libata: update ->data_xfer hook for ATAPI
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / ata / libata-core.c
blob39cedd949ed4cea967742661db5b663727724890
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
60 #include <linux/io.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
69 #include "libata.h"
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
77 static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
80 static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
82 static void ata_dev_xfermask(struct ata_device *dev);
83 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
85 unsigned int ata_print_id = 1;
86 static struct workqueue_struct *ata_wq;
88 struct workqueue_struct *ata_aux_wq;
90 int atapi_enabled = 1;
91 module_param(atapi_enabled, int, 0444);
92 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
94 int atapi_dmadir = 0;
95 module_param(atapi_dmadir, int, 0444);
96 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
98 int atapi_passthru16 = 1;
99 module_param(atapi_passthru16, int, 0444);
100 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
102 int libata_fua = 0;
103 module_param_named(fua, libata_fua, int, 0444);
104 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
106 static int ata_ignore_hpa;
107 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
108 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
110 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
111 module_param_named(dma, libata_dma_mask, int, 0444);
112 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
114 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
115 module_param(ata_probe_timeout, int, 0444);
116 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
118 int libata_noacpi = 0;
119 module_param_named(noacpi, libata_noacpi, int, 0444);
120 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
122 int libata_allow_tpm = 0;
123 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
124 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
126 MODULE_AUTHOR("Jeff Garzik");
127 MODULE_DESCRIPTION("Library module for ATA devices");
128 MODULE_LICENSE("GPL");
129 MODULE_VERSION(DRV_VERSION);
133 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
134 * @tf: Taskfile to convert
135 * @pmp: Port multiplier port
136 * @is_cmd: This FIS is for command
137 * @fis: Buffer into which data will output
139 * Converts a standard ATA taskfile to a Serial ATA
140 * FIS structure (Register - Host to Device).
142 * LOCKING:
143 * Inherited from caller.
145 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
147 fis[0] = 0x27; /* Register - Host to Device FIS */
148 fis[1] = pmp & 0xf; /* Port multiplier number*/
149 if (is_cmd)
150 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
152 fis[2] = tf->command;
153 fis[3] = tf->feature;
155 fis[4] = tf->lbal;
156 fis[5] = tf->lbam;
157 fis[6] = tf->lbah;
158 fis[7] = tf->device;
160 fis[8] = tf->hob_lbal;
161 fis[9] = tf->hob_lbam;
162 fis[10] = tf->hob_lbah;
163 fis[11] = tf->hob_feature;
165 fis[12] = tf->nsect;
166 fis[13] = tf->hob_nsect;
167 fis[14] = 0;
168 fis[15] = tf->ctl;
170 fis[16] = 0;
171 fis[17] = 0;
172 fis[18] = 0;
173 fis[19] = 0;
177 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
178 * @fis: Buffer from which data will be input
179 * @tf: Taskfile to output
181 * Converts a serial ATA FIS structure to a standard ATA taskfile.
183 * LOCKING:
184 * Inherited from caller.
187 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
189 tf->command = fis[2]; /* status */
190 tf->feature = fis[3]; /* error */
192 tf->lbal = fis[4];
193 tf->lbam = fis[5];
194 tf->lbah = fis[6];
195 tf->device = fis[7];
197 tf->hob_lbal = fis[8];
198 tf->hob_lbam = fis[9];
199 tf->hob_lbah = fis[10];
201 tf->nsect = fis[12];
202 tf->hob_nsect = fis[13];
205 static const u8 ata_rw_cmds[] = {
206 /* pio multi */
207 ATA_CMD_READ_MULTI,
208 ATA_CMD_WRITE_MULTI,
209 ATA_CMD_READ_MULTI_EXT,
210 ATA_CMD_WRITE_MULTI_EXT,
214 ATA_CMD_WRITE_MULTI_FUA_EXT,
215 /* pio */
216 ATA_CMD_PIO_READ,
217 ATA_CMD_PIO_WRITE,
218 ATA_CMD_PIO_READ_EXT,
219 ATA_CMD_PIO_WRITE_EXT,
224 /* dma */
225 ATA_CMD_READ,
226 ATA_CMD_WRITE,
227 ATA_CMD_READ_EXT,
228 ATA_CMD_WRITE_EXT,
232 ATA_CMD_WRITE_FUA_EXT
236 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
237 * @tf: command to examine and configure
238 * @dev: device tf belongs to
240 * Examine the device configuration and tf->flags to calculate
241 * the proper read/write commands and protocol to use.
243 * LOCKING:
244 * caller.
246 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
248 u8 cmd;
250 int index, fua, lba48, write;
252 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
253 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
254 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
256 if (dev->flags & ATA_DFLAG_PIO) {
257 tf->protocol = ATA_PROT_PIO;
258 index = dev->multi_count ? 0 : 8;
259 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
260 /* Unable to use DMA due to host limitation */
261 tf->protocol = ATA_PROT_PIO;
262 index = dev->multi_count ? 0 : 8;
263 } else {
264 tf->protocol = ATA_PROT_DMA;
265 index = 16;
268 cmd = ata_rw_cmds[index + fua + lba48 + write];
269 if (cmd) {
270 tf->command = cmd;
271 return 0;
273 return -1;
277 * ata_tf_read_block - Read block address from ATA taskfile
278 * @tf: ATA taskfile of interest
279 * @dev: ATA device @tf belongs to
281 * LOCKING:
282 * None.
284 * Read block address from @tf. This function can handle all
285 * three address formats - LBA, LBA48 and CHS. tf->protocol and
286 * flags select the address format to use.
288 * RETURNS:
289 * Block address read from @tf.
291 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
293 u64 block = 0;
295 if (tf->flags & ATA_TFLAG_LBA) {
296 if (tf->flags & ATA_TFLAG_LBA48) {
297 block |= (u64)tf->hob_lbah << 40;
298 block |= (u64)tf->hob_lbam << 32;
299 block |= tf->hob_lbal << 24;
300 } else
301 block |= (tf->device & 0xf) << 24;
303 block |= tf->lbah << 16;
304 block |= tf->lbam << 8;
305 block |= tf->lbal;
306 } else {
307 u32 cyl, head, sect;
309 cyl = tf->lbam | (tf->lbah << 8);
310 head = tf->device & 0xf;
311 sect = tf->lbal;
313 block = (cyl * dev->heads + head) * dev->sectors + sect;
316 return block;
320 * ata_build_rw_tf - Build ATA taskfile for given read/write request
321 * @tf: Target ATA taskfile
322 * @dev: ATA device @tf belongs to
323 * @block: Block address
324 * @n_block: Number of blocks
325 * @tf_flags: RW/FUA etc...
326 * @tag: tag
328 * LOCKING:
329 * None.
331 * Build ATA taskfile @tf for read/write request described by
332 * @block, @n_block, @tf_flags and @tag on @dev.
334 * RETURNS:
336 * 0 on success, -ERANGE if the request is too large for @dev,
337 * -EINVAL if the request is invalid.
339 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
340 u64 block, u32 n_block, unsigned int tf_flags,
341 unsigned int tag)
343 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
344 tf->flags |= tf_flags;
346 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
347 /* yay, NCQ */
348 if (!lba_48_ok(block, n_block))
349 return -ERANGE;
351 tf->protocol = ATA_PROT_NCQ;
352 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
354 if (tf->flags & ATA_TFLAG_WRITE)
355 tf->command = ATA_CMD_FPDMA_WRITE;
356 else
357 tf->command = ATA_CMD_FPDMA_READ;
359 tf->nsect = tag << 3;
360 tf->hob_feature = (n_block >> 8) & 0xff;
361 tf->feature = n_block & 0xff;
363 tf->hob_lbah = (block >> 40) & 0xff;
364 tf->hob_lbam = (block >> 32) & 0xff;
365 tf->hob_lbal = (block >> 24) & 0xff;
366 tf->lbah = (block >> 16) & 0xff;
367 tf->lbam = (block >> 8) & 0xff;
368 tf->lbal = block & 0xff;
370 tf->device = 1 << 6;
371 if (tf->flags & ATA_TFLAG_FUA)
372 tf->device |= 1 << 7;
373 } else if (dev->flags & ATA_DFLAG_LBA) {
374 tf->flags |= ATA_TFLAG_LBA;
376 if (lba_28_ok(block, n_block)) {
377 /* use LBA28 */
378 tf->device |= (block >> 24) & 0xf;
379 } else if (lba_48_ok(block, n_block)) {
380 if (!(dev->flags & ATA_DFLAG_LBA48))
381 return -ERANGE;
383 /* use LBA48 */
384 tf->flags |= ATA_TFLAG_LBA48;
386 tf->hob_nsect = (n_block >> 8) & 0xff;
388 tf->hob_lbah = (block >> 40) & 0xff;
389 tf->hob_lbam = (block >> 32) & 0xff;
390 tf->hob_lbal = (block >> 24) & 0xff;
391 } else
392 /* request too large even for LBA48 */
393 return -ERANGE;
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
398 tf->nsect = n_block & 0xff;
400 tf->lbah = (block >> 16) & 0xff;
401 tf->lbam = (block >> 8) & 0xff;
402 tf->lbal = block & 0xff;
404 tf->device |= ATA_LBA;
405 } else {
406 /* CHS */
407 u32 sect, head, cyl, track;
409 /* The request -may- be too large for CHS addressing. */
410 if (!lba_28_ok(block, n_block))
411 return -ERANGE;
413 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
414 return -EINVAL;
416 /* Convert LBA to CHS */
417 track = (u32)block / dev->sectors;
418 cyl = track / dev->heads;
419 head = track % dev->heads;
420 sect = (u32)block % dev->sectors + 1;
422 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
423 (u32)block, track, cyl, head, sect);
425 /* Check whether the converted CHS can fit.
426 Cylinder: 0-65535
427 Head: 0-15
428 Sector: 1-255*/
429 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
430 return -ERANGE;
432 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
433 tf->lbal = sect;
434 tf->lbam = cyl;
435 tf->lbah = cyl >> 8;
436 tf->device |= head;
439 return 0;
443 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
444 * @pio_mask: pio_mask
445 * @mwdma_mask: mwdma_mask
446 * @udma_mask: udma_mask
448 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
449 * unsigned int xfer_mask.
451 * LOCKING:
452 * None.
454 * RETURNS:
455 * Packed xfer_mask.
457 unsigned long ata_pack_xfermask(unsigned long pio_mask,
458 unsigned long mwdma_mask,
459 unsigned long udma_mask)
461 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
462 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
463 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
467 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
468 * @xfer_mask: xfer_mask to unpack
469 * @pio_mask: resulting pio_mask
470 * @mwdma_mask: resulting mwdma_mask
471 * @udma_mask: resulting udma_mask
473 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
474 * Any NULL distination masks will be ignored.
476 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
477 unsigned long *mwdma_mask, unsigned long *udma_mask)
479 if (pio_mask)
480 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
481 if (mwdma_mask)
482 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
483 if (udma_mask)
484 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
487 static const struct ata_xfer_ent {
488 int shift, bits;
489 u8 base;
490 } ata_xfer_tbl[] = {
491 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
492 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
493 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
494 { -1, },
498 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
499 * @xfer_mask: xfer_mask of interest
501 * Return matching XFER_* value for @xfer_mask. Only the highest
502 * bit of @xfer_mask is considered.
504 * LOCKING:
505 * None.
507 * RETURNS:
508 * Matching XFER_* value, 0xff if no match found.
510 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
512 int highbit = fls(xfer_mask) - 1;
513 const struct ata_xfer_ent *ent;
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
517 return ent->base + highbit - ent->shift;
518 return 0xff;
522 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
523 * @xfer_mode: XFER_* of interest
525 * Return matching xfer_mask for @xfer_mode.
527 * LOCKING:
528 * None.
530 * RETURNS:
531 * Matching xfer_mask, 0 if no match found.
533 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
535 const struct ata_xfer_ent *ent;
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
540 & ~((1 << ent->shift) - 1);
541 return 0;
545 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
546 * @xfer_mode: XFER_* of interest
548 * Return matching xfer_shift for @xfer_mode.
550 * LOCKING:
551 * None.
553 * RETURNS:
554 * Matching xfer_shift, -1 if no match found.
556 int ata_xfer_mode2shift(unsigned long xfer_mode)
558 const struct ata_xfer_ent *ent;
560 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
561 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
562 return ent->shift;
563 return -1;
567 * ata_mode_string - convert xfer_mask to string
568 * @xfer_mask: mask of bits supported; only highest bit counts.
570 * Determine string which represents the highest speed
571 * (highest bit in @modemask).
573 * LOCKING:
574 * None.
576 * RETURNS:
577 * Constant C string representing highest speed listed in
578 * @mode_mask, or the constant C string "<n/a>".
580 const char *ata_mode_string(unsigned long xfer_mask)
582 static const char * const xfer_mode_str[] = {
583 "PIO0",
584 "PIO1",
585 "PIO2",
586 "PIO3",
587 "PIO4",
588 "PIO5",
589 "PIO6",
590 "MWDMA0",
591 "MWDMA1",
592 "MWDMA2",
593 "MWDMA3",
594 "MWDMA4",
595 "UDMA/16",
596 "UDMA/25",
597 "UDMA/33",
598 "UDMA/44",
599 "UDMA/66",
600 "UDMA/100",
601 "UDMA/133",
602 "UDMA7",
604 int highbit;
606 highbit = fls(xfer_mask) - 1;
607 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
608 return xfer_mode_str[highbit];
609 return "<n/a>";
612 static const char *sata_spd_string(unsigned int spd)
614 static const char * const spd_str[] = {
615 "1.5 Gbps",
616 "3.0 Gbps",
619 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
620 return "<unknown>";
621 return spd_str[spd - 1];
624 void ata_dev_disable(struct ata_device *dev)
626 if (ata_dev_enabled(dev)) {
627 if (ata_msg_drv(dev->link->ap))
628 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
629 ata_acpi_on_disable(dev);
630 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
631 ATA_DNXFER_QUIET);
632 dev->class++;
636 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
638 struct ata_link *link = dev->link;
639 struct ata_port *ap = link->ap;
640 u32 scontrol;
641 unsigned int err_mask;
642 int rc;
645 * disallow DIPM for drivers which haven't set
646 * ATA_FLAG_IPM. This is because when DIPM is enabled,
647 * phy ready will be set in the interrupt status on
648 * state changes, which will cause some drivers to
649 * think there are errors - additionally drivers will
650 * need to disable hot plug.
652 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
653 ap->pm_policy = NOT_AVAILABLE;
654 return -EINVAL;
658 * For DIPM, we will only enable it for the
659 * min_power setting.
661 * Why? Because Disks are too stupid to know that
662 * If the host rejects a request to go to SLUMBER
663 * they should retry at PARTIAL, and instead it
664 * just would give up. So, for medium_power to
665 * work at all, we need to only allow HIPM.
667 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
668 if (rc)
669 return rc;
671 switch (policy) {
672 case MIN_POWER:
673 /* no restrictions on IPM transitions */
674 scontrol &= ~(0x3 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
679 /* enable DIPM */
680 if (dev->flags & ATA_DFLAG_DIPM)
681 err_mask = ata_dev_set_feature(dev,
682 SETFEATURES_SATA_ENABLE, SATA_DIPM);
683 break;
684 case MEDIUM_POWER:
685 /* allow IPM to PARTIAL */
686 scontrol &= ~(0x1 << 8);
687 scontrol |= (0x2 << 8);
688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
689 if (rc)
690 return rc;
693 * we don't have to disable DIPM since IPM flags
694 * disallow transitions to SLUMBER, which effectively
695 * disable DIPM if it does not support PARTIAL
697 break;
698 case NOT_AVAILABLE:
699 case MAX_PERFORMANCE:
700 /* disable all IPM transitions */
701 scontrol |= (0x3 << 8);
702 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
703 if (rc)
704 return rc;
707 * we don't have to disable DIPM since IPM flags
708 * disallow all transitions which effectively
709 * disable DIPM anyway.
711 break;
714 /* FIXME: handle SET FEATURES failure */
715 (void) err_mask;
717 return 0;
721 * ata_dev_enable_pm - enable SATA interface power management
722 * @dev: device to enable power management
723 * @policy: the link power management policy
725 * Enable SATA Interface power management. This will enable
726 * Device Interface Power Management (DIPM) for min_power
727 * policy, and then call driver specific callbacks for
728 * enabling Host Initiated Power management.
730 * Locking: Caller.
731 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
733 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
735 int rc = 0;
736 struct ata_port *ap = dev->link->ap;
738 /* set HIPM first, then DIPM */
739 if (ap->ops->enable_pm)
740 rc = ap->ops->enable_pm(ap, policy);
741 if (rc)
742 goto enable_pm_out;
743 rc = ata_dev_set_dipm(dev, policy);
745 enable_pm_out:
746 if (rc)
747 ap->pm_policy = MAX_PERFORMANCE;
748 else
749 ap->pm_policy = policy;
750 return /* rc */; /* hopefully we can use 'rc' eventually */
753 #ifdef CONFIG_PM
755 * ata_dev_disable_pm - disable SATA interface power management
756 * @dev: device to disable power management
758 * Disable SATA Interface power management. This will disable
759 * Device Interface Power Management (DIPM) without changing
760 * policy, call driver specific callbacks for disabling Host
761 * Initiated Power management.
763 * Locking: Caller.
764 * Returns: void
766 static void ata_dev_disable_pm(struct ata_device *dev)
768 struct ata_port *ap = dev->link->ap;
770 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
771 if (ap->ops->disable_pm)
772 ap->ops->disable_pm(ap);
774 #endif /* CONFIG_PM */
776 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
778 ap->pm_policy = policy;
779 ap->link.eh_info.action |= ATA_EHI_LPM;
780 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
781 ata_port_schedule_eh(ap);
784 #ifdef CONFIG_PM
785 static void ata_lpm_enable(struct ata_host *host)
787 struct ata_link *link;
788 struct ata_port *ap;
789 struct ata_device *dev;
790 int i;
792 for (i = 0; i < host->n_ports; i++) {
793 ap = host->ports[i];
794 ata_port_for_each_link(link, ap) {
795 ata_link_for_each_dev(dev, link)
796 ata_dev_disable_pm(dev);
801 static void ata_lpm_disable(struct ata_host *host)
803 int i;
805 for (i = 0; i < host->n_ports; i++) {
806 struct ata_port *ap = host->ports[i];
807 ata_lpm_schedule(ap, ap->pm_policy);
810 #endif /* CONFIG_PM */
814 * ata_devchk - PATA device presence detection
815 * @ap: ATA channel to examine
816 * @device: Device to examine (starting at zero)
818 * This technique was originally described in
819 * Hale Landis's ATADRVR (www.ata-atapi.com), and
820 * later found its way into the ATA/ATAPI spec.
822 * Write a pattern to the ATA shadow registers,
823 * and if a device is present, it will respond by
824 * correctly storing and echoing back the
825 * ATA shadow register contents.
827 * LOCKING:
828 * caller.
831 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
833 struct ata_ioports *ioaddr = &ap->ioaddr;
834 u8 nsect, lbal;
836 ap->ops->dev_select(ap, device);
838 iowrite8(0x55, ioaddr->nsect_addr);
839 iowrite8(0xaa, ioaddr->lbal_addr);
841 iowrite8(0xaa, ioaddr->nsect_addr);
842 iowrite8(0x55, ioaddr->lbal_addr);
844 iowrite8(0x55, ioaddr->nsect_addr);
845 iowrite8(0xaa, ioaddr->lbal_addr);
847 nsect = ioread8(ioaddr->nsect_addr);
848 lbal = ioread8(ioaddr->lbal_addr);
850 if ((nsect == 0x55) && (lbal == 0xaa))
851 return 1; /* we found a device */
853 return 0; /* nothing found */
857 * ata_dev_classify - determine device type based on ATA-spec signature
858 * @tf: ATA taskfile register set for device to be identified
860 * Determine from taskfile register contents whether a device is
861 * ATA or ATAPI, as per "Signature and persistence" section
862 * of ATA/PI spec (volume 1, sect 5.14).
864 * LOCKING:
865 * None.
867 * RETURNS:
868 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
869 * %ATA_DEV_UNKNOWN the event of failure.
871 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
873 /* Apple's open source Darwin code hints that some devices only
874 * put a proper signature into the LBA mid/high registers,
875 * So, we only check those. It's sufficient for uniqueness.
877 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
878 * signatures for ATA and ATAPI devices attached on SerialATA,
879 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
880 * spec has never mentioned about using different signatures
881 * for ATA/ATAPI devices. Then, Serial ATA II: Port
882 * Multiplier specification began to use 0x69/0x96 to identify
883 * port multpliers and 0x3c/0xc3 to identify SEMB device.
884 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
885 * 0x69/0x96 shortly and described them as reserved for
886 * SerialATA.
888 * We follow the current spec and consider that 0x69/0x96
889 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
891 if ((tf->lbam == 0) && (tf->lbah == 0)) {
892 DPRINTK("found ATA device by sig\n");
893 return ATA_DEV_ATA;
896 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
897 DPRINTK("found ATAPI device by sig\n");
898 return ATA_DEV_ATAPI;
901 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
902 DPRINTK("found PMP device by sig\n");
903 return ATA_DEV_PMP;
906 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
907 printk(KERN_INFO "ata: SEMB device ignored\n");
908 return ATA_DEV_SEMB_UNSUP; /* not yet */
911 DPRINTK("unknown device\n");
912 return ATA_DEV_UNKNOWN;
916 * ata_dev_try_classify - Parse returned ATA device signature
917 * @dev: ATA device to classify (starting at zero)
918 * @present: device seems present
919 * @r_err: Value of error register on completion
921 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
922 * an ATA/ATAPI-defined set of values is placed in the ATA
923 * shadow registers, indicating the results of device detection
924 * and diagnostics.
926 * Select the ATA device, and read the values from the ATA shadow
927 * registers. Then parse according to the Error register value,
928 * and the spec-defined values examined by ata_dev_classify().
930 * LOCKING:
931 * caller.
933 * RETURNS:
934 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
936 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
937 u8 *r_err)
939 struct ata_port *ap = dev->link->ap;
940 struct ata_taskfile tf;
941 unsigned int class;
942 u8 err;
944 ap->ops->dev_select(ap, dev->devno);
946 memset(&tf, 0, sizeof(tf));
948 ap->ops->tf_read(ap, &tf);
949 err = tf.feature;
950 if (r_err)
951 *r_err = err;
953 /* see if device passed diags: if master then continue and warn later */
954 if (err == 0 && dev->devno == 0)
955 /* diagnostic fail : do nothing _YET_ */
956 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
957 else if (err == 1)
958 /* do nothing */ ;
959 else if ((dev->devno == 0) && (err == 0x81))
960 /* do nothing */ ;
961 else
962 return ATA_DEV_NONE;
964 /* determine if device is ATA or ATAPI */
965 class = ata_dev_classify(&tf);
967 if (class == ATA_DEV_UNKNOWN) {
968 /* If the device failed diagnostic, it's likely to
969 * have reported incorrect device signature too.
970 * Assume ATA device if the device seems present but
971 * device signature is invalid with diagnostic
972 * failure.
974 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
975 class = ATA_DEV_ATA;
976 else
977 class = ATA_DEV_NONE;
978 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
979 class = ATA_DEV_NONE;
981 return class;
985 * ata_id_string - Convert IDENTIFY DEVICE page into string
986 * @id: IDENTIFY DEVICE results we will examine
987 * @s: string into which data is output
988 * @ofs: offset into identify device page
989 * @len: length of string to return. must be an even number.
991 * The strings in the IDENTIFY DEVICE page are broken up into
992 * 16-bit chunks. Run through the string, and output each
993 * 8-bit chunk linearly, regardless of platform.
995 * LOCKING:
996 * caller.
999 void ata_id_string(const u16 *id, unsigned char *s,
1000 unsigned int ofs, unsigned int len)
1002 unsigned int c;
1004 while (len > 0) {
1005 c = id[ofs] >> 8;
1006 *s = c;
1007 s++;
1009 c = id[ofs] & 0xff;
1010 *s = c;
1011 s++;
1013 ofs++;
1014 len -= 2;
1019 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1020 * @id: IDENTIFY DEVICE results we will examine
1021 * @s: string into which data is output
1022 * @ofs: offset into identify device page
1023 * @len: length of string to return. must be an odd number.
1025 * This function is identical to ata_id_string except that it
1026 * trims trailing spaces and terminates the resulting string with
1027 * null. @len must be actual maximum length (even number) + 1.
1029 * LOCKING:
1030 * caller.
1032 void ata_id_c_string(const u16 *id, unsigned char *s,
1033 unsigned int ofs, unsigned int len)
1035 unsigned char *p;
1037 WARN_ON(!(len & 1));
1039 ata_id_string(id, s, ofs, len - 1);
1041 p = s + strnlen(s, len - 1);
1042 while (p > s && p[-1] == ' ')
1043 p--;
1044 *p = '\0';
1047 static u64 ata_id_n_sectors(const u16 *id)
1049 if (ata_id_has_lba(id)) {
1050 if (ata_id_has_lba48(id))
1051 return ata_id_u64(id, 100);
1052 else
1053 return ata_id_u32(id, 60);
1054 } else {
1055 if (ata_id_current_chs_valid(id))
1056 return ata_id_u32(id, 57);
1057 else
1058 return id[1] * id[3] * id[6];
1062 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1064 u64 sectors = 0;
1066 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1067 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1068 sectors |= (tf->hob_lbal & 0xff) << 24;
1069 sectors |= (tf->lbah & 0xff) << 16;
1070 sectors |= (tf->lbam & 0xff) << 8;
1071 sectors |= (tf->lbal & 0xff);
1073 return ++sectors;
1076 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1078 u64 sectors = 0;
1080 sectors |= (tf->device & 0x0f) << 24;
1081 sectors |= (tf->lbah & 0xff) << 16;
1082 sectors |= (tf->lbam & 0xff) << 8;
1083 sectors |= (tf->lbal & 0xff);
1085 return ++sectors;
1089 * ata_read_native_max_address - Read native max address
1090 * @dev: target device
1091 * @max_sectors: out parameter for the result native max address
1093 * Perform an LBA48 or LBA28 native size query upon the device in
1094 * question.
1096 * RETURNS:
1097 * 0 on success, -EACCES if command is aborted by the drive.
1098 * -EIO on other errors.
1100 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1102 unsigned int err_mask;
1103 struct ata_taskfile tf;
1104 int lba48 = ata_id_has_lba48(dev->id);
1106 ata_tf_init(dev, &tf);
1108 /* always clear all address registers */
1109 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1111 if (lba48) {
1112 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1113 tf.flags |= ATA_TFLAG_LBA48;
1114 } else
1115 tf.command = ATA_CMD_READ_NATIVE_MAX;
1117 tf.protocol |= ATA_PROT_NODATA;
1118 tf.device |= ATA_LBA;
1120 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1121 if (err_mask) {
1122 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1123 "max address (err_mask=0x%x)\n", err_mask);
1124 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1125 return -EACCES;
1126 return -EIO;
1129 if (lba48)
1130 *max_sectors = ata_tf_to_lba48(&tf);
1131 else
1132 *max_sectors = ata_tf_to_lba(&tf);
1133 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1134 (*max_sectors)--;
1135 return 0;
1139 * ata_set_max_sectors - Set max sectors
1140 * @dev: target device
1141 * @new_sectors: new max sectors value to set for the device
1143 * Set max sectors of @dev to @new_sectors.
1145 * RETURNS:
1146 * 0 on success, -EACCES if command is aborted or denied (due to
1147 * previous non-volatile SET_MAX) by the drive. -EIO on other
1148 * errors.
1150 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1152 unsigned int err_mask;
1153 struct ata_taskfile tf;
1154 int lba48 = ata_id_has_lba48(dev->id);
1156 new_sectors--;
1158 ata_tf_init(dev, &tf);
1160 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1162 if (lba48) {
1163 tf.command = ATA_CMD_SET_MAX_EXT;
1164 tf.flags |= ATA_TFLAG_LBA48;
1166 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1167 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1168 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1169 } else {
1170 tf.command = ATA_CMD_SET_MAX;
1172 tf.device |= (new_sectors >> 24) & 0xf;
1175 tf.protocol |= ATA_PROT_NODATA;
1176 tf.device |= ATA_LBA;
1178 tf.lbal = (new_sectors >> 0) & 0xff;
1179 tf.lbam = (new_sectors >> 8) & 0xff;
1180 tf.lbah = (new_sectors >> 16) & 0xff;
1182 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1183 if (err_mask) {
1184 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1185 "max address (err_mask=0x%x)\n", err_mask);
1186 if (err_mask == AC_ERR_DEV &&
1187 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1188 return -EACCES;
1189 return -EIO;
1192 return 0;
1196 * ata_hpa_resize - Resize a device with an HPA set
1197 * @dev: Device to resize
1199 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1200 * it if required to the full size of the media. The caller must check
1201 * the drive has the HPA feature set enabled.
1203 * RETURNS:
1204 * 0 on success, -errno on failure.
1206 static int ata_hpa_resize(struct ata_device *dev)
1208 struct ata_eh_context *ehc = &dev->link->eh_context;
1209 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1210 u64 sectors = ata_id_n_sectors(dev->id);
1211 u64 native_sectors;
1212 int rc;
1214 /* do we need to do it? */
1215 if (dev->class != ATA_DEV_ATA ||
1216 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1217 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1218 return 0;
1220 /* read native max address */
1221 rc = ata_read_native_max_address(dev, &native_sectors);
1222 if (rc) {
1223 /* If HPA isn't going to be unlocked, skip HPA
1224 * resizing from the next try.
1226 if (!ata_ignore_hpa) {
1227 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1228 "broken, will skip HPA handling\n");
1229 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1231 /* we can continue if device aborted the command */
1232 if (rc == -EACCES)
1233 rc = 0;
1236 return rc;
1239 /* nothing to do? */
1240 if (native_sectors <= sectors || !ata_ignore_hpa) {
1241 if (!print_info || native_sectors == sectors)
1242 return 0;
1244 if (native_sectors > sectors)
1245 ata_dev_printk(dev, KERN_INFO,
1246 "HPA detected: current %llu, native %llu\n",
1247 (unsigned long long)sectors,
1248 (unsigned long long)native_sectors);
1249 else if (native_sectors < sectors)
1250 ata_dev_printk(dev, KERN_WARNING,
1251 "native sectors (%llu) is smaller than "
1252 "sectors (%llu)\n",
1253 (unsigned long long)native_sectors,
1254 (unsigned long long)sectors);
1255 return 0;
1258 /* let's unlock HPA */
1259 rc = ata_set_max_sectors(dev, native_sectors);
1260 if (rc == -EACCES) {
1261 /* if device aborted the command, skip HPA resizing */
1262 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1263 "(%llu -> %llu), skipping HPA handling\n",
1264 (unsigned long long)sectors,
1265 (unsigned long long)native_sectors);
1266 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1267 return 0;
1268 } else if (rc)
1269 return rc;
1271 /* re-read IDENTIFY data */
1272 rc = ata_dev_reread_id(dev, 0);
1273 if (rc) {
1274 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1275 "data after HPA resizing\n");
1276 return rc;
1279 if (print_info) {
1280 u64 new_sectors = ata_id_n_sectors(dev->id);
1281 ata_dev_printk(dev, KERN_INFO,
1282 "HPA unlocked: %llu -> %llu, native %llu\n",
1283 (unsigned long long)sectors,
1284 (unsigned long long)new_sectors,
1285 (unsigned long long)native_sectors);
1288 return 0;
1292 * ata_noop_dev_select - Select device 0/1 on ATA bus
1293 * @ap: ATA channel to manipulate
1294 * @device: ATA device (numbered from zero) to select
1296 * This function performs no actual function.
1298 * May be used as the dev_select() entry in ata_port_operations.
1300 * LOCKING:
1301 * caller.
1303 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1309 * ata_std_dev_select - Select device 0/1 on ATA bus
1310 * @ap: ATA channel to manipulate
1311 * @device: ATA device (numbered from zero) to select
1313 * Use the method defined in the ATA specification to
1314 * make either device 0, or device 1, active on the
1315 * ATA channel. Works with both PIO and MMIO.
1317 * May be used as the dev_select() entry in ata_port_operations.
1319 * LOCKING:
1320 * caller.
1323 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1325 u8 tmp;
1327 if (device == 0)
1328 tmp = ATA_DEVICE_OBS;
1329 else
1330 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1332 iowrite8(tmp, ap->ioaddr.device_addr);
1333 ata_pause(ap); /* needed; also flushes, for mmio */
1337 * ata_dev_select - Select device 0/1 on ATA bus
1338 * @ap: ATA channel to manipulate
1339 * @device: ATA device (numbered from zero) to select
1340 * @wait: non-zero to wait for Status register BSY bit to clear
1341 * @can_sleep: non-zero if context allows sleeping
1343 * Use the method defined in the ATA specification to
1344 * make either device 0, or device 1, active on the
1345 * ATA channel.
1347 * This is a high-level version of ata_std_dev_select(),
1348 * which additionally provides the services of inserting
1349 * the proper pauses and status polling, where needed.
1351 * LOCKING:
1352 * caller.
1355 void ata_dev_select(struct ata_port *ap, unsigned int device,
1356 unsigned int wait, unsigned int can_sleep)
1358 if (ata_msg_probe(ap))
1359 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1360 "device %u, wait %u\n", device, wait);
1362 if (wait)
1363 ata_wait_idle(ap);
1365 ap->ops->dev_select(ap, device);
1367 if (wait) {
1368 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1369 msleep(150);
1370 ata_wait_idle(ap);
1375 * ata_dump_id - IDENTIFY DEVICE info debugging output
1376 * @id: IDENTIFY DEVICE page to dump
1378 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1379 * page.
1381 * LOCKING:
1382 * caller.
1385 static inline void ata_dump_id(const u16 *id)
1387 DPRINTK("49==0x%04x "
1388 "53==0x%04x "
1389 "63==0x%04x "
1390 "64==0x%04x "
1391 "75==0x%04x \n",
1392 id[49],
1393 id[53],
1394 id[63],
1395 id[64],
1396 id[75]);
1397 DPRINTK("80==0x%04x "
1398 "81==0x%04x "
1399 "82==0x%04x "
1400 "83==0x%04x "
1401 "84==0x%04x \n",
1402 id[80],
1403 id[81],
1404 id[82],
1405 id[83],
1406 id[84]);
1407 DPRINTK("88==0x%04x "
1408 "93==0x%04x\n",
1409 id[88],
1410 id[93]);
1414 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1415 * @id: IDENTIFY data to compute xfer mask from
1417 * Compute the xfermask for this device. This is not as trivial
1418 * as it seems if we must consider early devices correctly.
1420 * FIXME: pre IDE drive timing (do we care ?).
1422 * LOCKING:
1423 * None.
1425 * RETURNS:
1426 * Computed xfermask
1428 unsigned long ata_id_xfermask(const u16 *id)
1430 unsigned long pio_mask, mwdma_mask, udma_mask;
1432 /* Usual case. Word 53 indicates word 64 is valid */
1433 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1434 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1435 pio_mask <<= 3;
1436 pio_mask |= 0x7;
1437 } else {
1438 /* If word 64 isn't valid then Word 51 high byte holds
1439 * the PIO timing number for the maximum. Turn it into
1440 * a mask.
1442 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1443 if (mode < 5) /* Valid PIO range */
1444 pio_mask = (2 << mode) - 1;
1445 else
1446 pio_mask = 1;
1448 /* But wait.. there's more. Design your standards by
1449 * committee and you too can get a free iordy field to
1450 * process. However its the speeds not the modes that
1451 * are supported... Note drivers using the timing API
1452 * will get this right anyway
1456 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1458 if (ata_id_is_cfa(id)) {
1460 * Process compact flash extended modes
1462 int pio = id[163] & 0x7;
1463 int dma = (id[163] >> 3) & 7;
1465 if (pio)
1466 pio_mask |= (1 << 5);
1467 if (pio > 1)
1468 pio_mask |= (1 << 6);
1469 if (dma)
1470 mwdma_mask |= (1 << 3);
1471 if (dma > 1)
1472 mwdma_mask |= (1 << 4);
1475 udma_mask = 0;
1476 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1477 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1479 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1483 * ata_port_queue_task - Queue port_task
1484 * @ap: The ata_port to queue port_task for
1485 * @fn: workqueue function to be scheduled
1486 * @data: data for @fn to use
1487 * @delay: delay time for workqueue function
1489 * Schedule @fn(@data) for execution after @delay jiffies using
1490 * port_task. There is one port_task per port and it's the
1491 * user(low level driver)'s responsibility to make sure that only
1492 * one task is active at any given time.
1494 * libata core layer takes care of synchronization between
1495 * port_task and EH. ata_port_queue_task() may be ignored for EH
1496 * synchronization.
1498 * LOCKING:
1499 * Inherited from caller.
1501 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1502 unsigned long delay)
1504 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1505 ap->port_task_data = data;
1507 /* may fail if ata_port_flush_task() in progress */
1508 queue_delayed_work(ata_wq, &ap->port_task, delay);
1512 * ata_port_flush_task - Flush port_task
1513 * @ap: The ata_port to flush port_task for
1515 * After this function completes, port_task is guranteed not to
1516 * be running or scheduled.
1518 * LOCKING:
1519 * Kernel thread context (may sleep)
1521 void ata_port_flush_task(struct ata_port *ap)
1523 DPRINTK("ENTER\n");
1525 cancel_rearming_delayed_work(&ap->port_task);
1527 if (ata_msg_ctl(ap))
1528 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1531 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1533 struct completion *waiting = qc->private_data;
1535 complete(waiting);
1539 * ata_exec_internal_sg - execute libata internal command
1540 * @dev: Device to which the command is sent
1541 * @tf: Taskfile registers for the command and the result
1542 * @cdb: CDB for packet command
1543 * @dma_dir: Data tranfer direction of the command
1544 * @sgl: sg list for the data buffer of the command
1545 * @n_elem: Number of sg entries
1546 * @timeout: Timeout in msecs (0 for default)
1548 * Executes libata internal command with timeout. @tf contains
1549 * command on entry and result on return. Timeout and error
1550 * conditions are reported via return value. No recovery action
1551 * is taken after a command times out. It's caller's duty to
1552 * clean up after timeout.
1554 * LOCKING:
1555 * None. Should be called with kernel context, might sleep.
1557 * RETURNS:
1558 * Zero on success, AC_ERR_* mask on failure
1560 unsigned ata_exec_internal_sg(struct ata_device *dev,
1561 struct ata_taskfile *tf, const u8 *cdb,
1562 int dma_dir, struct scatterlist *sgl,
1563 unsigned int n_elem, unsigned long timeout)
1565 struct ata_link *link = dev->link;
1566 struct ata_port *ap = link->ap;
1567 u8 command = tf->command;
1568 struct ata_queued_cmd *qc;
1569 unsigned int tag, preempted_tag;
1570 u32 preempted_sactive, preempted_qc_active;
1571 int preempted_nr_active_links;
1572 DECLARE_COMPLETION_ONSTACK(wait);
1573 unsigned long flags;
1574 unsigned int err_mask;
1575 int rc;
1577 spin_lock_irqsave(ap->lock, flags);
1579 /* no internal command while frozen */
1580 if (ap->pflags & ATA_PFLAG_FROZEN) {
1581 spin_unlock_irqrestore(ap->lock, flags);
1582 return AC_ERR_SYSTEM;
1585 /* initialize internal qc */
1587 /* XXX: Tag 0 is used for drivers with legacy EH as some
1588 * drivers choke if any other tag is given. This breaks
1589 * ata_tag_internal() test for those drivers. Don't use new
1590 * EH stuff without converting to it.
1592 if (ap->ops->error_handler)
1593 tag = ATA_TAG_INTERNAL;
1594 else
1595 tag = 0;
1597 if (test_and_set_bit(tag, &ap->qc_allocated))
1598 BUG();
1599 qc = __ata_qc_from_tag(ap, tag);
1601 qc->tag = tag;
1602 qc->scsicmd = NULL;
1603 qc->ap = ap;
1604 qc->dev = dev;
1605 ata_qc_reinit(qc);
1607 preempted_tag = link->active_tag;
1608 preempted_sactive = link->sactive;
1609 preempted_qc_active = ap->qc_active;
1610 preempted_nr_active_links = ap->nr_active_links;
1611 link->active_tag = ATA_TAG_POISON;
1612 link->sactive = 0;
1613 ap->qc_active = 0;
1614 ap->nr_active_links = 0;
1616 /* prepare & issue qc */
1617 qc->tf = *tf;
1618 if (cdb)
1619 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1620 qc->flags |= ATA_QCFLAG_RESULT_TF;
1621 qc->dma_dir = dma_dir;
1622 if (dma_dir != DMA_NONE) {
1623 unsigned int i, buflen = 0;
1624 struct scatterlist *sg;
1626 for_each_sg(sgl, sg, n_elem, i)
1627 buflen += sg->length;
1629 ata_sg_init(qc, sgl, n_elem);
1630 qc->nbytes = buflen;
1633 qc->private_data = &wait;
1634 qc->complete_fn = ata_qc_complete_internal;
1636 ata_qc_issue(qc);
1638 spin_unlock_irqrestore(ap->lock, flags);
1640 if (!timeout)
1641 timeout = ata_probe_timeout * 1000 / HZ;
1643 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1645 ata_port_flush_task(ap);
1647 if (!rc) {
1648 spin_lock_irqsave(ap->lock, flags);
1650 /* We're racing with irq here. If we lose, the
1651 * following test prevents us from completing the qc
1652 * twice. If we win, the port is frozen and will be
1653 * cleaned up by ->post_internal_cmd().
1655 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1656 qc->err_mask |= AC_ERR_TIMEOUT;
1658 if (ap->ops->error_handler)
1659 ata_port_freeze(ap);
1660 else
1661 ata_qc_complete(qc);
1663 if (ata_msg_warn(ap))
1664 ata_dev_printk(dev, KERN_WARNING,
1665 "qc timeout (cmd 0x%x)\n", command);
1668 spin_unlock_irqrestore(ap->lock, flags);
1671 /* do post_internal_cmd */
1672 if (ap->ops->post_internal_cmd)
1673 ap->ops->post_internal_cmd(qc);
1675 /* perform minimal error analysis */
1676 if (qc->flags & ATA_QCFLAG_FAILED) {
1677 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1678 qc->err_mask |= AC_ERR_DEV;
1680 if (!qc->err_mask)
1681 qc->err_mask |= AC_ERR_OTHER;
1683 if (qc->err_mask & ~AC_ERR_OTHER)
1684 qc->err_mask &= ~AC_ERR_OTHER;
1687 /* finish up */
1688 spin_lock_irqsave(ap->lock, flags);
1690 *tf = qc->result_tf;
1691 err_mask = qc->err_mask;
1693 ata_qc_free(qc);
1694 link->active_tag = preempted_tag;
1695 link->sactive = preempted_sactive;
1696 ap->qc_active = preempted_qc_active;
1697 ap->nr_active_links = preempted_nr_active_links;
1699 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1700 * Until those drivers are fixed, we detect the condition
1701 * here, fail the command with AC_ERR_SYSTEM and reenable the
1702 * port.
1704 * Note that this doesn't change any behavior as internal
1705 * command failure results in disabling the device in the
1706 * higher layer for LLDDs without new reset/EH callbacks.
1708 * Kill the following code as soon as those drivers are fixed.
1710 if (ap->flags & ATA_FLAG_DISABLED) {
1711 err_mask |= AC_ERR_SYSTEM;
1712 ata_port_probe(ap);
1715 spin_unlock_irqrestore(ap->lock, flags);
1717 return err_mask;
1721 * ata_exec_internal - execute libata internal command
1722 * @dev: Device to which the command is sent
1723 * @tf: Taskfile registers for the command and the result
1724 * @cdb: CDB for packet command
1725 * @dma_dir: Data tranfer direction of the command
1726 * @buf: Data buffer of the command
1727 * @buflen: Length of data buffer
1728 * @timeout: Timeout in msecs (0 for default)
1730 * Wrapper around ata_exec_internal_sg() which takes simple
1731 * buffer instead of sg list.
1733 * LOCKING:
1734 * None. Should be called with kernel context, might sleep.
1736 * RETURNS:
1737 * Zero on success, AC_ERR_* mask on failure
1739 unsigned ata_exec_internal(struct ata_device *dev,
1740 struct ata_taskfile *tf, const u8 *cdb,
1741 int dma_dir, void *buf, unsigned int buflen,
1742 unsigned long timeout)
1744 struct scatterlist *psg = NULL, sg;
1745 unsigned int n_elem = 0;
1747 if (dma_dir != DMA_NONE) {
1748 WARN_ON(!buf);
1749 sg_init_one(&sg, buf, buflen);
1750 psg = &sg;
1751 n_elem++;
1754 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1755 timeout);
1759 * ata_do_simple_cmd - execute simple internal command
1760 * @dev: Device to which the command is sent
1761 * @cmd: Opcode to execute
1763 * Execute a 'simple' command, that only consists of the opcode
1764 * 'cmd' itself, without filling any other registers
1766 * LOCKING:
1767 * Kernel thread context (may sleep).
1769 * RETURNS:
1770 * Zero on success, AC_ERR_* mask on failure
1772 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1774 struct ata_taskfile tf;
1776 ata_tf_init(dev, &tf);
1778 tf.command = cmd;
1779 tf.flags |= ATA_TFLAG_DEVICE;
1780 tf.protocol = ATA_PROT_NODATA;
1782 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1786 * ata_pio_need_iordy - check if iordy needed
1787 * @adev: ATA device
1789 * Check if the current speed of the device requires IORDY. Used
1790 * by various controllers for chip configuration.
1793 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1795 /* Controller doesn't support IORDY. Probably a pointless check
1796 as the caller should know this */
1797 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1798 return 0;
1799 /* PIO3 and higher it is mandatory */
1800 if (adev->pio_mode > XFER_PIO_2)
1801 return 1;
1802 /* We turn it on when possible */
1803 if (ata_id_has_iordy(adev->id))
1804 return 1;
1805 return 0;
1809 * ata_pio_mask_no_iordy - Return the non IORDY mask
1810 * @adev: ATA device
1812 * Compute the highest mode possible if we are not using iordy. Return
1813 * -1 if no iordy mode is available.
1816 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1818 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1819 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1820 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1821 /* Is the speed faster than the drive allows non IORDY ? */
1822 if (pio) {
1823 /* This is cycle times not frequency - watch the logic! */
1824 if (pio > 240) /* PIO2 is 240nS per cycle */
1825 return 3 << ATA_SHIFT_PIO;
1826 return 7 << ATA_SHIFT_PIO;
1829 return 3 << ATA_SHIFT_PIO;
1833 * ata_dev_read_id - Read ID data from the specified device
1834 * @dev: target device
1835 * @p_class: pointer to class of the target device (may be changed)
1836 * @flags: ATA_READID_* flags
1837 * @id: buffer to read IDENTIFY data into
1839 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1840 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1841 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1842 * for pre-ATA4 drives.
1844 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1845 * now we abort if we hit that case.
1847 * LOCKING:
1848 * Kernel thread context (may sleep)
1850 * RETURNS:
1851 * 0 on success, -errno otherwise.
1853 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1854 unsigned int flags, u16 *id)
1856 struct ata_port *ap = dev->link->ap;
1857 unsigned int class = *p_class;
1858 struct ata_taskfile tf;
1859 unsigned int err_mask = 0;
1860 const char *reason;
1861 int may_fallback = 1, tried_spinup = 0;
1862 int rc;
1864 if (ata_msg_ctl(ap))
1865 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1867 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1868 retry:
1869 ata_tf_init(dev, &tf);
1871 switch (class) {
1872 case ATA_DEV_ATA:
1873 tf.command = ATA_CMD_ID_ATA;
1874 break;
1875 case ATA_DEV_ATAPI:
1876 tf.command = ATA_CMD_ID_ATAPI;
1877 break;
1878 default:
1879 rc = -ENODEV;
1880 reason = "unsupported class";
1881 goto err_out;
1884 tf.protocol = ATA_PROT_PIO;
1886 /* Some devices choke if TF registers contain garbage. Make
1887 * sure those are properly initialized.
1889 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1891 /* Device presence detection is unreliable on some
1892 * controllers. Always poll IDENTIFY if available.
1894 tf.flags |= ATA_TFLAG_POLLING;
1896 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1897 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1898 if (err_mask) {
1899 if (err_mask & AC_ERR_NODEV_HINT) {
1900 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1901 ap->print_id, dev->devno);
1902 return -ENOENT;
1905 /* Device or controller might have reported the wrong
1906 * device class. Give a shot at the other IDENTIFY if
1907 * the current one is aborted by the device.
1909 if (may_fallback &&
1910 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1911 may_fallback = 0;
1913 if (class == ATA_DEV_ATA)
1914 class = ATA_DEV_ATAPI;
1915 else
1916 class = ATA_DEV_ATA;
1917 goto retry;
1920 rc = -EIO;
1921 reason = "I/O error";
1922 goto err_out;
1925 /* Falling back doesn't make sense if ID data was read
1926 * successfully at least once.
1928 may_fallback = 0;
1930 swap_buf_le16(id, ATA_ID_WORDS);
1932 /* sanity check */
1933 rc = -EINVAL;
1934 reason = "device reports invalid type";
1936 if (class == ATA_DEV_ATA) {
1937 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1938 goto err_out;
1939 } else {
1940 if (ata_id_is_ata(id))
1941 goto err_out;
1944 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1945 tried_spinup = 1;
1947 * Drive powered-up in standby mode, and requires a specific
1948 * SET_FEATURES spin-up subcommand before it will accept
1949 * anything other than the original IDENTIFY command.
1951 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1952 if (err_mask && id[2] != 0x738c) {
1953 rc = -EIO;
1954 reason = "SPINUP failed";
1955 goto err_out;
1958 * If the drive initially returned incomplete IDENTIFY info,
1959 * we now must reissue the IDENTIFY command.
1961 if (id[2] == 0x37c8)
1962 goto retry;
1965 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1967 * The exact sequence expected by certain pre-ATA4 drives is:
1968 * SRST RESET
1969 * IDENTIFY (optional in early ATA)
1970 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1971 * anything else..
1972 * Some drives were very specific about that exact sequence.
1974 * Note that ATA4 says lba is mandatory so the second check
1975 * shoud never trigger.
1977 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1978 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1979 if (err_mask) {
1980 rc = -EIO;
1981 reason = "INIT_DEV_PARAMS failed";
1982 goto err_out;
1985 /* current CHS translation info (id[53-58]) might be
1986 * changed. reread the identify device info.
1988 flags &= ~ATA_READID_POSTRESET;
1989 goto retry;
1993 *p_class = class;
1995 return 0;
1997 err_out:
1998 if (ata_msg_warn(ap))
1999 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2000 "(%s, err_mask=0x%x)\n", reason, err_mask);
2001 return rc;
2004 static inline u8 ata_dev_knobble(struct ata_device *dev)
2006 struct ata_port *ap = dev->link->ap;
2007 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2010 static void ata_dev_config_ncq(struct ata_device *dev,
2011 char *desc, size_t desc_sz)
2013 struct ata_port *ap = dev->link->ap;
2014 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2016 if (!ata_id_has_ncq(dev->id)) {
2017 desc[0] = '\0';
2018 return;
2020 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2021 snprintf(desc, desc_sz, "NCQ (not used)");
2022 return;
2024 if (ap->flags & ATA_FLAG_NCQ) {
2025 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2026 dev->flags |= ATA_DFLAG_NCQ;
2029 if (hdepth >= ddepth)
2030 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2031 else
2032 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2036 * ata_dev_configure - Configure the specified ATA/ATAPI device
2037 * @dev: Target device to configure
2039 * Configure @dev according to @dev->id. Generic and low-level
2040 * driver specific fixups are also applied.
2042 * LOCKING:
2043 * Kernel thread context (may sleep)
2045 * RETURNS:
2046 * 0 on success, -errno otherwise
2048 int ata_dev_configure(struct ata_device *dev)
2050 struct ata_port *ap = dev->link->ap;
2051 struct ata_eh_context *ehc = &dev->link->eh_context;
2052 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2053 const u16 *id = dev->id;
2054 unsigned long xfer_mask;
2055 char revbuf[7]; /* XYZ-99\0 */
2056 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2057 char modelbuf[ATA_ID_PROD_LEN+1];
2058 int rc;
2060 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2061 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2062 __FUNCTION__);
2063 return 0;
2066 if (ata_msg_probe(ap))
2067 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2069 /* set horkage */
2070 dev->horkage |= ata_dev_blacklisted(dev);
2072 /* let ACPI work its magic */
2073 rc = ata_acpi_on_devcfg(dev);
2074 if (rc)
2075 return rc;
2077 /* massage HPA, do it early as it might change IDENTIFY data */
2078 rc = ata_hpa_resize(dev);
2079 if (rc)
2080 return rc;
2082 /* print device capabilities */
2083 if (ata_msg_probe(ap))
2084 ata_dev_printk(dev, KERN_DEBUG,
2085 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2086 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2087 __FUNCTION__,
2088 id[49], id[82], id[83], id[84],
2089 id[85], id[86], id[87], id[88]);
2091 /* initialize to-be-configured parameters */
2092 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2093 dev->max_sectors = 0;
2094 dev->cdb_len = 0;
2095 dev->n_sectors = 0;
2096 dev->cylinders = 0;
2097 dev->heads = 0;
2098 dev->sectors = 0;
2101 * common ATA, ATAPI feature tests
2104 /* find max transfer mode; for printk only */
2105 xfer_mask = ata_id_xfermask(id);
2107 if (ata_msg_probe(ap))
2108 ata_dump_id(id);
2110 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2111 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2112 sizeof(fwrevbuf));
2114 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2115 sizeof(modelbuf));
2117 /* ATA-specific feature tests */
2118 if (dev->class == ATA_DEV_ATA) {
2119 if (ata_id_is_cfa(id)) {
2120 if (id[162] & 1) /* CPRM may make this media unusable */
2121 ata_dev_printk(dev, KERN_WARNING,
2122 "supports DRM functions and may "
2123 "not be fully accessable.\n");
2124 snprintf(revbuf, 7, "CFA");
2125 } else {
2126 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2127 /* Warn the user if the device has TPM extensions */
2128 if (ata_id_has_tpm(id))
2129 ata_dev_printk(dev, KERN_WARNING,
2130 "supports DRM functions and may "
2131 "not be fully accessable.\n");
2134 dev->n_sectors = ata_id_n_sectors(id);
2136 if (dev->id[59] & 0x100)
2137 dev->multi_count = dev->id[59] & 0xff;
2139 if (ata_id_has_lba(id)) {
2140 const char *lba_desc;
2141 char ncq_desc[20];
2143 lba_desc = "LBA";
2144 dev->flags |= ATA_DFLAG_LBA;
2145 if (ata_id_has_lba48(id)) {
2146 dev->flags |= ATA_DFLAG_LBA48;
2147 lba_desc = "LBA48";
2149 if (dev->n_sectors >= (1UL << 28) &&
2150 ata_id_has_flush_ext(id))
2151 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2154 /* config NCQ */
2155 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2157 /* print device info to dmesg */
2158 if (ata_msg_drv(ap) && print_info) {
2159 ata_dev_printk(dev, KERN_INFO,
2160 "%s: %s, %s, max %s\n",
2161 revbuf, modelbuf, fwrevbuf,
2162 ata_mode_string(xfer_mask));
2163 ata_dev_printk(dev, KERN_INFO,
2164 "%Lu sectors, multi %u: %s %s\n",
2165 (unsigned long long)dev->n_sectors,
2166 dev->multi_count, lba_desc, ncq_desc);
2168 } else {
2169 /* CHS */
2171 /* Default translation */
2172 dev->cylinders = id[1];
2173 dev->heads = id[3];
2174 dev->sectors = id[6];
2176 if (ata_id_current_chs_valid(id)) {
2177 /* Current CHS translation is valid. */
2178 dev->cylinders = id[54];
2179 dev->heads = id[55];
2180 dev->sectors = id[56];
2183 /* print device info to dmesg */
2184 if (ata_msg_drv(ap) && print_info) {
2185 ata_dev_printk(dev, KERN_INFO,
2186 "%s: %s, %s, max %s\n",
2187 revbuf, modelbuf, fwrevbuf,
2188 ata_mode_string(xfer_mask));
2189 ata_dev_printk(dev, KERN_INFO,
2190 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2191 (unsigned long long)dev->n_sectors,
2192 dev->multi_count, dev->cylinders,
2193 dev->heads, dev->sectors);
2197 dev->cdb_len = 16;
2200 /* ATAPI-specific feature tests */
2201 else if (dev->class == ATA_DEV_ATAPI) {
2202 const char *cdb_intr_string = "";
2203 const char *atapi_an_string = "";
2204 u32 sntf;
2206 rc = atapi_cdb_len(id);
2207 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2208 if (ata_msg_warn(ap))
2209 ata_dev_printk(dev, KERN_WARNING,
2210 "unsupported CDB len\n");
2211 rc = -EINVAL;
2212 goto err_out_nosup;
2214 dev->cdb_len = (unsigned int) rc;
2216 /* Enable ATAPI AN if both the host and device have
2217 * the support. If PMP is attached, SNTF is required
2218 * to enable ATAPI AN to discern between PHY status
2219 * changed notifications and ATAPI ANs.
2221 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2222 (!ap->nr_pmp_links ||
2223 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2224 unsigned int err_mask;
2226 /* issue SET feature command to turn this on */
2227 err_mask = ata_dev_set_feature(dev,
2228 SETFEATURES_SATA_ENABLE, SATA_AN);
2229 if (err_mask)
2230 ata_dev_printk(dev, KERN_ERR,
2231 "failed to enable ATAPI AN "
2232 "(err_mask=0x%x)\n", err_mask);
2233 else {
2234 dev->flags |= ATA_DFLAG_AN;
2235 atapi_an_string = ", ATAPI AN";
2239 if (ata_id_cdb_intr(dev->id)) {
2240 dev->flags |= ATA_DFLAG_CDB_INTR;
2241 cdb_intr_string = ", CDB intr";
2244 /* print device info to dmesg */
2245 if (ata_msg_drv(ap) && print_info)
2246 ata_dev_printk(dev, KERN_INFO,
2247 "ATAPI: %s, %s, max %s%s%s\n",
2248 modelbuf, fwrevbuf,
2249 ata_mode_string(xfer_mask),
2250 cdb_intr_string, atapi_an_string);
2253 /* determine max_sectors */
2254 dev->max_sectors = ATA_MAX_SECTORS;
2255 if (dev->flags & ATA_DFLAG_LBA48)
2256 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2258 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2259 if (ata_id_has_hipm(dev->id))
2260 dev->flags |= ATA_DFLAG_HIPM;
2261 if (ata_id_has_dipm(dev->id))
2262 dev->flags |= ATA_DFLAG_DIPM;
2265 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2266 /* Let the user know. We don't want to disallow opens for
2267 rescue purposes, or in case the vendor is just a blithering
2268 idiot */
2269 if (print_info) {
2270 ata_dev_printk(dev, KERN_WARNING,
2271 "Drive reports diagnostics failure. This may indicate a drive\n");
2272 ata_dev_printk(dev, KERN_WARNING,
2273 "fault or invalid emulation. Contact drive vendor for information.\n");
2277 /* limit bridge transfers to udma5, 200 sectors */
2278 if (ata_dev_knobble(dev)) {
2279 if (ata_msg_drv(ap) && print_info)
2280 ata_dev_printk(dev, KERN_INFO,
2281 "applying bridge limits\n");
2282 dev->udma_mask &= ATA_UDMA5;
2283 dev->max_sectors = ATA_MAX_SECTORS;
2286 if ((dev->class == ATA_DEV_ATAPI) &&
2287 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2288 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2289 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2292 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2293 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2294 dev->max_sectors);
2296 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2297 dev->horkage |= ATA_HORKAGE_IPM;
2299 /* reset link pm_policy for this port to no pm */
2300 ap->pm_policy = MAX_PERFORMANCE;
2303 if (ap->ops->dev_config)
2304 ap->ops->dev_config(dev);
2306 if (ata_msg_probe(ap))
2307 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2308 __FUNCTION__, ata_chk_status(ap));
2309 return 0;
2311 err_out_nosup:
2312 if (ata_msg_probe(ap))
2313 ata_dev_printk(dev, KERN_DEBUG,
2314 "%s: EXIT, err\n", __FUNCTION__);
2315 return rc;
2319 * ata_cable_40wire - return 40 wire cable type
2320 * @ap: port
2322 * Helper method for drivers which want to hardwire 40 wire cable
2323 * detection.
2326 int ata_cable_40wire(struct ata_port *ap)
2328 return ATA_CBL_PATA40;
2332 * ata_cable_80wire - return 80 wire cable type
2333 * @ap: port
2335 * Helper method for drivers which want to hardwire 80 wire cable
2336 * detection.
2339 int ata_cable_80wire(struct ata_port *ap)
2341 return ATA_CBL_PATA80;
2345 * ata_cable_unknown - return unknown PATA cable.
2346 * @ap: port
2348 * Helper method for drivers which have no PATA cable detection.
2351 int ata_cable_unknown(struct ata_port *ap)
2353 return ATA_CBL_PATA_UNK;
2357 * ata_cable_ignore - return ignored PATA cable.
2358 * @ap: port
2360 * Helper method for drivers which don't use cable type to limit
2361 * transfer mode.
2363 int ata_cable_ignore(struct ata_port *ap)
2365 return ATA_CBL_PATA_IGN;
2369 * ata_cable_sata - return SATA cable type
2370 * @ap: port
2372 * Helper method for drivers which have SATA cables
2375 int ata_cable_sata(struct ata_port *ap)
2377 return ATA_CBL_SATA;
2381 * ata_bus_probe - Reset and probe ATA bus
2382 * @ap: Bus to probe
2384 * Master ATA bus probing function. Initiates a hardware-dependent
2385 * bus reset, then attempts to identify any devices found on
2386 * the bus.
2388 * LOCKING:
2389 * PCI/etc. bus probe sem.
2391 * RETURNS:
2392 * Zero on success, negative errno otherwise.
2395 int ata_bus_probe(struct ata_port *ap)
2397 unsigned int classes[ATA_MAX_DEVICES];
2398 int tries[ATA_MAX_DEVICES];
2399 int rc;
2400 struct ata_device *dev;
2402 ata_port_probe(ap);
2404 ata_link_for_each_dev(dev, &ap->link)
2405 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2407 retry:
2408 ata_link_for_each_dev(dev, &ap->link) {
2409 /* If we issue an SRST then an ATA drive (not ATAPI)
2410 * may change configuration and be in PIO0 timing. If
2411 * we do a hard reset (or are coming from power on)
2412 * this is true for ATA or ATAPI. Until we've set a
2413 * suitable controller mode we should not touch the
2414 * bus as we may be talking too fast.
2416 dev->pio_mode = XFER_PIO_0;
2418 /* If the controller has a pio mode setup function
2419 * then use it to set the chipset to rights. Don't
2420 * touch the DMA setup as that will be dealt with when
2421 * configuring devices.
2423 if (ap->ops->set_piomode)
2424 ap->ops->set_piomode(ap, dev);
2427 /* reset and determine device classes */
2428 ap->ops->phy_reset(ap);
2430 ata_link_for_each_dev(dev, &ap->link) {
2431 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2432 dev->class != ATA_DEV_UNKNOWN)
2433 classes[dev->devno] = dev->class;
2434 else
2435 classes[dev->devno] = ATA_DEV_NONE;
2437 dev->class = ATA_DEV_UNKNOWN;
2440 ata_port_probe(ap);
2442 /* read IDENTIFY page and configure devices. We have to do the identify
2443 specific sequence bass-ackwards so that PDIAG- is released by
2444 the slave device */
2446 ata_link_for_each_dev(dev, &ap->link) {
2447 if (tries[dev->devno])
2448 dev->class = classes[dev->devno];
2450 if (!ata_dev_enabled(dev))
2451 continue;
2453 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2454 dev->id);
2455 if (rc)
2456 goto fail;
2459 /* Now ask for the cable type as PDIAG- should have been released */
2460 if (ap->ops->cable_detect)
2461 ap->cbl = ap->ops->cable_detect(ap);
2463 /* We may have SATA bridge glue hiding here irrespective of the
2464 reported cable types and sensed types */
2465 ata_link_for_each_dev(dev, &ap->link) {
2466 if (!ata_dev_enabled(dev))
2467 continue;
2468 /* SATA drives indicate we have a bridge. We don't know which
2469 end of the link the bridge is which is a problem */
2470 if (ata_id_is_sata(dev->id))
2471 ap->cbl = ATA_CBL_SATA;
2474 /* After the identify sequence we can now set up the devices. We do
2475 this in the normal order so that the user doesn't get confused */
2477 ata_link_for_each_dev(dev, &ap->link) {
2478 if (!ata_dev_enabled(dev))
2479 continue;
2481 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2482 rc = ata_dev_configure(dev);
2483 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2484 if (rc)
2485 goto fail;
2488 /* configure transfer mode */
2489 rc = ata_set_mode(&ap->link, &dev);
2490 if (rc)
2491 goto fail;
2493 ata_link_for_each_dev(dev, &ap->link)
2494 if (ata_dev_enabled(dev))
2495 return 0;
2497 /* no device present, disable port */
2498 ata_port_disable(ap);
2499 return -ENODEV;
2501 fail:
2502 tries[dev->devno]--;
2504 switch (rc) {
2505 case -EINVAL:
2506 /* eeek, something went very wrong, give up */
2507 tries[dev->devno] = 0;
2508 break;
2510 case -ENODEV:
2511 /* give it just one more chance */
2512 tries[dev->devno] = min(tries[dev->devno], 1);
2513 case -EIO:
2514 if (tries[dev->devno] == 1) {
2515 /* This is the last chance, better to slow
2516 * down than lose it.
2518 sata_down_spd_limit(&ap->link);
2519 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2523 if (!tries[dev->devno])
2524 ata_dev_disable(dev);
2526 goto retry;
2530 * ata_port_probe - Mark port as enabled
2531 * @ap: Port for which we indicate enablement
2533 * Modify @ap data structure such that the system
2534 * thinks that the entire port is enabled.
2536 * LOCKING: host lock, or some other form of
2537 * serialization.
2540 void ata_port_probe(struct ata_port *ap)
2542 ap->flags &= ~ATA_FLAG_DISABLED;
2546 * sata_print_link_status - Print SATA link status
2547 * @link: SATA link to printk link status about
2549 * This function prints link speed and status of a SATA link.
2551 * LOCKING:
2552 * None.
2554 void sata_print_link_status(struct ata_link *link)
2556 u32 sstatus, scontrol, tmp;
2558 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2559 return;
2560 sata_scr_read(link, SCR_CONTROL, &scontrol);
2562 if (ata_link_online(link)) {
2563 tmp = (sstatus >> 4) & 0xf;
2564 ata_link_printk(link, KERN_INFO,
2565 "SATA link up %s (SStatus %X SControl %X)\n",
2566 sata_spd_string(tmp), sstatus, scontrol);
2567 } else {
2568 ata_link_printk(link, KERN_INFO,
2569 "SATA link down (SStatus %X SControl %X)\n",
2570 sstatus, scontrol);
2575 * ata_dev_pair - return other device on cable
2576 * @adev: device
2578 * Obtain the other device on the same cable, or if none is
2579 * present NULL is returned
2582 struct ata_device *ata_dev_pair(struct ata_device *adev)
2584 struct ata_link *link = adev->link;
2585 struct ata_device *pair = &link->device[1 - adev->devno];
2586 if (!ata_dev_enabled(pair))
2587 return NULL;
2588 return pair;
2592 * ata_port_disable - Disable port.
2593 * @ap: Port to be disabled.
2595 * Modify @ap data structure such that the system
2596 * thinks that the entire port is disabled, and should
2597 * never attempt to probe or communicate with devices
2598 * on this port.
2600 * LOCKING: host lock, or some other form of
2601 * serialization.
2604 void ata_port_disable(struct ata_port *ap)
2606 ap->link.device[0].class = ATA_DEV_NONE;
2607 ap->link.device[1].class = ATA_DEV_NONE;
2608 ap->flags |= ATA_FLAG_DISABLED;
2612 * sata_down_spd_limit - adjust SATA spd limit downward
2613 * @link: Link to adjust SATA spd limit for
2615 * Adjust SATA spd limit of @link downward. Note that this
2616 * function only adjusts the limit. The change must be applied
2617 * using sata_set_spd().
2619 * LOCKING:
2620 * Inherited from caller.
2622 * RETURNS:
2623 * 0 on success, negative errno on failure
2625 int sata_down_spd_limit(struct ata_link *link)
2627 u32 sstatus, spd, mask;
2628 int rc, highbit;
2630 if (!sata_scr_valid(link))
2631 return -EOPNOTSUPP;
2633 /* If SCR can be read, use it to determine the current SPD.
2634 * If not, use cached value in link->sata_spd.
2636 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2637 if (rc == 0)
2638 spd = (sstatus >> 4) & 0xf;
2639 else
2640 spd = link->sata_spd;
2642 mask = link->sata_spd_limit;
2643 if (mask <= 1)
2644 return -EINVAL;
2646 /* unconditionally mask off the highest bit */
2647 highbit = fls(mask) - 1;
2648 mask &= ~(1 << highbit);
2650 /* Mask off all speeds higher than or equal to the current
2651 * one. Force 1.5Gbps if current SPD is not available.
2653 if (spd > 1)
2654 mask &= (1 << (spd - 1)) - 1;
2655 else
2656 mask &= 1;
2658 /* were we already at the bottom? */
2659 if (!mask)
2660 return -EINVAL;
2662 link->sata_spd_limit = mask;
2664 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2665 sata_spd_string(fls(mask)));
2667 return 0;
2670 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2672 struct ata_link *host_link = &link->ap->link;
2673 u32 limit, target, spd;
2675 limit = link->sata_spd_limit;
2677 /* Don't configure downstream link faster than upstream link.
2678 * It doesn't speed up anything and some PMPs choke on such
2679 * configuration.
2681 if (!ata_is_host_link(link) && host_link->sata_spd)
2682 limit &= (1 << host_link->sata_spd) - 1;
2684 if (limit == UINT_MAX)
2685 target = 0;
2686 else
2687 target = fls(limit);
2689 spd = (*scontrol >> 4) & 0xf;
2690 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2692 return spd != target;
2696 * sata_set_spd_needed - is SATA spd configuration needed
2697 * @link: Link in question
2699 * Test whether the spd limit in SControl matches
2700 * @link->sata_spd_limit. This function is used to determine
2701 * whether hardreset is necessary to apply SATA spd
2702 * configuration.
2704 * LOCKING:
2705 * Inherited from caller.
2707 * RETURNS:
2708 * 1 if SATA spd configuration is needed, 0 otherwise.
2710 int sata_set_spd_needed(struct ata_link *link)
2712 u32 scontrol;
2714 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2715 return 1;
2717 return __sata_set_spd_needed(link, &scontrol);
2721 * sata_set_spd - set SATA spd according to spd limit
2722 * @link: Link to set SATA spd for
2724 * Set SATA spd of @link according to sata_spd_limit.
2726 * LOCKING:
2727 * Inherited from caller.
2729 * RETURNS:
2730 * 0 if spd doesn't need to be changed, 1 if spd has been
2731 * changed. Negative errno if SCR registers are inaccessible.
2733 int sata_set_spd(struct ata_link *link)
2735 u32 scontrol;
2736 int rc;
2738 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2739 return rc;
2741 if (!__sata_set_spd_needed(link, &scontrol))
2742 return 0;
2744 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2745 return rc;
2747 return 1;
2751 * This mode timing computation functionality is ported over from
2752 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2755 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2756 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2757 * for UDMA6, which is currently supported only by Maxtor drives.
2759 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2762 static const struct ata_timing ata_timing[] = {
2763 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2764 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2765 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2766 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2767 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2768 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2769 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2770 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2772 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2773 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2774 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2776 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2777 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2778 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2779 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2780 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2782 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2783 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2784 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2785 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2786 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2787 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2788 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2789 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2791 { 0xFF }
2794 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2795 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2797 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2799 q->setup = EZ(t->setup * 1000, T);
2800 q->act8b = EZ(t->act8b * 1000, T);
2801 q->rec8b = EZ(t->rec8b * 1000, T);
2802 q->cyc8b = EZ(t->cyc8b * 1000, T);
2803 q->active = EZ(t->active * 1000, T);
2804 q->recover = EZ(t->recover * 1000, T);
2805 q->cycle = EZ(t->cycle * 1000, T);
2806 q->udma = EZ(t->udma * 1000, UT);
2809 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2810 struct ata_timing *m, unsigned int what)
2812 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2813 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2814 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2815 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2816 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2817 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2818 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2819 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2822 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2824 const struct ata_timing *t = ata_timing;
2826 while (xfer_mode > t->mode)
2827 t++;
2829 if (xfer_mode == t->mode)
2830 return t;
2831 return NULL;
2834 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2835 struct ata_timing *t, int T, int UT)
2837 const struct ata_timing *s;
2838 struct ata_timing p;
2841 * Find the mode.
2844 if (!(s = ata_timing_find_mode(speed)))
2845 return -EINVAL;
2847 memcpy(t, s, sizeof(*s));
2850 * If the drive is an EIDE drive, it can tell us it needs extended
2851 * PIO/MW_DMA cycle timing.
2854 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2855 memset(&p, 0, sizeof(p));
2856 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2857 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2858 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2859 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2860 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2862 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2866 * Convert the timing to bus clock counts.
2869 ata_timing_quantize(t, t, T, UT);
2872 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2873 * S.M.A.R.T * and some other commands. We have to ensure that the
2874 * DMA cycle timing is slower/equal than the fastest PIO timing.
2877 if (speed > XFER_PIO_6) {
2878 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2879 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2883 * Lengthen active & recovery time so that cycle time is correct.
2886 if (t->act8b + t->rec8b < t->cyc8b) {
2887 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2888 t->rec8b = t->cyc8b - t->act8b;
2891 if (t->active + t->recover < t->cycle) {
2892 t->active += (t->cycle - (t->active + t->recover)) / 2;
2893 t->recover = t->cycle - t->active;
2896 /* In a few cases quantisation may produce enough errors to
2897 leave t->cycle too low for the sum of active and recovery
2898 if so we must correct this */
2899 if (t->active + t->recover > t->cycle)
2900 t->cycle = t->active + t->recover;
2902 return 0;
2906 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2907 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2908 * @cycle: cycle duration in ns
2910 * Return matching xfer mode for @cycle. The returned mode is of
2911 * the transfer type specified by @xfer_shift. If @cycle is too
2912 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
2913 * than the fastest known mode, the fasted mode is returned.
2915 * LOCKING:
2916 * None.
2918 * RETURNS:
2919 * Matching xfer_mode, 0xff if no match found.
2921 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
2923 u8 base_mode = 0xff, last_mode = 0xff;
2924 const struct ata_xfer_ent *ent;
2925 const struct ata_timing *t;
2927 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
2928 if (ent->shift == xfer_shift)
2929 base_mode = ent->base;
2931 for (t = ata_timing_find_mode(base_mode);
2932 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
2933 unsigned short this_cycle;
2935 switch (xfer_shift) {
2936 case ATA_SHIFT_PIO:
2937 case ATA_SHIFT_MWDMA:
2938 this_cycle = t->cycle;
2939 break;
2940 case ATA_SHIFT_UDMA:
2941 this_cycle = t->udma;
2942 break;
2943 default:
2944 return 0xff;
2947 if (cycle > this_cycle)
2948 break;
2950 last_mode = t->mode;
2953 return last_mode;
2957 * ata_down_xfermask_limit - adjust dev xfer masks downward
2958 * @dev: Device to adjust xfer masks
2959 * @sel: ATA_DNXFER_* selector
2961 * Adjust xfer masks of @dev downward. Note that this function
2962 * does not apply the change. Invoking ata_set_mode() afterwards
2963 * will apply the limit.
2965 * LOCKING:
2966 * Inherited from caller.
2968 * RETURNS:
2969 * 0 on success, negative errno on failure
2971 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2973 char buf[32];
2974 unsigned long orig_mask, xfer_mask;
2975 unsigned long pio_mask, mwdma_mask, udma_mask;
2976 int quiet, highbit;
2978 quiet = !!(sel & ATA_DNXFER_QUIET);
2979 sel &= ~ATA_DNXFER_QUIET;
2981 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2982 dev->mwdma_mask,
2983 dev->udma_mask);
2984 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2986 switch (sel) {
2987 case ATA_DNXFER_PIO:
2988 highbit = fls(pio_mask) - 1;
2989 pio_mask &= ~(1 << highbit);
2990 break;
2992 case ATA_DNXFER_DMA:
2993 if (udma_mask) {
2994 highbit = fls(udma_mask) - 1;
2995 udma_mask &= ~(1 << highbit);
2996 if (!udma_mask)
2997 return -ENOENT;
2998 } else if (mwdma_mask) {
2999 highbit = fls(mwdma_mask) - 1;
3000 mwdma_mask &= ~(1 << highbit);
3001 if (!mwdma_mask)
3002 return -ENOENT;
3004 break;
3006 case ATA_DNXFER_40C:
3007 udma_mask &= ATA_UDMA_MASK_40C;
3008 break;
3010 case ATA_DNXFER_FORCE_PIO0:
3011 pio_mask &= 1;
3012 case ATA_DNXFER_FORCE_PIO:
3013 mwdma_mask = 0;
3014 udma_mask = 0;
3015 break;
3017 default:
3018 BUG();
3021 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3023 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3024 return -ENOENT;
3026 if (!quiet) {
3027 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3028 snprintf(buf, sizeof(buf), "%s:%s",
3029 ata_mode_string(xfer_mask),
3030 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3031 else
3032 snprintf(buf, sizeof(buf), "%s",
3033 ata_mode_string(xfer_mask));
3035 ata_dev_printk(dev, KERN_WARNING,
3036 "limiting speed to %s\n", buf);
3039 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3040 &dev->udma_mask);
3042 return 0;
3045 static int ata_dev_set_mode(struct ata_device *dev)
3047 struct ata_eh_context *ehc = &dev->link->eh_context;
3048 unsigned int err_mask;
3049 int rc;
3051 dev->flags &= ~ATA_DFLAG_PIO;
3052 if (dev->xfer_shift == ATA_SHIFT_PIO)
3053 dev->flags |= ATA_DFLAG_PIO;
3055 err_mask = ata_dev_set_xfermode(dev);
3057 /* Old CFA may refuse this command, which is just fine */
3058 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3059 err_mask &= ~AC_ERR_DEV;
3061 /* Some very old devices and some bad newer ones fail any kind of
3062 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3063 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3064 dev->pio_mode <= XFER_PIO_2)
3065 err_mask &= ~AC_ERR_DEV;
3067 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3068 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3069 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3070 dev->dma_mode == XFER_MW_DMA_0 &&
3071 (dev->id[63] >> 8) & 1)
3072 err_mask &= ~AC_ERR_DEV;
3074 if (err_mask) {
3075 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3076 "(err_mask=0x%x)\n", err_mask);
3077 return -EIO;
3080 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3081 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3082 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3083 if (rc)
3084 return rc;
3086 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3087 dev->xfer_shift, (int)dev->xfer_mode);
3089 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3090 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3091 return 0;
3095 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3096 * @link: link on which timings will be programmed
3097 * @r_failed_dev: out paramter for failed device
3099 * Standard implementation of the function used to tune and set
3100 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3101 * ata_dev_set_mode() fails, pointer to the failing device is
3102 * returned in @r_failed_dev.
3104 * LOCKING:
3105 * PCI/etc. bus probe sem.
3107 * RETURNS:
3108 * 0 on success, negative errno otherwise
3111 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3113 struct ata_port *ap = link->ap;
3114 struct ata_device *dev;
3115 int rc = 0, used_dma = 0, found = 0;
3117 /* step 1: calculate xfer_mask */
3118 ata_link_for_each_dev(dev, link) {
3119 unsigned long pio_mask, dma_mask;
3120 unsigned int mode_mask;
3122 if (!ata_dev_enabled(dev))
3123 continue;
3125 mode_mask = ATA_DMA_MASK_ATA;
3126 if (dev->class == ATA_DEV_ATAPI)
3127 mode_mask = ATA_DMA_MASK_ATAPI;
3128 else if (ata_id_is_cfa(dev->id))
3129 mode_mask = ATA_DMA_MASK_CFA;
3131 ata_dev_xfermask(dev);
3133 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3134 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3136 if (libata_dma_mask & mode_mask)
3137 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3138 else
3139 dma_mask = 0;
3141 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3142 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3144 found = 1;
3145 if (dev->dma_mode != 0xff)
3146 used_dma = 1;
3148 if (!found)
3149 goto out;
3151 /* step 2: always set host PIO timings */
3152 ata_link_for_each_dev(dev, link) {
3153 if (!ata_dev_enabled(dev))
3154 continue;
3156 if (dev->pio_mode == 0xff) {
3157 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3158 rc = -EINVAL;
3159 goto out;
3162 dev->xfer_mode = dev->pio_mode;
3163 dev->xfer_shift = ATA_SHIFT_PIO;
3164 if (ap->ops->set_piomode)
3165 ap->ops->set_piomode(ap, dev);
3168 /* step 3: set host DMA timings */
3169 ata_link_for_each_dev(dev, link) {
3170 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3171 continue;
3173 dev->xfer_mode = dev->dma_mode;
3174 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3175 if (ap->ops->set_dmamode)
3176 ap->ops->set_dmamode(ap, dev);
3179 /* step 4: update devices' xfer mode */
3180 ata_link_for_each_dev(dev, link) {
3181 /* don't update suspended devices' xfer mode */
3182 if (!ata_dev_enabled(dev))
3183 continue;
3185 rc = ata_dev_set_mode(dev);
3186 if (rc)
3187 goto out;
3190 /* Record simplex status. If we selected DMA then the other
3191 * host channels are not permitted to do so.
3193 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3194 ap->host->simplex_claimed = ap;
3196 out:
3197 if (rc)
3198 *r_failed_dev = dev;
3199 return rc;
3203 * ata_tf_to_host - issue ATA taskfile to host controller
3204 * @ap: port to which command is being issued
3205 * @tf: ATA taskfile register set
3207 * Issues ATA taskfile register set to ATA host controller,
3208 * with proper synchronization with interrupt handler and
3209 * other threads.
3211 * LOCKING:
3212 * spin_lock_irqsave(host lock)
3215 static inline void ata_tf_to_host(struct ata_port *ap,
3216 const struct ata_taskfile *tf)
3218 ap->ops->tf_load(ap, tf);
3219 ap->ops->exec_command(ap, tf);
3223 * ata_busy_sleep - sleep until BSY clears, or timeout
3224 * @ap: port containing status register to be polled
3225 * @tmout_pat: impatience timeout
3226 * @tmout: overall timeout
3228 * Sleep until ATA Status register bit BSY clears,
3229 * or a timeout occurs.
3231 * LOCKING:
3232 * Kernel thread context (may sleep).
3234 * RETURNS:
3235 * 0 on success, -errno otherwise.
3237 int ata_busy_sleep(struct ata_port *ap,
3238 unsigned long tmout_pat, unsigned long tmout)
3240 unsigned long timer_start, timeout;
3241 u8 status;
3243 status = ata_busy_wait(ap, ATA_BUSY, 300);
3244 timer_start = jiffies;
3245 timeout = timer_start + tmout_pat;
3246 while (status != 0xff && (status & ATA_BUSY) &&
3247 time_before(jiffies, timeout)) {
3248 msleep(50);
3249 status = ata_busy_wait(ap, ATA_BUSY, 3);
3252 if (status != 0xff && (status & ATA_BUSY))
3253 ata_port_printk(ap, KERN_WARNING,
3254 "port is slow to respond, please be patient "
3255 "(Status 0x%x)\n", status);
3257 timeout = timer_start + tmout;
3258 while (status != 0xff && (status & ATA_BUSY) &&
3259 time_before(jiffies, timeout)) {
3260 msleep(50);
3261 status = ata_chk_status(ap);
3264 if (status == 0xff)
3265 return -ENODEV;
3267 if (status & ATA_BUSY) {
3268 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3269 "(%lu secs, Status 0x%x)\n",
3270 tmout / HZ, status);
3271 return -EBUSY;
3274 return 0;
3278 * ata_wait_after_reset - wait before checking status after reset
3279 * @ap: port containing status register to be polled
3280 * @deadline: deadline jiffies for the operation
3282 * After reset, we need to pause a while before reading status.
3283 * Also, certain combination of controller and device report 0xff
3284 * for some duration (e.g. until SATA PHY is up and running)
3285 * which is interpreted as empty port in ATA world. This
3286 * function also waits for such devices to get out of 0xff
3287 * status.
3289 * LOCKING:
3290 * Kernel thread context (may sleep).
3292 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3294 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3296 if (time_before(until, deadline))
3297 deadline = until;
3299 /* Spec mandates ">= 2ms" before checking status. We wait
3300 * 150ms, because that was the magic delay used for ATAPI
3301 * devices in Hale Landis's ATADRVR, for the period of time
3302 * between when the ATA command register is written, and then
3303 * status is checked. Because waiting for "a while" before
3304 * checking status is fine, post SRST, we perform this magic
3305 * delay here as well.
3307 * Old drivers/ide uses the 2mS rule and then waits for ready.
3309 msleep(150);
3311 /* Wait for 0xff to clear. Some SATA devices take a long time
3312 * to clear 0xff after reset. For example, HHD424020F7SV00
3313 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3314 * than that.
3316 * Note that some PATA controllers (pata_ali) explode if
3317 * status register is read more than once when there's no
3318 * device attached.
3320 if (ap->flags & ATA_FLAG_SATA) {
3321 while (1) {
3322 u8 status = ata_chk_status(ap);
3324 if (status != 0xff || time_after(jiffies, deadline))
3325 return;
3327 msleep(50);
3333 * ata_wait_ready - sleep until BSY clears, or timeout
3334 * @ap: port containing status register to be polled
3335 * @deadline: deadline jiffies for the operation
3337 * Sleep until ATA Status register bit BSY clears, or timeout
3338 * occurs.
3340 * LOCKING:
3341 * Kernel thread context (may sleep).
3343 * RETURNS:
3344 * 0 on success, -errno otherwise.
3346 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3348 unsigned long start = jiffies;
3349 int warned = 0;
3351 while (1) {
3352 u8 status = ata_chk_status(ap);
3353 unsigned long now = jiffies;
3355 if (!(status & ATA_BUSY))
3356 return 0;
3357 if (!ata_link_online(&ap->link) && status == 0xff)
3358 return -ENODEV;
3359 if (time_after(now, deadline))
3360 return -EBUSY;
3362 if (!warned && time_after(now, start + 5 * HZ) &&
3363 (deadline - now > 3 * HZ)) {
3364 ata_port_printk(ap, KERN_WARNING,
3365 "port is slow to respond, please be patient "
3366 "(Status 0x%x)\n", status);
3367 warned = 1;
3370 msleep(50);
3374 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3375 unsigned long deadline)
3377 struct ata_ioports *ioaddr = &ap->ioaddr;
3378 unsigned int dev0 = devmask & (1 << 0);
3379 unsigned int dev1 = devmask & (1 << 1);
3380 int rc, ret = 0;
3382 /* if device 0 was found in ata_devchk, wait for its
3383 * BSY bit to clear
3385 if (dev0) {
3386 rc = ata_wait_ready(ap, deadline);
3387 if (rc) {
3388 if (rc != -ENODEV)
3389 return rc;
3390 ret = rc;
3394 /* if device 1 was found in ata_devchk, wait for register
3395 * access briefly, then wait for BSY to clear.
3397 if (dev1) {
3398 int i;
3400 ap->ops->dev_select(ap, 1);
3402 /* Wait for register access. Some ATAPI devices fail
3403 * to set nsect/lbal after reset, so don't waste too
3404 * much time on it. We're gonna wait for !BSY anyway.
3406 for (i = 0; i < 2; i++) {
3407 u8 nsect, lbal;
3409 nsect = ioread8(ioaddr->nsect_addr);
3410 lbal = ioread8(ioaddr->lbal_addr);
3411 if ((nsect == 1) && (lbal == 1))
3412 break;
3413 msleep(50); /* give drive a breather */
3416 rc = ata_wait_ready(ap, deadline);
3417 if (rc) {
3418 if (rc != -ENODEV)
3419 return rc;
3420 ret = rc;
3424 /* is all this really necessary? */
3425 ap->ops->dev_select(ap, 0);
3426 if (dev1)
3427 ap->ops->dev_select(ap, 1);
3428 if (dev0)
3429 ap->ops->dev_select(ap, 0);
3431 return ret;
3434 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3435 unsigned long deadline)
3437 struct ata_ioports *ioaddr = &ap->ioaddr;
3439 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3441 /* software reset. causes dev0 to be selected */
3442 iowrite8(ap->ctl, ioaddr->ctl_addr);
3443 udelay(20); /* FIXME: flush */
3444 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3445 udelay(20); /* FIXME: flush */
3446 iowrite8(ap->ctl, ioaddr->ctl_addr);
3448 /* wait a while before checking status */
3449 ata_wait_after_reset(ap, deadline);
3451 /* Before we perform post reset processing we want to see if
3452 * the bus shows 0xFF because the odd clown forgets the D7
3453 * pulldown resistor.
3455 if (ata_chk_status(ap) == 0xFF)
3456 return -ENODEV;
3458 return ata_bus_post_reset(ap, devmask, deadline);
3462 * ata_bus_reset - reset host port and associated ATA channel
3463 * @ap: port to reset
3465 * This is typically the first time we actually start issuing
3466 * commands to the ATA channel. We wait for BSY to clear, then
3467 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3468 * result. Determine what devices, if any, are on the channel
3469 * by looking at the device 0/1 error register. Look at the signature
3470 * stored in each device's taskfile registers, to determine if
3471 * the device is ATA or ATAPI.
3473 * LOCKING:
3474 * PCI/etc. bus probe sem.
3475 * Obtains host lock.
3477 * SIDE EFFECTS:
3478 * Sets ATA_FLAG_DISABLED if bus reset fails.
3481 void ata_bus_reset(struct ata_port *ap)
3483 struct ata_device *device = ap->link.device;
3484 struct ata_ioports *ioaddr = &ap->ioaddr;
3485 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3486 u8 err;
3487 unsigned int dev0, dev1 = 0, devmask = 0;
3488 int rc;
3490 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3492 /* determine if device 0/1 are present */
3493 if (ap->flags & ATA_FLAG_SATA_RESET)
3494 dev0 = 1;
3495 else {
3496 dev0 = ata_devchk(ap, 0);
3497 if (slave_possible)
3498 dev1 = ata_devchk(ap, 1);
3501 if (dev0)
3502 devmask |= (1 << 0);
3503 if (dev1)
3504 devmask |= (1 << 1);
3506 /* select device 0 again */
3507 ap->ops->dev_select(ap, 0);
3509 /* issue bus reset */
3510 if (ap->flags & ATA_FLAG_SRST) {
3511 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3512 if (rc && rc != -ENODEV)
3513 goto err_out;
3517 * determine by signature whether we have ATA or ATAPI devices
3519 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3520 if ((slave_possible) && (err != 0x81))
3521 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3523 /* is double-select really necessary? */
3524 if (device[1].class != ATA_DEV_NONE)
3525 ap->ops->dev_select(ap, 1);
3526 if (device[0].class != ATA_DEV_NONE)
3527 ap->ops->dev_select(ap, 0);
3529 /* if no devices were detected, disable this port */
3530 if ((device[0].class == ATA_DEV_NONE) &&
3531 (device[1].class == ATA_DEV_NONE))
3532 goto err_out;
3534 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3535 /* set up device control for ATA_FLAG_SATA_RESET */
3536 iowrite8(ap->ctl, ioaddr->ctl_addr);
3539 DPRINTK("EXIT\n");
3540 return;
3542 err_out:
3543 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3544 ata_port_disable(ap);
3546 DPRINTK("EXIT\n");
3550 * sata_link_debounce - debounce SATA phy status
3551 * @link: ATA link to debounce SATA phy status for
3552 * @params: timing parameters { interval, duratinon, timeout } in msec
3553 * @deadline: deadline jiffies for the operation
3555 * Make sure SStatus of @link reaches stable state, determined by
3556 * holding the same value where DET is not 1 for @duration polled
3557 * every @interval, before @timeout. Timeout constraints the
3558 * beginning of the stable state. Because DET gets stuck at 1 on
3559 * some controllers after hot unplugging, this functions waits
3560 * until timeout then returns 0 if DET is stable at 1.
3562 * @timeout is further limited by @deadline. The sooner of the
3563 * two is used.
3565 * LOCKING:
3566 * Kernel thread context (may sleep)
3568 * RETURNS:
3569 * 0 on success, -errno on failure.
3571 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3572 unsigned long deadline)
3574 unsigned long interval_msec = params[0];
3575 unsigned long duration = msecs_to_jiffies(params[1]);
3576 unsigned long last_jiffies, t;
3577 u32 last, cur;
3578 int rc;
3580 t = jiffies + msecs_to_jiffies(params[2]);
3581 if (time_before(t, deadline))
3582 deadline = t;
3584 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3585 return rc;
3586 cur &= 0xf;
3588 last = cur;
3589 last_jiffies = jiffies;
3591 while (1) {
3592 msleep(interval_msec);
3593 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3594 return rc;
3595 cur &= 0xf;
3597 /* DET stable? */
3598 if (cur == last) {
3599 if (cur == 1 && time_before(jiffies, deadline))
3600 continue;
3601 if (time_after(jiffies, last_jiffies + duration))
3602 return 0;
3603 continue;
3606 /* unstable, start over */
3607 last = cur;
3608 last_jiffies = jiffies;
3610 /* Check deadline. If debouncing failed, return
3611 * -EPIPE to tell upper layer to lower link speed.
3613 if (time_after(jiffies, deadline))
3614 return -EPIPE;
3619 * sata_link_resume - resume SATA link
3620 * @link: ATA link to resume SATA
3621 * @params: timing parameters { interval, duratinon, timeout } in msec
3622 * @deadline: deadline jiffies for the operation
3624 * Resume SATA phy @link and debounce it.
3626 * LOCKING:
3627 * Kernel thread context (may sleep)
3629 * RETURNS:
3630 * 0 on success, -errno on failure.
3632 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3633 unsigned long deadline)
3635 u32 scontrol;
3636 int rc;
3638 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3639 return rc;
3641 scontrol = (scontrol & 0x0f0) | 0x300;
3643 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3644 return rc;
3646 /* Some PHYs react badly if SStatus is pounded immediately
3647 * after resuming. Delay 200ms before debouncing.
3649 msleep(200);
3651 return sata_link_debounce(link, params, deadline);
3655 * ata_std_prereset - prepare for reset
3656 * @link: ATA link to be reset
3657 * @deadline: deadline jiffies for the operation
3659 * @link is about to be reset. Initialize it. Failure from
3660 * prereset makes libata abort whole reset sequence and give up
3661 * that port, so prereset should be best-effort. It does its
3662 * best to prepare for reset sequence but if things go wrong, it
3663 * should just whine, not fail.
3665 * LOCKING:
3666 * Kernel thread context (may sleep)
3668 * RETURNS:
3669 * 0 on success, -errno otherwise.
3671 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3673 struct ata_port *ap = link->ap;
3674 struct ata_eh_context *ehc = &link->eh_context;
3675 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3676 int rc;
3678 /* handle link resume */
3679 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3680 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3681 ehc->i.action |= ATA_EH_HARDRESET;
3683 /* Some PMPs don't work with only SRST, force hardreset if PMP
3684 * is supported.
3686 if (ap->flags & ATA_FLAG_PMP)
3687 ehc->i.action |= ATA_EH_HARDRESET;
3689 /* if we're about to do hardreset, nothing more to do */
3690 if (ehc->i.action & ATA_EH_HARDRESET)
3691 return 0;
3693 /* if SATA, resume link */
3694 if (ap->flags & ATA_FLAG_SATA) {
3695 rc = sata_link_resume(link, timing, deadline);
3696 /* whine about phy resume failure but proceed */
3697 if (rc && rc != -EOPNOTSUPP)
3698 ata_link_printk(link, KERN_WARNING, "failed to resume "
3699 "link for reset (errno=%d)\n", rc);
3702 /* Wait for !BSY if the controller can wait for the first D2H
3703 * Reg FIS and we don't know that no device is attached.
3705 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3706 rc = ata_wait_ready(ap, deadline);
3707 if (rc && rc != -ENODEV) {
3708 ata_link_printk(link, KERN_WARNING, "device not ready "
3709 "(errno=%d), forcing hardreset\n", rc);
3710 ehc->i.action |= ATA_EH_HARDRESET;
3714 return 0;
3718 * ata_std_softreset - reset host port via ATA SRST
3719 * @link: ATA link to reset
3720 * @classes: resulting classes of attached devices
3721 * @deadline: deadline jiffies for the operation
3723 * Reset host port using ATA SRST.
3725 * LOCKING:
3726 * Kernel thread context (may sleep)
3728 * RETURNS:
3729 * 0 on success, -errno otherwise.
3731 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3732 unsigned long deadline)
3734 struct ata_port *ap = link->ap;
3735 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3736 unsigned int devmask = 0;
3737 int rc;
3738 u8 err;
3740 DPRINTK("ENTER\n");
3742 if (ata_link_offline(link)) {
3743 classes[0] = ATA_DEV_NONE;
3744 goto out;
3747 /* determine if device 0/1 are present */
3748 if (ata_devchk(ap, 0))
3749 devmask |= (1 << 0);
3750 if (slave_possible && ata_devchk(ap, 1))
3751 devmask |= (1 << 1);
3753 /* select device 0 again */
3754 ap->ops->dev_select(ap, 0);
3756 /* issue bus reset */
3757 DPRINTK("about to softreset, devmask=%x\n", devmask);
3758 rc = ata_bus_softreset(ap, devmask, deadline);
3759 /* if link is occupied, -ENODEV too is an error */
3760 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3761 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3762 return rc;
3765 /* determine by signature whether we have ATA or ATAPI devices */
3766 classes[0] = ata_dev_try_classify(&link->device[0],
3767 devmask & (1 << 0), &err);
3768 if (slave_possible && err != 0x81)
3769 classes[1] = ata_dev_try_classify(&link->device[1],
3770 devmask & (1 << 1), &err);
3772 out:
3773 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3774 return 0;
3778 * sata_link_hardreset - reset link via SATA phy reset
3779 * @link: link to reset
3780 * @timing: timing parameters { interval, duratinon, timeout } in msec
3781 * @deadline: deadline jiffies for the operation
3783 * SATA phy-reset @link using DET bits of SControl register.
3785 * LOCKING:
3786 * Kernel thread context (may sleep)
3788 * RETURNS:
3789 * 0 on success, -errno otherwise.
3791 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3792 unsigned long deadline)
3794 u32 scontrol;
3795 int rc;
3797 DPRINTK("ENTER\n");
3799 if (sata_set_spd_needed(link)) {
3800 /* SATA spec says nothing about how to reconfigure
3801 * spd. To be on the safe side, turn off phy during
3802 * reconfiguration. This works for at least ICH7 AHCI
3803 * and Sil3124.
3805 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3806 goto out;
3808 scontrol = (scontrol & 0x0f0) | 0x304;
3810 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3811 goto out;
3813 sata_set_spd(link);
3816 /* issue phy wake/reset */
3817 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3818 goto out;
3820 scontrol = (scontrol & 0x0f0) | 0x301;
3822 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3823 goto out;
3825 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3826 * 10.4.2 says at least 1 ms.
3828 msleep(1);
3830 /* bring link back */
3831 rc = sata_link_resume(link, timing, deadline);
3832 out:
3833 DPRINTK("EXIT, rc=%d\n", rc);
3834 return rc;
3838 * sata_std_hardreset - reset host port via SATA phy reset
3839 * @link: link to reset
3840 * @class: resulting class of attached device
3841 * @deadline: deadline jiffies for the operation
3843 * SATA phy-reset host port using DET bits of SControl register,
3844 * wait for !BSY and classify the attached device.
3846 * LOCKING:
3847 * Kernel thread context (may sleep)
3849 * RETURNS:
3850 * 0 on success, -errno otherwise.
3852 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3853 unsigned long deadline)
3855 struct ata_port *ap = link->ap;
3856 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3857 int rc;
3859 DPRINTK("ENTER\n");
3861 /* do hardreset */
3862 rc = sata_link_hardreset(link, timing, deadline);
3863 if (rc) {
3864 ata_link_printk(link, KERN_ERR,
3865 "COMRESET failed (errno=%d)\n", rc);
3866 return rc;
3869 /* TODO: phy layer with polling, timeouts, etc. */
3870 if (ata_link_offline(link)) {
3871 *class = ATA_DEV_NONE;
3872 DPRINTK("EXIT, link offline\n");
3873 return 0;
3876 /* wait a while before checking status */
3877 ata_wait_after_reset(ap, deadline);
3879 /* If PMP is supported, we have to do follow-up SRST. Note
3880 * that some PMPs don't send D2H Reg FIS after hardreset at
3881 * all if the first port is empty. Wait for it just for a
3882 * second and request follow-up SRST.
3884 if (ap->flags & ATA_FLAG_PMP) {
3885 ata_wait_ready(ap, jiffies + HZ);
3886 return -EAGAIN;
3889 rc = ata_wait_ready(ap, deadline);
3890 /* link occupied, -ENODEV too is an error */
3891 if (rc) {
3892 ata_link_printk(link, KERN_ERR,
3893 "COMRESET failed (errno=%d)\n", rc);
3894 return rc;
3897 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3899 *class = ata_dev_try_classify(link->device, 1, NULL);
3901 DPRINTK("EXIT, class=%u\n", *class);
3902 return 0;
3906 * ata_std_postreset - standard postreset callback
3907 * @link: the target ata_link
3908 * @classes: classes of attached devices
3910 * This function is invoked after a successful reset. Note that
3911 * the device might have been reset more than once using
3912 * different reset methods before postreset is invoked.
3914 * LOCKING:
3915 * Kernel thread context (may sleep)
3917 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3919 struct ata_port *ap = link->ap;
3920 u32 serror;
3922 DPRINTK("ENTER\n");
3924 /* print link status */
3925 sata_print_link_status(link);
3927 /* clear SError */
3928 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3929 sata_scr_write(link, SCR_ERROR, serror);
3930 link->eh_info.serror = 0;
3932 /* is double-select really necessary? */
3933 if (classes[0] != ATA_DEV_NONE)
3934 ap->ops->dev_select(ap, 1);
3935 if (classes[1] != ATA_DEV_NONE)
3936 ap->ops->dev_select(ap, 0);
3938 /* bail out if no device is present */
3939 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3940 DPRINTK("EXIT, no device\n");
3941 return;
3944 /* set up device control */
3945 if (ap->ioaddr.ctl_addr)
3946 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3948 DPRINTK("EXIT\n");
3952 * ata_dev_same_device - Determine whether new ID matches configured device
3953 * @dev: device to compare against
3954 * @new_class: class of the new device
3955 * @new_id: IDENTIFY page of the new device
3957 * Compare @new_class and @new_id against @dev and determine
3958 * whether @dev is the device indicated by @new_class and
3959 * @new_id.
3961 * LOCKING:
3962 * None.
3964 * RETURNS:
3965 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3967 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3968 const u16 *new_id)
3970 const u16 *old_id = dev->id;
3971 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3972 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3974 if (dev->class != new_class) {
3975 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3976 dev->class, new_class);
3977 return 0;
3980 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3981 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3982 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3983 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3985 if (strcmp(model[0], model[1])) {
3986 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3987 "'%s' != '%s'\n", model[0], model[1]);
3988 return 0;
3991 if (strcmp(serial[0], serial[1])) {
3992 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3993 "'%s' != '%s'\n", serial[0], serial[1]);
3994 return 0;
3997 return 1;
4001 * ata_dev_reread_id - Re-read IDENTIFY data
4002 * @dev: target ATA device
4003 * @readid_flags: read ID flags
4005 * Re-read IDENTIFY page and make sure @dev is still attached to
4006 * the port.
4008 * LOCKING:
4009 * Kernel thread context (may sleep)
4011 * RETURNS:
4012 * 0 on success, negative errno otherwise
4014 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4016 unsigned int class = dev->class;
4017 u16 *id = (void *)dev->link->ap->sector_buf;
4018 int rc;
4020 /* read ID data */
4021 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4022 if (rc)
4023 return rc;
4025 /* is the device still there? */
4026 if (!ata_dev_same_device(dev, class, id))
4027 return -ENODEV;
4029 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4030 return 0;
4034 * ata_dev_revalidate - Revalidate ATA device
4035 * @dev: device to revalidate
4036 * @new_class: new class code
4037 * @readid_flags: read ID flags
4039 * Re-read IDENTIFY page, make sure @dev is still attached to the
4040 * port and reconfigure it according to the new IDENTIFY page.
4042 * LOCKING:
4043 * Kernel thread context (may sleep)
4045 * RETURNS:
4046 * 0 on success, negative errno otherwise
4048 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4049 unsigned int readid_flags)
4051 u64 n_sectors = dev->n_sectors;
4052 int rc;
4054 if (!ata_dev_enabled(dev))
4055 return -ENODEV;
4057 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4058 if (ata_class_enabled(new_class) &&
4059 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4060 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4061 dev->class, new_class);
4062 rc = -ENODEV;
4063 goto fail;
4066 /* re-read ID */
4067 rc = ata_dev_reread_id(dev, readid_flags);
4068 if (rc)
4069 goto fail;
4071 /* configure device according to the new ID */
4072 rc = ata_dev_configure(dev);
4073 if (rc)
4074 goto fail;
4076 /* verify n_sectors hasn't changed */
4077 if (dev->class == ATA_DEV_ATA && n_sectors &&
4078 dev->n_sectors != n_sectors) {
4079 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4080 "%llu != %llu\n",
4081 (unsigned long long)n_sectors,
4082 (unsigned long long)dev->n_sectors);
4084 /* restore original n_sectors */
4085 dev->n_sectors = n_sectors;
4087 rc = -ENODEV;
4088 goto fail;
4091 return 0;
4093 fail:
4094 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4095 return rc;
4098 struct ata_blacklist_entry {
4099 const char *model_num;
4100 const char *model_rev;
4101 unsigned long horkage;
4104 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4105 /* Devices with DMA related problems under Linux */
4106 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4107 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4108 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4109 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4110 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4111 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4112 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4113 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4114 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4115 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4116 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4117 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4118 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4119 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4120 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4121 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4122 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4123 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4124 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4125 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4126 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4127 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4128 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4129 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4130 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4131 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4132 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4133 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4134 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4135 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4136 /* Odd clown on sil3726/4726 PMPs */
4137 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4138 ATA_HORKAGE_SKIP_PM },
4140 /* Weird ATAPI devices */
4141 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4143 /* Devices we expect to fail diagnostics */
4145 /* Devices where NCQ should be avoided */
4146 /* NCQ is slow */
4147 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4148 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4149 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4150 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4151 /* NCQ is broken */
4152 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4153 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4154 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4155 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4156 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4157 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4159 /* Blacklist entries taken from Silicon Image 3124/3132
4160 Windows driver .inf file - also several Linux problem reports */
4161 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4162 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4163 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4165 /* devices which puke on READ_NATIVE_MAX */
4166 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4167 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4168 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4169 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4171 /* Devices which report 1 sector over size HPA */
4172 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4173 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4175 /* Devices which get the IVB wrong */
4176 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4177 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4178 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4179 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4180 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4182 /* End Marker */
4186 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4188 const char *p;
4189 int len;
4192 * check for trailing wildcard: *\0
4194 p = strchr(patt, wildchar);
4195 if (p && ((*(p + 1)) == 0))
4196 len = p - patt;
4197 else {
4198 len = strlen(name);
4199 if (!len) {
4200 if (!*patt)
4201 return 0;
4202 return -1;
4206 return strncmp(patt, name, len);
4209 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4211 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4212 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4213 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4215 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4216 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4218 while (ad->model_num) {
4219 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4220 if (ad->model_rev == NULL)
4221 return ad->horkage;
4222 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4223 return ad->horkage;
4225 ad++;
4227 return 0;
4230 static int ata_dma_blacklisted(const struct ata_device *dev)
4232 /* We don't support polling DMA.
4233 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4234 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4236 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4237 (dev->flags & ATA_DFLAG_CDB_INTR))
4238 return 1;
4239 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4243 * ata_is_40wire - check drive side detection
4244 * @dev: device
4246 * Perform drive side detection decoding, allowing for device vendors
4247 * who can't follow the documentation.
4250 static int ata_is_40wire(struct ata_device *dev)
4252 if (dev->horkage & ATA_HORKAGE_IVB)
4253 return ata_drive_40wire_relaxed(dev->id);
4254 return ata_drive_40wire(dev->id);
4258 * ata_dev_xfermask - Compute supported xfermask of the given device
4259 * @dev: Device to compute xfermask for
4261 * Compute supported xfermask of @dev and store it in
4262 * dev->*_mask. This function is responsible for applying all
4263 * known limits including host controller limits, device
4264 * blacklist, etc...
4266 * LOCKING:
4267 * None.
4269 static void ata_dev_xfermask(struct ata_device *dev)
4271 struct ata_link *link = dev->link;
4272 struct ata_port *ap = link->ap;
4273 struct ata_host *host = ap->host;
4274 unsigned long xfer_mask;
4276 /* controller modes available */
4277 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4278 ap->mwdma_mask, ap->udma_mask);
4280 /* drive modes available */
4281 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4282 dev->mwdma_mask, dev->udma_mask);
4283 xfer_mask &= ata_id_xfermask(dev->id);
4286 * CFA Advanced TrueIDE timings are not allowed on a shared
4287 * cable
4289 if (ata_dev_pair(dev)) {
4290 /* No PIO5 or PIO6 */
4291 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4292 /* No MWDMA3 or MWDMA 4 */
4293 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4296 if (ata_dma_blacklisted(dev)) {
4297 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4298 ata_dev_printk(dev, KERN_WARNING,
4299 "device is on DMA blacklist, disabling DMA\n");
4302 if ((host->flags & ATA_HOST_SIMPLEX) &&
4303 host->simplex_claimed && host->simplex_claimed != ap) {
4304 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4305 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4306 "other device, disabling DMA\n");
4309 if (ap->flags & ATA_FLAG_NO_IORDY)
4310 xfer_mask &= ata_pio_mask_no_iordy(dev);
4312 if (ap->ops->mode_filter)
4313 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4315 /* Apply cable rule here. Don't apply it early because when
4316 * we handle hot plug the cable type can itself change.
4317 * Check this last so that we know if the transfer rate was
4318 * solely limited by the cable.
4319 * Unknown or 80 wire cables reported host side are checked
4320 * drive side as well. Cases where we know a 40wire cable
4321 * is used safely for 80 are not checked here.
4323 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4324 /* UDMA/44 or higher would be available */
4325 if ((ap->cbl == ATA_CBL_PATA40) ||
4326 (ata_is_40wire(dev) &&
4327 (ap->cbl == ATA_CBL_PATA_UNK ||
4328 ap->cbl == ATA_CBL_PATA80))) {
4329 ata_dev_printk(dev, KERN_WARNING,
4330 "limited to UDMA/33 due to 40-wire cable\n");
4331 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4334 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4335 &dev->mwdma_mask, &dev->udma_mask);
4339 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4340 * @dev: Device to which command will be sent
4342 * Issue SET FEATURES - XFER MODE command to device @dev
4343 * on port @ap.
4345 * LOCKING:
4346 * PCI/etc. bus probe sem.
4348 * RETURNS:
4349 * 0 on success, AC_ERR_* mask otherwise.
4352 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4354 struct ata_taskfile tf;
4355 unsigned int err_mask;
4357 /* set up set-features taskfile */
4358 DPRINTK("set features - xfer mode\n");
4360 /* Some controllers and ATAPI devices show flaky interrupt
4361 * behavior after setting xfer mode. Use polling instead.
4363 ata_tf_init(dev, &tf);
4364 tf.command = ATA_CMD_SET_FEATURES;
4365 tf.feature = SETFEATURES_XFER;
4366 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4367 tf.protocol = ATA_PROT_NODATA;
4368 /* If we are using IORDY we must send the mode setting command */
4369 if (ata_pio_need_iordy(dev))
4370 tf.nsect = dev->xfer_mode;
4371 /* If the device has IORDY and the controller does not - turn it off */
4372 else if (ata_id_has_iordy(dev->id))
4373 tf.nsect = 0x01;
4374 else /* In the ancient relic department - skip all of this */
4375 return 0;
4377 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4379 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4380 return err_mask;
4383 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4384 * @dev: Device to which command will be sent
4385 * @enable: Whether to enable or disable the feature
4386 * @feature: The sector count represents the feature to set
4388 * Issue SET FEATURES - SATA FEATURES command to device @dev
4389 * on port @ap with sector count
4391 * LOCKING:
4392 * PCI/etc. bus probe sem.
4394 * RETURNS:
4395 * 0 on success, AC_ERR_* mask otherwise.
4397 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4398 u8 feature)
4400 struct ata_taskfile tf;
4401 unsigned int err_mask;
4403 /* set up set-features taskfile */
4404 DPRINTK("set features - SATA features\n");
4406 ata_tf_init(dev, &tf);
4407 tf.command = ATA_CMD_SET_FEATURES;
4408 tf.feature = enable;
4409 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4410 tf.protocol = ATA_PROT_NODATA;
4411 tf.nsect = feature;
4413 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4415 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4416 return err_mask;
4420 * ata_dev_init_params - Issue INIT DEV PARAMS command
4421 * @dev: Device to which command will be sent
4422 * @heads: Number of heads (taskfile parameter)
4423 * @sectors: Number of sectors (taskfile parameter)
4425 * LOCKING:
4426 * Kernel thread context (may sleep)
4428 * RETURNS:
4429 * 0 on success, AC_ERR_* mask otherwise.
4431 static unsigned int ata_dev_init_params(struct ata_device *dev,
4432 u16 heads, u16 sectors)
4434 struct ata_taskfile tf;
4435 unsigned int err_mask;
4437 /* Number of sectors per track 1-255. Number of heads 1-16 */
4438 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4439 return AC_ERR_INVALID;
4441 /* set up init dev params taskfile */
4442 DPRINTK("init dev params \n");
4444 ata_tf_init(dev, &tf);
4445 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4446 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4447 tf.protocol = ATA_PROT_NODATA;
4448 tf.nsect = sectors;
4449 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4451 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4452 /* A clean abort indicates an original or just out of spec drive
4453 and we should continue as we issue the setup based on the
4454 drive reported working geometry */
4455 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4456 err_mask = 0;
4458 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4459 return err_mask;
4463 * ata_sg_clean - Unmap DMA memory associated with command
4464 * @qc: Command containing DMA memory to be released
4466 * Unmap all mapped DMA memory associated with this command.
4468 * LOCKING:
4469 * spin_lock_irqsave(host lock)
4471 void ata_sg_clean(struct ata_queued_cmd *qc)
4473 struct ata_port *ap = qc->ap;
4474 struct scatterlist *sg = qc->__sg;
4475 int dir = qc->dma_dir;
4476 void *pad_buf = NULL;
4478 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4479 WARN_ON(sg == NULL);
4481 if (qc->flags & ATA_QCFLAG_SINGLE)
4482 WARN_ON(qc->n_elem > 1);
4484 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4486 /* if we padded the buffer out to 32-bit bound, and data
4487 * xfer direction is from-device, we must copy from the
4488 * pad buffer back into the supplied buffer
4490 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4491 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4493 if (qc->flags & ATA_QCFLAG_SG) {
4494 if (qc->n_elem)
4495 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4496 /* restore last sg */
4497 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4498 if (pad_buf) {
4499 struct scatterlist *psg = &qc->pad_sgent;
4500 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4501 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4502 kunmap_atomic(addr, KM_IRQ0);
4504 } else {
4505 if (qc->n_elem)
4506 dma_unmap_single(ap->dev,
4507 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4508 dir);
4509 /* restore sg */
4510 sg->length += qc->pad_len;
4511 if (pad_buf)
4512 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4513 pad_buf, qc->pad_len);
4516 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4517 qc->__sg = NULL;
4521 * ata_fill_sg - Fill PCI IDE PRD table
4522 * @qc: Metadata associated with taskfile to be transferred
4524 * Fill PCI IDE PRD (scatter-gather) table with segments
4525 * associated with the current disk command.
4527 * LOCKING:
4528 * spin_lock_irqsave(host lock)
4531 static void ata_fill_sg(struct ata_queued_cmd *qc)
4533 struct ata_port *ap = qc->ap;
4534 struct scatterlist *sg;
4535 unsigned int idx;
4537 WARN_ON(qc->__sg == NULL);
4538 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4540 idx = 0;
4541 ata_for_each_sg(sg, qc) {
4542 u32 addr, offset;
4543 u32 sg_len, len;
4545 /* determine if physical DMA addr spans 64K boundary.
4546 * Note h/w doesn't support 64-bit, so we unconditionally
4547 * truncate dma_addr_t to u32.
4549 addr = (u32) sg_dma_address(sg);
4550 sg_len = sg_dma_len(sg);
4552 while (sg_len) {
4553 offset = addr & 0xffff;
4554 len = sg_len;
4555 if ((offset + sg_len) > 0x10000)
4556 len = 0x10000 - offset;
4558 ap->prd[idx].addr = cpu_to_le32(addr);
4559 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4560 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4562 idx++;
4563 sg_len -= len;
4564 addr += len;
4568 if (idx)
4569 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4573 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4574 * @qc: Metadata associated with taskfile to be transferred
4576 * Fill PCI IDE PRD (scatter-gather) table with segments
4577 * associated with the current disk command. Perform the fill
4578 * so that we avoid writing any length 64K records for
4579 * controllers that don't follow the spec.
4581 * LOCKING:
4582 * spin_lock_irqsave(host lock)
4585 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4587 struct ata_port *ap = qc->ap;
4588 struct scatterlist *sg;
4589 unsigned int idx;
4591 WARN_ON(qc->__sg == NULL);
4592 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4594 idx = 0;
4595 ata_for_each_sg(sg, qc) {
4596 u32 addr, offset;
4597 u32 sg_len, len, blen;
4599 /* determine if physical DMA addr spans 64K boundary.
4600 * Note h/w doesn't support 64-bit, so we unconditionally
4601 * truncate dma_addr_t to u32.
4603 addr = (u32) sg_dma_address(sg);
4604 sg_len = sg_dma_len(sg);
4606 while (sg_len) {
4607 offset = addr & 0xffff;
4608 len = sg_len;
4609 if ((offset + sg_len) > 0x10000)
4610 len = 0x10000 - offset;
4612 blen = len & 0xffff;
4613 ap->prd[idx].addr = cpu_to_le32(addr);
4614 if (blen == 0) {
4615 /* Some PATA chipsets like the CS5530 can't
4616 cope with 0x0000 meaning 64K as the spec says */
4617 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4618 blen = 0x8000;
4619 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4621 ap->prd[idx].flags_len = cpu_to_le32(blen);
4622 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4624 idx++;
4625 sg_len -= len;
4626 addr += len;
4630 if (idx)
4631 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4635 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4636 * @qc: Metadata associated with taskfile to check
4638 * Allow low-level driver to filter ATA PACKET commands, returning
4639 * a status indicating whether or not it is OK to use DMA for the
4640 * supplied PACKET command.
4642 * LOCKING:
4643 * spin_lock_irqsave(host lock)
4645 * RETURNS: 0 when ATAPI DMA can be used
4646 * nonzero otherwise
4648 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4650 struct ata_port *ap = qc->ap;
4652 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4653 * few ATAPI devices choke on such DMA requests.
4655 if (unlikely(qc->nbytes & 15))
4656 return 1;
4658 if (ap->ops->check_atapi_dma)
4659 return ap->ops->check_atapi_dma(qc);
4661 return 0;
4665 * atapi_qc_may_overflow - Check whether data transfer may overflow
4666 * @qc: ATA command in question
4668 * ATAPI commands which transfer variable length data to host
4669 * might overflow due to application error or hardare bug. This
4670 * function checks whether overflow should be drained and ignored
4671 * for @qc.
4673 * LOCKING:
4674 * None.
4676 * RETURNS:
4677 * 1 if @qc may overflow; otherwise, 0.
4679 static int atapi_qc_may_overflow(struct ata_queued_cmd *qc)
4681 if (qc->tf.protocol != ATAPI_PROT_PIO &&
4682 qc->tf.protocol != ATAPI_PROT_DMA)
4683 return 0;
4685 if (qc->tf.flags & ATA_TFLAG_WRITE)
4686 return 0;
4688 switch (qc->cdb[0]) {
4689 case READ_10:
4690 case READ_12:
4691 case WRITE_10:
4692 case WRITE_12:
4693 case GPCMD_READ_CD:
4694 case GPCMD_READ_CD_MSF:
4695 return 0;
4698 return 1;
4702 * ata_std_qc_defer - Check whether a qc needs to be deferred
4703 * @qc: ATA command in question
4705 * Non-NCQ commands cannot run with any other command, NCQ or
4706 * not. As upper layer only knows the queue depth, we are
4707 * responsible for maintaining exclusion. This function checks
4708 * whether a new command @qc can be issued.
4710 * LOCKING:
4711 * spin_lock_irqsave(host lock)
4713 * RETURNS:
4714 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4716 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4718 struct ata_link *link = qc->dev->link;
4720 if (qc->tf.protocol == ATA_PROT_NCQ) {
4721 if (!ata_tag_valid(link->active_tag))
4722 return 0;
4723 } else {
4724 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4725 return 0;
4728 return ATA_DEFER_LINK;
4732 * ata_qc_prep - Prepare taskfile for submission
4733 * @qc: Metadata associated with taskfile to be prepared
4735 * Prepare ATA taskfile for submission.
4737 * LOCKING:
4738 * spin_lock_irqsave(host lock)
4740 void ata_qc_prep(struct ata_queued_cmd *qc)
4742 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4743 return;
4745 ata_fill_sg(qc);
4749 * ata_dumb_qc_prep - Prepare taskfile for submission
4750 * @qc: Metadata associated with taskfile to be prepared
4752 * Prepare ATA taskfile for submission.
4754 * LOCKING:
4755 * spin_lock_irqsave(host lock)
4757 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4759 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4760 return;
4762 ata_fill_sg_dumb(qc);
4765 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4768 * ata_sg_init_one - Associate command with memory buffer
4769 * @qc: Command to be associated
4770 * @buf: Memory buffer
4771 * @buflen: Length of memory buffer, in bytes.
4773 * Initialize the data-related elements of queued_cmd @qc
4774 * to point to a single memory buffer, @buf of byte length @buflen.
4776 * LOCKING:
4777 * spin_lock_irqsave(host lock)
4780 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4782 qc->flags |= ATA_QCFLAG_SINGLE;
4784 qc->__sg = &qc->sgent;
4785 qc->n_elem = 1;
4786 qc->orig_n_elem = 1;
4787 qc->buf_virt = buf;
4788 qc->nbytes = buflen;
4789 qc->cursg = qc->__sg;
4791 sg_init_one(&qc->sgent, buf, buflen);
4795 * ata_sg_init - Associate command with scatter-gather table.
4796 * @qc: Command to be associated
4797 * @sg: Scatter-gather table.
4798 * @n_elem: Number of elements in s/g table.
4800 * Initialize the data-related elements of queued_cmd @qc
4801 * to point to a scatter-gather table @sg, containing @n_elem
4802 * elements.
4804 * LOCKING:
4805 * spin_lock_irqsave(host lock)
4808 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4809 unsigned int n_elem)
4811 qc->flags |= ATA_QCFLAG_SG;
4812 qc->__sg = sg;
4813 qc->n_elem = n_elem;
4814 qc->orig_n_elem = n_elem;
4815 qc->cursg = qc->__sg;
4819 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4820 * @qc: Command with memory buffer to be mapped.
4822 * DMA-map the memory buffer associated with queued_cmd @qc.
4824 * LOCKING:
4825 * spin_lock_irqsave(host lock)
4827 * RETURNS:
4828 * Zero on success, negative on error.
4831 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4833 struct ata_port *ap = qc->ap;
4834 int dir = qc->dma_dir;
4835 struct scatterlist *sg = qc->__sg;
4836 dma_addr_t dma_address;
4837 int trim_sg = 0;
4839 /* we must lengthen transfers to end on a 32-bit boundary */
4840 qc->pad_len = sg->length & 3;
4841 if (qc->pad_len) {
4842 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4843 struct scatterlist *psg = &qc->pad_sgent;
4845 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4847 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4849 if (qc->tf.flags & ATA_TFLAG_WRITE)
4850 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4851 qc->pad_len);
4853 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4854 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4855 /* trim sg */
4856 sg->length -= qc->pad_len;
4857 if (sg->length == 0)
4858 trim_sg = 1;
4860 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4861 sg->length, qc->pad_len);
4864 if (trim_sg) {
4865 qc->n_elem--;
4866 goto skip_map;
4869 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4870 sg->length, dir);
4871 if (dma_mapping_error(dma_address)) {
4872 /* restore sg */
4873 sg->length += qc->pad_len;
4874 return -1;
4877 sg_dma_address(sg) = dma_address;
4878 sg_dma_len(sg) = sg->length;
4880 skip_map:
4881 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4882 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4884 return 0;
4888 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4889 * @qc: Command with scatter-gather table to be mapped.
4891 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4893 * LOCKING:
4894 * spin_lock_irqsave(host lock)
4896 * RETURNS:
4897 * Zero on success, negative on error.
4901 static int ata_sg_setup(struct ata_queued_cmd *qc)
4903 struct ata_port *ap = qc->ap;
4904 struct scatterlist *sg = qc->__sg;
4905 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4906 int n_elem, pre_n_elem, dir, trim_sg = 0;
4908 VPRINTK("ENTER, ata%u\n", ap->print_id);
4909 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4911 /* we must lengthen transfers to end on a 32-bit boundary */
4912 qc->pad_len = lsg->length & 3;
4913 if (qc->pad_len) {
4914 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4915 struct scatterlist *psg = &qc->pad_sgent;
4916 unsigned int offset;
4918 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4920 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4923 * psg->page/offset are used to copy to-be-written
4924 * data in this function or read data in ata_sg_clean.
4926 offset = lsg->offset + lsg->length - qc->pad_len;
4927 sg_init_table(psg, 1);
4928 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4929 qc->pad_len, offset_in_page(offset));
4931 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4932 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4933 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4934 kunmap_atomic(addr, KM_IRQ0);
4937 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4938 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4939 /* trim last sg */
4940 lsg->length -= qc->pad_len;
4941 if (lsg->length == 0)
4942 trim_sg = 1;
4944 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4945 qc->n_elem - 1, lsg->length, qc->pad_len);
4948 pre_n_elem = qc->n_elem;
4949 if (trim_sg && pre_n_elem)
4950 pre_n_elem--;
4952 if (!pre_n_elem) {
4953 n_elem = 0;
4954 goto skip_map;
4957 dir = qc->dma_dir;
4958 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4959 if (n_elem < 1) {
4960 /* restore last sg */
4961 lsg->length += qc->pad_len;
4962 return -1;
4965 DPRINTK("%d sg elements mapped\n", n_elem);
4967 skip_map:
4968 qc->n_elem = n_elem;
4970 return 0;
4974 * swap_buf_le16 - swap halves of 16-bit words in place
4975 * @buf: Buffer to swap
4976 * @buf_words: Number of 16-bit words in buffer.
4978 * Swap halves of 16-bit words if needed to convert from
4979 * little-endian byte order to native cpu byte order, or
4980 * vice-versa.
4982 * LOCKING:
4983 * Inherited from caller.
4985 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4987 #ifdef __BIG_ENDIAN
4988 unsigned int i;
4990 for (i = 0; i < buf_words; i++)
4991 buf[i] = le16_to_cpu(buf[i]);
4992 #endif /* __BIG_ENDIAN */
4996 * ata_data_xfer - Transfer data by PIO
4997 * @dev: device to target
4998 * @buf: data buffer
4999 * @buflen: buffer length
5000 * @write_data: read/write
5002 * Transfer data from/to the device data register by PIO.
5004 * LOCKING:
5005 * Inherited from caller.
5007 * RETURNS:
5008 * Bytes consumed.
5010 unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
5011 unsigned int buflen, int rw)
5013 struct ata_port *ap = dev->link->ap;
5014 void __iomem *data_addr = ap->ioaddr.data_addr;
5015 unsigned int words = buflen >> 1;
5017 /* Transfer multiple of 2 bytes */
5018 if (rw == READ)
5019 ioread16_rep(data_addr, buf, words);
5020 else
5021 iowrite16_rep(data_addr, buf, words);
5023 /* Transfer trailing 1 byte, if any. */
5024 if (unlikely(buflen & 0x01)) {
5025 u16 align_buf[1] = { 0 };
5026 unsigned char *trailing_buf = buf + buflen - 1;
5028 if (rw == READ) {
5029 align_buf[0] = cpu_to_le16(ioread16(data_addr));
5030 memcpy(trailing_buf, align_buf, 1);
5031 } else {
5032 memcpy(align_buf, trailing_buf, 1);
5033 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
5035 words++;
5038 return words << 1;
5042 * ata_data_xfer_noirq - Transfer data by PIO
5043 * @dev: device to target
5044 * @buf: data buffer
5045 * @buflen: buffer length
5046 * @write_data: read/write
5048 * Transfer data from/to the device data register by PIO. Do the
5049 * transfer with interrupts disabled.
5051 * LOCKING:
5052 * Inherited from caller.
5054 * RETURNS:
5055 * Bytes consumed.
5057 unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
5058 unsigned int buflen, int rw)
5060 unsigned long flags;
5061 unsigned int consumed;
5063 local_irq_save(flags);
5064 consumed = ata_data_xfer(dev, buf, buflen, rw);
5065 local_irq_restore(flags);
5067 return consumed;
5072 * ata_pio_sector - Transfer a sector of data.
5073 * @qc: Command on going
5075 * Transfer qc->sect_size bytes of data from/to the ATA device.
5077 * LOCKING:
5078 * Inherited from caller.
5081 static void ata_pio_sector(struct ata_queued_cmd *qc)
5083 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5084 struct ata_port *ap = qc->ap;
5085 struct page *page;
5086 unsigned int offset;
5087 unsigned char *buf;
5089 if (qc->curbytes == qc->nbytes - qc->sect_size)
5090 ap->hsm_task_state = HSM_ST_LAST;
5092 page = sg_page(qc->cursg);
5093 offset = qc->cursg->offset + qc->cursg_ofs;
5095 /* get the current page and offset */
5096 page = nth_page(page, (offset >> PAGE_SHIFT));
5097 offset %= PAGE_SIZE;
5099 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5101 if (PageHighMem(page)) {
5102 unsigned long flags;
5104 /* FIXME: use a bounce buffer */
5105 local_irq_save(flags);
5106 buf = kmap_atomic(page, KM_IRQ0);
5108 /* do the actual data transfer */
5109 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5111 kunmap_atomic(buf, KM_IRQ0);
5112 local_irq_restore(flags);
5113 } else {
5114 buf = page_address(page);
5115 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5118 qc->curbytes += qc->sect_size;
5119 qc->cursg_ofs += qc->sect_size;
5121 if (qc->cursg_ofs == qc->cursg->length) {
5122 qc->cursg = sg_next(qc->cursg);
5123 qc->cursg_ofs = 0;
5128 * ata_pio_sectors - Transfer one or many sectors.
5129 * @qc: Command on going
5131 * Transfer one or many sectors of data from/to the
5132 * ATA device for the DRQ request.
5134 * LOCKING:
5135 * Inherited from caller.
5138 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5140 if (is_multi_taskfile(&qc->tf)) {
5141 /* READ/WRITE MULTIPLE */
5142 unsigned int nsect;
5144 WARN_ON(qc->dev->multi_count == 0);
5146 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5147 qc->dev->multi_count);
5148 while (nsect--)
5149 ata_pio_sector(qc);
5150 } else
5151 ata_pio_sector(qc);
5153 ata_altstatus(qc->ap); /* flush */
5157 * atapi_send_cdb - Write CDB bytes to hardware
5158 * @ap: Port to which ATAPI device is attached.
5159 * @qc: Taskfile currently active
5161 * When device has indicated its readiness to accept
5162 * a CDB, this function is called. Send the CDB.
5164 * LOCKING:
5165 * caller.
5168 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5170 /* send SCSI cdb */
5171 DPRINTK("send cdb\n");
5172 WARN_ON(qc->dev->cdb_len < 12);
5174 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5175 ata_altstatus(ap); /* flush */
5177 switch (qc->tf.protocol) {
5178 case ATAPI_PROT_PIO:
5179 ap->hsm_task_state = HSM_ST;
5180 break;
5181 case ATAPI_PROT_NODATA:
5182 ap->hsm_task_state = HSM_ST_LAST;
5183 break;
5184 case ATAPI_PROT_DMA:
5185 ap->hsm_task_state = HSM_ST_LAST;
5186 /* initiate bmdma */
5187 ap->ops->bmdma_start(qc);
5188 break;
5193 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5194 * @qc: Command on going
5195 * @bytes: number of bytes
5197 * Transfer Transfer data from/to the ATAPI device.
5199 * LOCKING:
5200 * Inherited from caller.
5203 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5205 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5206 struct ata_port *ap = qc->ap;
5207 struct ata_eh_info *ehi = &qc->dev->link->eh_info;
5208 struct scatterlist *sg;
5209 struct page *page;
5210 unsigned char *buf;
5211 unsigned int offset, count;
5213 next_sg:
5214 sg = qc->cursg;
5215 if (unlikely(!sg)) {
5217 * The end of qc->sg is reached and the device expects
5218 * more data to transfer. In order not to overrun qc->sg
5219 * and fulfill length specified in the byte count register,
5220 * - for read case, discard trailing data from the device
5221 * - for write case, padding zero data to the device
5223 u16 pad_buf[1] = { 0 };
5224 unsigned int i;
5226 if (bytes > qc->curbytes - qc->nbytes + ATAPI_MAX_DRAIN) {
5227 ata_ehi_push_desc(ehi, "too much trailing data "
5228 "buf=%u cur=%u bytes=%u",
5229 qc->nbytes, qc->curbytes, bytes);
5230 return -1;
5233 /* overflow is exptected for misc ATAPI commands */
5234 if (bytes && !atapi_qc_may_overflow(qc))
5235 ata_dev_printk(qc->dev, KERN_WARNING, "ATAPI %u bytes "
5236 "trailing data (cdb=%02x nbytes=%u)\n",
5237 bytes, qc->cdb[0], qc->nbytes);
5239 for (i = 0; i < (bytes + 1) / 2; i++)
5240 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5242 qc->curbytes += bytes;
5244 return 0;
5247 page = sg_page(sg);
5248 offset = sg->offset + qc->cursg_ofs;
5250 /* get the current page and offset */
5251 page = nth_page(page, (offset >> PAGE_SHIFT));
5252 offset %= PAGE_SIZE;
5254 /* don't overrun current sg */
5255 count = min(sg->length - qc->cursg_ofs, bytes);
5257 /* don't cross page boundaries */
5258 count = min(count, (unsigned int)PAGE_SIZE - offset);
5260 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5262 if (PageHighMem(page)) {
5263 unsigned long flags;
5265 /* FIXME: use bounce buffer */
5266 local_irq_save(flags);
5267 buf = kmap_atomic(page, KM_IRQ0);
5269 /* do the actual data transfer */
5270 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5272 kunmap_atomic(buf, KM_IRQ0);
5273 local_irq_restore(flags);
5274 } else {
5275 buf = page_address(page);
5276 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5279 bytes -= count;
5280 if ((count & 1) && bytes)
5281 bytes--;
5282 qc->curbytes += count;
5283 qc->cursg_ofs += count;
5285 if (qc->cursg_ofs == sg->length) {
5286 qc->cursg = sg_next(qc->cursg);
5287 qc->cursg_ofs = 0;
5290 if (bytes)
5291 goto next_sg;
5293 return 0;
5297 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5298 * @qc: Command on going
5300 * Transfer Transfer data from/to the ATAPI device.
5302 * LOCKING:
5303 * Inherited from caller.
5306 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5308 struct ata_port *ap = qc->ap;
5309 struct ata_device *dev = qc->dev;
5310 unsigned int ireason, bc_lo, bc_hi, bytes;
5311 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5313 /* Abuse qc->result_tf for temp storage of intermediate TF
5314 * here to save some kernel stack usage.
5315 * For normal completion, qc->result_tf is not relevant. For
5316 * error, qc->result_tf is later overwritten by ata_qc_complete().
5317 * So, the correctness of qc->result_tf is not affected.
5319 ap->ops->tf_read(ap, &qc->result_tf);
5320 ireason = qc->result_tf.nsect;
5321 bc_lo = qc->result_tf.lbam;
5322 bc_hi = qc->result_tf.lbah;
5323 bytes = (bc_hi << 8) | bc_lo;
5325 /* shall be cleared to zero, indicating xfer of data */
5326 if (unlikely(ireason & (1 << 0)))
5327 goto err_out;
5329 /* make sure transfer direction matches expected */
5330 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5331 if (unlikely(do_write != i_write))
5332 goto err_out;
5334 if (unlikely(!bytes))
5335 goto err_out;
5337 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5339 if (__atapi_pio_bytes(qc, bytes))
5340 goto err_out;
5341 ata_altstatus(ap); /* flush */
5343 return;
5345 err_out:
5346 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5347 qc->err_mask |= AC_ERR_HSM;
5348 ap->hsm_task_state = HSM_ST_ERR;
5352 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5353 * @ap: the target ata_port
5354 * @qc: qc on going
5356 * RETURNS:
5357 * 1 if ok in workqueue, 0 otherwise.
5360 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5362 if (qc->tf.flags & ATA_TFLAG_POLLING)
5363 return 1;
5365 if (ap->hsm_task_state == HSM_ST_FIRST) {
5366 if (qc->tf.protocol == ATA_PROT_PIO &&
5367 (qc->tf.flags & ATA_TFLAG_WRITE))
5368 return 1;
5370 if (ata_is_atapi(qc->tf.protocol) &&
5371 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5372 return 1;
5375 return 0;
5379 * ata_hsm_qc_complete - finish a qc running on standard HSM
5380 * @qc: Command to complete
5381 * @in_wq: 1 if called from workqueue, 0 otherwise
5383 * Finish @qc which is running on standard HSM.
5385 * LOCKING:
5386 * If @in_wq is zero, spin_lock_irqsave(host lock).
5387 * Otherwise, none on entry and grabs host lock.
5389 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5391 struct ata_port *ap = qc->ap;
5392 unsigned long flags;
5394 if (ap->ops->error_handler) {
5395 if (in_wq) {
5396 spin_lock_irqsave(ap->lock, flags);
5398 /* EH might have kicked in while host lock is
5399 * released.
5401 qc = ata_qc_from_tag(ap, qc->tag);
5402 if (qc) {
5403 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5404 ap->ops->irq_on(ap);
5405 ata_qc_complete(qc);
5406 } else
5407 ata_port_freeze(ap);
5410 spin_unlock_irqrestore(ap->lock, flags);
5411 } else {
5412 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5413 ata_qc_complete(qc);
5414 else
5415 ata_port_freeze(ap);
5417 } else {
5418 if (in_wq) {
5419 spin_lock_irqsave(ap->lock, flags);
5420 ap->ops->irq_on(ap);
5421 ata_qc_complete(qc);
5422 spin_unlock_irqrestore(ap->lock, flags);
5423 } else
5424 ata_qc_complete(qc);
5429 * ata_hsm_move - move the HSM to the next state.
5430 * @ap: the target ata_port
5431 * @qc: qc on going
5432 * @status: current device status
5433 * @in_wq: 1 if called from workqueue, 0 otherwise
5435 * RETURNS:
5436 * 1 when poll next status needed, 0 otherwise.
5438 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5439 u8 status, int in_wq)
5441 unsigned long flags = 0;
5442 int poll_next;
5444 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5446 /* Make sure ata_qc_issue_prot() does not throw things
5447 * like DMA polling into the workqueue. Notice that
5448 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5450 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5452 fsm_start:
5453 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5454 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5456 switch (ap->hsm_task_state) {
5457 case HSM_ST_FIRST:
5458 /* Send first data block or PACKET CDB */
5460 /* If polling, we will stay in the work queue after
5461 * sending the data. Otherwise, interrupt handler
5462 * takes over after sending the data.
5464 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5466 /* check device status */
5467 if (unlikely((status & ATA_DRQ) == 0)) {
5468 /* handle BSY=0, DRQ=0 as error */
5469 if (likely(status & (ATA_ERR | ATA_DF)))
5470 /* device stops HSM for abort/error */
5471 qc->err_mask |= AC_ERR_DEV;
5472 else
5473 /* HSM violation. Let EH handle this */
5474 qc->err_mask |= AC_ERR_HSM;
5476 ap->hsm_task_state = HSM_ST_ERR;
5477 goto fsm_start;
5480 /* Device should not ask for data transfer (DRQ=1)
5481 * when it finds something wrong.
5482 * We ignore DRQ here and stop the HSM by
5483 * changing hsm_task_state to HSM_ST_ERR and
5484 * let the EH abort the command or reset the device.
5486 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5487 /* Some ATAPI tape drives forget to clear the ERR bit
5488 * when doing the next command (mostly request sense).
5489 * We ignore ERR here to workaround and proceed sending
5490 * the CDB.
5492 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5493 ata_port_printk(ap, KERN_WARNING,
5494 "DRQ=1 with device error, "
5495 "dev_stat 0x%X\n", status);
5496 qc->err_mask |= AC_ERR_HSM;
5497 ap->hsm_task_state = HSM_ST_ERR;
5498 goto fsm_start;
5502 /* Send the CDB (atapi) or the first data block (ata pio out).
5503 * During the state transition, interrupt handler shouldn't
5504 * be invoked before the data transfer is complete and
5505 * hsm_task_state is changed. Hence, the following locking.
5507 if (in_wq)
5508 spin_lock_irqsave(ap->lock, flags);
5510 if (qc->tf.protocol == ATA_PROT_PIO) {
5511 /* PIO data out protocol.
5512 * send first data block.
5515 /* ata_pio_sectors() might change the state
5516 * to HSM_ST_LAST. so, the state is changed here
5517 * before ata_pio_sectors().
5519 ap->hsm_task_state = HSM_ST;
5520 ata_pio_sectors(qc);
5521 } else
5522 /* send CDB */
5523 atapi_send_cdb(ap, qc);
5525 if (in_wq)
5526 spin_unlock_irqrestore(ap->lock, flags);
5528 /* if polling, ata_pio_task() handles the rest.
5529 * otherwise, interrupt handler takes over from here.
5531 break;
5533 case HSM_ST:
5534 /* complete command or read/write the data register */
5535 if (qc->tf.protocol == ATAPI_PROT_PIO) {
5536 /* ATAPI PIO protocol */
5537 if ((status & ATA_DRQ) == 0) {
5538 /* No more data to transfer or device error.
5539 * Device error will be tagged in HSM_ST_LAST.
5541 ap->hsm_task_state = HSM_ST_LAST;
5542 goto fsm_start;
5545 /* Device should not ask for data transfer (DRQ=1)
5546 * when it finds something wrong.
5547 * We ignore DRQ here and stop the HSM by
5548 * changing hsm_task_state to HSM_ST_ERR and
5549 * let the EH abort the command or reset the device.
5551 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5552 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5553 "device error, dev_stat 0x%X\n",
5554 status);
5555 qc->err_mask |= AC_ERR_HSM;
5556 ap->hsm_task_state = HSM_ST_ERR;
5557 goto fsm_start;
5560 atapi_pio_bytes(qc);
5562 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5563 /* bad ireason reported by device */
5564 goto fsm_start;
5566 } else {
5567 /* ATA PIO protocol */
5568 if (unlikely((status & ATA_DRQ) == 0)) {
5569 /* handle BSY=0, DRQ=0 as error */
5570 if (likely(status & (ATA_ERR | ATA_DF)))
5571 /* device stops HSM for abort/error */
5572 qc->err_mask |= AC_ERR_DEV;
5573 else
5574 /* HSM violation. Let EH handle this.
5575 * Phantom devices also trigger this
5576 * condition. Mark hint.
5578 qc->err_mask |= AC_ERR_HSM |
5579 AC_ERR_NODEV_HINT;
5581 ap->hsm_task_state = HSM_ST_ERR;
5582 goto fsm_start;
5585 /* For PIO reads, some devices may ask for
5586 * data transfer (DRQ=1) alone with ERR=1.
5587 * We respect DRQ here and transfer one
5588 * block of junk data before changing the
5589 * hsm_task_state to HSM_ST_ERR.
5591 * For PIO writes, ERR=1 DRQ=1 doesn't make
5592 * sense since the data block has been
5593 * transferred to the device.
5595 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5596 /* data might be corrputed */
5597 qc->err_mask |= AC_ERR_DEV;
5599 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5600 ata_pio_sectors(qc);
5601 status = ata_wait_idle(ap);
5604 if (status & (ATA_BUSY | ATA_DRQ))
5605 qc->err_mask |= AC_ERR_HSM;
5607 /* ata_pio_sectors() might change the
5608 * state to HSM_ST_LAST. so, the state
5609 * is changed after ata_pio_sectors().
5611 ap->hsm_task_state = HSM_ST_ERR;
5612 goto fsm_start;
5615 ata_pio_sectors(qc);
5617 if (ap->hsm_task_state == HSM_ST_LAST &&
5618 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5619 /* all data read */
5620 status = ata_wait_idle(ap);
5621 goto fsm_start;
5625 poll_next = 1;
5626 break;
5628 case HSM_ST_LAST:
5629 if (unlikely(!ata_ok(status))) {
5630 qc->err_mask |= __ac_err_mask(status);
5631 ap->hsm_task_state = HSM_ST_ERR;
5632 goto fsm_start;
5635 /* no more data to transfer */
5636 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5637 ap->print_id, qc->dev->devno, status);
5639 WARN_ON(qc->err_mask);
5641 ap->hsm_task_state = HSM_ST_IDLE;
5643 /* complete taskfile transaction */
5644 ata_hsm_qc_complete(qc, in_wq);
5646 poll_next = 0;
5647 break;
5649 case HSM_ST_ERR:
5650 /* make sure qc->err_mask is available to
5651 * know what's wrong and recover
5653 WARN_ON(qc->err_mask == 0);
5655 ap->hsm_task_state = HSM_ST_IDLE;
5657 /* complete taskfile transaction */
5658 ata_hsm_qc_complete(qc, in_wq);
5660 poll_next = 0;
5661 break;
5662 default:
5663 poll_next = 0;
5664 BUG();
5667 return poll_next;
5670 static void ata_pio_task(struct work_struct *work)
5672 struct ata_port *ap =
5673 container_of(work, struct ata_port, port_task.work);
5674 struct ata_queued_cmd *qc = ap->port_task_data;
5675 u8 status;
5676 int poll_next;
5678 fsm_start:
5679 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5682 * This is purely heuristic. This is a fast path.
5683 * Sometimes when we enter, BSY will be cleared in
5684 * a chk-status or two. If not, the drive is probably seeking
5685 * or something. Snooze for a couple msecs, then
5686 * chk-status again. If still busy, queue delayed work.
5688 status = ata_busy_wait(ap, ATA_BUSY, 5);
5689 if (status & ATA_BUSY) {
5690 msleep(2);
5691 status = ata_busy_wait(ap, ATA_BUSY, 10);
5692 if (status & ATA_BUSY) {
5693 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5694 return;
5698 /* move the HSM */
5699 poll_next = ata_hsm_move(ap, qc, status, 1);
5701 /* another command or interrupt handler
5702 * may be running at this point.
5704 if (poll_next)
5705 goto fsm_start;
5709 * ata_qc_new - Request an available ATA command, for queueing
5710 * @ap: Port associated with device @dev
5711 * @dev: Device from whom we request an available command structure
5713 * LOCKING:
5714 * None.
5717 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5719 struct ata_queued_cmd *qc = NULL;
5720 unsigned int i;
5722 /* no command while frozen */
5723 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5724 return NULL;
5726 /* the last tag is reserved for internal command. */
5727 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5728 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5729 qc = __ata_qc_from_tag(ap, i);
5730 break;
5733 if (qc)
5734 qc->tag = i;
5736 return qc;
5740 * ata_qc_new_init - Request an available ATA command, and initialize it
5741 * @dev: Device from whom we request an available command structure
5743 * LOCKING:
5744 * None.
5747 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5749 struct ata_port *ap = dev->link->ap;
5750 struct ata_queued_cmd *qc;
5752 qc = ata_qc_new(ap);
5753 if (qc) {
5754 qc->scsicmd = NULL;
5755 qc->ap = ap;
5756 qc->dev = dev;
5758 ata_qc_reinit(qc);
5761 return qc;
5765 * ata_qc_free - free unused ata_queued_cmd
5766 * @qc: Command to complete
5768 * Designed to free unused ata_queued_cmd object
5769 * in case something prevents using it.
5771 * LOCKING:
5772 * spin_lock_irqsave(host lock)
5774 void ata_qc_free(struct ata_queued_cmd *qc)
5776 struct ata_port *ap = qc->ap;
5777 unsigned int tag;
5779 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5781 qc->flags = 0;
5782 tag = qc->tag;
5783 if (likely(ata_tag_valid(tag))) {
5784 qc->tag = ATA_TAG_POISON;
5785 clear_bit(tag, &ap->qc_allocated);
5789 void __ata_qc_complete(struct ata_queued_cmd *qc)
5791 struct ata_port *ap = qc->ap;
5792 struct ata_link *link = qc->dev->link;
5794 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5795 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5797 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5798 ata_sg_clean(qc);
5800 /* command should be marked inactive atomically with qc completion */
5801 if (qc->tf.protocol == ATA_PROT_NCQ) {
5802 link->sactive &= ~(1 << qc->tag);
5803 if (!link->sactive)
5804 ap->nr_active_links--;
5805 } else {
5806 link->active_tag = ATA_TAG_POISON;
5807 ap->nr_active_links--;
5810 /* clear exclusive status */
5811 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5812 ap->excl_link == link))
5813 ap->excl_link = NULL;
5815 /* atapi: mark qc as inactive to prevent the interrupt handler
5816 * from completing the command twice later, before the error handler
5817 * is called. (when rc != 0 and atapi request sense is needed)
5819 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5820 ap->qc_active &= ~(1 << qc->tag);
5822 /* call completion callback */
5823 qc->complete_fn(qc);
5826 static void fill_result_tf(struct ata_queued_cmd *qc)
5828 struct ata_port *ap = qc->ap;
5830 qc->result_tf.flags = qc->tf.flags;
5831 ap->ops->tf_read(ap, &qc->result_tf);
5834 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5836 struct ata_device *dev = qc->dev;
5838 if (ata_tag_internal(qc->tag))
5839 return;
5841 if (ata_is_nodata(qc->tf.protocol))
5842 return;
5844 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5845 return;
5847 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5851 * ata_qc_complete - Complete an active ATA command
5852 * @qc: Command to complete
5853 * @err_mask: ATA Status register contents
5855 * Indicate to the mid and upper layers that an ATA
5856 * command has completed, with either an ok or not-ok status.
5858 * LOCKING:
5859 * spin_lock_irqsave(host lock)
5861 void ata_qc_complete(struct ata_queued_cmd *qc)
5863 struct ata_port *ap = qc->ap;
5865 /* XXX: New EH and old EH use different mechanisms to
5866 * synchronize EH with regular execution path.
5868 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5869 * Normal execution path is responsible for not accessing a
5870 * failed qc. libata core enforces the rule by returning NULL
5871 * from ata_qc_from_tag() for failed qcs.
5873 * Old EH depends on ata_qc_complete() nullifying completion
5874 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5875 * not synchronize with interrupt handler. Only PIO task is
5876 * taken care of.
5878 if (ap->ops->error_handler) {
5879 struct ata_device *dev = qc->dev;
5880 struct ata_eh_info *ehi = &dev->link->eh_info;
5882 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5884 if (unlikely(qc->err_mask))
5885 qc->flags |= ATA_QCFLAG_FAILED;
5887 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5888 if (!ata_tag_internal(qc->tag)) {
5889 /* always fill result TF for failed qc */
5890 fill_result_tf(qc);
5891 ata_qc_schedule_eh(qc);
5892 return;
5896 /* read result TF if requested */
5897 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5898 fill_result_tf(qc);
5900 /* Some commands need post-processing after successful
5901 * completion.
5903 switch (qc->tf.command) {
5904 case ATA_CMD_SET_FEATURES:
5905 if (qc->tf.feature != SETFEATURES_WC_ON &&
5906 qc->tf.feature != SETFEATURES_WC_OFF)
5907 break;
5908 /* fall through */
5909 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5910 case ATA_CMD_SET_MULTI: /* multi_count changed */
5911 /* revalidate device */
5912 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5913 ata_port_schedule_eh(ap);
5914 break;
5916 case ATA_CMD_SLEEP:
5917 dev->flags |= ATA_DFLAG_SLEEPING;
5918 break;
5921 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5922 ata_verify_xfer(qc);
5924 __ata_qc_complete(qc);
5925 } else {
5926 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5927 return;
5929 /* read result TF if failed or requested */
5930 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5931 fill_result_tf(qc);
5933 __ata_qc_complete(qc);
5938 * ata_qc_complete_multiple - Complete multiple qcs successfully
5939 * @ap: port in question
5940 * @qc_active: new qc_active mask
5941 * @finish_qc: LLDD callback invoked before completing a qc
5943 * Complete in-flight commands. This functions is meant to be
5944 * called from low-level driver's interrupt routine to complete
5945 * requests normally. ap->qc_active and @qc_active is compared
5946 * and commands are completed accordingly.
5948 * LOCKING:
5949 * spin_lock_irqsave(host lock)
5951 * RETURNS:
5952 * Number of completed commands on success, -errno otherwise.
5954 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5955 void (*finish_qc)(struct ata_queued_cmd *))
5957 int nr_done = 0;
5958 u32 done_mask;
5959 int i;
5961 done_mask = ap->qc_active ^ qc_active;
5963 if (unlikely(done_mask & qc_active)) {
5964 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5965 "(%08x->%08x)\n", ap->qc_active, qc_active);
5966 return -EINVAL;
5969 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5970 struct ata_queued_cmd *qc;
5972 if (!(done_mask & (1 << i)))
5973 continue;
5975 if ((qc = ata_qc_from_tag(ap, i))) {
5976 if (finish_qc)
5977 finish_qc(qc);
5978 ata_qc_complete(qc);
5979 nr_done++;
5983 return nr_done;
5987 * ata_qc_issue - issue taskfile to device
5988 * @qc: command to issue to device
5990 * Prepare an ATA command to submission to device.
5991 * This includes mapping the data into a DMA-able
5992 * area, filling in the S/G table, and finally
5993 * writing the taskfile to hardware, starting the command.
5995 * LOCKING:
5996 * spin_lock_irqsave(host lock)
5998 void ata_qc_issue(struct ata_queued_cmd *qc)
6000 struct ata_port *ap = qc->ap;
6001 struct ata_link *link = qc->dev->link;
6002 u8 prot = qc->tf.protocol;
6004 /* Make sure only one non-NCQ command is outstanding. The
6005 * check is skipped for old EH because it reuses active qc to
6006 * request ATAPI sense.
6008 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
6010 if (ata_is_ncq(prot)) {
6011 WARN_ON(link->sactive & (1 << qc->tag));
6013 if (!link->sactive)
6014 ap->nr_active_links++;
6015 link->sactive |= 1 << qc->tag;
6016 } else {
6017 WARN_ON(link->sactive);
6019 ap->nr_active_links++;
6020 link->active_tag = qc->tag;
6023 qc->flags |= ATA_QCFLAG_ACTIVE;
6024 ap->qc_active |= 1 << qc->tag;
6026 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
6027 (ap->flags & ATA_FLAG_PIO_DMA))) {
6028 if (qc->flags & ATA_QCFLAG_SG) {
6029 if (ata_sg_setup(qc))
6030 goto sg_err;
6031 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
6032 if (ata_sg_setup_one(qc))
6033 goto sg_err;
6035 } else {
6036 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6039 /* if device is sleeping, schedule softreset and abort the link */
6040 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6041 link->eh_info.action |= ATA_EH_SOFTRESET;
6042 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6043 ata_link_abort(link);
6044 return;
6047 ap->ops->qc_prep(qc);
6049 qc->err_mask |= ap->ops->qc_issue(qc);
6050 if (unlikely(qc->err_mask))
6051 goto err;
6052 return;
6054 sg_err:
6055 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6056 qc->err_mask |= AC_ERR_SYSTEM;
6057 err:
6058 ata_qc_complete(qc);
6062 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6063 * @qc: command to issue to device
6065 * Using various libata functions and hooks, this function
6066 * starts an ATA command. ATA commands are grouped into
6067 * classes called "protocols", and issuing each type of protocol
6068 * is slightly different.
6070 * May be used as the qc_issue() entry in ata_port_operations.
6072 * LOCKING:
6073 * spin_lock_irqsave(host lock)
6075 * RETURNS:
6076 * Zero on success, AC_ERR_* mask on failure
6079 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6081 struct ata_port *ap = qc->ap;
6083 /* Use polling pio if the LLD doesn't handle
6084 * interrupt driven pio and atapi CDB interrupt.
6086 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6087 switch (qc->tf.protocol) {
6088 case ATA_PROT_PIO:
6089 case ATA_PROT_NODATA:
6090 case ATAPI_PROT_PIO:
6091 case ATAPI_PROT_NODATA:
6092 qc->tf.flags |= ATA_TFLAG_POLLING;
6093 break;
6094 case ATAPI_PROT_DMA:
6095 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6096 /* see ata_dma_blacklisted() */
6097 BUG();
6098 break;
6099 default:
6100 break;
6104 /* select the device */
6105 ata_dev_select(ap, qc->dev->devno, 1, 0);
6107 /* start the command */
6108 switch (qc->tf.protocol) {
6109 case ATA_PROT_NODATA:
6110 if (qc->tf.flags & ATA_TFLAG_POLLING)
6111 ata_qc_set_polling(qc);
6113 ata_tf_to_host(ap, &qc->tf);
6114 ap->hsm_task_state = HSM_ST_LAST;
6116 if (qc->tf.flags & ATA_TFLAG_POLLING)
6117 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6119 break;
6121 case ATA_PROT_DMA:
6122 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6124 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6125 ap->ops->bmdma_setup(qc); /* set up bmdma */
6126 ap->ops->bmdma_start(qc); /* initiate bmdma */
6127 ap->hsm_task_state = HSM_ST_LAST;
6128 break;
6130 case ATA_PROT_PIO:
6131 if (qc->tf.flags & ATA_TFLAG_POLLING)
6132 ata_qc_set_polling(qc);
6134 ata_tf_to_host(ap, &qc->tf);
6136 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6137 /* PIO data out protocol */
6138 ap->hsm_task_state = HSM_ST_FIRST;
6139 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6141 /* always send first data block using
6142 * the ata_pio_task() codepath.
6144 } else {
6145 /* PIO data in protocol */
6146 ap->hsm_task_state = HSM_ST;
6148 if (qc->tf.flags & ATA_TFLAG_POLLING)
6149 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6151 /* if polling, ata_pio_task() handles the rest.
6152 * otherwise, interrupt handler takes over from here.
6156 break;
6158 case ATAPI_PROT_PIO:
6159 case ATAPI_PROT_NODATA:
6160 if (qc->tf.flags & ATA_TFLAG_POLLING)
6161 ata_qc_set_polling(qc);
6163 ata_tf_to_host(ap, &qc->tf);
6165 ap->hsm_task_state = HSM_ST_FIRST;
6167 /* send cdb by polling if no cdb interrupt */
6168 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6169 (qc->tf.flags & ATA_TFLAG_POLLING))
6170 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6171 break;
6173 case ATAPI_PROT_DMA:
6174 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6176 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6177 ap->ops->bmdma_setup(qc); /* set up bmdma */
6178 ap->hsm_task_state = HSM_ST_FIRST;
6180 /* send cdb by polling if no cdb interrupt */
6181 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6182 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6183 break;
6185 default:
6186 WARN_ON(1);
6187 return AC_ERR_SYSTEM;
6190 return 0;
6194 * ata_host_intr - Handle host interrupt for given (port, task)
6195 * @ap: Port on which interrupt arrived (possibly...)
6196 * @qc: Taskfile currently active in engine
6198 * Handle host interrupt for given queued command. Currently,
6199 * only DMA interrupts are handled. All other commands are
6200 * handled via polling with interrupts disabled (nIEN bit).
6202 * LOCKING:
6203 * spin_lock_irqsave(host lock)
6205 * RETURNS:
6206 * One if interrupt was handled, zero if not (shared irq).
6209 inline unsigned int ata_host_intr(struct ata_port *ap,
6210 struct ata_queued_cmd *qc)
6212 struct ata_eh_info *ehi = &ap->link.eh_info;
6213 u8 status, host_stat = 0;
6215 VPRINTK("ata%u: protocol %d task_state %d\n",
6216 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6218 /* Check whether we are expecting interrupt in this state */
6219 switch (ap->hsm_task_state) {
6220 case HSM_ST_FIRST:
6221 /* Some pre-ATAPI-4 devices assert INTRQ
6222 * at this state when ready to receive CDB.
6225 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6226 * The flag was turned on only for atapi devices. No
6227 * need to check ata_is_atapi(qc->tf.protocol) again.
6229 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6230 goto idle_irq;
6231 break;
6232 case HSM_ST_LAST:
6233 if (qc->tf.protocol == ATA_PROT_DMA ||
6234 qc->tf.protocol == ATAPI_PROT_DMA) {
6235 /* check status of DMA engine */
6236 host_stat = ap->ops->bmdma_status(ap);
6237 VPRINTK("ata%u: host_stat 0x%X\n",
6238 ap->print_id, host_stat);
6240 /* if it's not our irq... */
6241 if (!(host_stat & ATA_DMA_INTR))
6242 goto idle_irq;
6244 /* before we do anything else, clear DMA-Start bit */
6245 ap->ops->bmdma_stop(qc);
6247 if (unlikely(host_stat & ATA_DMA_ERR)) {
6248 /* error when transfering data to/from memory */
6249 qc->err_mask |= AC_ERR_HOST_BUS;
6250 ap->hsm_task_state = HSM_ST_ERR;
6253 break;
6254 case HSM_ST:
6255 break;
6256 default:
6257 goto idle_irq;
6260 /* check altstatus */
6261 status = ata_altstatus(ap);
6262 if (status & ATA_BUSY)
6263 goto idle_irq;
6265 /* check main status, clearing INTRQ */
6266 status = ata_chk_status(ap);
6267 if (unlikely(status & ATA_BUSY))
6268 goto idle_irq;
6270 /* ack bmdma irq events */
6271 ap->ops->irq_clear(ap);
6273 ata_hsm_move(ap, qc, status, 0);
6275 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6276 qc->tf.protocol == ATAPI_PROT_DMA))
6277 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6279 return 1; /* irq handled */
6281 idle_irq:
6282 ap->stats.idle_irq++;
6284 #ifdef ATA_IRQ_TRAP
6285 if ((ap->stats.idle_irq % 1000) == 0) {
6286 ata_chk_status(ap);
6287 ap->ops->irq_clear(ap);
6288 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6289 return 1;
6291 #endif
6292 return 0; /* irq not handled */
6296 * ata_interrupt - Default ATA host interrupt handler
6297 * @irq: irq line (unused)
6298 * @dev_instance: pointer to our ata_host information structure
6300 * Default interrupt handler for PCI IDE devices. Calls
6301 * ata_host_intr() for each port that is not disabled.
6303 * LOCKING:
6304 * Obtains host lock during operation.
6306 * RETURNS:
6307 * IRQ_NONE or IRQ_HANDLED.
6310 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6312 struct ata_host *host = dev_instance;
6313 unsigned int i;
6314 unsigned int handled = 0;
6315 unsigned long flags;
6317 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6318 spin_lock_irqsave(&host->lock, flags);
6320 for (i = 0; i < host->n_ports; i++) {
6321 struct ata_port *ap;
6323 ap = host->ports[i];
6324 if (ap &&
6325 !(ap->flags & ATA_FLAG_DISABLED)) {
6326 struct ata_queued_cmd *qc;
6328 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6329 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6330 (qc->flags & ATA_QCFLAG_ACTIVE))
6331 handled |= ata_host_intr(ap, qc);
6335 spin_unlock_irqrestore(&host->lock, flags);
6337 return IRQ_RETVAL(handled);
6341 * sata_scr_valid - test whether SCRs are accessible
6342 * @link: ATA link to test SCR accessibility for
6344 * Test whether SCRs are accessible for @link.
6346 * LOCKING:
6347 * None.
6349 * RETURNS:
6350 * 1 if SCRs are accessible, 0 otherwise.
6352 int sata_scr_valid(struct ata_link *link)
6354 struct ata_port *ap = link->ap;
6356 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6360 * sata_scr_read - read SCR register of the specified port
6361 * @link: ATA link to read SCR for
6362 * @reg: SCR to read
6363 * @val: Place to store read value
6365 * Read SCR register @reg of @link into *@val. This function is
6366 * guaranteed to succeed if @link is ap->link, the cable type of
6367 * the port is SATA and the port implements ->scr_read.
6369 * LOCKING:
6370 * None if @link is ap->link. Kernel thread context otherwise.
6372 * RETURNS:
6373 * 0 on success, negative errno on failure.
6375 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6377 if (ata_is_host_link(link)) {
6378 struct ata_port *ap = link->ap;
6380 if (sata_scr_valid(link))
6381 return ap->ops->scr_read(ap, reg, val);
6382 return -EOPNOTSUPP;
6385 return sata_pmp_scr_read(link, reg, val);
6389 * sata_scr_write - write SCR register of the specified port
6390 * @link: ATA link to write SCR for
6391 * @reg: SCR to write
6392 * @val: value to write
6394 * Write @val to SCR register @reg of @link. This function is
6395 * guaranteed to succeed if @link is ap->link, the cable type of
6396 * the port is SATA and the port implements ->scr_read.
6398 * LOCKING:
6399 * None if @link is ap->link. Kernel thread context otherwise.
6401 * RETURNS:
6402 * 0 on success, negative errno on failure.
6404 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6406 if (ata_is_host_link(link)) {
6407 struct ata_port *ap = link->ap;
6409 if (sata_scr_valid(link))
6410 return ap->ops->scr_write(ap, reg, val);
6411 return -EOPNOTSUPP;
6414 return sata_pmp_scr_write(link, reg, val);
6418 * sata_scr_write_flush - write SCR register of the specified port and flush
6419 * @link: ATA link to write SCR for
6420 * @reg: SCR to write
6421 * @val: value to write
6423 * This function is identical to sata_scr_write() except that this
6424 * function performs flush after writing to the register.
6426 * LOCKING:
6427 * None if @link is ap->link. Kernel thread context otherwise.
6429 * RETURNS:
6430 * 0 on success, negative errno on failure.
6432 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6434 if (ata_is_host_link(link)) {
6435 struct ata_port *ap = link->ap;
6436 int rc;
6438 if (sata_scr_valid(link)) {
6439 rc = ap->ops->scr_write(ap, reg, val);
6440 if (rc == 0)
6441 rc = ap->ops->scr_read(ap, reg, &val);
6442 return rc;
6444 return -EOPNOTSUPP;
6447 return sata_pmp_scr_write(link, reg, val);
6451 * ata_link_online - test whether the given link is online
6452 * @link: ATA link to test
6454 * Test whether @link is online. Note that this function returns
6455 * 0 if online status of @link cannot be obtained, so
6456 * ata_link_online(link) != !ata_link_offline(link).
6458 * LOCKING:
6459 * None.
6461 * RETURNS:
6462 * 1 if the port online status is available and online.
6464 int ata_link_online(struct ata_link *link)
6466 u32 sstatus;
6468 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6469 (sstatus & 0xf) == 0x3)
6470 return 1;
6471 return 0;
6475 * ata_link_offline - test whether the given link is offline
6476 * @link: ATA link to test
6478 * Test whether @link is offline. Note that this function
6479 * returns 0 if offline status of @link cannot be obtained, so
6480 * ata_link_online(link) != !ata_link_offline(link).
6482 * LOCKING:
6483 * None.
6485 * RETURNS:
6486 * 1 if the port offline status is available and offline.
6488 int ata_link_offline(struct ata_link *link)
6490 u32 sstatus;
6492 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6493 (sstatus & 0xf) != 0x3)
6494 return 1;
6495 return 0;
6498 int ata_flush_cache(struct ata_device *dev)
6500 unsigned int err_mask;
6501 u8 cmd;
6503 if (!ata_try_flush_cache(dev))
6504 return 0;
6506 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6507 cmd = ATA_CMD_FLUSH_EXT;
6508 else
6509 cmd = ATA_CMD_FLUSH;
6511 /* This is wrong. On a failed flush we get back the LBA of the lost
6512 sector and we should (assuming it wasn't aborted as unknown) issue
6513 a further flush command to continue the writeback until it
6514 does not error */
6515 err_mask = ata_do_simple_cmd(dev, cmd);
6516 if (err_mask) {
6517 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6518 return -EIO;
6521 return 0;
6524 #ifdef CONFIG_PM
6525 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6526 unsigned int action, unsigned int ehi_flags,
6527 int wait)
6529 unsigned long flags;
6530 int i, rc;
6532 for (i = 0; i < host->n_ports; i++) {
6533 struct ata_port *ap = host->ports[i];
6534 struct ata_link *link;
6536 /* Previous resume operation might still be in
6537 * progress. Wait for PM_PENDING to clear.
6539 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6540 ata_port_wait_eh(ap);
6541 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6544 /* request PM ops to EH */
6545 spin_lock_irqsave(ap->lock, flags);
6547 ap->pm_mesg = mesg;
6548 if (wait) {
6549 rc = 0;
6550 ap->pm_result = &rc;
6553 ap->pflags |= ATA_PFLAG_PM_PENDING;
6554 __ata_port_for_each_link(link, ap) {
6555 link->eh_info.action |= action;
6556 link->eh_info.flags |= ehi_flags;
6559 ata_port_schedule_eh(ap);
6561 spin_unlock_irqrestore(ap->lock, flags);
6563 /* wait and check result */
6564 if (wait) {
6565 ata_port_wait_eh(ap);
6566 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6567 if (rc)
6568 return rc;
6572 return 0;
6576 * ata_host_suspend - suspend host
6577 * @host: host to suspend
6578 * @mesg: PM message
6580 * Suspend @host. Actual operation is performed by EH. This
6581 * function requests EH to perform PM operations and waits for EH
6582 * to finish.
6584 * LOCKING:
6585 * Kernel thread context (may sleep).
6587 * RETURNS:
6588 * 0 on success, -errno on failure.
6590 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6592 int rc;
6595 * disable link pm on all ports before requesting
6596 * any pm activity
6598 ata_lpm_enable(host);
6600 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6601 if (rc == 0)
6602 host->dev->power.power_state = mesg;
6603 return rc;
6607 * ata_host_resume - resume host
6608 * @host: host to resume
6610 * Resume @host. Actual operation is performed by EH. This
6611 * function requests EH to perform PM operations and returns.
6612 * Note that all resume operations are performed parallely.
6614 * LOCKING:
6615 * Kernel thread context (may sleep).
6617 void ata_host_resume(struct ata_host *host)
6619 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6620 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6621 host->dev->power.power_state = PMSG_ON;
6623 /* reenable link pm */
6624 ata_lpm_disable(host);
6626 #endif
6629 * ata_port_start - Set port up for dma.
6630 * @ap: Port to initialize
6632 * Called just after data structures for each port are
6633 * initialized. Allocates space for PRD table.
6635 * May be used as the port_start() entry in ata_port_operations.
6637 * LOCKING:
6638 * Inherited from caller.
6640 int ata_port_start(struct ata_port *ap)
6642 struct device *dev = ap->dev;
6643 int rc;
6645 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6646 GFP_KERNEL);
6647 if (!ap->prd)
6648 return -ENOMEM;
6650 rc = ata_pad_alloc(ap, dev);
6651 if (rc)
6652 return rc;
6654 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6655 (unsigned long long)ap->prd_dma);
6656 return 0;
6660 * ata_dev_init - Initialize an ata_device structure
6661 * @dev: Device structure to initialize
6663 * Initialize @dev in preparation for probing.
6665 * LOCKING:
6666 * Inherited from caller.
6668 void ata_dev_init(struct ata_device *dev)
6670 struct ata_link *link = dev->link;
6671 struct ata_port *ap = link->ap;
6672 unsigned long flags;
6674 /* SATA spd limit is bound to the first device */
6675 link->sata_spd_limit = link->hw_sata_spd_limit;
6676 link->sata_spd = 0;
6678 /* High bits of dev->flags are used to record warm plug
6679 * requests which occur asynchronously. Synchronize using
6680 * host lock.
6682 spin_lock_irqsave(ap->lock, flags);
6683 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6684 dev->horkage = 0;
6685 spin_unlock_irqrestore(ap->lock, flags);
6687 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6688 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6689 dev->pio_mask = UINT_MAX;
6690 dev->mwdma_mask = UINT_MAX;
6691 dev->udma_mask = UINT_MAX;
6695 * ata_link_init - Initialize an ata_link structure
6696 * @ap: ATA port link is attached to
6697 * @link: Link structure to initialize
6698 * @pmp: Port multiplier port number
6700 * Initialize @link.
6702 * LOCKING:
6703 * Kernel thread context (may sleep)
6705 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6707 int i;
6709 /* clear everything except for devices */
6710 memset(link, 0, offsetof(struct ata_link, device[0]));
6712 link->ap = ap;
6713 link->pmp = pmp;
6714 link->active_tag = ATA_TAG_POISON;
6715 link->hw_sata_spd_limit = UINT_MAX;
6717 /* can't use iterator, ap isn't initialized yet */
6718 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6719 struct ata_device *dev = &link->device[i];
6721 dev->link = link;
6722 dev->devno = dev - link->device;
6723 ata_dev_init(dev);
6728 * sata_link_init_spd - Initialize link->sata_spd_limit
6729 * @link: Link to configure sata_spd_limit for
6731 * Initialize @link->[hw_]sata_spd_limit to the currently
6732 * configured value.
6734 * LOCKING:
6735 * Kernel thread context (may sleep).
6737 * RETURNS:
6738 * 0 on success, -errno on failure.
6740 int sata_link_init_spd(struct ata_link *link)
6742 u32 scontrol, spd;
6743 int rc;
6745 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6746 if (rc)
6747 return rc;
6749 spd = (scontrol >> 4) & 0xf;
6750 if (spd)
6751 link->hw_sata_spd_limit &= (1 << spd) - 1;
6753 link->sata_spd_limit = link->hw_sata_spd_limit;
6755 return 0;
6759 * ata_port_alloc - allocate and initialize basic ATA port resources
6760 * @host: ATA host this allocated port belongs to
6762 * Allocate and initialize basic ATA port resources.
6764 * RETURNS:
6765 * Allocate ATA port on success, NULL on failure.
6767 * LOCKING:
6768 * Inherited from calling layer (may sleep).
6770 struct ata_port *ata_port_alloc(struct ata_host *host)
6772 struct ata_port *ap;
6774 DPRINTK("ENTER\n");
6776 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6777 if (!ap)
6778 return NULL;
6780 ap->pflags |= ATA_PFLAG_INITIALIZING;
6781 ap->lock = &host->lock;
6782 ap->flags = ATA_FLAG_DISABLED;
6783 ap->print_id = -1;
6784 ap->ctl = ATA_DEVCTL_OBS;
6785 ap->host = host;
6786 ap->dev = host->dev;
6787 ap->last_ctl = 0xFF;
6789 #if defined(ATA_VERBOSE_DEBUG)
6790 /* turn on all debugging levels */
6791 ap->msg_enable = 0x00FF;
6792 #elif defined(ATA_DEBUG)
6793 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6794 #else
6795 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6796 #endif
6798 INIT_DELAYED_WORK(&ap->port_task, NULL);
6799 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6800 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6801 INIT_LIST_HEAD(&ap->eh_done_q);
6802 init_waitqueue_head(&ap->eh_wait_q);
6803 init_timer_deferrable(&ap->fastdrain_timer);
6804 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6805 ap->fastdrain_timer.data = (unsigned long)ap;
6807 ap->cbl = ATA_CBL_NONE;
6809 ata_link_init(ap, &ap->link, 0);
6811 #ifdef ATA_IRQ_TRAP
6812 ap->stats.unhandled_irq = 1;
6813 ap->stats.idle_irq = 1;
6814 #endif
6815 return ap;
6818 static void ata_host_release(struct device *gendev, void *res)
6820 struct ata_host *host = dev_get_drvdata(gendev);
6821 int i;
6823 for (i = 0; i < host->n_ports; i++) {
6824 struct ata_port *ap = host->ports[i];
6826 if (!ap)
6827 continue;
6829 if (ap->scsi_host)
6830 scsi_host_put(ap->scsi_host);
6832 kfree(ap->pmp_link);
6833 kfree(ap);
6834 host->ports[i] = NULL;
6837 dev_set_drvdata(gendev, NULL);
6841 * ata_host_alloc - allocate and init basic ATA host resources
6842 * @dev: generic device this host is associated with
6843 * @max_ports: maximum number of ATA ports associated with this host
6845 * Allocate and initialize basic ATA host resources. LLD calls
6846 * this function to allocate a host, initializes it fully and
6847 * attaches it using ata_host_register().
6849 * @max_ports ports are allocated and host->n_ports is
6850 * initialized to @max_ports. The caller is allowed to decrease
6851 * host->n_ports before calling ata_host_register(). The unused
6852 * ports will be automatically freed on registration.
6854 * RETURNS:
6855 * Allocate ATA host on success, NULL on failure.
6857 * LOCKING:
6858 * Inherited from calling layer (may sleep).
6860 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6862 struct ata_host *host;
6863 size_t sz;
6864 int i;
6866 DPRINTK("ENTER\n");
6868 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6869 return NULL;
6871 /* alloc a container for our list of ATA ports (buses) */
6872 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6873 /* alloc a container for our list of ATA ports (buses) */
6874 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6875 if (!host)
6876 goto err_out;
6878 devres_add(dev, host);
6879 dev_set_drvdata(dev, host);
6881 spin_lock_init(&host->lock);
6882 host->dev = dev;
6883 host->n_ports = max_ports;
6885 /* allocate ports bound to this host */
6886 for (i = 0; i < max_ports; i++) {
6887 struct ata_port *ap;
6889 ap = ata_port_alloc(host);
6890 if (!ap)
6891 goto err_out;
6893 ap->port_no = i;
6894 host->ports[i] = ap;
6897 devres_remove_group(dev, NULL);
6898 return host;
6900 err_out:
6901 devres_release_group(dev, NULL);
6902 return NULL;
6906 * ata_host_alloc_pinfo - alloc host and init with port_info array
6907 * @dev: generic device this host is associated with
6908 * @ppi: array of ATA port_info to initialize host with
6909 * @n_ports: number of ATA ports attached to this host
6911 * Allocate ATA host and initialize with info from @ppi. If NULL
6912 * terminated, @ppi may contain fewer entries than @n_ports. The
6913 * last entry will be used for the remaining ports.
6915 * RETURNS:
6916 * Allocate ATA host on success, NULL on failure.
6918 * LOCKING:
6919 * Inherited from calling layer (may sleep).
6921 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6922 const struct ata_port_info * const * ppi,
6923 int n_ports)
6925 const struct ata_port_info *pi;
6926 struct ata_host *host;
6927 int i, j;
6929 host = ata_host_alloc(dev, n_ports);
6930 if (!host)
6931 return NULL;
6933 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6934 struct ata_port *ap = host->ports[i];
6936 if (ppi[j])
6937 pi = ppi[j++];
6939 ap->pio_mask = pi->pio_mask;
6940 ap->mwdma_mask = pi->mwdma_mask;
6941 ap->udma_mask = pi->udma_mask;
6942 ap->flags |= pi->flags;
6943 ap->link.flags |= pi->link_flags;
6944 ap->ops = pi->port_ops;
6946 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6947 host->ops = pi->port_ops;
6948 if (!host->private_data && pi->private_data)
6949 host->private_data = pi->private_data;
6952 return host;
6955 static void ata_host_stop(struct device *gendev, void *res)
6957 struct ata_host *host = dev_get_drvdata(gendev);
6958 int i;
6960 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6962 for (i = 0; i < host->n_ports; i++) {
6963 struct ata_port *ap = host->ports[i];
6965 if (ap->ops->port_stop)
6966 ap->ops->port_stop(ap);
6969 if (host->ops->host_stop)
6970 host->ops->host_stop(host);
6974 * ata_host_start - start and freeze ports of an ATA host
6975 * @host: ATA host to start ports for
6977 * Start and then freeze ports of @host. Started status is
6978 * recorded in host->flags, so this function can be called
6979 * multiple times. Ports are guaranteed to get started only
6980 * once. If host->ops isn't initialized yet, its set to the
6981 * first non-dummy port ops.
6983 * LOCKING:
6984 * Inherited from calling layer (may sleep).
6986 * RETURNS:
6987 * 0 if all ports are started successfully, -errno otherwise.
6989 int ata_host_start(struct ata_host *host)
6991 int have_stop = 0;
6992 void *start_dr = NULL;
6993 int i, rc;
6995 if (host->flags & ATA_HOST_STARTED)
6996 return 0;
6998 for (i = 0; i < host->n_ports; i++) {
6999 struct ata_port *ap = host->ports[i];
7001 if (!host->ops && !ata_port_is_dummy(ap))
7002 host->ops = ap->ops;
7004 if (ap->ops->port_stop)
7005 have_stop = 1;
7008 if (host->ops->host_stop)
7009 have_stop = 1;
7011 if (have_stop) {
7012 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
7013 if (!start_dr)
7014 return -ENOMEM;
7017 for (i = 0; i < host->n_ports; i++) {
7018 struct ata_port *ap = host->ports[i];
7020 if (ap->ops->port_start) {
7021 rc = ap->ops->port_start(ap);
7022 if (rc) {
7023 if (rc != -ENODEV)
7024 dev_printk(KERN_ERR, host->dev,
7025 "failed to start port %d "
7026 "(errno=%d)\n", i, rc);
7027 goto err_out;
7030 ata_eh_freeze_port(ap);
7033 if (start_dr)
7034 devres_add(host->dev, start_dr);
7035 host->flags |= ATA_HOST_STARTED;
7036 return 0;
7038 err_out:
7039 while (--i >= 0) {
7040 struct ata_port *ap = host->ports[i];
7042 if (ap->ops->port_stop)
7043 ap->ops->port_stop(ap);
7045 devres_free(start_dr);
7046 return rc;
7050 * ata_sas_host_init - Initialize a host struct
7051 * @host: host to initialize
7052 * @dev: device host is attached to
7053 * @flags: host flags
7054 * @ops: port_ops
7056 * LOCKING:
7057 * PCI/etc. bus probe sem.
7060 /* KILLME - the only user left is ipr */
7061 void ata_host_init(struct ata_host *host, struct device *dev,
7062 unsigned long flags, const struct ata_port_operations *ops)
7064 spin_lock_init(&host->lock);
7065 host->dev = dev;
7066 host->flags = flags;
7067 host->ops = ops;
7071 * ata_host_register - register initialized ATA host
7072 * @host: ATA host to register
7073 * @sht: template for SCSI host
7075 * Register initialized ATA host. @host is allocated using
7076 * ata_host_alloc() and fully initialized by LLD. This function
7077 * starts ports, registers @host with ATA and SCSI layers and
7078 * probe registered devices.
7080 * LOCKING:
7081 * Inherited from calling layer (may sleep).
7083 * RETURNS:
7084 * 0 on success, -errno otherwise.
7086 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7088 int i, rc;
7090 /* host must have been started */
7091 if (!(host->flags & ATA_HOST_STARTED)) {
7092 dev_printk(KERN_ERR, host->dev,
7093 "BUG: trying to register unstarted host\n");
7094 WARN_ON(1);
7095 return -EINVAL;
7098 /* Blow away unused ports. This happens when LLD can't
7099 * determine the exact number of ports to allocate at
7100 * allocation time.
7102 for (i = host->n_ports; host->ports[i]; i++)
7103 kfree(host->ports[i]);
7105 /* give ports names and add SCSI hosts */
7106 for (i = 0; i < host->n_ports; i++)
7107 host->ports[i]->print_id = ata_print_id++;
7109 rc = ata_scsi_add_hosts(host, sht);
7110 if (rc)
7111 return rc;
7113 /* associate with ACPI nodes */
7114 ata_acpi_associate(host);
7116 /* set cable, sata_spd_limit and report */
7117 for (i = 0; i < host->n_ports; i++) {
7118 struct ata_port *ap = host->ports[i];
7119 unsigned long xfer_mask;
7121 /* set SATA cable type if still unset */
7122 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7123 ap->cbl = ATA_CBL_SATA;
7125 /* init sata_spd_limit to the current value */
7126 sata_link_init_spd(&ap->link);
7128 /* print per-port info to dmesg */
7129 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7130 ap->udma_mask);
7132 if (!ata_port_is_dummy(ap)) {
7133 ata_port_printk(ap, KERN_INFO,
7134 "%cATA max %s %s\n",
7135 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7136 ata_mode_string(xfer_mask),
7137 ap->link.eh_info.desc);
7138 ata_ehi_clear_desc(&ap->link.eh_info);
7139 } else
7140 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7143 /* perform each probe synchronously */
7144 DPRINTK("probe begin\n");
7145 for (i = 0; i < host->n_ports; i++) {
7146 struct ata_port *ap = host->ports[i];
7147 int rc;
7149 /* probe */
7150 if (ap->ops->error_handler) {
7151 struct ata_eh_info *ehi = &ap->link.eh_info;
7152 unsigned long flags;
7154 ata_port_probe(ap);
7156 /* kick EH for boot probing */
7157 spin_lock_irqsave(ap->lock, flags);
7159 ehi->probe_mask =
7160 (1 << ata_link_max_devices(&ap->link)) - 1;
7161 ehi->action |= ATA_EH_SOFTRESET;
7162 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7164 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7165 ap->pflags |= ATA_PFLAG_LOADING;
7166 ata_port_schedule_eh(ap);
7168 spin_unlock_irqrestore(ap->lock, flags);
7170 /* wait for EH to finish */
7171 ata_port_wait_eh(ap);
7172 } else {
7173 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7174 rc = ata_bus_probe(ap);
7175 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7177 if (rc) {
7178 /* FIXME: do something useful here?
7179 * Current libata behavior will
7180 * tear down everything when
7181 * the module is removed
7182 * or the h/w is unplugged.
7188 /* probes are done, now scan each port's disk(s) */
7189 DPRINTK("host probe begin\n");
7190 for (i = 0; i < host->n_ports; i++) {
7191 struct ata_port *ap = host->ports[i];
7193 ata_scsi_scan_host(ap, 1);
7194 ata_lpm_schedule(ap, ap->pm_policy);
7197 return 0;
7201 * ata_host_activate - start host, request IRQ and register it
7202 * @host: target ATA host
7203 * @irq: IRQ to request
7204 * @irq_handler: irq_handler used when requesting IRQ
7205 * @irq_flags: irq_flags used when requesting IRQ
7206 * @sht: scsi_host_template to use when registering the host
7208 * After allocating an ATA host and initializing it, most libata
7209 * LLDs perform three steps to activate the host - start host,
7210 * request IRQ and register it. This helper takes necessasry
7211 * arguments and performs the three steps in one go.
7213 * An invalid IRQ skips the IRQ registration and expects the host to
7214 * have set polling mode on the port. In this case, @irq_handler
7215 * should be NULL.
7217 * LOCKING:
7218 * Inherited from calling layer (may sleep).
7220 * RETURNS:
7221 * 0 on success, -errno otherwise.
7223 int ata_host_activate(struct ata_host *host, int irq,
7224 irq_handler_t irq_handler, unsigned long irq_flags,
7225 struct scsi_host_template *sht)
7227 int i, rc;
7229 rc = ata_host_start(host);
7230 if (rc)
7231 return rc;
7233 /* Special case for polling mode */
7234 if (!irq) {
7235 WARN_ON(irq_handler);
7236 return ata_host_register(host, sht);
7239 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7240 dev_driver_string(host->dev), host);
7241 if (rc)
7242 return rc;
7244 for (i = 0; i < host->n_ports; i++)
7245 ata_port_desc(host->ports[i], "irq %d", irq);
7247 rc = ata_host_register(host, sht);
7248 /* if failed, just free the IRQ and leave ports alone */
7249 if (rc)
7250 devm_free_irq(host->dev, irq, host);
7252 return rc;
7256 * ata_port_detach - Detach ATA port in prepration of device removal
7257 * @ap: ATA port to be detached
7259 * Detach all ATA devices and the associated SCSI devices of @ap;
7260 * then, remove the associated SCSI host. @ap is guaranteed to
7261 * be quiescent on return from this function.
7263 * LOCKING:
7264 * Kernel thread context (may sleep).
7266 static void ata_port_detach(struct ata_port *ap)
7268 unsigned long flags;
7269 struct ata_link *link;
7270 struct ata_device *dev;
7272 if (!ap->ops->error_handler)
7273 goto skip_eh;
7275 /* tell EH we're leaving & flush EH */
7276 spin_lock_irqsave(ap->lock, flags);
7277 ap->pflags |= ATA_PFLAG_UNLOADING;
7278 spin_unlock_irqrestore(ap->lock, flags);
7280 ata_port_wait_eh(ap);
7282 /* EH is now guaranteed to see UNLOADING - EH context belongs
7283 * to us. Disable all existing devices.
7285 ata_port_for_each_link(link, ap) {
7286 ata_link_for_each_dev(dev, link)
7287 ata_dev_disable(dev);
7290 /* Final freeze & EH. All in-flight commands are aborted. EH
7291 * will be skipped and retrials will be terminated with bad
7292 * target.
7294 spin_lock_irqsave(ap->lock, flags);
7295 ata_port_freeze(ap); /* won't be thawed */
7296 spin_unlock_irqrestore(ap->lock, flags);
7298 ata_port_wait_eh(ap);
7299 cancel_rearming_delayed_work(&ap->hotplug_task);
7301 skip_eh:
7302 /* remove the associated SCSI host */
7303 scsi_remove_host(ap->scsi_host);
7307 * ata_host_detach - Detach all ports of an ATA host
7308 * @host: Host to detach
7310 * Detach all ports of @host.
7312 * LOCKING:
7313 * Kernel thread context (may sleep).
7315 void ata_host_detach(struct ata_host *host)
7317 int i;
7319 for (i = 0; i < host->n_ports; i++)
7320 ata_port_detach(host->ports[i]);
7322 /* the host is dead now, dissociate ACPI */
7323 ata_acpi_dissociate(host);
7327 * ata_std_ports - initialize ioaddr with standard port offsets.
7328 * @ioaddr: IO address structure to be initialized
7330 * Utility function which initializes data_addr, error_addr,
7331 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7332 * device_addr, status_addr, and command_addr to standard offsets
7333 * relative to cmd_addr.
7335 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7338 void ata_std_ports(struct ata_ioports *ioaddr)
7340 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7341 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7342 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7343 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7344 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7345 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7346 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7347 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7348 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7349 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7353 #ifdef CONFIG_PCI
7356 * ata_pci_remove_one - PCI layer callback for device removal
7357 * @pdev: PCI device that was removed
7359 * PCI layer indicates to libata via this hook that hot-unplug or
7360 * module unload event has occurred. Detach all ports. Resource
7361 * release is handled via devres.
7363 * LOCKING:
7364 * Inherited from PCI layer (may sleep).
7366 void ata_pci_remove_one(struct pci_dev *pdev)
7368 struct device *dev = &pdev->dev;
7369 struct ata_host *host = dev_get_drvdata(dev);
7371 ata_host_detach(host);
7374 /* move to PCI subsystem */
7375 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7377 unsigned long tmp = 0;
7379 switch (bits->width) {
7380 case 1: {
7381 u8 tmp8 = 0;
7382 pci_read_config_byte(pdev, bits->reg, &tmp8);
7383 tmp = tmp8;
7384 break;
7386 case 2: {
7387 u16 tmp16 = 0;
7388 pci_read_config_word(pdev, bits->reg, &tmp16);
7389 tmp = tmp16;
7390 break;
7392 case 4: {
7393 u32 tmp32 = 0;
7394 pci_read_config_dword(pdev, bits->reg, &tmp32);
7395 tmp = tmp32;
7396 break;
7399 default:
7400 return -EINVAL;
7403 tmp &= bits->mask;
7405 return (tmp == bits->val) ? 1 : 0;
7408 #ifdef CONFIG_PM
7409 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7411 pci_save_state(pdev);
7412 pci_disable_device(pdev);
7414 if (mesg.event == PM_EVENT_SUSPEND)
7415 pci_set_power_state(pdev, PCI_D3hot);
7418 int ata_pci_device_do_resume(struct pci_dev *pdev)
7420 int rc;
7422 pci_set_power_state(pdev, PCI_D0);
7423 pci_restore_state(pdev);
7425 rc = pcim_enable_device(pdev);
7426 if (rc) {
7427 dev_printk(KERN_ERR, &pdev->dev,
7428 "failed to enable device after resume (%d)\n", rc);
7429 return rc;
7432 pci_set_master(pdev);
7433 return 0;
7436 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7438 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7439 int rc = 0;
7441 rc = ata_host_suspend(host, mesg);
7442 if (rc)
7443 return rc;
7445 ata_pci_device_do_suspend(pdev, mesg);
7447 return 0;
7450 int ata_pci_device_resume(struct pci_dev *pdev)
7452 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7453 int rc;
7455 rc = ata_pci_device_do_resume(pdev);
7456 if (rc == 0)
7457 ata_host_resume(host);
7458 return rc;
7460 #endif /* CONFIG_PM */
7462 #endif /* CONFIG_PCI */
7465 static int __init ata_init(void)
7467 ata_probe_timeout *= HZ;
7468 ata_wq = create_workqueue("ata");
7469 if (!ata_wq)
7470 return -ENOMEM;
7472 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7473 if (!ata_aux_wq) {
7474 destroy_workqueue(ata_wq);
7475 return -ENOMEM;
7478 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7479 return 0;
7482 static void __exit ata_exit(void)
7484 destroy_workqueue(ata_wq);
7485 destroy_workqueue(ata_aux_wq);
7488 subsys_initcall(ata_init);
7489 module_exit(ata_exit);
7491 static unsigned long ratelimit_time;
7492 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7494 int ata_ratelimit(void)
7496 int rc;
7497 unsigned long flags;
7499 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7501 if (time_after(jiffies, ratelimit_time)) {
7502 rc = 1;
7503 ratelimit_time = jiffies + (HZ/5);
7504 } else
7505 rc = 0;
7507 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7509 return rc;
7513 * ata_wait_register - wait until register value changes
7514 * @reg: IO-mapped register
7515 * @mask: Mask to apply to read register value
7516 * @val: Wait condition
7517 * @interval_msec: polling interval in milliseconds
7518 * @timeout_msec: timeout in milliseconds
7520 * Waiting for some bits of register to change is a common
7521 * operation for ATA controllers. This function reads 32bit LE
7522 * IO-mapped register @reg and tests for the following condition.
7524 * (*@reg & mask) != val
7526 * If the condition is met, it returns; otherwise, the process is
7527 * repeated after @interval_msec until timeout.
7529 * LOCKING:
7530 * Kernel thread context (may sleep)
7532 * RETURNS:
7533 * The final register value.
7535 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7536 unsigned long interval_msec,
7537 unsigned long timeout_msec)
7539 unsigned long timeout;
7540 u32 tmp;
7542 tmp = ioread32(reg);
7544 /* Calculate timeout _after_ the first read to make sure
7545 * preceding writes reach the controller before starting to
7546 * eat away the timeout.
7548 timeout = jiffies + (timeout_msec * HZ) / 1000;
7550 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7551 msleep(interval_msec);
7552 tmp = ioread32(reg);
7555 return tmp;
7559 * Dummy port_ops
7561 static void ata_dummy_noret(struct ata_port *ap) { }
7562 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7563 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7565 static u8 ata_dummy_check_status(struct ata_port *ap)
7567 return ATA_DRDY;
7570 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7572 return AC_ERR_SYSTEM;
7575 const struct ata_port_operations ata_dummy_port_ops = {
7576 .check_status = ata_dummy_check_status,
7577 .check_altstatus = ata_dummy_check_status,
7578 .dev_select = ata_noop_dev_select,
7579 .qc_prep = ata_noop_qc_prep,
7580 .qc_issue = ata_dummy_qc_issue,
7581 .freeze = ata_dummy_noret,
7582 .thaw = ata_dummy_noret,
7583 .error_handler = ata_dummy_noret,
7584 .post_internal_cmd = ata_dummy_qc_noret,
7585 .irq_clear = ata_dummy_noret,
7586 .port_start = ata_dummy_ret0,
7587 .port_stop = ata_dummy_noret,
7590 const struct ata_port_info ata_dummy_port_info = {
7591 .port_ops = &ata_dummy_port_ops,
7595 * libata is essentially a library of internal helper functions for
7596 * low-level ATA host controller drivers. As such, the API/ABI is
7597 * likely to change as new drivers are added and updated.
7598 * Do not depend on ABI/API stability.
7600 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7601 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7602 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7603 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7604 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7605 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7606 EXPORT_SYMBOL_GPL(ata_std_ports);
7607 EXPORT_SYMBOL_GPL(ata_host_init);
7608 EXPORT_SYMBOL_GPL(ata_host_alloc);
7609 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7610 EXPORT_SYMBOL_GPL(ata_host_start);
7611 EXPORT_SYMBOL_GPL(ata_host_register);
7612 EXPORT_SYMBOL_GPL(ata_host_activate);
7613 EXPORT_SYMBOL_GPL(ata_host_detach);
7614 EXPORT_SYMBOL_GPL(ata_sg_init);
7615 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7616 EXPORT_SYMBOL_GPL(ata_hsm_move);
7617 EXPORT_SYMBOL_GPL(ata_qc_complete);
7618 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7619 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7620 EXPORT_SYMBOL_GPL(ata_tf_load);
7621 EXPORT_SYMBOL_GPL(ata_tf_read);
7622 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7623 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7624 EXPORT_SYMBOL_GPL(sata_print_link_status);
7625 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7626 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7627 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7628 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7629 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7630 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7631 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7632 EXPORT_SYMBOL_GPL(ata_mode_string);
7633 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7634 EXPORT_SYMBOL_GPL(ata_check_status);
7635 EXPORT_SYMBOL_GPL(ata_altstatus);
7636 EXPORT_SYMBOL_GPL(ata_exec_command);
7637 EXPORT_SYMBOL_GPL(ata_port_start);
7638 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7639 EXPORT_SYMBOL_GPL(ata_interrupt);
7640 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7641 EXPORT_SYMBOL_GPL(ata_data_xfer);
7642 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7643 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7644 EXPORT_SYMBOL_GPL(ata_qc_prep);
7645 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7646 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7647 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7648 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7649 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7650 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7651 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7652 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7653 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7654 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7655 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7656 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7657 EXPORT_SYMBOL_GPL(ata_port_probe);
7658 EXPORT_SYMBOL_GPL(ata_dev_disable);
7659 EXPORT_SYMBOL_GPL(sata_set_spd);
7660 EXPORT_SYMBOL_GPL(sata_link_debounce);
7661 EXPORT_SYMBOL_GPL(sata_link_resume);
7662 EXPORT_SYMBOL_GPL(ata_bus_reset);
7663 EXPORT_SYMBOL_GPL(ata_std_prereset);
7664 EXPORT_SYMBOL_GPL(ata_std_softreset);
7665 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7666 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7667 EXPORT_SYMBOL_GPL(ata_std_postreset);
7668 EXPORT_SYMBOL_GPL(ata_dev_classify);
7669 EXPORT_SYMBOL_GPL(ata_dev_pair);
7670 EXPORT_SYMBOL_GPL(ata_port_disable);
7671 EXPORT_SYMBOL_GPL(ata_ratelimit);
7672 EXPORT_SYMBOL_GPL(ata_wait_register);
7673 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7674 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7675 EXPORT_SYMBOL_GPL(ata_wait_ready);
7676 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7677 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7678 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7679 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7680 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7681 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7682 EXPORT_SYMBOL_GPL(ata_host_intr);
7683 EXPORT_SYMBOL_GPL(sata_scr_valid);
7684 EXPORT_SYMBOL_GPL(sata_scr_read);
7685 EXPORT_SYMBOL_GPL(sata_scr_write);
7686 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7687 EXPORT_SYMBOL_GPL(ata_link_online);
7688 EXPORT_SYMBOL_GPL(ata_link_offline);
7689 #ifdef CONFIG_PM
7690 EXPORT_SYMBOL_GPL(ata_host_suspend);
7691 EXPORT_SYMBOL_GPL(ata_host_resume);
7692 #endif /* CONFIG_PM */
7693 EXPORT_SYMBOL_GPL(ata_id_string);
7694 EXPORT_SYMBOL_GPL(ata_id_c_string);
7695 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7697 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7698 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7699 EXPORT_SYMBOL_GPL(ata_timing_compute);
7700 EXPORT_SYMBOL_GPL(ata_timing_merge);
7701 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7703 #ifdef CONFIG_PCI
7704 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7705 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7706 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7707 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7708 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7709 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7710 #ifdef CONFIG_PM
7711 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7712 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7713 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7714 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7715 #endif /* CONFIG_PM */
7716 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7717 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7718 #endif /* CONFIG_PCI */
7720 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7721 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7722 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7723 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7724 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7726 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7727 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7728 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7729 EXPORT_SYMBOL_GPL(ata_port_desc);
7730 #ifdef CONFIG_PCI
7731 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7732 #endif /* CONFIG_PCI */
7733 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7734 EXPORT_SYMBOL_GPL(ata_link_abort);
7735 EXPORT_SYMBOL_GPL(ata_port_abort);
7736 EXPORT_SYMBOL_GPL(ata_port_freeze);
7737 EXPORT_SYMBOL_GPL(sata_async_notification);
7738 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7739 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7740 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7741 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7742 EXPORT_SYMBOL_GPL(ata_do_eh);
7743 EXPORT_SYMBOL_GPL(ata_irq_on);
7744 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7746 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7747 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7748 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7749 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7750 EXPORT_SYMBOL_GPL(ata_cable_sata);