libertas: fixes for slow hardware
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / char / epca.c
blobffcecde9e2a5b317319e605480c5520264c77ee3
1 /*
2 Copyright (C) 1996 Digi International.
4 For technical support please email digiLinux@dgii.com or
5 call Digi tech support at (612) 912-3456
7 ** This driver is no longer supported by Digi **
9 Much of this design and code came from epca.c which was
10 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
11 modified by David Nugent, Christoph Lameter, Mike McLagan.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /* See README.epca for change history --DAT*/
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/serial.h>
34 #include <linux/delay.h>
35 #include <linux/ctype.h>
36 #include <linux/tty.h>
37 #include <linux/tty_flip.h>
38 #include <linux/slab.h>
39 #include <linux/ioport.h>
40 #include <linux/interrupt.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <linux/spinlock.h>
44 #include <linux/pci.h>
45 #include "digiPCI.h"
48 #include "digi1.h"
49 #include "digiFep1.h"
50 #include "epca.h"
51 #include "epcaconfig.h"
53 #define VERSION "1.3.0.1-LK2.6"
55 /* This major needs to be submitted to Linux to join the majors list */
56 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
59 #define MAXCARDS 7
60 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
62 #define PFX "epca: "
64 static int nbdevs, num_cards, liloconfig;
65 static int digi_poller_inhibited = 1 ;
67 static int setup_error_code;
68 static int invalid_lilo_config;
71 * The ISA boards do window flipping into the same spaces so its only sane with
72 * a single lock. It's still pretty efficient.
74 static DEFINE_SPINLOCK(epca_lock);
76 /* MAXBOARDS is typically 12, but ISA and EISA cards are restricted to 7 below. */
77 static struct board_info boards[MAXBOARDS];
79 static struct tty_driver *pc_driver;
80 static struct tty_driver *pc_info;
82 /* ------------------ Begin Digi specific structures -------------------- */
85 * digi_channels represents an array of structures that keep track of each
86 * channel of the Digi product. Information such as transmit and receive
87 * pointers, termio data, and signal definitions (DTR, CTS, etc ...) are stored
88 * here. This structure is NOT used to overlay the cards physical channel
89 * structure.
91 static struct channel digi_channels[MAX_ALLOC];
94 * card_ptr is an array used to hold the address of the first channel structure
95 * of each card. This array will hold the addresses of various channels located
96 * in digi_channels.
98 static struct channel *card_ptr[MAXCARDS];
100 static struct timer_list epca_timer;
103 * Begin generic memory functions. These functions will be alias (point at)
104 * more specific functions dependent on the board being configured.
106 static void memwinon(struct board_info *b, unsigned int win);
107 static void memwinoff(struct board_info *b, unsigned int win);
108 static void globalwinon(struct channel *ch);
109 static void rxwinon(struct channel *ch);
110 static void txwinon(struct channel *ch);
111 static void memoff(struct channel *ch);
112 static void assertgwinon(struct channel *ch);
113 static void assertmemoff(struct channel *ch);
115 /* ---- Begin more 'specific' memory functions for cx_like products --- */
117 static void pcxem_memwinon(struct board_info *b, unsigned int win);
118 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
119 static void pcxem_globalwinon(struct channel *ch);
120 static void pcxem_rxwinon(struct channel *ch);
121 static void pcxem_txwinon(struct channel *ch);
122 static void pcxem_memoff(struct channel *ch);
124 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
126 static void pcxe_memwinon(struct board_info *b, unsigned int win);
127 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
128 static void pcxe_globalwinon(struct channel *ch);
129 static void pcxe_rxwinon(struct channel *ch);
130 static void pcxe_txwinon(struct channel *ch);
131 static void pcxe_memoff(struct channel *ch);
133 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
134 /* Note : pc64xe and pcxi share the same windowing routines */
136 static void pcxi_memwinon(struct board_info *b, unsigned int win);
137 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
138 static void pcxi_globalwinon(struct channel *ch);
139 static void pcxi_rxwinon(struct channel *ch);
140 static void pcxi_txwinon(struct channel *ch);
141 static void pcxi_memoff(struct channel *ch);
143 /* - Begin 'specific' do nothing memory functions needed for some cards - */
145 static void dummy_memwinon(struct board_info *b, unsigned int win);
146 static void dummy_memwinoff(struct board_info *b, unsigned int win);
147 static void dummy_globalwinon(struct channel *ch);
148 static void dummy_rxwinon(struct channel *ch);
149 static void dummy_txwinon(struct channel *ch);
150 static void dummy_memoff(struct channel *ch);
151 static void dummy_assertgwinon(struct channel *ch);
152 static void dummy_assertmemoff(struct channel *ch);
154 static struct channel *verifyChannel(struct tty_struct *);
155 static void pc_sched_event(struct channel *, int);
156 static void epca_error(int, char *);
157 static void pc_close(struct tty_struct *, struct file *);
158 static void shutdown(struct channel *);
159 static void pc_hangup(struct tty_struct *);
160 static void pc_put_char(struct tty_struct *, unsigned char);
161 static int pc_write_room(struct tty_struct *);
162 static int pc_chars_in_buffer(struct tty_struct *);
163 static void pc_flush_buffer(struct tty_struct *);
164 static void pc_flush_chars(struct tty_struct *);
165 static int block_til_ready(struct tty_struct *, struct file *,
166 struct channel *);
167 static int pc_open(struct tty_struct *, struct file *);
168 static void post_fep_init(unsigned int crd);
169 static void epcapoll(unsigned long);
170 static void doevent(int);
171 static void fepcmd(struct channel *, int, int, int, int, int);
172 static unsigned termios2digi_h(struct channel *ch, unsigned);
173 static unsigned termios2digi_i(struct channel *ch, unsigned);
174 static unsigned termios2digi_c(struct channel *ch, unsigned);
175 static void epcaparam(struct tty_struct *, struct channel *);
176 static void receive_data(struct channel *);
177 static int pc_ioctl(struct tty_struct *, struct file *,
178 unsigned int, unsigned long);
179 static int info_ioctl(struct tty_struct *, struct file *,
180 unsigned int, unsigned long);
181 static void pc_set_termios(struct tty_struct *, struct ktermios *);
182 static void do_softint(struct work_struct *work);
183 static void pc_stop(struct tty_struct *);
184 static void pc_start(struct tty_struct *);
185 static void pc_throttle(struct tty_struct * tty);
186 static void pc_unthrottle(struct tty_struct *tty);
187 static void digi_send_break(struct channel *ch, int msec);
188 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
189 void epca_setup(char *, int *);
191 static int pc_write(struct tty_struct *, const unsigned char *, int);
192 static int pc_init(void);
193 static int init_PCI(void);
196 * Table of functions for each board to handle memory. Mantaining parallelism
197 * is a *very* good idea here. The idea is for the runtime code to blindly call
198 * these functions, not knowing/caring about the underlying hardware. This
199 * stuff should contain no conditionals; if more functionality is needed a
200 * different entry should be established. These calls are the interface calls
201 * and are the only functions that should be accessed. Anyone caught making
202 * direct calls deserves what they get.
204 static void memwinon(struct board_info *b, unsigned int win)
206 b->memwinon(b, win);
209 static void memwinoff(struct board_info *b, unsigned int win)
211 b->memwinoff(b, win);
214 static void globalwinon(struct channel *ch)
216 ch->board->globalwinon(ch);
219 static void rxwinon(struct channel *ch)
221 ch->board->rxwinon(ch);
224 static void txwinon(struct channel *ch)
226 ch->board->txwinon(ch);
229 static void memoff(struct channel *ch)
231 ch->board->memoff(ch);
233 static void assertgwinon(struct channel *ch)
235 ch->board->assertgwinon(ch);
238 static void assertmemoff(struct channel *ch)
240 ch->board->assertmemoff(ch);
243 /* PCXEM windowing is the same as that used in the PCXR and CX series cards. */
244 static void pcxem_memwinon(struct board_info *b, unsigned int win)
246 outb_p(FEPWIN|win, b->port + 1);
249 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
251 outb_p(0, b->port + 1);
254 static void pcxem_globalwinon(struct channel *ch)
256 outb_p( FEPWIN, (int)ch->board->port + 1);
259 static void pcxem_rxwinon(struct channel *ch)
261 outb_p(ch->rxwin, (int)ch->board->port + 1);
264 static void pcxem_txwinon(struct channel *ch)
266 outb_p(ch->txwin, (int)ch->board->port + 1);
269 static void pcxem_memoff(struct channel *ch)
271 outb_p(0, (int)ch->board->port + 1);
274 /* ----------------- Begin pcxe memory window stuff ------------------ */
275 static void pcxe_memwinon(struct board_info *b, unsigned int win)
277 outb_p(FEPWIN | win, b->port + 1);
280 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
282 outb_p(inb(b->port) & ~FEPMEM, b->port + 1);
283 outb_p(0, b->port + 1);
286 static void pcxe_globalwinon(struct channel *ch)
288 outb_p(FEPWIN, (int)ch->board->port + 1);
291 static void pcxe_rxwinon(struct channel *ch)
293 outb_p(ch->rxwin, (int)ch->board->port + 1);
296 static void pcxe_txwinon(struct channel *ch)
298 outb_p(ch->txwin, (int)ch->board->port + 1);
301 static void pcxe_memoff(struct channel *ch)
303 outb_p(0, (int)ch->board->port);
304 outb_p(0, (int)ch->board->port + 1);
307 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
308 static void pcxi_memwinon(struct board_info *b, unsigned int win)
310 outb_p(inb(b->port) | FEPMEM, b->port);
313 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
315 outb_p(inb(b->port) & ~FEPMEM, b->port);
318 static void pcxi_globalwinon(struct channel *ch)
320 outb_p(FEPMEM, ch->board->port);
323 static void pcxi_rxwinon(struct channel *ch)
325 outb_p(FEPMEM, ch->board->port);
328 static void pcxi_txwinon(struct channel *ch)
330 outb_p(FEPMEM, ch->board->port);
333 static void pcxi_memoff(struct channel *ch)
335 outb_p(0, ch->board->port);
338 static void pcxi_assertgwinon(struct channel *ch)
340 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
343 static void pcxi_assertmemoff(struct channel *ch)
345 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
349 * Not all of the cards need specific memory windowing routines. Some cards
350 * (Such as PCI) needs no windowing routines at all. We provide these do
351 * nothing routines so that the same code base can be used. The driver will
352 * ALWAYS call a windowing routine if it thinks it needs to; regardless of the
353 * card. However, dependent on the card the routine may or may not do anything.
355 static void dummy_memwinon(struct board_info *b, unsigned int win)
359 static void dummy_memwinoff(struct board_info *b, unsigned int win)
363 static void dummy_globalwinon(struct channel *ch)
367 static void dummy_rxwinon(struct channel *ch)
371 static void dummy_txwinon(struct channel *ch)
375 static void dummy_memoff(struct channel *ch)
379 static void dummy_assertgwinon(struct channel *ch)
383 static void dummy_assertmemoff(struct channel *ch)
387 static struct channel *verifyChannel(struct tty_struct *tty)
390 * This routine basically provides a sanity check. It insures that the
391 * channel returned is within the proper range of addresses as well as
392 * properly initialized. If some bogus info gets passed in
393 * through tty->driver_data this should catch it.
395 if (tty) {
396 struct channel *ch = (struct channel *)tty->driver_data;
397 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
398 if (ch->magic == EPCA_MAGIC)
399 return ch;
402 return NULL;
405 static void pc_sched_event(struct channel *ch, int event)
408 * We call this to schedule interrupt processing on some event. The
409 * kernel sees our request and calls the related routine in OUR driver.
411 ch->event |= 1 << event;
412 schedule_work(&ch->tqueue);
415 static void epca_error(int line, char *msg)
417 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
420 static void pc_close(struct tty_struct *tty, struct file *filp)
422 struct channel *ch;
423 unsigned long flags;
425 * verifyChannel returns the channel from the tty struct if it is
426 * valid. This serves as a sanity check.
428 if ((ch = verifyChannel(tty)) != NULL) {
429 spin_lock_irqsave(&epca_lock, flags);
430 if (tty_hung_up_p(filp)) {
431 spin_unlock_irqrestore(&epca_lock, flags);
432 return;
434 if (ch->count-- > 1) {
435 /* Begin channel is open more than once */
437 * Return without doing anything. Someone might still
438 * be using the channel.
440 spin_unlock_irqrestore(&epca_lock, flags);
441 return;
444 /* Port open only once go ahead with shutdown & reset */
445 BUG_ON(ch->count < 0);
448 * Let the rest of the driver know the channel is being closed.
449 * This becomes important if an open is attempted before close
450 * is finished.
452 ch->asyncflags |= ASYNC_CLOSING;
453 tty->closing = 1;
455 spin_unlock_irqrestore(&epca_lock, flags);
457 if (ch->asyncflags & ASYNC_INITIALIZED) {
458 /* Setup an event to indicate when the transmit buffer empties */
459 setup_empty_event(tty, ch);
460 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
462 if (tty->driver->flush_buffer)
463 tty->driver->flush_buffer(tty);
465 tty_ldisc_flush(tty);
466 shutdown(ch);
468 spin_lock_irqsave(&epca_lock, flags);
469 tty->closing = 0;
470 ch->event = 0;
471 ch->tty = NULL;
472 spin_unlock_irqrestore(&epca_lock, flags);
474 if (ch->blocked_open) {
475 if (ch->close_delay)
476 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
477 wake_up_interruptible(&ch->open_wait);
479 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
480 ASYNC_CLOSING);
481 wake_up_interruptible(&ch->close_wait);
485 static void shutdown(struct channel *ch)
487 unsigned long flags;
488 struct tty_struct *tty;
489 struct board_chan __iomem *bc;
491 if (!(ch->asyncflags & ASYNC_INITIALIZED))
492 return;
494 spin_lock_irqsave(&epca_lock, flags);
496 globalwinon(ch);
497 bc = ch->brdchan;
500 * In order for an event to be generated on the receipt of data the
501 * idata flag must be set. Since we are shutting down, this is not
502 * necessary clear this flag.
504 if (bc)
505 writeb(0, &bc->idata);
506 tty = ch->tty;
508 /* If we're a modem control device and HUPCL is on, drop RTS & DTR. */
509 if (tty->termios->c_cflag & HUPCL) {
510 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
511 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
513 memoff(ch);
516 * The channel has officialy been closed. The next time it is opened it
517 * will have to reinitialized. Set a flag to indicate this.
519 /* Prevent future Digi programmed interrupts from coming active */
520 ch->asyncflags &= ~ASYNC_INITIALIZED;
521 spin_unlock_irqrestore(&epca_lock, flags);
524 static void pc_hangup(struct tty_struct *tty)
526 struct channel *ch;
529 * verifyChannel returns the channel from the tty struct if it is
530 * valid. This serves as a sanity check.
532 if ((ch = verifyChannel(tty)) != NULL) {
533 unsigned long flags;
535 if (tty->driver->flush_buffer)
536 tty->driver->flush_buffer(tty);
537 tty_ldisc_flush(tty);
538 shutdown(ch);
540 spin_lock_irqsave(&epca_lock, flags);
541 ch->tty = NULL;
542 ch->event = 0;
543 ch->count = 0;
544 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
545 spin_unlock_irqrestore(&epca_lock, flags);
546 wake_up_interruptible(&ch->open_wait);
550 static int pc_write(struct tty_struct *tty,
551 const unsigned char *buf, int bytesAvailable)
553 unsigned int head, tail;
554 int dataLen;
555 int size;
556 int amountCopied;
557 struct channel *ch;
558 unsigned long flags;
559 int remain;
560 struct board_chan __iomem *bc;
563 * pc_write is primarily called directly by the kernel routine
564 * tty_write (Though it can also be called by put_char) found in
565 * tty_io.c. pc_write is passed a line discipline buffer where the data
566 * to be written out is stored. The line discipline implementation
567 * itself is done at the kernel level and is not brought into the
568 * driver.
572 * verifyChannel returns the channel from the tty struct if it is
573 * valid. This serves as a sanity check.
575 if ((ch = verifyChannel(tty)) == NULL)
576 return 0;
578 /* Make a pointer to the channel data structure found on the board. */
579 bc = ch->brdchan;
580 size = ch->txbufsize;
581 amountCopied = 0;
583 spin_lock_irqsave(&epca_lock, flags);
584 globalwinon(ch);
586 head = readw(&bc->tin) & (size - 1);
587 tail = readw(&bc->tout);
589 if (tail != readw(&bc->tout))
590 tail = readw(&bc->tout);
591 tail &= (size - 1);
593 if (head >= tail) {
594 /* head has not wrapped */
596 * remain (much like dataLen above) represents the total amount
597 * of space available on the card for data. Here dataLen
598 * represents the space existing between the head pointer and
599 * the end of buffer. This is important because a memcpy cannot
600 * be told to automatically wrap around when it hits the buffer
601 * end.
603 dataLen = size - head;
604 remain = size - (head - tail) - 1;
605 } else {
606 /* head has wrapped around */
607 remain = tail - head - 1;
608 dataLen = remain;
611 * Check the space on the card. If we have more data than space; reduce
612 * the amount of data to fit the space.
614 bytesAvailable = min(remain, bytesAvailable);
615 txwinon(ch);
616 while (bytesAvailable > 0) {
617 /* there is data to copy onto card */
620 * If head is not wrapped, the below will make sure the first
621 * data copy fills to the end of card buffer.
623 dataLen = min(bytesAvailable, dataLen);
624 memcpy_toio(ch->txptr + head, buf, dataLen);
625 buf += dataLen;
626 head += dataLen;
627 amountCopied += dataLen;
628 bytesAvailable -= dataLen;
630 if (head >= size) {
631 head = 0;
632 dataLen = tail;
635 ch->statusflags |= TXBUSY;
636 globalwinon(ch);
637 writew(head, &bc->tin);
639 if ((ch->statusflags & LOWWAIT) == 0) {
640 ch->statusflags |= LOWWAIT;
641 writeb(1, &bc->ilow);
643 memoff(ch);
644 spin_unlock_irqrestore(&epca_lock, flags);
645 return amountCopied;
648 static void pc_put_char(struct tty_struct *tty, unsigned char c)
650 pc_write(tty, &c, 1);
653 static int pc_write_room(struct tty_struct *tty)
655 int remain;
656 struct channel *ch;
657 unsigned long flags;
658 unsigned int head, tail;
659 struct board_chan __iomem *bc;
661 remain = 0;
664 * verifyChannel returns the channel from the tty struct if it is
665 * valid. This serves as a sanity check.
667 if ((ch = verifyChannel(tty)) != NULL) {
668 spin_lock_irqsave(&epca_lock, flags);
669 globalwinon(ch);
671 bc = ch->brdchan;
672 head = readw(&bc->tin) & (ch->txbufsize - 1);
673 tail = readw(&bc->tout);
675 if (tail != readw(&bc->tout))
676 tail = readw(&bc->tout);
677 /* Wrap tail if necessary */
678 tail &= (ch->txbufsize - 1);
680 if ((remain = tail - head - 1) < 0 )
681 remain += ch->txbufsize;
683 if (remain && (ch->statusflags & LOWWAIT) == 0) {
684 ch->statusflags |= LOWWAIT;
685 writeb(1, &bc->ilow);
687 memoff(ch);
688 spin_unlock_irqrestore(&epca_lock, flags);
690 /* Return how much room is left on card */
691 return remain;
694 static int pc_chars_in_buffer(struct tty_struct *tty)
696 int chars;
697 unsigned int ctail, head, tail;
698 int remain;
699 unsigned long flags;
700 struct channel *ch;
701 struct board_chan __iomem *bc;
704 * verifyChannel returns the channel from the tty struct if it is
705 * valid. This serves as a sanity check.
707 if ((ch = verifyChannel(tty)) == NULL)
708 return 0;
710 spin_lock_irqsave(&epca_lock, flags);
711 globalwinon(ch);
713 bc = ch->brdchan;
714 tail = readw(&bc->tout);
715 head = readw(&bc->tin);
716 ctail = readw(&ch->mailbox->cout);
718 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
719 chars = 0;
720 else { /* Begin if some space on the card has been used */
721 head = readw(&bc->tin) & (ch->txbufsize - 1);
722 tail &= (ch->txbufsize - 1);
724 * The logic here is basically opposite of the above
725 * pc_write_room here we are finding the amount of bytes in the
726 * buffer filled. Not the amount of bytes empty.
728 if ((remain = tail - head - 1) < 0 )
729 remain += ch->txbufsize;
730 chars = (int)(ch->txbufsize - remain);
732 * Make it possible to wakeup anything waiting for output in
733 * tty_ioctl.c, etc.
735 * If not already set. Setup an event to indicate when the
736 * transmit buffer empties.
738 if (!(ch->statusflags & EMPTYWAIT))
739 setup_empty_event(tty,ch);
740 } /* End if some space on the card has been used */
741 memoff(ch);
742 spin_unlock_irqrestore(&epca_lock, flags);
743 /* Return number of characters residing on card. */
744 return chars;
747 static void pc_flush_buffer(struct tty_struct *tty)
749 unsigned int tail;
750 unsigned long flags;
751 struct channel *ch;
752 struct board_chan __iomem *bc;
754 * verifyChannel returns the channel from the tty struct if it is
755 * valid. This serves as a sanity check.
757 if ((ch = verifyChannel(tty)) == NULL)
758 return;
760 spin_lock_irqsave(&epca_lock, flags);
761 globalwinon(ch);
762 bc = ch->brdchan;
763 tail = readw(&bc->tout);
764 /* Have FEP move tout pointer; effectively flushing transmit buffer */
765 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
766 memoff(ch);
767 spin_unlock_irqrestore(&epca_lock, flags);
768 tty_wakeup(tty);
771 static void pc_flush_chars(struct tty_struct *tty)
773 struct channel *ch;
775 * verifyChannel returns the channel from the tty struct if it is
776 * valid. This serves as a sanity check.
778 if ((ch = verifyChannel(tty)) != NULL) {
779 unsigned long flags;
780 spin_lock_irqsave(&epca_lock, flags);
782 * If not already set and the transmitter is busy setup an
783 * event to indicate when the transmit empties.
785 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
786 setup_empty_event(tty,ch);
787 spin_unlock_irqrestore(&epca_lock, flags);
791 static int block_til_ready(struct tty_struct *tty,
792 struct file *filp, struct channel *ch)
794 DECLARE_WAITQUEUE(wait,current);
795 int retval, do_clocal = 0;
796 unsigned long flags;
798 if (tty_hung_up_p(filp)) {
799 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
800 retval = -EAGAIN;
801 else
802 retval = -ERESTARTSYS;
803 return retval;
807 * If the device is in the middle of being closed, then block until
808 * it's done, and then try again.
810 if (ch->asyncflags & ASYNC_CLOSING) {
811 interruptible_sleep_on(&ch->close_wait);
813 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
814 return -EAGAIN;
815 else
816 return -ERESTARTSYS;
819 if (filp->f_flags & O_NONBLOCK) {
821 * If non-blocking mode is set, then make the check up front
822 * and then exit.
824 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
825 return 0;
827 if (tty->termios->c_cflag & CLOCAL)
828 do_clocal = 1;
829 /* Block waiting for the carrier detect and the line to become free */
831 retval = 0;
832 add_wait_queue(&ch->open_wait, &wait);
834 spin_lock_irqsave(&epca_lock, flags);
835 /* We dec count so that pc_close will know when to free things */
836 if (!tty_hung_up_p(filp))
837 ch->count--;
838 ch->blocked_open++;
839 while (1) {
840 set_current_state(TASK_INTERRUPTIBLE);
841 if (tty_hung_up_p(filp) ||
842 !(ch->asyncflags & ASYNC_INITIALIZED))
844 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
845 retval = -EAGAIN;
846 else
847 retval = -ERESTARTSYS;
848 break;
850 if (!(ch->asyncflags & ASYNC_CLOSING) &&
851 (do_clocal || (ch->imodem & ch->dcd)))
852 break;
853 if (signal_pending(current)) {
854 retval = -ERESTARTSYS;
855 break;
857 spin_unlock_irqrestore(&epca_lock, flags);
859 * Allow someone else to be scheduled. We will occasionally go
860 * through this loop until one of the above conditions change.
861 * The below schedule call will allow other processes to enter
862 * and prevent this loop from hogging the cpu.
864 schedule();
865 spin_lock_irqsave(&epca_lock, flags);
868 __set_current_state(TASK_RUNNING);
869 remove_wait_queue(&ch->open_wait, &wait);
870 if (!tty_hung_up_p(filp))
871 ch->count++;
872 ch->blocked_open--;
874 spin_unlock_irqrestore(&epca_lock, flags);
876 if (retval)
877 return retval;
879 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
880 return 0;
883 static int pc_open(struct tty_struct *tty, struct file * filp)
885 struct channel *ch;
886 unsigned long flags;
887 int line, retval, boardnum;
888 struct board_chan __iomem *bc;
889 unsigned int head;
891 line = tty->index;
892 if (line < 0 || line >= nbdevs)
893 return -ENODEV;
895 ch = &digi_channels[line];
896 boardnum = ch->boardnum;
898 /* Check status of board configured in system. */
901 * I check to see if the epca_setup routine detected an user error. It
902 * might be better to put this in pc_init, but for the moment it goes
903 * here.
905 if (invalid_lilo_config) {
906 if (setup_error_code & INVALID_BOARD_TYPE)
907 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
908 if (setup_error_code & INVALID_NUM_PORTS)
909 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
910 if (setup_error_code & INVALID_MEM_BASE)
911 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
912 if (setup_error_code & INVALID_PORT_BASE)
913 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
914 if (setup_error_code & INVALID_BOARD_STATUS)
915 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
916 if (setup_error_code & INVALID_ALTPIN)
917 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
918 tty->driver_data = NULL; /* Mark this device as 'down' */
919 return -ENODEV;
921 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
922 tty->driver_data = NULL; /* Mark this device as 'down' */
923 return(-ENODEV);
926 if ((bc = ch->brdchan) == 0) {
927 tty->driver_data = NULL;
928 return -ENODEV;
931 spin_lock_irqsave(&epca_lock, flags);
933 * Every time a channel is opened, increment a counter. This is
934 * necessary because we do not wish to flush and shutdown the channel
935 * until the last app holding the channel open, closes it.
937 ch->count++;
939 * Set a kernel structures pointer to our local channel structure. This
940 * way we can get to it when passed only a tty struct.
942 tty->driver_data = ch;
944 * If this is the first time the channel has been opened, initialize
945 * the tty->termios struct otherwise let pc_close handle it.
947 globalwinon(ch);
948 ch->statusflags = 0;
950 /* Save boards current modem status */
951 ch->imodem = readb(&bc->mstat);
954 * Set receive head and tail ptrs to each other. This indicates no data
955 * available to read.
957 head = readw(&bc->rin);
958 writew(head, &bc->rout);
960 /* Set the channels associated tty structure */
961 ch->tty = tty;
964 * The below routine generally sets up parity, baud, flow control
965 * issues, etc.... It effect both control flags and input flags.
967 epcaparam(tty,ch);
968 ch->asyncflags |= ASYNC_INITIALIZED;
969 memoff(ch);
970 spin_unlock_irqrestore(&epca_lock, flags);
972 retval = block_til_ready(tty, filp, ch);
973 if (retval)
974 return retval;
976 * Set this again in case a hangup set it to zero while this open() was
977 * waiting for the line...
979 spin_lock_irqsave(&epca_lock, flags);
980 ch->tty = tty;
981 globalwinon(ch);
982 /* Enable Digi Data events */
983 writeb(1, &bc->idata);
984 memoff(ch);
985 spin_unlock_irqrestore(&epca_lock, flags);
986 return 0;
989 static int __init epca_module_init(void)
991 return pc_init();
993 module_init(epca_module_init);
995 static struct pci_driver epca_driver;
997 static void __exit epca_module_exit(void)
999 int count, crd;
1000 struct board_info *bd;
1001 struct channel *ch;
1003 del_timer_sync(&epca_timer);
1005 if (tty_unregister_driver(pc_driver) || tty_unregister_driver(pc_info))
1007 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1008 return;
1010 put_tty_driver(pc_driver);
1011 put_tty_driver(pc_info);
1013 for (crd = 0; crd < num_cards; crd++) {
1014 bd = &boards[crd];
1015 if (!bd) { /* sanity check */
1016 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1017 return;
1019 ch = card_ptr[crd];
1020 for (count = 0; count < bd->numports; count++, ch++) {
1021 if (ch && ch->tty)
1022 tty_hangup(ch->tty);
1025 pci_unregister_driver(&epca_driver);
1027 module_exit(epca_module_exit);
1029 static const struct tty_operations pc_ops = {
1030 .open = pc_open,
1031 .close = pc_close,
1032 .write = pc_write,
1033 .write_room = pc_write_room,
1034 .flush_buffer = pc_flush_buffer,
1035 .chars_in_buffer = pc_chars_in_buffer,
1036 .flush_chars = pc_flush_chars,
1037 .put_char = pc_put_char,
1038 .ioctl = pc_ioctl,
1039 .set_termios = pc_set_termios,
1040 .stop = pc_stop,
1041 .start = pc_start,
1042 .throttle = pc_throttle,
1043 .unthrottle = pc_unthrottle,
1044 .hangup = pc_hangup,
1047 static int info_open(struct tty_struct *tty, struct file * filp)
1049 return 0;
1052 static struct tty_operations info_ops = {
1053 .open = info_open,
1054 .ioctl = info_ioctl,
1057 static int __init pc_init(void)
1059 int crd;
1060 struct board_info *bd;
1061 unsigned char board_id = 0;
1062 int err = -ENOMEM;
1064 int pci_boards_found, pci_count;
1066 pci_count = 0;
1068 pc_driver = alloc_tty_driver(MAX_ALLOC);
1069 if (!pc_driver)
1070 goto out1;
1072 pc_info = alloc_tty_driver(MAX_ALLOC);
1073 if (!pc_info)
1074 goto out2;
1077 * If epca_setup has not been ran by LILO set num_cards to defaults;
1078 * copy board structure defined by digiConfig into drivers board
1079 * structure. Note : If LILO has ran epca_setup then epca_setup will
1080 * handle defining num_cards as well as copying the data into the board
1081 * structure.
1083 if (!liloconfig) {
1084 /* driver has been configured via. epcaconfig */
1085 nbdevs = NBDEVS;
1086 num_cards = NUMCARDS;
1087 memcpy(&boards, &static_boards,
1088 sizeof(struct board_info) * NUMCARDS);
1092 * Note : If lilo was used to configure the driver and the ignore
1093 * epcaconfig option was choosen (digiepca=2) then nbdevs and num_cards
1094 * will equal 0 at this point. This is okay; PCI cards will still be
1095 * picked up if detected.
1099 * Set up interrupt, we will worry about memory allocation in
1100 * post_fep_init.
1102 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1105 * NOTE : This code assumes that the number of ports found in the
1106 * boards array is correct. This could be wrong if the card in question
1107 * is PCI (And therefore has no ports entry in the boards structure.)
1108 * The rest of the information will be valid for PCI because the
1109 * beginning of pc_init scans for PCI and determines i/o and base
1110 * memory addresses. I am not sure if it is possible to read the number
1111 * of ports supported by the card prior to it being booted (Since that
1112 * is the state it is in when pc_init is run). Because it is not
1113 * possible to query the number of supported ports until after the card
1114 * has booted; we are required to calculate the card_ptrs as the card
1115 * is initialized (Inside post_fep_init). The negative thing about this
1116 * approach is that digiDload's call to GET_INFO will have a bad port
1117 * value. (Since this is called prior to post_fep_init.)
1119 pci_boards_found = 0;
1120 if (num_cards < MAXBOARDS)
1121 pci_boards_found += init_PCI();
1122 num_cards += pci_boards_found;
1124 pc_driver->owner = THIS_MODULE;
1125 pc_driver->name = "ttyD";
1126 pc_driver->major = DIGI_MAJOR;
1127 pc_driver->minor_start = 0;
1128 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1129 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1130 pc_driver->init_termios = tty_std_termios;
1131 pc_driver->init_termios.c_iflag = 0;
1132 pc_driver->init_termios.c_oflag = 0;
1133 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1134 pc_driver->init_termios.c_lflag = 0;
1135 pc_driver->init_termios.c_ispeed = 9600;
1136 pc_driver->init_termios.c_ospeed = 9600;
1137 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1138 tty_set_operations(pc_driver, &pc_ops);
1140 pc_info->owner = THIS_MODULE;
1141 pc_info->name = "digi_ctl";
1142 pc_info->major = DIGIINFOMAJOR;
1143 pc_info->minor_start = 0;
1144 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1145 pc_info->subtype = SERIAL_TYPE_INFO;
1146 pc_info->init_termios = tty_std_termios;
1147 pc_info->init_termios.c_iflag = 0;
1148 pc_info->init_termios.c_oflag = 0;
1149 pc_info->init_termios.c_lflag = 0;
1150 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1151 pc_info->init_termios.c_ispeed = 9600;
1152 pc_info->init_termios.c_ospeed = 9600;
1153 pc_info->flags = TTY_DRIVER_REAL_RAW;
1154 tty_set_operations(pc_info, &info_ops);
1157 for (crd = 0; crd < num_cards; crd++) {
1159 * This is where the appropriate memory handlers for the
1160 * hardware is set. Everything at runtime blindly jumps through
1161 * these vectors.
1164 /* defined in epcaconfig.h */
1165 bd = &boards[crd];
1167 switch (bd->type) {
1168 case PCXEM:
1169 case EISAXEM:
1170 bd->memwinon = pcxem_memwinon;
1171 bd->memwinoff = pcxem_memwinoff;
1172 bd->globalwinon = pcxem_globalwinon;
1173 bd->txwinon = pcxem_txwinon;
1174 bd->rxwinon = pcxem_rxwinon;
1175 bd->memoff = pcxem_memoff;
1176 bd->assertgwinon = dummy_assertgwinon;
1177 bd->assertmemoff = dummy_assertmemoff;
1178 break;
1180 case PCIXEM:
1181 case PCIXRJ:
1182 case PCIXR:
1183 bd->memwinon = dummy_memwinon;
1184 bd->memwinoff = dummy_memwinoff;
1185 bd->globalwinon = dummy_globalwinon;
1186 bd->txwinon = dummy_txwinon;
1187 bd->rxwinon = dummy_rxwinon;
1188 bd->memoff = dummy_memoff;
1189 bd->assertgwinon = dummy_assertgwinon;
1190 bd->assertmemoff = dummy_assertmemoff;
1191 break;
1193 case PCXE:
1194 case PCXEVE:
1195 bd->memwinon = pcxe_memwinon;
1196 bd->memwinoff = pcxe_memwinoff;
1197 bd->globalwinon = pcxe_globalwinon;
1198 bd->txwinon = pcxe_txwinon;
1199 bd->rxwinon = pcxe_rxwinon;
1200 bd->memoff = pcxe_memoff;
1201 bd->assertgwinon = dummy_assertgwinon;
1202 bd->assertmemoff = dummy_assertmemoff;
1203 break;
1205 case PCXI:
1206 case PC64XE:
1207 bd->memwinon = pcxi_memwinon;
1208 bd->memwinoff = pcxi_memwinoff;
1209 bd->globalwinon = pcxi_globalwinon;
1210 bd->txwinon = pcxi_txwinon;
1211 bd->rxwinon = pcxi_rxwinon;
1212 bd->memoff = pcxi_memoff;
1213 bd->assertgwinon = pcxi_assertgwinon;
1214 bd->assertmemoff = pcxi_assertmemoff;
1215 break;
1217 default:
1218 break;
1222 * Some cards need a memory segment to be defined for use in
1223 * transmit and receive windowing operations. These boards are
1224 * listed in the below switch. In the case of the XI the amount
1225 * of memory on the board is variable so the memory_seg is also
1226 * variable. This code determines what they segment should be.
1228 switch (bd->type) {
1229 case PCXE:
1230 case PCXEVE:
1231 case PC64XE:
1232 bd->memory_seg = 0xf000;
1233 break;
1235 case PCXI:
1236 board_id = inb((int)bd->port);
1237 if ((board_id & 0x1) == 0x1) {
1238 /* it's an XI card */
1239 /* Is it a 64K board */
1240 if ((board_id & 0x30) == 0)
1241 bd->memory_seg = 0xf000;
1243 /* Is it a 128K board */
1244 if ((board_id & 0x30) == 0x10)
1245 bd->memory_seg = 0xe000;
1247 /* Is is a 256K board */
1248 if ((board_id & 0x30) == 0x20)
1249 bd->memory_seg = 0xc000;
1251 /* Is it a 512K board */
1252 if ((board_id & 0x30) == 0x30)
1253 bd->memory_seg = 0x8000;
1254 } else
1255 printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1256 break;
1260 err = tty_register_driver(pc_driver);
1261 if (err) {
1262 printk(KERN_ERR "Couldn't register Digi PC/ driver");
1263 goto out3;
1266 err = tty_register_driver(pc_info);
1267 if (err) {
1268 printk(KERN_ERR "Couldn't register Digi PC/ info ");
1269 goto out4;
1272 /* Start up the poller to check for events on all enabled boards */
1273 init_timer(&epca_timer);
1274 epca_timer.function = epcapoll;
1275 mod_timer(&epca_timer, jiffies + HZ/25);
1276 return 0;
1278 out4:
1279 tty_unregister_driver(pc_driver);
1280 out3:
1281 put_tty_driver(pc_info);
1282 out2:
1283 put_tty_driver(pc_driver);
1284 out1:
1285 return err;
1288 static void post_fep_init(unsigned int crd)
1290 int i;
1291 void __iomem *memaddr;
1292 struct global_data __iomem *gd;
1293 struct board_info *bd;
1294 struct board_chan __iomem *bc;
1295 struct channel *ch;
1296 int shrinkmem = 0, lowwater;
1299 * This call is made by the user via. the ioctl call DIGI_INIT. It is
1300 * responsible for setting up all the card specific stuff.
1302 bd = &boards[crd];
1305 * If this is a PCI board, get the port info. Remember PCI cards do not
1306 * have entries into the epcaconfig.h file, so we can't get the number
1307 * of ports from it. Unfortunetly, this means that anyone doing a
1308 * DIGI_GETINFO before the board has booted will get an invalid number
1309 * of ports returned (It should return 0). Calls to DIGI_GETINFO after
1310 * DIGI_INIT has been called will return the proper values.
1312 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1314 * Below we use XEMPORTS as a memory offset regardless of which
1315 * PCI card it is. This is because all of the supported PCI
1316 * cards have the same memory offset for the channel data. This
1317 * will have to be changed if we ever develop a PCI/XE card.
1318 * NOTE : The FEP manual states that the port offset is 0xC22
1319 * as opposed to 0xC02. This is only true for PC/XE, and PC/XI
1320 * cards; not for the XEM, or CX series. On the PCI cards the
1321 * number of ports is determined by reading a ID PROM located
1322 * in the box attached to the card. The card can then determine
1323 * the index the id to determine the number of ports available.
1324 * (FYI - The id should be located at 0x1ac (And may use up to
1325 * 4 bytes if the box in question is a XEM or CX)).
1327 /* PCI cards are already remapped at this point ISA are not */
1328 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1329 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1330 nbdevs += (bd->numports);
1331 } else {
1332 /* Fix up the mappings for ISA/EISA etc */
1333 /* FIXME: 64K - can we be smarter ? */
1334 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1337 if (crd != 0)
1338 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1339 else
1340 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1342 ch = card_ptr[crd];
1343 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1345 memaddr = bd->re_map_membase;
1348 * The below assignment will set bc to point at the BEGINING of the
1349 * cards channel structures. For 1 card there will be between 8 and 64
1350 * of these structures.
1352 bc = memaddr + CHANSTRUCT;
1355 * The below assignment will set gd to point at the BEGINING of global
1356 * memory address 0xc00. The first data in that global memory actually
1357 * starts at address 0xc1a. The command in pointer begins at 0xd10.
1359 gd = memaddr + GLOBAL;
1362 * XEPORTS (address 0xc22) points at the number of channels the card
1363 * supports. (For 64XE, XI, XEM, and XR use 0xc02)
1365 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1366 shrinkmem = 1;
1367 if (bd->type < PCIXEM)
1368 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1369 return;
1370 memwinon(bd, 0);
1373 * Remember ch is the main drivers channels structure, while bc is the
1374 * cards channel structure.
1376 for (i = 0; i < bd->numports; i++, ch++, bc++) {
1377 unsigned long flags;
1378 u16 tseg, rseg;
1380 ch->brdchan = bc;
1381 ch->mailbox = gd;
1382 INIT_WORK(&ch->tqueue, do_softint);
1383 ch->board = &boards[crd];
1385 spin_lock_irqsave(&epca_lock, flags);
1386 switch (bd->type) {
1388 * Since some of the boards use different bitmaps for
1389 * their control signals we cannot hard code these
1390 * values and retain portability. We virtualize this
1391 * data here.
1393 case EISAXEM:
1394 case PCXEM:
1395 case PCIXEM:
1396 case PCIXRJ:
1397 case PCIXR:
1398 ch->m_rts = 0x02;
1399 ch->m_dcd = 0x80;
1400 ch->m_dsr = 0x20;
1401 ch->m_cts = 0x10;
1402 ch->m_ri = 0x40;
1403 ch->m_dtr = 0x01;
1404 break;
1406 case PCXE:
1407 case PCXEVE:
1408 case PCXI:
1409 case PC64XE:
1410 ch->m_rts = 0x02;
1411 ch->m_dcd = 0x08;
1412 ch->m_dsr = 0x10;
1413 ch->m_cts = 0x20;
1414 ch->m_ri = 0x40;
1415 ch->m_dtr = 0x80;
1416 break;
1419 if (boards[crd].altpin) {
1420 ch->dsr = ch->m_dcd;
1421 ch->dcd = ch->m_dsr;
1422 ch->digiext.digi_flags |= DIGI_ALTPIN;
1423 } else {
1424 ch->dcd = ch->m_dcd;
1425 ch->dsr = ch->m_dsr;
1428 ch->boardnum = crd;
1429 ch->channelnum = i;
1430 ch->magic = EPCA_MAGIC;
1431 ch->tty = NULL;
1433 if (shrinkmem) {
1434 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1435 shrinkmem = 0;
1438 tseg = readw(&bc->tseg);
1439 rseg = readw(&bc->rseg);
1441 switch (bd->type) {
1442 case PCIXEM:
1443 case PCIXRJ:
1444 case PCIXR:
1445 /* Cover all the 2MEG cards */
1446 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1447 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1448 ch->txwin = FEPWIN | (tseg >> 11);
1449 ch->rxwin = FEPWIN | (rseg >> 11);
1450 break;
1452 case PCXEM:
1453 case EISAXEM:
1454 /* Cover all the 32K windowed cards */
1455 /* Mask equal to window size - 1 */
1456 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1457 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1458 ch->txwin = FEPWIN | (tseg >> 11);
1459 ch->rxwin = FEPWIN | (rseg >> 11);
1460 break;
1462 case PCXEVE:
1463 case PCXE:
1464 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff);
1465 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1466 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff);
1467 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 );
1468 break;
1470 case PCXI:
1471 case PC64XE:
1472 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1473 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1474 ch->txwin = ch->rxwin = 0;
1475 break;
1478 ch->txbufhead = 0;
1479 ch->txbufsize = readw(&bc->tmax) + 1;
1481 ch->rxbufhead = 0;
1482 ch->rxbufsize = readw(&bc->rmax) + 1;
1484 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1486 /* Set transmitter low water mark */
1487 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1489 /* Set receiver low water mark */
1490 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1492 /* Set receiver high water mark */
1493 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1495 writew(100, &bc->edelay);
1496 writeb(1, &bc->idata);
1498 ch->startc = readb(&bc->startc);
1499 ch->stopc = readb(&bc->stopc);
1500 ch->startca = readb(&bc->startca);
1501 ch->stopca = readb(&bc->stopca);
1503 ch->fepcflag = 0;
1504 ch->fepiflag = 0;
1505 ch->fepoflag = 0;
1506 ch->fepstartc = 0;
1507 ch->fepstopc = 0;
1508 ch->fepstartca = 0;
1509 ch->fepstopca = 0;
1511 ch->close_delay = 50;
1512 ch->count = 0;
1513 ch->blocked_open = 0;
1514 init_waitqueue_head(&ch->open_wait);
1515 init_waitqueue_head(&ch->close_wait);
1517 spin_unlock_irqrestore(&epca_lock, flags);
1520 printk(KERN_INFO
1521 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1522 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1523 memwinoff(bd, 0);
1526 static void epcapoll(unsigned long ignored)
1528 unsigned long flags;
1529 int crd;
1530 volatile unsigned int head, tail;
1531 struct channel *ch;
1532 struct board_info *bd;
1535 * This routine is called upon every timer interrupt. Even though the
1536 * Digi series cards are capable of generating interrupts this method
1537 * of non-looping polling is more efficient. This routine checks for
1538 * card generated events (Such as receive data, are transmit buffer
1539 * empty) and acts on those events.
1541 for (crd = 0; crd < num_cards; crd++) {
1542 bd = &boards[crd];
1543 ch = card_ptr[crd];
1545 if ((bd->status == DISABLED) || digi_poller_inhibited)
1546 continue;
1549 * assertmemoff is not needed here; indeed it is an empty
1550 * subroutine. It is being kept because future boards may need
1551 * this as well as some legacy boards.
1553 spin_lock_irqsave(&epca_lock, flags);
1555 assertmemoff(ch);
1557 globalwinon(ch);
1560 * In this case head and tail actually refer to the event queue
1561 * not the transmit or receive queue.
1563 head = readw(&ch->mailbox->ein);
1564 tail = readw(&ch->mailbox->eout);
1566 /* If head isn't equal to tail we have an event */
1567 if (head != tail)
1568 doevent(crd);
1569 memoff(ch);
1571 spin_unlock_irqrestore(&epca_lock, flags);
1572 } /* End for each card */
1573 mod_timer(&epca_timer, jiffies + (HZ / 25));
1576 static void doevent(int crd)
1578 void __iomem *eventbuf;
1579 struct channel *ch, *chan0;
1580 static struct tty_struct *tty;
1581 struct board_info *bd;
1582 struct board_chan __iomem *bc;
1583 unsigned int tail, head;
1584 int event, channel;
1585 int mstat, lstat;
1588 * This subroutine is called by epcapoll when an event is detected
1589 * in the event queue. This routine responds to those events.
1591 bd = &boards[crd];
1593 chan0 = card_ptr[crd];
1594 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1595 assertgwinon(chan0);
1596 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein))) { /* Begin while something in event queue */
1597 assertgwinon(chan0);
1598 eventbuf = bd->re_map_membase + tail + ISTART;
1599 /* Get the channel the event occurred on */
1600 channel = readb(eventbuf);
1601 /* Get the actual event code that occurred */
1602 event = readb(eventbuf + 1);
1604 * The two assignments below get the current modem status
1605 * (mstat) and the previous modem status (lstat). These are
1606 * useful becuase an event could signal a change in modem
1607 * signals itself.
1609 mstat = readb(eventbuf + 2);
1610 lstat = readb(eventbuf + 3);
1612 ch = chan0 + channel;
1613 if ((unsigned)channel >= bd->numports || !ch) {
1614 if (channel >= bd->numports)
1615 ch = chan0;
1616 bc = ch->brdchan;
1617 goto next;
1620 if ((bc = ch->brdchan) == NULL)
1621 goto next;
1623 if (event & DATA_IND) { /* Begin DATA_IND */
1624 receive_data(ch);
1625 assertgwinon(ch);
1626 } /* End DATA_IND */
1627 /* else *//* Fix for DCD transition missed bug */
1628 if (event & MODEMCHG_IND) {
1629 /* A modem signal change has been indicated */
1630 ch->imodem = mstat;
1631 if (ch->asyncflags & ASYNC_CHECK_CD) {
1632 if (mstat & ch->dcd) /* We are now receiving dcd */
1633 wake_up_interruptible(&ch->open_wait);
1634 else
1635 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1638 tty = ch->tty;
1639 if (tty) {
1640 if (event & BREAK_IND) {
1641 /* A break has been indicated */
1642 tty_insert_flip_char(tty, 0, TTY_BREAK);
1643 tty_schedule_flip(tty);
1644 } else if (event & LOWTX_IND) {
1645 if (ch->statusflags & LOWWAIT) {
1646 ch->statusflags &= ~LOWWAIT;
1647 tty_wakeup(tty);
1649 } else if (event & EMPTYTX_IND) {
1650 /* This event is generated by setup_empty_event */
1651 ch->statusflags &= ~TXBUSY;
1652 if (ch->statusflags & EMPTYWAIT) {
1653 ch->statusflags &= ~EMPTYWAIT;
1654 tty_wakeup(tty);
1658 next:
1659 globalwinon(ch);
1660 BUG_ON(!bc);
1661 writew(1, &bc->idata);
1662 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1663 globalwinon(chan0);
1664 } /* End while something in event queue */
1667 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1668 int byte2, int ncmds, int bytecmd)
1670 unchar __iomem *memaddr;
1671 unsigned int head, cmdTail, cmdStart, cmdMax;
1672 long count;
1673 int n;
1675 /* This is the routine in which commands may be passed to the card. */
1677 if (ch->board->status == DISABLED)
1678 return;
1679 assertgwinon(ch);
1680 /* Remember head (As well as max) is just an offset not a base addr */
1681 head = readw(&ch->mailbox->cin);
1682 /* cmdStart is a base address */
1683 cmdStart = readw(&ch->mailbox->cstart);
1685 * We do the addition below because we do not want a max pointer
1686 * relative to cmdStart. We want a max pointer that points at the
1687 * physical end of the command queue.
1689 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1690 memaddr = ch->board->re_map_membase;
1692 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1693 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head);
1694 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart);
1695 return;
1697 if (bytecmd) {
1698 writeb(cmd, memaddr + head + cmdStart + 0);
1699 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1700 /* Below word_or_byte is bits to set */
1701 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1702 /* Below byte2 is bits to reset */
1703 writeb(byte2, memaddr + head + cmdStart + 3);
1704 } else {
1705 writeb(cmd, memaddr + head + cmdStart + 0);
1706 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1707 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1709 head = (head + 4) & (cmdMax - cmdStart - 4);
1710 writew(head, &ch->mailbox->cin);
1711 count = FEPTIMEOUT;
1713 for (;;) {
1714 count--;
1715 if (count == 0) {
1716 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1717 return;
1719 head = readw(&ch->mailbox->cin);
1720 cmdTail = readw(&ch->mailbox->cout);
1721 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1723 * Basically this will break when the FEP acknowledges the
1724 * command by incrementing cmdTail (Making it equal to head).
1726 if (n <= ncmds * (sizeof(short) * 4))
1727 break;
1732 * Digi products use fields in their channels structures that are very similar
1733 * to the c_cflag and c_iflag fields typically found in UNIX termios
1734 * structures. The below three routines allow mappings between these hardware
1735 * "flags" and their respective Linux flags.
1737 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1739 unsigned res = 0;
1741 if (cflag & CRTSCTS) {
1742 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1743 res |= ((ch->m_cts) | (ch->m_rts));
1746 if (ch->digiext.digi_flags & RTSPACE)
1747 res |= ch->m_rts;
1749 if (ch->digiext.digi_flags & DTRPACE)
1750 res |= ch->m_dtr;
1752 if (ch->digiext.digi_flags & CTSPACE)
1753 res |= ch->m_cts;
1755 if (ch->digiext.digi_flags & DSRPACE)
1756 res |= ch->dsr;
1758 if (ch->digiext.digi_flags & DCDPACE)
1759 res |= ch->dcd;
1761 if (res & (ch->m_rts))
1762 ch->digiext.digi_flags |= RTSPACE;
1764 if (res & (ch->m_cts))
1765 ch->digiext.digi_flags |= CTSPACE;
1767 return res;
1770 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1772 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1773 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1774 if (ch->digiext.digi_flags & DIGI_AIXON)
1775 res |= IAIXON;
1776 return res;
1779 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1781 unsigned res = 0;
1782 if (cflag & CBAUDEX) {
1783 ch->digiext.digi_flags |= DIGI_FAST;
1785 * HUPCL bit is used by FEP to indicate fast baud table is to
1786 * be used.
1788 res |= FEP_HUPCL;
1789 } else
1790 ch->digiext.digi_flags &= ~DIGI_FAST;
1792 * CBAUD has bit position 0x1000 set these days to indicate Linux
1793 * baud rate remap. Digi hardware can't handle the bit assignment.
1794 * (We use a different bit assignment for high speed.). Clear this
1795 * bit out.
1797 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1799 * This gets a little confusing. The Digi cards have their own
1800 * representation of c_cflags controling baud rate. For the most part
1801 * this is identical to the Linux implementation. However; Digi
1802 * supports one rate (76800) that Linux doesn't. This means that the
1803 * c_cflag entry that would normally mean 76800 for Digi actually means
1804 * 115200 under Linux. Without the below mapping, a stty 115200 would
1805 * only drive the board at 76800. Since the rate 230400 is also found
1806 * after 76800, the same problem afflicts us when we choose a rate of
1807 * 230400. Without the below modificiation stty 230400 would actually
1808 * give us 115200.
1810 * There are two additional differences. The Linux value for CLOCAL
1811 * (0x800; 0004000) has no meaning to the Digi hardware. Also in later
1812 * releases of Linux; the CBAUD define has CBAUDEX (0x1000; 0010000)
1813 * ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX should be
1814 * checked for a screened out prior to termios2digi_c returning. Since
1815 * CLOCAL isn't used by the board this can be ignored as long as the
1816 * returned value is used only by Digi hardware.
1818 if (cflag & CBAUDEX) {
1820 * The below code is trying to guarantee that only baud rates
1821 * 115200 and 230400 are remapped. We use exclusive or because
1822 * the various baud rates share common bit positions and
1823 * therefore can't be tested for easily.
1825 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1826 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1827 res += 1;
1829 return res;
1832 /* Caller must hold the locks */
1833 static void epcaparam(struct tty_struct *tty, struct channel *ch)
1835 unsigned int cmdHead;
1836 struct ktermios *ts;
1837 struct board_chan __iomem *bc;
1838 unsigned mval, hflow, cflag, iflag;
1840 bc = ch->brdchan;
1841 epcaassert(bc !=0, "bc out of range");
1843 assertgwinon(ch);
1844 ts = tty->termios;
1845 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
1846 cmdHead = readw(&bc->rin);
1847 writew(cmdHead, &bc->rout);
1848 cmdHead = readw(&bc->tin);
1849 /* Changing baud in mid-stream transmission can be wonderful */
1851 * Flush current transmit buffer by setting cmdTail pointer
1852 * (tout) to cmdHead pointer (tin). Hopefully the transmit
1853 * buffer is empty.
1855 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
1856 mval = 0;
1857 } else { /* Begin CBAUD not detected */
1859 * c_cflags have changed but that change had nothing to do with
1860 * BAUD. Propagate the change to the card.
1862 cflag = termios2digi_c(ch, ts->c_cflag);
1863 if (cflag != ch->fepcflag) {
1864 ch->fepcflag = cflag;
1865 /* Set baud rate, char size, stop bits, parity */
1866 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
1869 * If the user has not forced CLOCAL and if the device is not a
1870 * CALLOUT device (Which is always CLOCAL) we set flags such
1871 * that the driver will wait on carrier detect.
1873 if (ts->c_cflag & CLOCAL)
1874 ch->asyncflags &= ~ASYNC_CHECK_CD;
1875 else
1876 ch->asyncflags |= ASYNC_CHECK_CD;
1877 mval = ch->m_dtr | ch->m_rts;
1878 } /* End CBAUD not detected */
1879 iflag = termios2digi_i(ch, ts->c_iflag);
1880 /* Check input mode flags */
1881 if (iflag != ch->fepiflag) {
1882 ch->fepiflag = iflag;
1884 * Command sets channels iflag structure on the board. Such
1885 * things as input soft flow control, handling of parity
1886 * errors, and break handling are all set here.
1888 /* break handling, parity handling, input stripping, flow control chars */
1889 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
1892 * Set the board mint value for this channel. This will cause hardware
1893 * events to be generated each time the DCD signal (Described in mint)
1894 * changes.
1896 writeb(ch->dcd, &bc->mint);
1897 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
1898 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
1899 writeb(0, &bc->mint);
1900 ch->imodem = readb(&bc->mstat);
1901 hflow = termios2digi_h(ch, ts->c_cflag);
1902 if (hflow != ch->hflow) {
1903 ch->hflow = hflow;
1905 * Hard flow control has been selected but the board is not
1906 * using it. Activate hard flow control now.
1908 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
1910 mval ^= ch->modemfake & (mval ^ ch->modem);
1912 if (ch->omodem ^ mval) {
1913 ch->omodem = mval;
1915 * The below command sets the DTR and RTS mstat structure. If
1916 * hard flow control is NOT active these changes will drive the
1917 * output of the actual DTR and RTS lines. If hard flow control
1918 * is active, the changes will be saved in the mstat structure
1919 * and only asserted when hard flow control is turned off.
1922 /* First reset DTR & RTS; then set them */
1923 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
1924 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
1926 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
1927 ch->fepstartc = ch->startc;
1928 ch->fepstopc = ch->stopc;
1930 * The XON / XOFF characters have changed; propagate these
1931 * changes to the card.
1933 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
1935 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
1936 ch->fepstartca = ch->startca;
1937 ch->fepstopca = ch->stopca;
1939 * Similar to the above, this time the auxilarly XON / XOFF
1940 * characters have changed; propagate these changes to the card.
1942 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
1946 /* Caller holds lock */
1947 static void receive_data(struct channel *ch)
1949 unchar *rptr;
1950 struct ktermios *ts = NULL;
1951 struct tty_struct *tty;
1952 struct board_chan __iomem *bc;
1953 int dataToRead, wrapgap, bytesAvailable;
1954 unsigned int tail, head;
1955 unsigned int wrapmask;
1958 * This routine is called by doint when a receive data event has taken
1959 * place.
1961 globalwinon(ch);
1962 if (ch->statusflags & RXSTOPPED)
1963 return;
1964 tty = ch->tty;
1965 if (tty)
1966 ts = tty->termios;
1967 bc = ch->brdchan;
1968 BUG_ON(!bc);
1969 wrapmask = ch->rxbufsize - 1;
1972 * Get the head and tail pointers to the receiver queue. Wrap the head
1973 * pointer if it has reached the end of the buffer.
1975 head = readw(&bc->rin);
1976 head &= wrapmask;
1977 tail = readw(&bc->rout) & wrapmask;
1979 bytesAvailable = (head - tail) & wrapmask;
1980 if (bytesAvailable == 0)
1981 return;
1983 /* If CREAD bit is off or device not open, set TX tail to head */
1984 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
1985 writew(head, &bc->rout);
1986 return;
1989 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
1990 return;
1992 if (readb(&bc->orun)) {
1993 writeb(0, &bc->orun);
1994 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
1995 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
1997 rxwinon(ch);
1998 while (bytesAvailable > 0) { /* Begin while there is data on the card */
1999 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2001 * Even if head has wrapped around only report the amount of
2002 * data to be equal to the size - tail. Remember memcpy can't
2003 * automaticly wrap around the receive buffer.
2005 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2006 /* Make sure we don't overflow the buffer */
2007 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
2008 if (dataToRead == 0)
2009 break;
2011 * Move data read from our card into the line disciplines
2012 * buffer for translation if necessary.
2014 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2015 tail = (tail + dataToRead) & wrapmask;
2016 bytesAvailable -= dataToRead;
2017 } /* End while there is data on the card */
2018 globalwinon(ch);
2019 writew(tail, &bc->rout);
2020 /* Must be called with global data */
2021 tty_schedule_flip(ch->tty);
2024 static int info_ioctl(struct tty_struct *tty, struct file *file,
2025 unsigned int cmd, unsigned long arg)
2027 switch (cmd) {
2028 case DIGI_GETINFO:
2030 struct digi_info di;
2031 int brd;
2033 if (get_user(brd, (unsigned int __user *)arg))
2034 return -EFAULT;
2035 if (brd < 0 || brd >= num_cards || num_cards == 0)
2036 return -ENODEV;
2038 memset(&di, 0, sizeof(di));
2040 di.board = brd;
2041 di.status = boards[brd].status;
2042 di.type = boards[brd].type ;
2043 di.numports = boards[brd].numports ;
2044 /* Legacy fixups - just move along nothing to see */
2045 di.port = (unsigned char *)boards[brd].port ;
2046 di.membase = (unsigned char *)boards[brd].membase ;
2048 if (copy_to_user((void __user *)arg, &di, sizeof(di)))
2049 return -EFAULT;
2050 break;
2054 case DIGI_POLLER:
2056 int brd = arg & 0xff000000 >> 16;
2057 unsigned char state = arg & 0xff;
2059 if (brd < 0 || brd >= num_cards) {
2060 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2061 return -ENODEV;
2063 digi_poller_inhibited = state;
2064 break;
2067 case DIGI_INIT:
2070 * This call is made by the apps to complete the
2071 * initilization of the board(s). This routine is
2072 * responsible for setting the card to its initial
2073 * state and setting the drivers control fields to the
2074 * sutianle settings for the card in question.
2076 int crd;
2077 for (crd = 0; crd < num_cards; crd++)
2078 post_fep_init(crd);
2079 break;
2081 default:
2082 return -ENOTTY;
2084 return 0;
2087 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2089 struct channel *ch = (struct channel *) tty->driver_data;
2090 struct board_chan __iomem *bc;
2091 unsigned int mstat, mflag = 0;
2092 unsigned long flags;
2094 if (ch)
2095 bc = ch->brdchan;
2096 else
2097 return -EINVAL;
2099 spin_lock_irqsave(&epca_lock, flags);
2100 globalwinon(ch);
2101 mstat = readb(&bc->mstat);
2102 memoff(ch);
2103 spin_unlock_irqrestore(&epca_lock, flags);
2105 if (mstat & ch->m_dtr)
2106 mflag |= TIOCM_DTR;
2107 if (mstat & ch->m_rts)
2108 mflag |= TIOCM_RTS;
2109 if (mstat & ch->m_cts)
2110 mflag |= TIOCM_CTS;
2111 if (mstat & ch->dsr)
2112 mflag |= TIOCM_DSR;
2113 if (mstat & ch->m_ri)
2114 mflag |= TIOCM_RI;
2115 if (mstat & ch->dcd)
2116 mflag |= TIOCM_CD;
2117 return mflag;
2120 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2121 unsigned int set, unsigned int clear)
2123 struct channel *ch = (struct channel *) tty->driver_data;
2124 unsigned long flags;
2126 if (!ch)
2127 return -EINVAL;
2129 spin_lock_irqsave(&epca_lock, flags);
2131 * I think this modemfake stuff is broken. It doesn't correctly reflect
2132 * the behaviour desired by the TIOCM* ioctls. Therefore this is
2133 * probably broken.
2135 if (set & TIOCM_RTS) {
2136 ch->modemfake |= ch->m_rts;
2137 ch->modem |= ch->m_rts;
2139 if (set & TIOCM_DTR) {
2140 ch->modemfake |= ch->m_dtr;
2141 ch->modem |= ch->m_dtr;
2143 if (clear & TIOCM_RTS) {
2144 ch->modemfake |= ch->m_rts;
2145 ch->modem &= ~ch->m_rts;
2147 if (clear & TIOCM_DTR) {
2148 ch->modemfake |= ch->m_dtr;
2149 ch->modem &= ~ch->m_dtr;
2151 globalwinon(ch);
2153 * The below routine generally sets up parity, baud, flow control
2154 * issues, etc.... It effect both control flags and input flags.
2156 epcaparam(tty,ch);
2157 memoff(ch);
2158 spin_unlock_irqrestore(&epca_lock, flags);
2159 return 0;
2162 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2163 unsigned int cmd, unsigned long arg)
2165 digiflow_t dflow;
2166 int retval;
2167 unsigned long flags;
2168 unsigned int mflag, mstat;
2169 unsigned char startc, stopc;
2170 struct board_chan __iomem *bc;
2171 struct channel *ch = (struct channel *) tty->driver_data;
2172 void __user *argp = (void __user *)arg;
2174 if (ch)
2175 bc = ch->brdchan;
2176 else
2177 return -EINVAL;
2180 * For POSIX compliance we need to add more ioctls. See tty_ioctl.c in
2181 * /usr/src/linux/drivers/char for a good example. In particular think
2182 * about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2184 switch (cmd) {
2185 case TCSBRK: /* SVID version: non-zero arg --> no break */
2186 retval = tty_check_change(tty);
2187 if (retval)
2188 return retval;
2189 /* Setup an event to indicate when the transmit buffer empties */
2190 spin_lock_irqsave(&epca_lock, flags);
2191 setup_empty_event(tty,ch);
2192 spin_unlock_irqrestore(&epca_lock, flags);
2193 tty_wait_until_sent(tty, 0);
2194 if (!arg)
2195 digi_send_break(ch, HZ / 4); /* 1/4 second */
2196 return 0;
2197 case TCSBRKP: /* support for POSIX tcsendbreak() */
2198 retval = tty_check_change(tty);
2199 if (retval)
2200 return retval;
2202 /* Setup an event to indicate when the transmit buffer empties */
2203 spin_lock_irqsave(&epca_lock, flags);
2204 setup_empty_event(tty,ch);
2205 spin_unlock_irqrestore(&epca_lock, flags);
2206 tty_wait_until_sent(tty, 0);
2207 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2208 return 0;
2209 case TIOCGSOFTCAR:
2210 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2211 return -EFAULT;
2212 return 0;
2213 case TIOCSSOFTCAR:
2215 unsigned int value;
2217 if (get_user(value, (unsigned __user *)argp))
2218 return -EFAULT;
2219 tty->termios->c_cflag =
2220 ((tty->termios->c_cflag & ~CLOCAL) |
2221 (value ? CLOCAL : 0));
2222 return 0;
2224 case TIOCMODG:
2225 mflag = pc_tiocmget(tty, file);
2226 if (put_user(mflag, (unsigned long __user *)argp))
2227 return -EFAULT;
2228 break;
2229 case TIOCMODS:
2230 if (get_user(mstat, (unsigned __user *)argp))
2231 return -EFAULT;
2232 return pc_tiocmset(tty, file, mstat, ~mstat);
2233 case TIOCSDTR:
2234 spin_lock_irqsave(&epca_lock, flags);
2235 ch->omodem |= ch->m_dtr;
2236 globalwinon(ch);
2237 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2238 memoff(ch);
2239 spin_unlock_irqrestore(&epca_lock, flags);
2240 break;
2242 case TIOCCDTR:
2243 spin_lock_irqsave(&epca_lock, flags);
2244 ch->omodem &= ~ch->m_dtr;
2245 globalwinon(ch);
2246 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2247 memoff(ch);
2248 spin_unlock_irqrestore(&epca_lock, flags);
2249 break;
2250 case DIGI_GETA:
2251 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2252 return -EFAULT;
2253 break;
2254 case DIGI_SETAW:
2255 case DIGI_SETAF:
2256 if (cmd == DIGI_SETAW) {
2257 /* Setup an event to indicate when the transmit buffer empties */
2258 spin_lock_irqsave(&epca_lock, flags);
2259 setup_empty_event(tty,ch);
2260 spin_unlock_irqrestore(&epca_lock, flags);
2261 tty_wait_until_sent(tty, 0);
2262 } else {
2263 /* ldisc lock already held in ioctl */
2264 if (tty->ldisc.flush_buffer)
2265 tty->ldisc.flush_buffer(tty);
2267 /* Fall Thru */
2268 case DIGI_SETA:
2269 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2270 return -EFAULT;
2272 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2273 ch->dcd = ch->m_dsr;
2274 ch->dsr = ch->m_dcd;
2275 } else {
2276 ch->dcd = ch->m_dcd;
2277 ch->dsr = ch->m_dsr;
2280 spin_lock_irqsave(&epca_lock, flags);
2281 globalwinon(ch);
2284 * The below routine generally sets up parity, baud, flow
2285 * control issues, etc.... It effect both control flags and
2286 * input flags.
2288 epcaparam(tty,ch);
2289 memoff(ch);
2290 spin_unlock_irqrestore(&epca_lock, flags);
2291 break;
2293 case DIGI_GETFLOW:
2294 case DIGI_GETAFLOW:
2295 spin_lock_irqsave(&epca_lock, flags);
2296 globalwinon(ch);
2297 if (cmd == DIGI_GETFLOW) {
2298 dflow.startc = readb(&bc->startc);
2299 dflow.stopc = readb(&bc->stopc);
2300 } else {
2301 dflow.startc = readb(&bc->startca);
2302 dflow.stopc = readb(&bc->stopca);
2304 memoff(ch);
2305 spin_unlock_irqrestore(&epca_lock, flags);
2307 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2308 return -EFAULT;
2309 break;
2311 case DIGI_SETAFLOW:
2312 case DIGI_SETFLOW:
2313 if (cmd == DIGI_SETFLOW) {
2314 startc = ch->startc;
2315 stopc = ch->stopc;
2316 } else {
2317 startc = ch->startca;
2318 stopc = ch->stopca;
2321 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2322 return -EFAULT;
2324 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */
2325 spin_lock_irqsave(&epca_lock, flags);
2326 globalwinon(ch);
2328 if (cmd == DIGI_SETFLOW) {
2329 ch->fepstartc = ch->startc = dflow.startc;
2330 ch->fepstopc = ch->stopc = dflow.stopc;
2331 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2332 } else {
2333 ch->fepstartca = ch->startca = dflow.startc;
2334 ch->fepstopca = ch->stopca = dflow.stopc;
2335 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2338 if (ch->statusflags & TXSTOPPED)
2339 pc_start(tty);
2341 memoff(ch);
2342 spin_unlock_irqrestore(&epca_lock, flags);
2343 } /* End if setflow toggled */
2344 break;
2345 default:
2346 return -ENOIOCTLCMD;
2348 return 0;
2351 static void pc_set_termios(struct tty_struct *tty, struct ktermios *old_termios)
2353 struct channel *ch;
2354 unsigned long flags;
2356 * verifyChannel returns the channel from the tty struct if it is
2357 * valid. This serves as a sanity check.
2359 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2360 spin_lock_irqsave(&epca_lock, flags);
2361 globalwinon(ch);
2362 epcaparam(tty, ch);
2363 memoff(ch);
2364 spin_unlock_irqrestore(&epca_lock, flags);
2366 if ((old_termios->c_cflag & CRTSCTS) &&
2367 ((tty->termios->c_cflag & CRTSCTS) == 0))
2368 tty->hw_stopped = 0;
2370 if (!(old_termios->c_cflag & CLOCAL) &&
2371 (tty->termios->c_cflag & CLOCAL))
2372 wake_up_interruptible(&ch->open_wait);
2374 } /* End if channel valid */
2377 static void do_softint(struct work_struct *work)
2379 struct channel *ch = container_of(work, struct channel, tqueue);
2380 /* Called in response to a modem change event */
2381 if (ch && ch->magic == EPCA_MAGIC) {
2382 struct tty_struct *tty = ch->tty;
2384 if (tty && tty->driver_data) {
2385 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) {
2386 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2387 wake_up_interruptible(&ch->open_wait);
2388 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2395 * pc_stop and pc_start provide software flow control to the routine and the
2396 * pc_ioctl routine.
2398 static void pc_stop(struct tty_struct *tty)
2400 struct channel *ch;
2401 unsigned long flags;
2403 * verifyChannel returns the channel from the tty struct if it is
2404 * valid. This serves as a sanity check.
2406 if ((ch = verifyChannel(tty)) != NULL) {
2407 spin_lock_irqsave(&epca_lock, flags);
2408 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */
2409 globalwinon(ch);
2410 /* STOP transmitting now !! */
2411 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2412 ch->statusflags |= TXSTOPPED;
2413 memoff(ch);
2414 } /* End if transmit stop requested */
2415 spin_unlock_irqrestore(&epca_lock, flags);
2419 static void pc_start(struct tty_struct *tty)
2421 struct channel *ch;
2423 * verifyChannel returns the channel from the tty struct if it is
2424 * valid. This serves as a sanity check.
2426 if ((ch = verifyChannel(tty)) != NULL) {
2427 unsigned long flags;
2428 spin_lock_irqsave(&epca_lock, flags);
2429 /* Just in case output was resumed because of a change in Digi-flow */
2430 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */
2431 struct board_chan __iomem *bc;
2432 globalwinon(ch);
2433 bc = ch->brdchan;
2434 if (ch->statusflags & LOWWAIT)
2435 writeb(1, &bc->ilow);
2436 /* Okay, you can start transmitting again... */
2437 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2438 ch->statusflags &= ~TXSTOPPED;
2439 memoff(ch);
2440 } /* End transmit resume requested */
2441 spin_unlock_irqrestore(&epca_lock, flags);
2446 * The below routines pc_throttle and pc_unthrottle are used to slow (And
2447 * resume) the receipt of data into the kernels receive buffers. The exact
2448 * occurrence of this depends on the size of the kernels receive buffer and
2449 * what the 'watermarks' are set to for that buffer. See the n_ttys.c file for
2450 * more details.
2452 static void pc_throttle(struct tty_struct *tty)
2454 struct channel *ch;
2455 unsigned long flags;
2457 * verifyChannel returns the channel from the tty struct if it is
2458 * valid. This serves as a sanity check.
2460 if ((ch = verifyChannel(tty)) != NULL) {
2461 spin_lock_irqsave(&epca_lock, flags);
2462 if ((ch->statusflags & RXSTOPPED) == 0) {
2463 globalwinon(ch);
2464 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2465 ch->statusflags |= RXSTOPPED;
2466 memoff(ch);
2468 spin_unlock_irqrestore(&epca_lock, flags);
2472 static void pc_unthrottle(struct tty_struct *tty)
2474 struct channel *ch;
2475 unsigned long flags;
2477 * verifyChannel returns the channel from the tty struct if it is
2478 * valid. This serves as a sanity check.
2480 if ((ch = verifyChannel(tty)) != NULL) {
2481 /* Just in case output was resumed because of a change in Digi-flow */
2482 spin_lock_irqsave(&epca_lock, flags);
2483 if (ch->statusflags & RXSTOPPED) {
2484 globalwinon(ch);
2485 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2486 ch->statusflags &= ~RXSTOPPED;
2487 memoff(ch);
2489 spin_unlock_irqrestore(&epca_lock, flags);
2493 void digi_send_break(struct channel *ch, int msec)
2495 unsigned long flags;
2497 spin_lock_irqsave(&epca_lock, flags);
2498 globalwinon(ch);
2500 * Maybe I should send an infinite break here, schedule() for msec
2501 * amount of time, and then stop the break. This way, the user can't
2502 * screw up the FEP by causing digi_send_break() to be called (i.e. via
2503 * an ioctl()) more than once in msec amount of time.
2504 * Try this for now...
2506 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2507 memoff(ch);
2508 spin_unlock_irqrestore(&epca_lock, flags);
2511 /* Caller MUST hold the lock */
2512 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2514 struct board_chan __iomem *bc = ch->brdchan;
2516 globalwinon(ch);
2517 ch->statusflags |= EMPTYWAIT;
2519 * When set the iempty flag request a event to be generated when the
2520 * transmit buffer is empty (If there is no BREAK in progress).
2522 writeb(1, &bc->iempty);
2523 memoff(ch);
2526 void epca_setup(char *str, int *ints)
2528 struct board_info board;
2529 int index, loop, last;
2530 char *temp, *t2;
2531 unsigned len;
2534 * If this routine looks a little strange it is because it is only
2535 * called if a LILO append command is given to boot the kernel with
2536 * parameters. In this way, we can provide the user a method of
2537 * changing his board configuration without rebuilding the kernel.
2539 if (!liloconfig)
2540 liloconfig = 1;
2542 memset(&board, 0, sizeof(board));
2544 /* Assume the data is int first, later we can change it */
2545 /* I think that array position 0 of ints holds the number of args */
2546 for (last = 0, index = 1; index <= ints[0]; index++)
2547 switch (index) { /* Begin parse switch */
2548 case 1:
2549 board.status = ints[index];
2551 * We check for 2 (As opposed to 1; because 2 is a flag
2552 * instructing the driver to ignore epcaconfig.) For
2553 * this reason we check for 2.
2555 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2556 nbdevs = 0;
2557 num_cards = 0;
2558 return;
2559 } /* End ignore epcaconfig as well as lilo cmd line */
2561 if (board.status > 2) {
2562 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2563 invalid_lilo_config = 1;
2564 setup_error_code |= INVALID_BOARD_STATUS;
2565 return;
2567 last = index;
2568 break;
2569 case 2:
2570 board.type = ints[index];
2571 if (board.type >= PCIXEM) {
2572 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2573 invalid_lilo_config = 1;
2574 setup_error_code |= INVALID_BOARD_TYPE;
2575 return;
2577 last = index;
2578 break;
2579 case 3:
2580 board.altpin = ints[index];
2581 if (board.altpin > 1) {
2582 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2583 invalid_lilo_config = 1;
2584 setup_error_code |= INVALID_ALTPIN;
2585 return;
2587 last = index;
2588 break;
2590 case 4:
2591 board.numports = ints[index];
2592 if (board.numports < 2 || board.numports > 256) {
2593 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2594 invalid_lilo_config = 1;
2595 setup_error_code |= INVALID_NUM_PORTS;
2596 return;
2598 nbdevs += board.numports;
2599 last = index;
2600 break;
2602 case 5:
2603 board.port = ints[index];
2604 if (ints[index] <= 0) {
2605 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2606 invalid_lilo_config = 1;
2607 setup_error_code |= INVALID_PORT_BASE;
2608 return;
2610 last = index;
2611 break;
2613 case 6:
2614 board.membase = ints[index];
2615 if (ints[index] <= 0) {
2616 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2617 invalid_lilo_config = 1;
2618 setup_error_code |= INVALID_MEM_BASE;
2619 return;
2621 last = index;
2622 break;
2624 default:
2625 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2626 return;
2628 } /* End parse switch */
2630 while (str && *str) { /* Begin while there is a string arg */
2631 /* find the next comma or terminator */
2632 temp = str;
2633 /* While string is not null, and a comma hasn't been found */
2634 while (*temp && (*temp != ','))
2635 temp++;
2636 if (!*temp)
2637 temp = NULL;
2638 else
2639 *temp++ = 0;
2640 /* Set index to the number of args + 1 */
2641 index = last + 1;
2643 switch (index) {
2644 case 1:
2645 len = strlen(str);
2646 if (strncmp("Disable", str, len) == 0)
2647 board.status = 0;
2648 else if (strncmp("Enable", str, len) == 0)
2649 board.status = 1;
2650 else {
2651 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2652 invalid_lilo_config = 1;
2653 setup_error_code |= INVALID_BOARD_STATUS;
2654 return;
2656 last = index;
2657 break;
2659 case 2:
2660 for (loop = 0; loop < EPCA_NUM_TYPES; loop++)
2661 if (strcmp(board_desc[loop], str) == 0)
2662 break;
2664 * If the index incremented above refers to a
2665 * legitamate board type set it here.
2667 if (index < EPCA_NUM_TYPES)
2668 board.type = loop;
2669 else {
2670 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2671 invalid_lilo_config = 1;
2672 setup_error_code |= INVALID_BOARD_TYPE;
2673 return;
2675 last = index;
2676 break;
2678 case 3:
2679 len = strlen(str);
2680 if (strncmp("Disable", str, len) == 0)
2681 board.altpin = 0;
2682 else if (strncmp("Enable", str, len) == 0)
2683 board.altpin = 1;
2684 else {
2685 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2686 invalid_lilo_config = 1;
2687 setup_error_code |= INVALID_ALTPIN;
2688 return;
2690 last = index;
2691 break;
2693 case 4:
2694 t2 = str;
2695 while (isdigit(*t2))
2696 t2++;
2698 if (*t2) {
2699 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2700 invalid_lilo_config = 1;
2701 setup_error_code |= INVALID_NUM_PORTS;
2702 return;
2706 * There is not a man page for simple_strtoul but the
2707 * code can be found in vsprintf.c. The first argument
2708 * is the string to translate (To an unsigned long
2709 * obviously), the second argument can be the address
2710 * of any character variable or a NULL. If a variable
2711 * is given, the end pointer of the string will be
2712 * stored in that variable; if a NULL is given the end
2713 * pointer will not be returned. The last argument is
2714 * the base to use. If a 0 is indicated, the routine
2715 * will attempt to determine the proper base by looking
2716 * at the values prefix (A '0' for octal, a 'x' for
2717 * hex, etc ... If a value is given it will use that
2718 * value as the base.
2720 board.numports = simple_strtoul(str, NULL, 0);
2721 nbdevs += board.numports;
2722 last = index;
2723 break;
2725 case 5:
2726 t2 = str;
2727 while (isxdigit(*t2))
2728 t2++;
2730 if (*t2) {
2731 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2732 invalid_lilo_config = 1;
2733 setup_error_code |= INVALID_PORT_BASE;
2734 return;
2737 board.port = simple_strtoul(str, NULL, 16);
2738 last = index;
2739 break;
2741 case 6:
2742 t2 = str;
2743 while (isxdigit(*t2))
2744 t2++;
2746 if (*t2) {
2747 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2748 invalid_lilo_config = 1;
2749 setup_error_code |= INVALID_MEM_BASE;
2750 return;
2752 board.membase = simple_strtoul(str, NULL, 16);
2753 last = index;
2754 break;
2755 default:
2756 printk(KERN_ERR "epca: Too many string parms\n");
2757 return;
2759 str = temp;
2760 } /* End while there is a string arg */
2762 if (last < 6) {
2763 printk(KERN_ERR "epca: Insufficient parms specified\n");
2764 return;
2767 /* I should REALLY validate the stuff here */
2768 /* Copies our local copy of board into boards */
2769 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2770 /* Does this get called once per lilo arg are what ? */
2771 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2772 num_cards, board_desc[board.type],
2773 board.numports, (int)board.port, (unsigned int) board.membase);
2774 num_cards++;
2777 enum epic_board_types {
2778 brd_xr = 0,
2779 brd_xem,
2780 brd_cx,
2781 brd_xrj,
2784 /* indexed directly by epic_board_types enum */
2785 static struct {
2786 unsigned char board_type;
2787 unsigned bar_idx; /* PCI base address region */
2788 } epca_info_tbl[] = {
2789 { PCIXR, 0, },
2790 { PCIXEM, 0, },
2791 { PCICX, 0, },
2792 { PCIXRJ, 2, },
2795 static int __devinit epca_init_one(struct pci_dev *pdev,
2796 const struct pci_device_id *ent)
2798 static int board_num = -1;
2799 int board_idx, info_idx = ent->driver_data;
2800 unsigned long addr;
2802 if (pci_enable_device(pdev))
2803 return -EIO;
2805 board_num++;
2806 board_idx = board_num + num_cards;
2807 if (board_idx >= MAXBOARDS)
2808 goto err_out;
2810 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
2811 if (!addr) {
2812 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
2813 epca_info_tbl[info_idx].bar_idx);
2814 goto err_out;
2817 boards[board_idx].status = ENABLED;
2818 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
2819 boards[board_idx].numports = 0x0;
2820 boards[board_idx].port = addr + PCI_IO_OFFSET;
2821 boards[board_idx].membase = addr;
2823 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
2824 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
2825 0x200000, addr + PCI_IO_OFFSET);
2826 goto err_out;
2829 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
2830 if (!boards[board_idx].re_map_port) {
2831 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
2832 0x200000, addr + PCI_IO_OFFSET);
2833 goto err_out_free_pciio;
2836 if (!request_mem_region (addr, 0x200000, "epca")) {
2837 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
2838 0x200000, addr);
2839 goto err_out_free_iounmap;
2842 boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
2843 if (!boards[board_idx].re_map_membase) {
2844 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
2845 0x200000, addr + PCI_IO_OFFSET);
2846 goto err_out_free_memregion;
2850 * I don't know what the below does, but the hardware guys say its
2851 * required on everything except PLX (In this case XRJ).
2853 if (info_idx != brd_xrj) {
2854 pci_write_config_byte(pdev, 0x40, 0);
2855 pci_write_config_byte(pdev, 0x46, 0);
2858 return 0;
2860 err_out_free_memregion:
2861 release_mem_region (addr, 0x200000);
2862 err_out_free_iounmap:
2863 iounmap (boards[board_idx].re_map_port);
2864 err_out_free_pciio:
2865 release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
2866 err_out:
2867 return -ENODEV;
2871 static struct pci_device_id epca_pci_tbl[] = {
2872 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
2873 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
2874 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
2875 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
2876 { 0, }
2879 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
2881 int __init init_PCI (void)
2883 memset (&epca_driver, 0, sizeof (epca_driver));
2884 epca_driver.name = "epca";
2885 epca_driver.id_table = epca_pci_tbl;
2886 epca_driver.probe = epca_init_one;
2888 return pci_register_driver(&epca_driver);
2891 MODULE_LICENSE("GPL");