kgdb: Kconfig fix
[linux-2.6/openmoko-kernel/knife-kernel.git] / fs / namespace.c
blob94f026ec990ae24548eb02754f221b844abe0c2b
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include "pnode.h"
32 #include "internal.h"
34 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
35 #define HASH_SIZE (1UL << HASH_SHIFT)
37 /* spinlock for vfsmount related operations, inplace of dcache_lock */
38 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40 static int event;
42 static struct list_head *mount_hashtable __read_mostly;
43 static struct kmem_cache *mnt_cache __read_mostly;
44 static struct rw_semaphore namespace_sem;
46 /* /sys/fs */
47 struct kobject *fs_kobj;
48 EXPORT_SYMBOL_GPL(fs_kobj);
50 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
52 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
53 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
54 tmp = tmp + (tmp >> HASH_SHIFT);
55 return tmp & (HASH_SIZE - 1);
58 struct vfsmount *alloc_vfsmnt(const char *name)
60 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
61 if (mnt) {
62 atomic_set(&mnt->mnt_count, 1);
63 INIT_LIST_HEAD(&mnt->mnt_hash);
64 INIT_LIST_HEAD(&mnt->mnt_child);
65 INIT_LIST_HEAD(&mnt->mnt_mounts);
66 INIT_LIST_HEAD(&mnt->mnt_list);
67 INIT_LIST_HEAD(&mnt->mnt_expire);
68 INIT_LIST_HEAD(&mnt->mnt_share);
69 INIT_LIST_HEAD(&mnt->mnt_slave_list);
70 INIT_LIST_HEAD(&mnt->mnt_slave);
71 if (name) {
72 int size = strlen(name) + 1;
73 char *newname = kmalloc(size, GFP_KERNEL);
74 if (newname) {
75 memcpy(newname, name, size);
76 mnt->mnt_devname = newname;
80 return mnt;
83 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
85 mnt->mnt_sb = sb;
86 mnt->mnt_root = dget(sb->s_root);
87 return 0;
90 EXPORT_SYMBOL(simple_set_mnt);
92 void free_vfsmnt(struct vfsmount *mnt)
94 kfree(mnt->mnt_devname);
95 kmem_cache_free(mnt_cache, mnt);
99 * find the first or last mount at @dentry on vfsmount @mnt depending on
100 * @dir. If @dir is set return the first mount else return the last mount.
102 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
103 int dir)
105 struct list_head *head = mount_hashtable + hash(mnt, dentry);
106 struct list_head *tmp = head;
107 struct vfsmount *p, *found = NULL;
109 for (;;) {
110 tmp = dir ? tmp->next : tmp->prev;
111 p = NULL;
112 if (tmp == head)
113 break;
114 p = list_entry(tmp, struct vfsmount, mnt_hash);
115 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
116 found = p;
117 break;
120 return found;
124 * lookup_mnt increments the ref count before returning
125 * the vfsmount struct.
127 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
129 struct vfsmount *child_mnt;
130 spin_lock(&vfsmount_lock);
131 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
132 mntget(child_mnt);
133 spin_unlock(&vfsmount_lock);
134 return child_mnt;
137 static inline int check_mnt(struct vfsmount *mnt)
139 return mnt->mnt_ns == current->nsproxy->mnt_ns;
142 static void touch_mnt_namespace(struct mnt_namespace *ns)
144 if (ns) {
145 ns->event = ++event;
146 wake_up_interruptible(&ns->poll);
150 static void __touch_mnt_namespace(struct mnt_namespace *ns)
152 if (ns && ns->event != event) {
153 ns->event = event;
154 wake_up_interruptible(&ns->poll);
158 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
160 old_path->dentry = mnt->mnt_mountpoint;
161 old_path->mnt = mnt->mnt_parent;
162 mnt->mnt_parent = mnt;
163 mnt->mnt_mountpoint = mnt->mnt_root;
164 list_del_init(&mnt->mnt_child);
165 list_del_init(&mnt->mnt_hash);
166 old_path->dentry->d_mounted--;
169 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
170 struct vfsmount *child_mnt)
172 child_mnt->mnt_parent = mntget(mnt);
173 child_mnt->mnt_mountpoint = dget(dentry);
174 dentry->d_mounted++;
177 static void attach_mnt(struct vfsmount *mnt, struct path *path)
179 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
180 list_add_tail(&mnt->mnt_hash, mount_hashtable +
181 hash(path->mnt, path->dentry));
182 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
186 * the caller must hold vfsmount_lock
188 static void commit_tree(struct vfsmount *mnt)
190 struct vfsmount *parent = mnt->mnt_parent;
191 struct vfsmount *m;
192 LIST_HEAD(head);
193 struct mnt_namespace *n = parent->mnt_ns;
195 BUG_ON(parent == mnt);
197 list_add_tail(&head, &mnt->mnt_list);
198 list_for_each_entry(m, &head, mnt_list)
199 m->mnt_ns = n;
200 list_splice(&head, n->list.prev);
202 list_add_tail(&mnt->mnt_hash, mount_hashtable +
203 hash(parent, mnt->mnt_mountpoint));
204 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
205 touch_mnt_namespace(n);
208 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
210 struct list_head *next = p->mnt_mounts.next;
211 if (next == &p->mnt_mounts) {
212 while (1) {
213 if (p == root)
214 return NULL;
215 next = p->mnt_child.next;
216 if (next != &p->mnt_parent->mnt_mounts)
217 break;
218 p = p->mnt_parent;
221 return list_entry(next, struct vfsmount, mnt_child);
224 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
226 struct list_head *prev = p->mnt_mounts.prev;
227 while (prev != &p->mnt_mounts) {
228 p = list_entry(prev, struct vfsmount, mnt_child);
229 prev = p->mnt_mounts.prev;
231 return p;
234 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
235 int flag)
237 struct super_block *sb = old->mnt_sb;
238 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
240 if (mnt) {
241 mnt->mnt_flags = old->mnt_flags;
242 atomic_inc(&sb->s_active);
243 mnt->mnt_sb = sb;
244 mnt->mnt_root = dget(root);
245 mnt->mnt_mountpoint = mnt->mnt_root;
246 mnt->mnt_parent = mnt;
248 if (flag & CL_SLAVE) {
249 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
250 mnt->mnt_master = old;
251 CLEAR_MNT_SHARED(mnt);
252 } else if (!(flag & CL_PRIVATE)) {
253 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
254 list_add(&mnt->mnt_share, &old->mnt_share);
255 if (IS_MNT_SLAVE(old))
256 list_add(&mnt->mnt_slave, &old->mnt_slave);
257 mnt->mnt_master = old->mnt_master;
259 if (flag & CL_MAKE_SHARED)
260 set_mnt_shared(mnt);
262 /* stick the duplicate mount on the same expiry list
263 * as the original if that was on one */
264 if (flag & CL_EXPIRE) {
265 if (!list_empty(&old->mnt_expire))
266 list_add(&mnt->mnt_expire, &old->mnt_expire);
269 return mnt;
272 static inline void __mntput(struct vfsmount *mnt)
274 struct super_block *sb = mnt->mnt_sb;
275 dput(mnt->mnt_root);
276 free_vfsmnt(mnt);
277 deactivate_super(sb);
280 void mntput_no_expire(struct vfsmount *mnt)
282 repeat:
283 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
284 if (likely(!mnt->mnt_pinned)) {
285 spin_unlock(&vfsmount_lock);
286 __mntput(mnt);
287 return;
289 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
290 mnt->mnt_pinned = 0;
291 spin_unlock(&vfsmount_lock);
292 acct_auto_close_mnt(mnt);
293 security_sb_umount_close(mnt);
294 goto repeat;
298 EXPORT_SYMBOL(mntput_no_expire);
300 void mnt_pin(struct vfsmount *mnt)
302 spin_lock(&vfsmount_lock);
303 mnt->mnt_pinned++;
304 spin_unlock(&vfsmount_lock);
307 EXPORT_SYMBOL(mnt_pin);
309 void mnt_unpin(struct vfsmount *mnt)
311 spin_lock(&vfsmount_lock);
312 if (mnt->mnt_pinned) {
313 atomic_inc(&mnt->mnt_count);
314 mnt->mnt_pinned--;
316 spin_unlock(&vfsmount_lock);
319 EXPORT_SYMBOL(mnt_unpin);
321 static inline void mangle(struct seq_file *m, const char *s)
323 seq_escape(m, s, " \t\n\\");
327 * Simple .show_options callback for filesystems which don't want to
328 * implement more complex mount option showing.
330 * See also save_mount_options().
332 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
334 const char *options = mnt->mnt_sb->s_options;
336 if (options != NULL && options[0]) {
337 seq_putc(m, ',');
338 mangle(m, options);
341 return 0;
343 EXPORT_SYMBOL(generic_show_options);
346 * If filesystem uses generic_show_options(), this function should be
347 * called from the fill_super() callback.
349 * The .remount_fs callback usually needs to be handled in a special
350 * way, to make sure, that previous options are not overwritten if the
351 * remount fails.
353 * Also note, that if the filesystem's .remount_fs function doesn't
354 * reset all options to their default value, but changes only newly
355 * given options, then the displayed options will not reflect reality
356 * any more.
358 void save_mount_options(struct super_block *sb, char *options)
360 kfree(sb->s_options);
361 sb->s_options = kstrdup(options, GFP_KERNEL);
363 EXPORT_SYMBOL(save_mount_options);
365 /* iterator */
366 static void *m_start(struct seq_file *m, loff_t *pos)
368 struct mnt_namespace *n = m->private;
370 down_read(&namespace_sem);
371 return seq_list_start(&n->list, *pos);
374 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
376 struct mnt_namespace *n = m->private;
378 return seq_list_next(v, &n->list, pos);
381 static void m_stop(struct seq_file *m, void *v)
383 up_read(&namespace_sem);
386 static int show_vfsmnt(struct seq_file *m, void *v)
388 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
389 int err = 0;
390 static struct proc_fs_info {
391 int flag;
392 char *str;
393 } fs_info[] = {
394 { MS_SYNCHRONOUS, ",sync" },
395 { MS_DIRSYNC, ",dirsync" },
396 { MS_MANDLOCK, ",mand" },
397 { 0, NULL }
399 static struct proc_fs_info mnt_info[] = {
400 { MNT_NOSUID, ",nosuid" },
401 { MNT_NODEV, ",nodev" },
402 { MNT_NOEXEC, ",noexec" },
403 { MNT_NOATIME, ",noatime" },
404 { MNT_NODIRATIME, ",nodiratime" },
405 { MNT_RELATIME, ",relatime" },
406 { 0, NULL }
408 struct proc_fs_info *fs_infop;
409 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
411 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
412 seq_putc(m, ' ');
413 seq_path(m, &mnt_path, " \t\n\\");
414 seq_putc(m, ' ');
415 mangle(m, mnt->mnt_sb->s_type->name);
416 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
417 seq_putc(m, '.');
418 mangle(m, mnt->mnt_sb->s_subtype);
420 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
421 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
422 if (mnt->mnt_sb->s_flags & fs_infop->flag)
423 seq_puts(m, fs_infop->str);
425 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
426 if (mnt->mnt_flags & fs_infop->flag)
427 seq_puts(m, fs_infop->str);
429 if (mnt->mnt_sb->s_op->show_options)
430 err = mnt->mnt_sb->s_op->show_options(m, mnt);
431 seq_puts(m, " 0 0\n");
432 return err;
435 struct seq_operations mounts_op = {
436 .start = m_start,
437 .next = m_next,
438 .stop = m_stop,
439 .show = show_vfsmnt
442 static int show_vfsstat(struct seq_file *m, void *v)
444 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
445 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
446 int err = 0;
448 /* device */
449 if (mnt->mnt_devname) {
450 seq_puts(m, "device ");
451 mangle(m, mnt->mnt_devname);
452 } else
453 seq_puts(m, "no device");
455 /* mount point */
456 seq_puts(m, " mounted on ");
457 seq_path(m, &mnt_path, " \t\n\\");
458 seq_putc(m, ' ');
460 /* file system type */
461 seq_puts(m, "with fstype ");
462 mangle(m, mnt->mnt_sb->s_type->name);
464 /* optional statistics */
465 if (mnt->mnt_sb->s_op->show_stats) {
466 seq_putc(m, ' ');
467 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
470 seq_putc(m, '\n');
471 return err;
474 struct seq_operations mountstats_op = {
475 .start = m_start,
476 .next = m_next,
477 .stop = m_stop,
478 .show = show_vfsstat,
482 * may_umount_tree - check if a mount tree is busy
483 * @mnt: root of mount tree
485 * This is called to check if a tree of mounts has any
486 * open files, pwds, chroots or sub mounts that are
487 * busy.
489 int may_umount_tree(struct vfsmount *mnt)
491 int actual_refs = 0;
492 int minimum_refs = 0;
493 struct vfsmount *p;
495 spin_lock(&vfsmount_lock);
496 for (p = mnt; p; p = next_mnt(p, mnt)) {
497 actual_refs += atomic_read(&p->mnt_count);
498 minimum_refs += 2;
500 spin_unlock(&vfsmount_lock);
502 if (actual_refs > minimum_refs)
503 return 0;
505 return 1;
508 EXPORT_SYMBOL(may_umount_tree);
511 * may_umount - check if a mount point is busy
512 * @mnt: root of mount
514 * This is called to check if a mount point has any
515 * open files, pwds, chroots or sub mounts. If the
516 * mount has sub mounts this will return busy
517 * regardless of whether the sub mounts are busy.
519 * Doesn't take quota and stuff into account. IOW, in some cases it will
520 * give false negatives. The main reason why it's here is that we need
521 * a non-destructive way to look for easily umountable filesystems.
523 int may_umount(struct vfsmount *mnt)
525 int ret = 1;
526 spin_lock(&vfsmount_lock);
527 if (propagate_mount_busy(mnt, 2))
528 ret = 0;
529 spin_unlock(&vfsmount_lock);
530 return ret;
533 EXPORT_SYMBOL(may_umount);
535 void release_mounts(struct list_head *head)
537 struct vfsmount *mnt;
538 while (!list_empty(head)) {
539 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
540 list_del_init(&mnt->mnt_hash);
541 if (mnt->mnt_parent != mnt) {
542 struct dentry *dentry;
543 struct vfsmount *m;
544 spin_lock(&vfsmount_lock);
545 dentry = mnt->mnt_mountpoint;
546 m = mnt->mnt_parent;
547 mnt->mnt_mountpoint = mnt->mnt_root;
548 mnt->mnt_parent = mnt;
549 m->mnt_ghosts--;
550 spin_unlock(&vfsmount_lock);
551 dput(dentry);
552 mntput(m);
554 mntput(mnt);
558 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
560 struct vfsmount *p;
562 for (p = mnt; p; p = next_mnt(p, mnt))
563 list_move(&p->mnt_hash, kill);
565 if (propagate)
566 propagate_umount(kill);
568 list_for_each_entry(p, kill, mnt_hash) {
569 list_del_init(&p->mnt_expire);
570 list_del_init(&p->mnt_list);
571 __touch_mnt_namespace(p->mnt_ns);
572 p->mnt_ns = NULL;
573 list_del_init(&p->mnt_child);
574 if (p->mnt_parent != p) {
575 p->mnt_parent->mnt_ghosts++;
576 p->mnt_mountpoint->d_mounted--;
578 change_mnt_propagation(p, MS_PRIVATE);
582 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
584 static int do_umount(struct vfsmount *mnt, int flags)
586 struct super_block *sb = mnt->mnt_sb;
587 int retval;
588 LIST_HEAD(umount_list);
590 retval = security_sb_umount(mnt, flags);
591 if (retval)
592 return retval;
595 * Allow userspace to request a mountpoint be expired rather than
596 * unmounting unconditionally. Unmount only happens if:
597 * (1) the mark is already set (the mark is cleared by mntput())
598 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
600 if (flags & MNT_EXPIRE) {
601 if (mnt == current->fs->root.mnt ||
602 flags & (MNT_FORCE | MNT_DETACH))
603 return -EINVAL;
605 if (atomic_read(&mnt->mnt_count) != 2)
606 return -EBUSY;
608 if (!xchg(&mnt->mnt_expiry_mark, 1))
609 return -EAGAIN;
613 * If we may have to abort operations to get out of this
614 * mount, and they will themselves hold resources we must
615 * allow the fs to do things. In the Unix tradition of
616 * 'Gee thats tricky lets do it in userspace' the umount_begin
617 * might fail to complete on the first run through as other tasks
618 * must return, and the like. Thats for the mount program to worry
619 * about for the moment.
622 lock_kernel();
623 if (sb->s_op->umount_begin)
624 sb->s_op->umount_begin(mnt, flags);
625 unlock_kernel();
628 * No sense to grab the lock for this test, but test itself looks
629 * somewhat bogus. Suggestions for better replacement?
630 * Ho-hum... In principle, we might treat that as umount + switch
631 * to rootfs. GC would eventually take care of the old vfsmount.
632 * Actually it makes sense, especially if rootfs would contain a
633 * /reboot - static binary that would close all descriptors and
634 * call reboot(9). Then init(8) could umount root and exec /reboot.
636 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
638 * Special case for "unmounting" root ...
639 * we just try to remount it readonly.
641 down_write(&sb->s_umount);
642 if (!(sb->s_flags & MS_RDONLY)) {
643 lock_kernel();
644 DQUOT_OFF(sb);
645 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
646 unlock_kernel();
648 up_write(&sb->s_umount);
649 return retval;
652 down_write(&namespace_sem);
653 spin_lock(&vfsmount_lock);
654 event++;
656 if (!(flags & MNT_DETACH))
657 shrink_submounts(mnt, &umount_list);
659 retval = -EBUSY;
660 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
661 if (!list_empty(&mnt->mnt_list))
662 umount_tree(mnt, 1, &umount_list);
663 retval = 0;
665 spin_unlock(&vfsmount_lock);
666 if (retval)
667 security_sb_umount_busy(mnt);
668 up_write(&namespace_sem);
669 release_mounts(&umount_list);
670 return retval;
674 * Now umount can handle mount points as well as block devices.
675 * This is important for filesystems which use unnamed block devices.
677 * We now support a flag for forced unmount like the other 'big iron'
678 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
681 asmlinkage long sys_umount(char __user * name, int flags)
683 struct nameidata nd;
684 int retval;
686 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
687 if (retval)
688 goto out;
689 retval = -EINVAL;
690 if (nd.path.dentry != nd.path.mnt->mnt_root)
691 goto dput_and_out;
692 if (!check_mnt(nd.path.mnt))
693 goto dput_and_out;
695 retval = -EPERM;
696 if (!capable(CAP_SYS_ADMIN))
697 goto dput_and_out;
699 retval = do_umount(nd.path.mnt, flags);
700 dput_and_out:
701 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
702 dput(nd.path.dentry);
703 mntput_no_expire(nd.path.mnt);
704 out:
705 return retval;
708 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
711 * The 2.0 compatible umount. No flags.
713 asmlinkage long sys_oldumount(char __user * name)
715 return sys_umount(name, 0);
718 #endif
720 static int mount_is_safe(struct nameidata *nd)
722 if (capable(CAP_SYS_ADMIN))
723 return 0;
724 return -EPERM;
725 #ifdef notyet
726 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
727 return -EPERM;
728 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
729 if (current->uid != nd->path.dentry->d_inode->i_uid)
730 return -EPERM;
732 if (vfs_permission(nd, MAY_WRITE))
733 return -EPERM;
734 return 0;
735 #endif
738 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
740 while (1) {
741 if (d == dentry)
742 return 1;
743 if (d == NULL || d == d->d_parent)
744 return 0;
745 d = d->d_parent;
749 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
750 int flag)
752 struct vfsmount *res, *p, *q, *r, *s;
753 struct path path;
755 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
756 return NULL;
758 res = q = clone_mnt(mnt, dentry, flag);
759 if (!q)
760 goto Enomem;
761 q->mnt_mountpoint = mnt->mnt_mountpoint;
763 p = mnt;
764 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
765 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
766 continue;
768 for (s = r; s; s = next_mnt(s, r)) {
769 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
770 s = skip_mnt_tree(s);
771 continue;
773 while (p != s->mnt_parent) {
774 p = p->mnt_parent;
775 q = q->mnt_parent;
777 p = s;
778 path.mnt = q;
779 path.dentry = p->mnt_mountpoint;
780 q = clone_mnt(p, p->mnt_root, flag);
781 if (!q)
782 goto Enomem;
783 spin_lock(&vfsmount_lock);
784 list_add_tail(&q->mnt_list, &res->mnt_list);
785 attach_mnt(q, &path);
786 spin_unlock(&vfsmount_lock);
789 return res;
790 Enomem:
791 if (res) {
792 LIST_HEAD(umount_list);
793 spin_lock(&vfsmount_lock);
794 umount_tree(res, 0, &umount_list);
795 spin_unlock(&vfsmount_lock);
796 release_mounts(&umount_list);
798 return NULL;
801 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
803 struct vfsmount *tree;
804 down_read(&namespace_sem);
805 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
806 up_read(&namespace_sem);
807 return tree;
810 void drop_collected_mounts(struct vfsmount *mnt)
812 LIST_HEAD(umount_list);
813 down_read(&namespace_sem);
814 spin_lock(&vfsmount_lock);
815 umount_tree(mnt, 0, &umount_list);
816 spin_unlock(&vfsmount_lock);
817 up_read(&namespace_sem);
818 release_mounts(&umount_list);
822 * @source_mnt : mount tree to be attached
823 * @nd : place the mount tree @source_mnt is attached
824 * @parent_nd : if non-null, detach the source_mnt from its parent and
825 * store the parent mount and mountpoint dentry.
826 * (done when source_mnt is moved)
828 * NOTE: in the table below explains the semantics when a source mount
829 * of a given type is attached to a destination mount of a given type.
830 * ---------------------------------------------------------------------------
831 * | BIND MOUNT OPERATION |
832 * |**************************************************************************
833 * | source-->| shared | private | slave | unbindable |
834 * | dest | | | | |
835 * | | | | | | |
836 * | v | | | | |
837 * |**************************************************************************
838 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
839 * | | | | | |
840 * |non-shared| shared (+) | private | slave (*) | invalid |
841 * ***************************************************************************
842 * A bind operation clones the source mount and mounts the clone on the
843 * destination mount.
845 * (++) the cloned mount is propagated to all the mounts in the propagation
846 * tree of the destination mount and the cloned mount is added to
847 * the peer group of the source mount.
848 * (+) the cloned mount is created under the destination mount and is marked
849 * as shared. The cloned mount is added to the peer group of the source
850 * mount.
851 * (+++) the mount is propagated to all the mounts in the propagation tree
852 * of the destination mount and the cloned mount is made slave
853 * of the same master as that of the source mount. The cloned mount
854 * is marked as 'shared and slave'.
855 * (*) the cloned mount is made a slave of the same master as that of the
856 * source mount.
858 * ---------------------------------------------------------------------------
859 * | MOVE MOUNT OPERATION |
860 * |**************************************************************************
861 * | source-->| shared | private | slave | unbindable |
862 * | dest | | | | |
863 * | | | | | | |
864 * | v | | | | |
865 * |**************************************************************************
866 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
867 * | | | | | |
868 * |non-shared| shared (+*) | private | slave (*) | unbindable |
869 * ***************************************************************************
871 * (+) the mount is moved to the destination. And is then propagated to
872 * all the mounts in the propagation tree of the destination mount.
873 * (+*) the mount is moved to the destination.
874 * (+++) the mount is moved to the destination and is then propagated to
875 * all the mounts belonging to the destination mount's propagation tree.
876 * the mount is marked as 'shared and slave'.
877 * (*) the mount continues to be a slave at the new location.
879 * if the source mount is a tree, the operations explained above is
880 * applied to each mount in the tree.
881 * Must be called without spinlocks held, since this function can sleep
882 * in allocations.
884 static int attach_recursive_mnt(struct vfsmount *source_mnt,
885 struct path *path, struct path *parent_path)
887 LIST_HEAD(tree_list);
888 struct vfsmount *dest_mnt = path->mnt;
889 struct dentry *dest_dentry = path->dentry;
890 struct vfsmount *child, *p;
892 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
893 return -EINVAL;
895 if (IS_MNT_SHARED(dest_mnt)) {
896 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
897 set_mnt_shared(p);
900 spin_lock(&vfsmount_lock);
901 if (parent_path) {
902 detach_mnt(source_mnt, parent_path);
903 attach_mnt(source_mnt, path);
904 touch_mnt_namespace(current->nsproxy->mnt_ns);
905 } else {
906 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
907 commit_tree(source_mnt);
910 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
911 list_del_init(&child->mnt_hash);
912 commit_tree(child);
914 spin_unlock(&vfsmount_lock);
915 return 0;
918 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
920 int err;
921 if (mnt->mnt_sb->s_flags & MS_NOUSER)
922 return -EINVAL;
924 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
925 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
926 return -ENOTDIR;
928 err = -ENOENT;
929 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
930 if (IS_DEADDIR(nd->path.dentry->d_inode))
931 goto out_unlock;
933 err = security_sb_check_sb(mnt, nd);
934 if (err)
935 goto out_unlock;
937 err = -ENOENT;
938 if (IS_ROOT(nd->path.dentry) || !d_unhashed(nd->path.dentry))
939 err = attach_recursive_mnt(mnt, &nd->path, NULL);
940 out_unlock:
941 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
942 if (!err)
943 security_sb_post_addmount(mnt, nd);
944 return err;
948 * recursively change the type of the mountpoint.
949 * noinline this do_mount helper to save do_mount stack space.
951 static noinline int do_change_type(struct nameidata *nd, int flag)
953 struct vfsmount *m, *mnt = nd->path.mnt;
954 int recurse = flag & MS_REC;
955 int type = flag & ~MS_REC;
957 if (!capable(CAP_SYS_ADMIN))
958 return -EPERM;
960 if (nd->path.dentry != nd->path.mnt->mnt_root)
961 return -EINVAL;
963 down_write(&namespace_sem);
964 spin_lock(&vfsmount_lock);
965 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
966 change_mnt_propagation(m, type);
967 spin_unlock(&vfsmount_lock);
968 up_write(&namespace_sem);
969 return 0;
973 * do loopback mount.
974 * noinline this do_mount helper to save do_mount stack space.
976 static noinline int do_loopback(struct nameidata *nd, char *old_name,
977 int recurse)
979 struct nameidata old_nd;
980 struct vfsmount *mnt = NULL;
981 int err = mount_is_safe(nd);
982 if (err)
983 return err;
984 if (!old_name || !*old_name)
985 return -EINVAL;
986 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
987 if (err)
988 return err;
990 down_write(&namespace_sem);
991 err = -EINVAL;
992 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
993 goto out;
995 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
996 goto out;
998 err = -ENOMEM;
999 if (recurse)
1000 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
1001 else
1002 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1004 if (!mnt)
1005 goto out;
1007 err = graft_tree(mnt, nd);
1008 if (err) {
1009 LIST_HEAD(umount_list);
1010 spin_lock(&vfsmount_lock);
1011 umount_tree(mnt, 0, &umount_list);
1012 spin_unlock(&vfsmount_lock);
1013 release_mounts(&umount_list);
1016 out:
1017 up_write(&namespace_sem);
1018 path_put(&old_nd.path);
1019 return err;
1023 * change filesystem flags. dir should be a physical root of filesystem.
1024 * If you've mounted a non-root directory somewhere and want to do remount
1025 * on it - tough luck.
1026 * noinline this do_mount helper to save do_mount stack space.
1028 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1029 void *data)
1031 int err;
1032 struct super_block *sb = nd->path.mnt->mnt_sb;
1034 if (!capable(CAP_SYS_ADMIN))
1035 return -EPERM;
1037 if (!check_mnt(nd->path.mnt))
1038 return -EINVAL;
1040 if (nd->path.dentry != nd->path.mnt->mnt_root)
1041 return -EINVAL;
1043 down_write(&sb->s_umount);
1044 err = do_remount_sb(sb, flags, data, 0);
1045 if (!err)
1046 nd->path.mnt->mnt_flags = mnt_flags;
1047 up_write(&sb->s_umount);
1048 if (!err)
1049 security_sb_post_remount(nd->path.mnt, flags, data);
1050 return err;
1053 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1055 struct vfsmount *p;
1056 for (p = mnt; p; p = next_mnt(p, mnt)) {
1057 if (IS_MNT_UNBINDABLE(p))
1058 return 1;
1060 return 0;
1064 * noinline this do_mount helper to save do_mount stack space.
1066 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1068 struct nameidata old_nd;
1069 struct path parent_path;
1070 struct vfsmount *p;
1071 int err = 0;
1072 if (!capable(CAP_SYS_ADMIN))
1073 return -EPERM;
1074 if (!old_name || !*old_name)
1075 return -EINVAL;
1076 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1077 if (err)
1078 return err;
1080 down_write(&namespace_sem);
1081 while (d_mountpoint(nd->path.dentry) &&
1082 follow_down(&nd->path.mnt, &nd->path.dentry))
1084 err = -EINVAL;
1085 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1086 goto out;
1088 err = -ENOENT;
1089 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1090 if (IS_DEADDIR(nd->path.dentry->d_inode))
1091 goto out1;
1093 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1094 goto out1;
1096 err = -EINVAL;
1097 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1098 goto out1;
1100 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1101 goto out1;
1103 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1104 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1105 goto out1;
1107 * Don't move a mount residing in a shared parent.
1109 if (old_nd.path.mnt->mnt_parent &&
1110 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1111 goto out1;
1113 * Don't move a mount tree containing unbindable mounts to a destination
1114 * mount which is shared.
1116 if (IS_MNT_SHARED(nd->path.mnt) &&
1117 tree_contains_unbindable(old_nd.path.mnt))
1118 goto out1;
1119 err = -ELOOP;
1120 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1121 if (p == old_nd.path.mnt)
1122 goto out1;
1124 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1125 if (err)
1126 goto out1;
1128 /* if the mount is moved, it should no longer be expire
1129 * automatically */
1130 list_del_init(&old_nd.path.mnt->mnt_expire);
1131 out1:
1132 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1133 out:
1134 up_write(&namespace_sem);
1135 if (!err)
1136 path_put(&parent_path);
1137 path_put(&old_nd.path);
1138 return err;
1142 * create a new mount for userspace and request it to be added into the
1143 * namespace's tree
1144 * noinline this do_mount helper to save do_mount stack space.
1146 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1147 int mnt_flags, char *name, void *data)
1149 struct vfsmount *mnt;
1151 if (!type || !memchr(type, 0, PAGE_SIZE))
1152 return -EINVAL;
1154 /* we need capabilities... */
1155 if (!capable(CAP_SYS_ADMIN))
1156 return -EPERM;
1158 mnt = do_kern_mount(type, flags, name, data);
1159 if (IS_ERR(mnt))
1160 return PTR_ERR(mnt);
1162 return do_add_mount(mnt, nd, mnt_flags, NULL);
1166 * add a mount into a namespace's mount tree
1167 * - provide the option of adding the new mount to an expiration list
1169 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1170 int mnt_flags, struct list_head *fslist)
1172 int err;
1174 down_write(&namespace_sem);
1175 /* Something was mounted here while we slept */
1176 while (d_mountpoint(nd->path.dentry) &&
1177 follow_down(&nd->path.mnt, &nd->path.dentry))
1179 err = -EINVAL;
1180 if (!check_mnt(nd->path.mnt))
1181 goto unlock;
1183 /* Refuse the same filesystem on the same mount point */
1184 err = -EBUSY;
1185 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1186 nd->path.mnt->mnt_root == nd->path.dentry)
1187 goto unlock;
1189 err = -EINVAL;
1190 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1191 goto unlock;
1193 newmnt->mnt_flags = mnt_flags;
1194 if ((err = graft_tree(newmnt, nd)))
1195 goto unlock;
1197 if (fslist) /* add to the specified expiration list */
1198 list_add_tail(&newmnt->mnt_expire, fslist);
1200 up_write(&namespace_sem);
1201 return 0;
1203 unlock:
1204 up_write(&namespace_sem);
1205 mntput(newmnt);
1206 return err;
1209 EXPORT_SYMBOL_GPL(do_add_mount);
1212 * process a list of expirable mountpoints with the intent of discarding any
1213 * mountpoints that aren't in use and haven't been touched since last we came
1214 * here
1216 void mark_mounts_for_expiry(struct list_head *mounts)
1218 struct vfsmount *mnt, *next;
1219 LIST_HEAD(graveyard);
1220 LIST_HEAD(umounts);
1222 if (list_empty(mounts))
1223 return;
1225 down_write(&namespace_sem);
1226 spin_lock(&vfsmount_lock);
1228 /* extract from the expiration list every vfsmount that matches the
1229 * following criteria:
1230 * - only referenced by its parent vfsmount
1231 * - still marked for expiry (marked on the last call here; marks are
1232 * cleared by mntput())
1234 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1235 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1236 propagate_mount_busy(mnt, 1))
1237 continue;
1238 list_move(&mnt->mnt_expire, &graveyard);
1240 while (!list_empty(&graveyard)) {
1241 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1242 touch_mnt_namespace(mnt->mnt_ns);
1243 umount_tree(mnt, 1, &umounts);
1245 spin_unlock(&vfsmount_lock);
1246 up_write(&namespace_sem);
1248 release_mounts(&umounts);
1251 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1254 * Ripoff of 'select_parent()'
1256 * search the list of submounts for a given mountpoint, and move any
1257 * shrinkable submounts to the 'graveyard' list.
1259 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1261 struct vfsmount *this_parent = parent;
1262 struct list_head *next;
1263 int found = 0;
1265 repeat:
1266 next = this_parent->mnt_mounts.next;
1267 resume:
1268 while (next != &this_parent->mnt_mounts) {
1269 struct list_head *tmp = next;
1270 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1272 next = tmp->next;
1273 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1274 continue;
1276 * Descend a level if the d_mounts list is non-empty.
1278 if (!list_empty(&mnt->mnt_mounts)) {
1279 this_parent = mnt;
1280 goto repeat;
1283 if (!propagate_mount_busy(mnt, 1)) {
1284 list_move_tail(&mnt->mnt_expire, graveyard);
1285 found++;
1289 * All done at this level ... ascend and resume the search
1291 if (this_parent != parent) {
1292 next = this_parent->mnt_child.next;
1293 this_parent = this_parent->mnt_parent;
1294 goto resume;
1296 return found;
1300 * process a list of expirable mountpoints with the intent of discarding any
1301 * submounts of a specific parent mountpoint
1303 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1305 LIST_HEAD(graveyard);
1306 struct vfsmount *m;
1308 /* extract submounts of 'mountpoint' from the expiration list */
1309 while (select_submounts(mnt, &graveyard)) {
1310 while (!list_empty(&graveyard)) {
1311 m = list_first_entry(&graveyard, struct vfsmount,
1312 mnt_expire);
1313 touch_mnt_namespace(mnt->mnt_ns);
1314 umount_tree(mnt, 1, umounts);
1320 * Some copy_from_user() implementations do not return the exact number of
1321 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1322 * Note that this function differs from copy_from_user() in that it will oops
1323 * on bad values of `to', rather than returning a short copy.
1325 static long exact_copy_from_user(void *to, const void __user * from,
1326 unsigned long n)
1328 char *t = to;
1329 const char __user *f = from;
1330 char c;
1332 if (!access_ok(VERIFY_READ, from, n))
1333 return n;
1335 while (n) {
1336 if (__get_user(c, f)) {
1337 memset(t, 0, n);
1338 break;
1340 *t++ = c;
1341 f++;
1342 n--;
1344 return n;
1347 int copy_mount_options(const void __user * data, unsigned long *where)
1349 int i;
1350 unsigned long page;
1351 unsigned long size;
1353 *where = 0;
1354 if (!data)
1355 return 0;
1357 if (!(page = __get_free_page(GFP_KERNEL)))
1358 return -ENOMEM;
1360 /* We only care that *some* data at the address the user
1361 * gave us is valid. Just in case, we'll zero
1362 * the remainder of the page.
1364 /* copy_from_user cannot cross TASK_SIZE ! */
1365 size = TASK_SIZE - (unsigned long)data;
1366 if (size > PAGE_SIZE)
1367 size = PAGE_SIZE;
1369 i = size - exact_copy_from_user((void *)page, data, size);
1370 if (!i) {
1371 free_page(page);
1372 return -EFAULT;
1374 if (i != PAGE_SIZE)
1375 memset((char *)page + i, 0, PAGE_SIZE - i);
1376 *where = page;
1377 return 0;
1381 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1382 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1384 * data is a (void *) that can point to any structure up to
1385 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1386 * information (or be NULL).
1388 * Pre-0.97 versions of mount() didn't have a flags word.
1389 * When the flags word was introduced its top half was required
1390 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1391 * Therefore, if this magic number is present, it carries no information
1392 * and must be discarded.
1394 long do_mount(char *dev_name, char *dir_name, char *type_page,
1395 unsigned long flags, void *data_page)
1397 struct nameidata nd;
1398 int retval = 0;
1399 int mnt_flags = 0;
1401 /* Discard magic */
1402 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1403 flags &= ~MS_MGC_MSK;
1405 /* Basic sanity checks */
1407 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1408 return -EINVAL;
1409 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1410 return -EINVAL;
1412 if (data_page)
1413 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1415 /* Separate the per-mountpoint flags */
1416 if (flags & MS_NOSUID)
1417 mnt_flags |= MNT_NOSUID;
1418 if (flags & MS_NODEV)
1419 mnt_flags |= MNT_NODEV;
1420 if (flags & MS_NOEXEC)
1421 mnt_flags |= MNT_NOEXEC;
1422 if (flags & MS_NOATIME)
1423 mnt_flags |= MNT_NOATIME;
1424 if (flags & MS_NODIRATIME)
1425 mnt_flags |= MNT_NODIRATIME;
1426 if (flags & MS_RELATIME)
1427 mnt_flags |= MNT_RELATIME;
1429 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1430 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1432 /* ... and get the mountpoint */
1433 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1434 if (retval)
1435 return retval;
1437 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1438 if (retval)
1439 goto dput_out;
1441 if (flags & MS_REMOUNT)
1442 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1443 data_page);
1444 else if (flags & MS_BIND)
1445 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1446 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1447 retval = do_change_type(&nd, flags);
1448 else if (flags & MS_MOVE)
1449 retval = do_move_mount(&nd, dev_name);
1450 else
1451 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1452 dev_name, data_page);
1453 dput_out:
1454 path_put(&nd.path);
1455 return retval;
1459 * Allocate a new namespace structure and populate it with contents
1460 * copied from the namespace of the passed in task structure.
1462 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1463 struct fs_struct *fs)
1465 struct mnt_namespace *new_ns;
1466 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1467 struct vfsmount *p, *q;
1469 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1470 if (!new_ns)
1471 return ERR_PTR(-ENOMEM);
1473 atomic_set(&new_ns->count, 1);
1474 INIT_LIST_HEAD(&new_ns->list);
1475 init_waitqueue_head(&new_ns->poll);
1476 new_ns->event = 0;
1478 down_write(&namespace_sem);
1479 /* First pass: copy the tree topology */
1480 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1481 CL_COPY_ALL | CL_EXPIRE);
1482 if (!new_ns->root) {
1483 up_write(&namespace_sem);
1484 kfree(new_ns);
1485 return ERR_PTR(-ENOMEM);;
1487 spin_lock(&vfsmount_lock);
1488 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1489 spin_unlock(&vfsmount_lock);
1492 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1493 * as belonging to new namespace. We have already acquired a private
1494 * fs_struct, so tsk->fs->lock is not needed.
1496 p = mnt_ns->root;
1497 q = new_ns->root;
1498 while (p) {
1499 q->mnt_ns = new_ns;
1500 if (fs) {
1501 if (p == fs->root.mnt) {
1502 rootmnt = p;
1503 fs->root.mnt = mntget(q);
1505 if (p == fs->pwd.mnt) {
1506 pwdmnt = p;
1507 fs->pwd.mnt = mntget(q);
1509 if (p == fs->altroot.mnt) {
1510 altrootmnt = p;
1511 fs->altroot.mnt = mntget(q);
1514 p = next_mnt(p, mnt_ns->root);
1515 q = next_mnt(q, new_ns->root);
1517 up_write(&namespace_sem);
1519 if (rootmnt)
1520 mntput(rootmnt);
1521 if (pwdmnt)
1522 mntput(pwdmnt);
1523 if (altrootmnt)
1524 mntput(altrootmnt);
1526 return new_ns;
1529 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
1530 struct fs_struct *new_fs)
1532 struct mnt_namespace *new_ns;
1534 BUG_ON(!ns);
1535 get_mnt_ns(ns);
1537 if (!(flags & CLONE_NEWNS))
1538 return ns;
1540 new_ns = dup_mnt_ns(ns, new_fs);
1542 put_mnt_ns(ns);
1543 return new_ns;
1546 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1547 char __user * type, unsigned long flags,
1548 void __user * data)
1550 int retval;
1551 unsigned long data_page;
1552 unsigned long type_page;
1553 unsigned long dev_page;
1554 char *dir_page;
1556 retval = copy_mount_options(type, &type_page);
1557 if (retval < 0)
1558 return retval;
1560 dir_page = getname(dir_name);
1561 retval = PTR_ERR(dir_page);
1562 if (IS_ERR(dir_page))
1563 goto out1;
1565 retval = copy_mount_options(dev_name, &dev_page);
1566 if (retval < 0)
1567 goto out2;
1569 retval = copy_mount_options(data, &data_page);
1570 if (retval < 0)
1571 goto out3;
1573 lock_kernel();
1574 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1575 flags, (void *)data_page);
1576 unlock_kernel();
1577 free_page(data_page);
1579 out3:
1580 free_page(dev_page);
1581 out2:
1582 putname(dir_page);
1583 out1:
1584 free_page(type_page);
1585 return retval;
1589 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1590 * It can block. Requires the big lock held.
1592 void set_fs_root(struct fs_struct *fs, struct path *path)
1594 struct path old_root;
1596 write_lock(&fs->lock);
1597 old_root = fs->root;
1598 fs->root = *path;
1599 path_get(path);
1600 write_unlock(&fs->lock);
1601 if (old_root.dentry)
1602 path_put(&old_root);
1606 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1607 * It can block. Requires the big lock held.
1609 void set_fs_pwd(struct fs_struct *fs, struct path *path)
1611 struct path old_pwd;
1613 write_lock(&fs->lock);
1614 old_pwd = fs->pwd;
1615 fs->pwd = *path;
1616 path_get(path);
1617 write_unlock(&fs->lock);
1619 if (old_pwd.dentry)
1620 path_put(&old_pwd);
1623 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1625 struct task_struct *g, *p;
1626 struct fs_struct *fs;
1628 read_lock(&tasklist_lock);
1629 do_each_thread(g, p) {
1630 task_lock(p);
1631 fs = p->fs;
1632 if (fs) {
1633 atomic_inc(&fs->count);
1634 task_unlock(p);
1635 if (fs->root.dentry == old_root->dentry
1636 && fs->root.mnt == old_root->mnt)
1637 set_fs_root(fs, new_root);
1638 if (fs->pwd.dentry == old_root->dentry
1639 && fs->pwd.mnt == old_root->mnt)
1640 set_fs_pwd(fs, new_root);
1641 put_fs_struct(fs);
1642 } else
1643 task_unlock(p);
1644 } while_each_thread(g, p);
1645 read_unlock(&tasklist_lock);
1649 * pivot_root Semantics:
1650 * Moves the root file system of the current process to the directory put_old,
1651 * makes new_root as the new root file system of the current process, and sets
1652 * root/cwd of all processes which had them on the current root to new_root.
1654 * Restrictions:
1655 * The new_root and put_old must be directories, and must not be on the
1656 * same file system as the current process root. The put_old must be
1657 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1658 * pointed to by put_old must yield the same directory as new_root. No other
1659 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1661 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1662 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1663 * in this situation.
1665 * Notes:
1666 * - we don't move root/cwd if they are not at the root (reason: if something
1667 * cared enough to change them, it's probably wrong to force them elsewhere)
1668 * - it's okay to pick a root that isn't the root of a file system, e.g.
1669 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1670 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1671 * first.
1673 asmlinkage long sys_pivot_root(const char __user * new_root,
1674 const char __user * put_old)
1676 struct vfsmount *tmp;
1677 struct nameidata new_nd, old_nd, user_nd;
1678 struct path parent_path, root_parent;
1679 int error;
1681 if (!capable(CAP_SYS_ADMIN))
1682 return -EPERM;
1684 lock_kernel();
1686 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1687 &new_nd);
1688 if (error)
1689 goto out0;
1690 error = -EINVAL;
1691 if (!check_mnt(new_nd.path.mnt))
1692 goto out1;
1694 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1695 if (error)
1696 goto out1;
1698 error = security_sb_pivotroot(&old_nd, &new_nd);
1699 if (error) {
1700 path_put(&old_nd.path);
1701 goto out1;
1704 read_lock(&current->fs->lock);
1705 user_nd.path = current->fs->root;
1706 path_get(&current->fs->root);
1707 read_unlock(&current->fs->lock);
1708 down_write(&namespace_sem);
1709 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1710 error = -EINVAL;
1711 if (IS_MNT_SHARED(old_nd.path.mnt) ||
1712 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
1713 IS_MNT_SHARED(user_nd.path.mnt->mnt_parent))
1714 goto out2;
1715 if (!check_mnt(user_nd.path.mnt))
1716 goto out2;
1717 error = -ENOENT;
1718 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1719 goto out2;
1720 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1721 goto out2;
1722 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1723 goto out2;
1724 error = -EBUSY;
1725 if (new_nd.path.mnt == user_nd.path.mnt ||
1726 old_nd.path.mnt == user_nd.path.mnt)
1727 goto out2; /* loop, on the same file system */
1728 error = -EINVAL;
1729 if (user_nd.path.mnt->mnt_root != user_nd.path.dentry)
1730 goto out2; /* not a mountpoint */
1731 if (user_nd.path.mnt->mnt_parent == user_nd.path.mnt)
1732 goto out2; /* not attached */
1733 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1734 goto out2; /* not a mountpoint */
1735 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
1736 goto out2; /* not attached */
1737 /* make sure we can reach put_old from new_root */
1738 tmp = old_nd.path.mnt;
1739 spin_lock(&vfsmount_lock);
1740 if (tmp != new_nd.path.mnt) {
1741 for (;;) {
1742 if (tmp->mnt_parent == tmp)
1743 goto out3; /* already mounted on put_old */
1744 if (tmp->mnt_parent == new_nd.path.mnt)
1745 break;
1746 tmp = tmp->mnt_parent;
1748 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
1749 goto out3;
1750 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1751 goto out3;
1752 detach_mnt(new_nd.path.mnt, &parent_path);
1753 detach_mnt(user_nd.path.mnt, &root_parent);
1754 /* mount old root on put_old */
1755 attach_mnt(user_nd.path.mnt, &old_nd.path);
1756 /* mount new_root on / */
1757 attach_mnt(new_nd.path.mnt, &root_parent);
1758 touch_mnt_namespace(current->nsproxy->mnt_ns);
1759 spin_unlock(&vfsmount_lock);
1760 chroot_fs_refs(&user_nd.path, &new_nd.path);
1761 security_sb_post_pivotroot(&user_nd, &new_nd);
1762 error = 0;
1763 path_put(&root_parent);
1764 path_put(&parent_path);
1765 out2:
1766 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
1767 up_write(&namespace_sem);
1768 path_put(&user_nd.path);
1769 path_put(&old_nd.path);
1770 out1:
1771 path_put(&new_nd.path);
1772 out0:
1773 unlock_kernel();
1774 return error;
1775 out3:
1776 spin_unlock(&vfsmount_lock);
1777 goto out2;
1780 static void __init init_mount_tree(void)
1782 struct vfsmount *mnt;
1783 struct mnt_namespace *ns;
1784 struct path root;
1786 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1787 if (IS_ERR(mnt))
1788 panic("Can't create rootfs");
1789 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1790 if (!ns)
1791 panic("Can't allocate initial namespace");
1792 atomic_set(&ns->count, 1);
1793 INIT_LIST_HEAD(&ns->list);
1794 init_waitqueue_head(&ns->poll);
1795 ns->event = 0;
1796 list_add(&mnt->mnt_list, &ns->list);
1797 ns->root = mnt;
1798 mnt->mnt_ns = ns;
1800 init_task.nsproxy->mnt_ns = ns;
1801 get_mnt_ns(ns);
1803 root.mnt = ns->root;
1804 root.dentry = ns->root->mnt_root;
1806 set_fs_pwd(current->fs, &root);
1807 set_fs_root(current->fs, &root);
1810 void __init mnt_init(void)
1812 unsigned u;
1813 int err;
1815 init_rwsem(&namespace_sem);
1817 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1818 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1820 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1822 if (!mount_hashtable)
1823 panic("Failed to allocate mount hash table\n");
1825 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
1827 for (u = 0; u < HASH_SIZE; u++)
1828 INIT_LIST_HEAD(&mount_hashtable[u]);
1830 err = sysfs_init();
1831 if (err)
1832 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1833 __FUNCTION__, err);
1834 fs_kobj = kobject_create_and_add("fs", NULL);
1835 if (!fs_kobj)
1836 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1837 init_rootfs();
1838 init_mount_tree();
1841 void __put_mnt_ns(struct mnt_namespace *ns)
1843 struct vfsmount *root = ns->root;
1844 LIST_HEAD(umount_list);
1845 ns->root = NULL;
1846 spin_unlock(&vfsmount_lock);
1847 down_write(&namespace_sem);
1848 spin_lock(&vfsmount_lock);
1849 umount_tree(root, 0, &umount_list);
1850 spin_unlock(&vfsmount_lock);
1851 up_write(&namespace_sem);
1852 release_mounts(&umount_list);
1853 kfree(ns);