error
2265 * on the first part. Ignore the second half.
2267 } else {
2268 struct sk_buff *skb;
2269 /* Omit CRC size. */
2270 /* Check if the packet is long enough to accept
2271 * without copying to a minimally-sized skbuff. */
2272 if (pkt_len < rx_copybreak
2273 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2274 skb->dev = dev;
2275 /* 16 byte align the IP header */
2276 skb_reserve(skb, RX_OFFSET);
2277 pci_dma_sync_single_for_cpu(np->pci_dev,
2278 np->rx_dma[entry],
2279 buflen,
2280 PCI_DMA_FROMDEVICE);
2281 eth_copy_and_sum(skb,
2282 np->rx_skbuff[entry]->data, pkt_len, 0);
2283 skb_put(skb, pkt_len);
2284 pci_dma_sync_single_for_device(np->pci_dev,
2285 np->rx_dma[entry],
2286 buflen,
2287 PCI_DMA_FROMDEVICE);
2288 } else {
2289 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2290 buflen, PCI_DMA_FROMDEVICE);
2291 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2292 np->rx_skbuff[entry] = NULL;
2294 skb->protocol = eth_type_trans(skb, dev);
2295 netif_receive_skb(skb);
2296 dev->last_rx = jiffies;
2297 np->stats.rx_packets++;
2298 np->stats.rx_bytes += pkt_len;
2300 entry = (++np->cur_rx) % RX_RING_SIZE;
2301 np->rx_head_desc = &np->rx_ring[entry];
2302 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2304 refill_rx(dev);
2306 /* Restart Rx engine if stopped. */
2307 if (np->oom)
2308 mod_timer(&np->timer, jiffies + 1);
2309 else
2310 writel(RxOn, ioaddr + ChipCmd);
2313 static void netdev_error(struct net_device *dev, int intr_status)
2315 struct netdev_private *np = netdev_priv(dev);
2316 void __iomem * ioaddr = ns_ioaddr(dev);
2318 spin_lock(&np->lock);
2319 if (intr_status & LinkChange) {
2320 u16 lpa = mdio_read(dev, MII_LPA);
2321 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2322 && netif_msg_link(np)) {
2323 printk(KERN_INFO
2324 "%s: Autonegotiation advertising"
2325 " %#04x partner %#04x.\n", dev->name,
2326 np->advertising, lpa);
2329 /* read MII int status to clear the flag */
2330 readw(ioaddr + MIntrStatus);
2331 check_link(dev);
2333 if (intr_status & StatsMax) {
2334 __get_stats(dev);
2336 if (intr_status & IntrTxUnderrun) {
2337 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2338 np->tx_config += TX_DRTH_VAL_INC;
2339 if (netif_msg_tx_err(np))
2340 printk(KERN_NOTICE
2341 "%s: increased tx threshold, txcfg %#08x.\n",
2342 dev->name, np->tx_config);
2343 } else {
2344 if (netif_msg_tx_err(np))
2345 printk(KERN_NOTICE
2346 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2347 dev->name, np->tx_config);
2349 writel(np->tx_config, ioaddr + TxConfig);
2351 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2352 int wol_status = readl(ioaddr + WOLCmd);
2353 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2354 dev->name, wol_status);
2356 if (intr_status & RxStatusFIFOOver) {
2357 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2358 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2359 dev->name);
2361 np->stats.rx_fifo_errors++;
2363 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2364 if (intr_status & IntrPCIErr) {
2365 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2366 intr_status & IntrPCIErr);
2367 np->stats.tx_fifo_errors++;
2368 np->stats.rx_fifo_errors++;
2370 spin_unlock(&np->lock);
2373 static void __get_stats(struct net_device *dev)
2375 void __iomem * ioaddr = ns_ioaddr(dev);
2376 struct netdev_private *np = netdev_priv(dev);
2378 /* The chip only need report frame silently dropped. */
2379 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2380 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2383 static struct net_device_stats *get_stats(struct net_device *dev)
2385 struct netdev_private *np = netdev_priv(dev);
2387 /* The chip only need report frame silently dropped. */
2388 spin_lock_irq(&np->lock);
2389 if (netif_running(dev) && !np->hands_off)
2390 __get_stats(dev);
2391 spin_unlock_irq(&np->lock);
2393 return &np->stats;
2396 #ifdef CONFIG_NET_POLL_CONTROLLER
2397 static void natsemi_poll_controller(struct net_device *dev)
2399 disable_irq(dev->irq);
2400 intr_handler(dev->irq, dev);
2401 enable_irq(dev->irq);
2403 #endif
2405 #define HASH_TABLE 0x200
2406 static void __set_rx_mode(struct net_device *dev)
2408 void __iomem * ioaddr = ns_ioaddr(dev);
2409 struct netdev_private *np = netdev_priv(dev);
2410 u8 mc_filter[64]; /* Multicast hash filter */
2411 u32 rx_mode;
2413 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2414 rx_mode = RxFilterEnable | AcceptBroadcast
2415 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2416 } else if ((dev->mc_count > multicast_filter_limit)
2417 || (dev->flags & IFF_ALLMULTI)) {
2418 rx_mode = RxFilterEnable | AcceptBroadcast
2419 | AcceptAllMulticast | AcceptMyPhys;
2420 } else {
2421 struct dev_mc_list *mclist;
2422 int i;
2423 memset(mc_filter, 0, sizeof(mc_filter));
2424 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2425 i++, mclist = mclist->next) {
2426 int i = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2427 mc_filter[i/8] |= (1 << (i & 0x07));
2429 rx_mode = RxFilterEnable | AcceptBroadcast
2430 | AcceptMulticast | AcceptMyPhys;
2431 for (i = 0; i < 64; i += 2) {
2432 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2433 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2434 ioaddr + RxFilterData);
2437 writel(rx_mode, ioaddr + RxFilterAddr);
2438 np->cur_rx_mode = rx_mode;
2441 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2443 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2444 return -EINVAL;
2446 dev->mtu = new_mtu;
2448 /* synchronized against open : rtnl_lock() held by caller */
2449 if (netif_running(dev)) {
2450 struct netdev_private *np = netdev_priv(dev);
2451 void __iomem * ioaddr = ns_ioaddr(dev);
2453 disable_irq(dev->irq);
2454 spin_lock(&np->lock);
2455 /* stop engines */
2456 natsemi_stop_rxtx(dev);
2457 /* drain rx queue */
2458 drain_rx(dev);
2459 /* change buffers */
2460 set_bufsize(dev);
2461 reinit_rx(dev);
2462 writel(np->ring_dma, ioaddr + RxRingPtr);
2463 /* restart engines */
2464 writel(RxOn | TxOn, ioaddr + ChipCmd);
2465 spin_unlock(&np->lock);
2466 enable_irq(dev->irq);
2468 return 0;
2471 static void set_rx_mode(struct net_device *dev)
2473 struct netdev_private *np = netdev_priv(dev);
2474 spin_lock_irq(&np->lock);
2475 if (!np->hands_off)
2476 __set_rx_mode(dev);
2477 spin_unlock_irq(&np->lock);
2480 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2482 struct netdev_private *np = netdev_priv(dev);
2483 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2484 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2485 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2488 static int get_regs_len(struct net_device *dev)
2490 return NATSEMI_REGS_SIZE;
2493 static int get_eeprom_len(struct net_device *dev)
2495 struct netdev_private *np = netdev_priv(dev);
2496 return np->eeprom_size;
2499 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2501 struct netdev_private *np = netdev_priv(dev);
2502 spin_lock_irq(&np->lock);
2503 netdev_get_ecmd(dev, ecmd);
2504 spin_unlock_irq(&np->lock);
2505 return 0;
2508 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2510 struct netdev_private *np = netdev_priv(dev);
2511 int res;
2512 spin_lock_irq(&np->lock);
2513 res = netdev_set_ecmd(dev, ecmd);
2514 spin_unlock_irq(&np->lock);
2515 return res;
2518 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2520 struct netdev_private *np = netdev_priv(dev);
2521 spin_lock_irq(&np->lock);
2522 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2523 netdev_get_sopass(dev, wol->sopass);
2524 spin_unlock_irq(&np->lock);
2527 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2529 struct netdev_private *np = netdev_priv(dev);
2530 int res;
2531 spin_lock_irq(&np->lock);
2532 netdev_set_wol(dev, wol->wolopts);
2533 res = netdev_set_sopass(dev, wol->sopass);
2534 spin_unlock_irq(&np->lock);
2535 return res;
2538 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2540 struct netdev_private *np = netdev_priv(dev);
2541 regs->version = NATSEMI_REGS_VER;
2542 spin_lock_irq(&np->lock);
2543 netdev_get_regs(dev, buf);
2544 spin_unlock_irq(&np->lock);
2547 static u32 get_msglevel(struct net_device *dev)
2549 struct netdev_private *np = netdev_priv(dev);
2550 return np->msg_enable;
2553 static void set_msglevel(struct net_device *dev, u32 val)
2555 struct netdev_private *np = netdev_priv(dev);
2556 np->msg_enable = val;
2559 static int nway_reset(struct net_device *dev)
2561 int tmp;
2562 int r = -EINVAL;
2563 /* if autoneg is off, it's an error */
2564 tmp = mdio_read(dev, MII_BMCR);
2565 if (tmp & BMCR_ANENABLE) {
2566 tmp |= (BMCR_ANRESTART);
2567 mdio_write(dev, MII_BMCR, tmp);
2568 r = 0;
2570 return r;
2573 static u32 get_link(struct net_device *dev)
2575 /* LSTATUS is latched low until a read - so read twice */
2576 mdio_read(dev, MII_BMSR);
2577 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2580 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2582 struct netdev_private *np = netdev_priv(dev);
2583 u8 *eebuf;
2584 int res;
2586 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2587 if (!eebuf)
2588 return -ENOMEM;
2590 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2591 spin_lock_irq(&np->lock);
2592 res = netdev_get_eeprom(dev, eebuf);
2593 spin_unlock_irq(&np->lock);
2594 if (!res)
2595 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2596 kfree(eebuf);
2597 return res;
2600 static const struct ethtool_ops ethtool_ops = {
2601 .get_drvinfo = get_drvinfo,
2602 .get_regs_len = get_regs_len,
2603 .get_eeprom_len = get_eeprom_len,
2604 .get_settings = get_settings,
2605 .set_settings = set_settings,
2606 .get_wol = get_wol,
2607 .set_wol = set_wol,
2608 .get_regs = get_regs,
2609 .get_msglevel = get_msglevel,
2610 .set_msglevel = set_msglevel,
2611 .nway_reset = nway_reset,
2612 .get_link = get_link,
2613 .get_eeprom = get_eeprom,
2616 static int netdev_set_wol(struct net_device *dev, u32 newval)
2618 struct netdev_private *np = netdev_priv(dev);
2619 void __iomem * ioaddr = ns_ioaddr(dev);
2620 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2622 /* translate to bitmasks this chip understands */
2623 if (newval & WAKE_PHY)
2624 data |= WakePhy;
2625 if (newval & WAKE_UCAST)
2626 data |= WakeUnicast;
2627 if (newval & WAKE_MCAST)
2628 data |= WakeMulticast;
2629 if (newval & WAKE_BCAST)
2630 data |= WakeBroadcast;
2631 if (newval & WAKE_ARP)
2632 data |= WakeArp;
2633 if (newval & WAKE_MAGIC)
2634 data |= WakeMagic;
2635 if (np->srr >= SRR_DP83815_D) {
2636 if (newval & WAKE_MAGICSECURE) {
2637 data |= WakeMagicSecure;
2641 writel(data, ioaddr + WOLCmd);
2643 return 0;
2646 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2648 struct netdev_private *np = netdev_priv(dev);
2649 void __iomem * ioaddr = ns_ioaddr(dev);
2650 u32 regval = readl(ioaddr + WOLCmd);
2652 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2653 | WAKE_ARP | WAKE_MAGIC);
2655 if (np->srr >= SRR_DP83815_D) {
2656 /* SOPASS works on revD and higher */
2657 *supported |= WAKE_MAGICSECURE;
2659 *cur = 0;
2661 /* translate from chip bitmasks */
2662 if (regval & WakePhy)
2663 *cur |= WAKE_PHY;
2664 if (regval & WakeUnicast)
2665 *cur |= WAKE_UCAST;
2666 if (regval & WakeMulticast)
2667 *cur |= WAKE_MCAST;
2668 if (regval & WakeBroadcast)
2669 *cur |= WAKE_BCAST;
2670 if (regval & WakeArp)
2671 *cur |= WAKE_ARP;
2672 if (regval & WakeMagic)
2673 *cur |= WAKE_MAGIC;
2674 if (regval & WakeMagicSecure) {
2675 /* this can be on in revC, but it's broken */
2676 *cur |= WAKE_MAGICSECURE;
2679 return 0;
2682 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2684 struct netdev_private *np = netdev_priv(dev);
2685 void __iomem * ioaddr = ns_ioaddr(dev);
2686 u16 *sval = (u16 *)newval;
2687 u32 addr;
2689 if (np->srr < SRR_DP83815_D) {
2690 return 0;
2693 /* enable writing to these registers by disabling the RX filter */
2694 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2695 addr &= ~RxFilterEnable;
2696 writel(addr, ioaddr + RxFilterAddr);
2698 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2699 writel(addr | 0xa, ioaddr + RxFilterAddr);
2700 writew(sval[0], ioaddr + RxFilterData);
2702 writel(addr | 0xc, ioaddr + RxFilterAddr);
2703 writew(sval[1], ioaddr + RxFilterData);
2705 writel(addr | 0xe, ioaddr + RxFilterAddr);
2706 writew(sval[2], ioaddr + RxFilterData);
2708 /* re-enable the RX filter */
2709 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2711 return 0;
2714 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2716 struct netdev_private *np = netdev_priv(dev);
2717 void __iomem * ioaddr = ns_ioaddr(dev);
2718 u16 *sval = (u16 *)data;
2719 u32 addr;
2721 if (np->srr < SRR_DP83815_D) {
2722 sval[0] = sval[1] = sval[2] = 0;
2723 return 0;
2726 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2727 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2729 writel(addr | 0xa, ioaddr + RxFilterAddr);
2730 sval[0] = readw(ioaddr + RxFilterData);
2732 writel(addr | 0xc, ioaddr + RxFilterAddr);
2733 sval[1] = readw(ioaddr + RxFilterData);
2735 writel(addr | 0xe, ioaddr + RxFilterAddr);
2736 sval[2] = readw(ioaddr + RxFilterData);
2738 writel(addr, ioaddr + RxFilterAddr);
2740 return 0;
2743 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2745 struct netdev_private *np = netdev_priv(dev);
2746 u32 tmp;
2748 ecmd->port = dev->if_port;
2749 ecmd->speed = np->speed;
2750 ecmd->duplex = np->duplex;
2751 ecmd->autoneg = np->autoneg;
2752 ecmd->advertising = 0;
2753 if (np->advertising & ADVERTISE_10HALF)
2754 ecmd->advertising |= ADVERTISED_10baseT_Half;
2755 if (np->advertising & ADVERTISE_10FULL)
2756 ecmd->advertising |= ADVERTISED_10baseT_Full;
2757 if (np->advertising & ADVERTISE_100HALF)
2758 ecmd->advertising |= ADVERTISED_100baseT_Half;
2759 if (np->advertising & ADVERTISE_100FULL)
2760 ecmd->advertising |= ADVERTISED_100baseT_Full;
2761 ecmd->supported = (SUPPORTED_Autoneg |
2762 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2763 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2764 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2765 ecmd->phy_address = np->phy_addr_external;
2767 * We intentionally report the phy address of the external
2768 * phy, even if the internal phy is used. This is necessary
2769 * to work around a deficiency of the ethtool interface:
2770 * It's only possible to query the settings of the active
2771 * port. Therefore
2772 * # ethtool -s ethX port mii
2773 * actually sends an ioctl to switch to port mii with the
2774 * settings that are used for the current active port.
2775 * If we would report a different phy address in this
2776 * command, then
2777 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2778 * would unintentionally change the phy address.
2780 * Fortunately the phy address doesn't matter with the
2781 * internal phy...
2784 /* set information based on active port type */
2785 switch (ecmd->port) {
2786 default:
2787 case PORT_TP:
2788 ecmd->advertising |= ADVERTISED_TP;
2789 ecmd->transceiver = XCVR_INTERNAL;
2790 break;
2791 case PORT_MII:
2792 ecmd->advertising |= ADVERTISED_MII;
2793 ecmd->transceiver = XCVR_EXTERNAL;
2794 break;
2795 case PORT_FIBRE:
2796 ecmd->advertising |= ADVERTISED_FIBRE;
2797 ecmd->transceiver = XCVR_EXTERNAL;
2798 break;
2801 /* if autonegotiation is on, try to return the active speed/duplex */
2802 if (ecmd->autoneg == AUTONEG_ENABLE) {
2803 ecmd->advertising |= ADVERTISED_Autoneg;
2804 tmp = mii_nway_result(
2805 np->advertising & mdio_read(dev, MII_LPA));
2806 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2807 ecmd->speed = SPEED_100;
2808 else
2809 ecmd->speed = SPEED_10;
2810 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2811 ecmd->duplex = DUPLEX_FULL;
2812 else
2813 ecmd->duplex = DUPLEX_HALF;
2816 /* ignore maxtxpkt, maxrxpkt for now */
2818 return 0;
2821 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2823 struct netdev_private *np = netdev_priv(dev);
2825 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2826 return -EINVAL;
2827 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2828 return -EINVAL;
2829 if (ecmd->autoneg == AUTONEG_ENABLE) {
2830 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2831 ADVERTISED_10baseT_Full |
2832 ADVERTISED_100baseT_Half |
2833 ADVERTISED_100baseT_Full)) == 0) {
2834 return -EINVAL;
2836 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2837 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2838 return -EINVAL;
2839 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2840 return -EINVAL;
2841 } else {
2842 return -EINVAL;
2846 * If we're ignoring the PHY then autoneg and the internal
2847 * transciever are really not going to work so don't let the
2848 * user select them.
2850 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2851 ecmd->port == PORT_TP))
2852 return -EINVAL;
2855 * maxtxpkt, maxrxpkt: ignored for now.
2857 * transceiver:
2858 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2859 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2860 * selects based on ecmd->port.
2862 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2863 * phys that are connected to the mii bus. It's used to apply fibre
2864 * specific updates.
2867 /* WHEW! now lets bang some bits */
2869 /* save the parms */
2870 dev->if_port = ecmd->port;
2871 np->autoneg = ecmd->autoneg;
2872 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2873 if (np->autoneg == AUTONEG_ENABLE) {
2874 /* advertise only what has been requested */
2875 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2876 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2877 np->advertising |= ADVERTISE_10HALF;
2878 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2879 np->advertising |= ADVERTISE_10FULL;
2880 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2881 np->advertising |= ADVERTISE_100HALF;
2882 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2883 np->advertising |= ADVERTISE_100FULL;
2884 } else {
2885 np->speed = ecmd->speed;
2886 np->duplex = ecmd->duplex;
2887 /* user overriding the initial full duplex parm? */
2888 if (np->duplex == DUPLEX_HALF)
2889 np->full_duplex = 0;
2892 /* get the right phy enabled */
2893 if (ecmd->port == PORT_TP)
2894 switch_port_internal(dev);
2895 else
2896 switch_port_external(dev);
2898 /* set parms and see how this affected our link status */
2899 init_phy_fixup(dev);
2900 check_link(dev);
2901 return 0;
2904 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2906 int i;
2907 int j;
2908 u32 rfcr;
2909 u32 *rbuf = (u32 *)buf;
2910 void __iomem * ioaddr = ns_ioaddr(dev);
2912 /* read non-mii page 0 of registers */
2913 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2914 rbuf[i] = readl(ioaddr + i*4);
2917 /* read current mii registers */
2918 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2919 rbuf[i] = mdio_read(dev, i & 0x1f);
2921 /* read only the 'magic' registers from page 1 */
2922 writew(1, ioaddr + PGSEL);
2923 rbuf[i++] = readw(ioaddr + PMDCSR);
2924 rbuf[i++] = readw(ioaddr + TSTDAT);
2925 rbuf[i++] = readw(ioaddr + DSPCFG);
2926 rbuf[i++] = readw(ioaddr + SDCFG);
2927 writew(0, ioaddr + PGSEL);
2929 /* read RFCR indexed registers */
2930 rfcr = readl(ioaddr + RxFilterAddr);
2931 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
2932 writel(j*2, ioaddr + RxFilterAddr);
2933 rbuf[i++] = readw(ioaddr + RxFilterData);
2935 writel(rfcr, ioaddr + RxFilterAddr);
2937 /* the interrupt status is clear-on-read - see if we missed any */
2938 if (rbuf[4] & rbuf[5]) {
2939 printk(KERN_WARNING
2940 "%s: shoot, we dropped an interrupt (%#08x)\n",
2941 dev->name, rbuf[4] & rbuf[5]);
2944 return 0;
2947 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
2948 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
2949 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
2950 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
2951 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
2952 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
2953 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
2954 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
2956 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
2958 int i;
2959 u16 *ebuf = (u16 *)buf;
2960 void __iomem * ioaddr = ns_ioaddr(dev);
2961 struct netdev_private *np = netdev_priv(dev);
2963 /* eeprom_read reads 16 bits, and indexes by 16 bits */
2964 for (i = 0; i < np->eeprom_size/2; i++) {
2965 ebuf[i] = eeprom_read(ioaddr, i);
2966 /* The EEPROM itself stores data bit-swapped, but eeprom_read
2967 * reads it back "sanely". So we swap it back here in order to
2968 * present it to userland as it is stored. */
2969 ebuf[i] = SWAP_BITS(ebuf[i]);
2971 return 0;
2974 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2976 struct mii_ioctl_data *data = if_mii(rq);
2977 struct netdev_private *np = netdev_priv(dev);
2979 switch(cmd) {
2980 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2981 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
2982 data->phy_id = np->phy_addr_external;
2983 /* Fall Through */
2985 case SIOCGMIIREG: /* Read MII PHY register. */
2986 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
2987 /* The phy_id is not enough to uniquely identify
2988 * the intended target. Therefore the command is sent to
2989 * the given mii on the current port.
2991 if (dev->if_port == PORT_TP) {
2992 if ((data->phy_id & 0x1f) == np->phy_addr_external)
2993 data->val_out = mdio_read(dev,
2994 data->reg_num & 0x1f);
2995 else
2996 data->val_out = 0;
2997 } else {
2998 move_int_phy(dev, data->phy_id & 0x1f);
2999 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3000 data->reg_num & 0x1f);
3002 return 0;
3004 case SIOCSMIIREG: /* Write MII PHY register. */
3005 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
3006 if (!capable(CAP_NET_ADMIN))
3007 return -EPERM;
3008 if (dev->if_port == PORT_TP) {
3009 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3010 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3011 np->advertising = data->val_in;
3012 mdio_write(dev, data->reg_num & 0x1f,
3013 data->val_in);
3015 } else {
3016 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3017 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3018 np->advertising = data->val_in;
3020 move_int_phy(dev, data->phy_id & 0x1f);
3021 miiport_write(dev, data->phy_id & 0x1f,
3022 data->reg_num & 0x1f,
3023 data->val_in);
3025 return 0;
3026 default:
3027 return -EOPNOTSUPP;
3031 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3033 void __iomem * ioaddr = ns_ioaddr(dev);
3034 struct netdev_private *np = netdev_priv(dev);
3036 if (netif_msg_wol(np))
3037 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3038 dev->name);
3040 /* For WOL we must restart the rx process in silent mode.
3041 * Write NULL to the RxRingPtr. Only possible if
3042 * rx process is stopped
3044 writel(0, ioaddr + RxRingPtr);
3046 /* read WoL status to clear */
3047 readl(ioaddr + WOLCmd);
3049 /* PME on, clear status */
3050 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3052 /* and restart the rx process */
3053 writel(RxOn, ioaddr + ChipCmd);
3055 if (enable_intr) {
3056 /* enable the WOL interrupt.
3057 * Could be used to send a netlink message.
3059 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3060 writel(1, ioaddr + IntrEnable);
3064 static int netdev_close(struct net_device *dev)
3066 void __iomem * ioaddr = ns_ioaddr(dev);
3067 struct netdev_private *np = netdev_priv(dev);
3069 if (netif_msg_ifdown(np))
3070 printk(KERN_DEBUG
3071 "%s: Shutting down ethercard, status was %#04x.\n",
3072 dev->name, (int)readl(ioaddr + ChipCmd));
3073 if (netif_msg_pktdata(np))
3074 printk(KERN_DEBUG
3075 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3076 dev->name, np->cur_tx, np->dirty_tx,
3077 np->cur_rx, np->dirty_rx);
3080 * FIXME: what if someone tries to close a device
3081 * that is suspended?
3082 * Should we reenable the nic to switch to
3083 * the final WOL settings?
3086 del_timer_sync(&np->timer);
3087 disable_irq(dev->irq);
3088 spin_lock_irq(&np->lock);
3089 natsemi_irq_disable(dev);
3090 np->hands_off = 1;
3091 spin_unlock_irq(&np->lock);
3092 enable_irq(dev->irq);
3094 free_irq(dev->irq, dev);
3096 /* Interrupt disabled, interrupt handler released,
3097 * queue stopped, timer deleted, rtnl_lock held
3098 * All async codepaths that access the driver are disabled.
3100 spin_lock_irq(&np->lock);
3101 np->hands_off = 0;
3102 readl(ioaddr + IntrMask);
3103 readw(ioaddr + MIntrStatus);
3105 /* Freeze Stats */
3106 writel(StatsFreeze, ioaddr + StatsCtrl);
3108 /* Stop the chip's Tx and Rx processes. */
3109 natsemi_stop_rxtx(dev);
3111 __get_stats(dev);
3112 spin_unlock_irq(&np->lock);
3114 /* clear the carrier last - an interrupt could reenable it otherwise */
3115 netif_carrier_off(dev);
3116 netif_stop_queue(dev);
3118 dump_ring(dev);
3119 drain_ring(dev);
3120 free_ring(dev);
3123 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3124 if (wol) {
3125 /* restart the NIC in WOL mode.
3126 * The nic must be stopped for this.
3128 enable_wol_mode(dev, 0);
3129 } else {
3130 /* Restore PME enable bit unmolested */
3131 writel(np->SavedClkRun, ioaddr + ClkRun);
3134 return 0;
3138 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3140 struct net_device *dev = pci_get_drvdata(pdev);
3141 void __iomem * ioaddr = ns_ioaddr(dev);
3143 unregister_netdev (dev);
3144 pci_release_regions (pdev);
3145 iounmap(ioaddr);
3146 free_netdev (dev);
3147 pci_set_drvdata(pdev, NULL);
3150 #ifdef CONFIG_PM
3153 * The ns83815 chip doesn't have explicit RxStop bits.
3154 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3155 * of the nic, thus this function must be very careful:
3157 * suspend/resume synchronization:
3158 * entry points:
3159 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3160 * start_tx, tx_timeout
3162 * No function accesses the hardware without checking np->hands_off.
3163 * the check occurs under spin_lock_irq(&np->lock);
3164 * exceptions:
3165 * * netdev_ioctl: noncritical access.
3166 * * netdev_open: cannot happen due to the device_detach
3167 * * netdev_close: doesn't hurt.
3168 * * netdev_timer: timer stopped by natsemi_suspend.
3169 * * intr_handler: doesn't acquire the spinlock. suspend calls
3170 * disable_irq() to enforce synchronization.
3171 * * natsemi_poll: checks before reenabling interrupts. suspend
3172 * sets hands_off, disables interrupts and then waits with
3173 * netif_poll_disable().
3175 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3178 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3180 struct net_device *dev = pci_get_drvdata (pdev);
3181 struct netdev_private *np = netdev_priv(dev);
3182 void __iomem * ioaddr = ns_ioaddr(dev);
3184 rtnl_lock();
3185 if (netif_running (dev)) {
3186 del_timer_sync(&np->timer);
3188 disable_irq(dev->irq);
3189 spin_lock_irq(&np->lock);
3191 writel(0, ioaddr + IntrEnable);
3192 np->hands_off = 1;
3193 natsemi_stop_rxtx(dev);
3194 netif_stop_queue(dev);
3196 spin_unlock_irq(&np->lock);
3197 enable_irq(dev->irq);
3199 netif_poll_disable(dev);
3201 /* Update the error counts. */
3202 __get_stats(dev);
3204 /* pci_power_off(pdev, -1); */
3205 drain_ring(dev);
3207 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3208 /* Restore PME enable bit */
3209 if (wol) {
3210 /* restart the NIC in WOL mode.
3211 * The nic must be stopped for this.
3212 * FIXME: use the WOL interrupt
3214 enable_wol_mode(dev, 0);
3215 } else {
3216 /* Restore PME enable bit unmolested */
3217 writel(np->SavedClkRun, ioaddr + ClkRun);
3221 netif_device_detach(dev);
3222 rtnl_unlock();
3223 return 0;
3227 static int natsemi_resume (struct pci_dev *pdev)
3229 struct net_device *dev = pci_get_drvdata (pdev);
3230 struct netdev_private *np = netdev_priv(dev);
3232 rtnl_lock();
3233 if (netif_device_present(dev))
3234 goto out;
3235 if (netif_running(dev)) {
3236 BUG_ON(!np->hands_off);
3237 pci_enable_device(pdev);
3238 /* pci_power_on(pdev); */
3240 natsemi_reset(dev);
3241 init_ring(dev);
3242 disable_irq(dev->irq);
3243 spin_lock_irq(&np->lock);
3244 np->hands_off = 0;
3245 init_registers(dev);
3246 netif_device_attach(dev);
3247 spin_unlock_irq(&np->lock);
3248 enable_irq(dev->irq);
3250 mod_timer(&np->timer, jiffies + 1*HZ);
3252 netif_device_attach(dev);
3253 netif_poll_enable(dev);
3254 out:
3255 rtnl_unlock();
3256 return 0;
3259 #endif /* CONFIG_PM */
3261 static struct pci_driver natsemi_driver = {
3262 .name = DRV_NAME,
3263 .id_table = natsemi_pci_tbl,
3264 .probe = natsemi_probe1,
3265 .remove = __devexit_p(natsemi_remove1),
3266 #ifdef CONFIG_PM
3267 .suspend = natsemi_suspend,
3268 .resume = natsemi_resume,
3269 #endif
3272 static int __init natsemi_init_mod (void)
3274 /* when a module, this is printed whether or not devices are found in probe */
3275 #ifdef MODULE
3276 printk(version);
3277 #endif
3279 return pci_register_driver(&natsemi_driver);
3282 static void __exit natsemi_exit_mod (void)
3284 pci_unregister_driver (&natsemi_driver);
3287 module_init(natsemi_init_mod);
3288 module_exit(natsemi_exit_mod);