Merge master.kernel.org:/pub/scm/linux/kernel/git/bart/ide-2.6
[linux-2.6/openmoko-kernel/knife-kernel.git] / kernel / time.c
blob1afcc78dc3b1d9a3da6439497d2d69e65bc05913
1 /*
2 * linux/kernel/time.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/syscalls.h>
35 #include <linux/security.h>
36 #include <linux/fs.h>
37 #include <linux/module.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
42 /*
43 * The timezone where the local system is located. Used as a default by some
44 * programs who obtain this value by using gettimeofday.
46 struct timezone sys_tz;
48 EXPORT_SYMBOL(sys_tz);
50 #ifdef __ARCH_WANT_SYS_TIME
53 * sys_time() can be implemented in user-level using
54 * sys_gettimeofday(). Is this for backwards compatibility? If so,
55 * why not move it into the appropriate arch directory (for those
56 * architectures that need it).
58 asmlinkage long sys_time(time_t __user * tloc)
60 time_t i = get_seconds();
62 if (tloc) {
63 if (put_user(i,tloc))
64 i = -EFAULT;
66 return i;
70 * sys_stime() can be implemented in user-level using
71 * sys_settimeofday(). Is this for backwards compatibility? If so,
72 * why not move it into the appropriate arch directory (for those
73 * architectures that need it).
76 asmlinkage long sys_stime(time_t __user *tptr)
78 struct timespec tv;
79 int err;
81 if (get_user(tv.tv_sec, tptr))
82 return -EFAULT;
84 tv.tv_nsec = 0;
86 err = security_settime(&tv, NULL);
87 if (err)
88 return err;
90 do_settimeofday(&tv);
91 return 0;
94 #endif /* __ARCH_WANT_SYS_TIME */
96 asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
98 if (likely(tv != NULL)) {
99 struct timeval ktv;
100 do_gettimeofday(&ktv);
101 if (copy_to_user(tv, &ktv, sizeof(ktv)))
102 return -EFAULT;
104 if (unlikely(tz != NULL)) {
105 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
106 return -EFAULT;
108 return 0;
112 * Adjust the time obtained from the CMOS to be UTC time instead of
113 * local time.
115 * This is ugly, but preferable to the alternatives. Otherwise we
116 * would either need to write a program to do it in /etc/rc (and risk
117 * confusion if the program gets run more than once; it would also be
118 * hard to make the program warp the clock precisely n hours) or
119 * compile in the timezone information into the kernel. Bad, bad....
121 * - TYT, 1992-01-01
123 * The best thing to do is to keep the CMOS clock in universal time (UTC)
124 * as real UNIX machines always do it. This avoids all headaches about
125 * daylight saving times and warping kernel clocks.
127 static inline void warp_clock(void)
129 write_seqlock_irq(&xtime_lock);
130 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
131 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
132 write_sequnlock_irq(&xtime_lock);
133 clock_was_set();
137 * In case for some reason the CMOS clock has not already been running
138 * in UTC, but in some local time: The first time we set the timezone,
139 * we will warp the clock so that it is ticking UTC time instead of
140 * local time. Presumably, if someone is setting the timezone then we
141 * are running in an environment where the programs understand about
142 * timezones. This should be done at boot time in the /etc/rc script,
143 * as soon as possible, so that the clock can be set right. Otherwise,
144 * various programs will get confused when the clock gets warped.
147 int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
149 static int firsttime = 1;
150 int error = 0;
152 if (tv && !timespec_valid(tv))
153 return -EINVAL;
155 error = security_settime(tv, tz);
156 if (error)
157 return error;
159 if (tz) {
160 /* SMP safe, global irq locking makes it work. */
161 sys_tz = *tz;
162 if (firsttime) {
163 firsttime = 0;
164 if (!tv)
165 warp_clock();
168 if (tv)
170 /* SMP safe, again the code in arch/foo/time.c should
171 * globally block out interrupts when it runs.
173 return do_settimeofday(tv);
175 return 0;
178 asmlinkage long sys_settimeofday(struct timeval __user *tv,
179 struct timezone __user *tz)
181 struct timeval user_tv;
182 struct timespec new_ts;
183 struct timezone new_tz;
185 if (tv) {
186 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
187 return -EFAULT;
188 new_ts.tv_sec = user_tv.tv_sec;
189 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
191 if (tz) {
192 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
193 return -EFAULT;
196 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
199 asmlinkage long sys_adjtimex(struct timex __user *txc_p)
201 struct timex txc; /* Local copy of parameter */
202 int ret;
204 /* Copy the user data space into the kernel copy
205 * structure. But bear in mind that the structures
206 * may change
208 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
209 return -EFAULT;
210 ret = do_adjtimex(&txc);
211 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
215 * current_fs_time - Return FS time
216 * @sb: Superblock.
218 * Return the current time truncated to the time granularity supported by
219 * the fs.
221 struct timespec current_fs_time(struct super_block *sb)
223 struct timespec now = current_kernel_time();
224 return timespec_trunc(now, sb->s_time_gran);
226 EXPORT_SYMBOL(current_fs_time);
229 * Convert jiffies to milliseconds and back.
231 * Avoid unnecessary multiplications/divisions in the
232 * two most common HZ cases:
234 unsigned int inline jiffies_to_msecs(const unsigned long j)
236 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
237 return (MSEC_PER_SEC / HZ) * j;
238 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
239 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
240 #else
241 return (j * MSEC_PER_SEC) / HZ;
242 #endif
244 EXPORT_SYMBOL(jiffies_to_msecs);
246 unsigned int inline jiffies_to_usecs(const unsigned long j)
248 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
249 return (USEC_PER_SEC / HZ) * j;
250 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
251 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
252 #else
253 return (j * USEC_PER_SEC) / HZ;
254 #endif
256 EXPORT_SYMBOL(jiffies_to_usecs);
259 * timespec_trunc - Truncate timespec to a granularity
260 * @t: Timespec
261 * @gran: Granularity in ns.
263 * Truncate a timespec to a granularity. gran must be smaller than a second.
264 * Always rounds down.
266 * This function should be only used for timestamps returned by
267 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
268 * it doesn't handle the better resolution of the later.
270 struct timespec timespec_trunc(struct timespec t, unsigned gran)
273 * Division is pretty slow so avoid it for common cases.
274 * Currently current_kernel_time() never returns better than
275 * jiffies resolution. Exploit that.
277 if (gran <= jiffies_to_usecs(1) * 1000) {
278 /* nothing */
279 } else if (gran == 1000000000) {
280 t.tv_nsec = 0;
281 } else {
282 t.tv_nsec -= t.tv_nsec % gran;
284 return t;
286 EXPORT_SYMBOL(timespec_trunc);
288 #ifndef CONFIG_GENERIC_TIME
290 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
291 * and therefore only yields usec accuracy
293 void getnstimeofday(struct timespec *tv)
295 struct timeval x;
297 do_gettimeofday(&x);
298 tv->tv_sec = x.tv_sec;
299 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
301 EXPORT_SYMBOL_GPL(getnstimeofday);
302 #endif
304 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
305 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
306 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
308 * [For the Julian calendar (which was used in Russia before 1917,
309 * Britain & colonies before 1752, anywhere else before 1582,
310 * and is still in use by some communities) leave out the
311 * -year/100+year/400 terms, and add 10.]
313 * This algorithm was first published by Gauss (I think).
315 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
316 * machines were long is 32-bit! (However, as time_t is signed, we
317 * will already get problems at other places on 2038-01-19 03:14:08)
319 unsigned long
320 mktime(const unsigned int year0, const unsigned int mon0,
321 const unsigned int day, const unsigned int hour,
322 const unsigned int min, const unsigned int sec)
324 unsigned int mon = mon0, year = year0;
326 /* 1..12 -> 11,12,1..10 */
327 if (0 >= (int) (mon -= 2)) {
328 mon += 12; /* Puts Feb last since it has leap day */
329 year -= 1;
332 return ((((unsigned long)
333 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
334 year*365 - 719499
335 )*24 + hour /* now have hours */
336 )*60 + min /* now have minutes */
337 )*60 + sec; /* finally seconds */
340 EXPORT_SYMBOL(mktime);
343 * set_normalized_timespec - set timespec sec and nsec parts and normalize
345 * @ts: pointer to timespec variable to be set
346 * @sec: seconds to set
347 * @nsec: nanoseconds to set
349 * Set seconds and nanoseconds field of a timespec variable and
350 * normalize to the timespec storage format
352 * Note: The tv_nsec part is always in the range of
353 * 0 <= tv_nsec < NSEC_PER_SEC
354 * For negative values only the tv_sec field is negative !
356 void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
358 while (nsec >= NSEC_PER_SEC) {
359 nsec -= NSEC_PER_SEC;
360 ++sec;
362 while (nsec < 0) {
363 nsec += NSEC_PER_SEC;
364 --sec;
366 ts->tv_sec = sec;
367 ts->tv_nsec = nsec;
371 * ns_to_timespec - Convert nanoseconds to timespec
372 * @nsec: the nanoseconds value to be converted
374 * Returns the timespec representation of the nsec parameter.
376 struct timespec ns_to_timespec(const s64 nsec)
378 struct timespec ts;
380 if (!nsec)
381 return (struct timespec) {0, 0};
383 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
384 if (unlikely(nsec < 0))
385 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
387 return ts;
389 EXPORT_SYMBOL(ns_to_timespec);
392 * ns_to_timeval - Convert nanoseconds to timeval
393 * @nsec: the nanoseconds value to be converted
395 * Returns the timeval representation of the nsec parameter.
397 struct timeval ns_to_timeval(const s64 nsec)
399 struct timespec ts = ns_to_timespec(nsec);
400 struct timeval tv;
402 tv.tv_sec = ts.tv_sec;
403 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
405 return tv;
407 EXPORT_SYMBOL(ns_to_timeval);
410 * When we convert to jiffies then we interpret incoming values
411 * the following way:
413 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
415 * - 'too large' values [that would result in larger than
416 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
418 * - all other values are converted to jiffies by either multiplying
419 * the input value by a factor or dividing it with a factor
421 * We must also be careful about 32-bit overflows.
423 unsigned long msecs_to_jiffies(const unsigned int m)
426 * Negative value, means infinite timeout:
428 if ((int)m < 0)
429 return MAX_JIFFY_OFFSET;
431 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
433 * HZ is equal to or smaller than 1000, and 1000 is a nice
434 * round multiple of HZ, divide with the factor between them,
435 * but round upwards:
437 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
438 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
440 * HZ is larger than 1000, and HZ is a nice round multiple of
441 * 1000 - simply multiply with the factor between them.
443 * But first make sure the multiplication result cannot
444 * overflow:
446 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
447 return MAX_JIFFY_OFFSET;
449 return m * (HZ / MSEC_PER_SEC);
450 #else
452 * Generic case - multiply, round and divide. But first
453 * check that if we are doing a net multiplication, that
454 * we wouldnt overflow:
456 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
457 return MAX_JIFFY_OFFSET;
459 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
460 #endif
462 EXPORT_SYMBOL(msecs_to_jiffies);
464 unsigned long usecs_to_jiffies(const unsigned int u)
466 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
467 return MAX_JIFFY_OFFSET;
468 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
469 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
470 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
471 return u * (HZ / USEC_PER_SEC);
472 #else
473 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
474 #endif
476 EXPORT_SYMBOL(usecs_to_jiffies);
479 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
480 * that a remainder subtract here would not do the right thing as the
481 * resolution values don't fall on second boundries. I.e. the line:
482 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
484 * Rather, we just shift the bits off the right.
486 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
487 * value to a scaled second value.
489 unsigned long
490 timespec_to_jiffies(const struct timespec *value)
492 unsigned long sec = value->tv_sec;
493 long nsec = value->tv_nsec + TICK_NSEC - 1;
495 if (sec >= MAX_SEC_IN_JIFFIES){
496 sec = MAX_SEC_IN_JIFFIES;
497 nsec = 0;
499 return (((u64)sec * SEC_CONVERSION) +
500 (((u64)nsec * NSEC_CONVERSION) >>
501 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
504 EXPORT_SYMBOL(timespec_to_jiffies);
506 void
507 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
510 * Convert jiffies to nanoseconds and separate with
511 * one divide.
513 u64 nsec = (u64)jiffies * TICK_NSEC;
514 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
516 EXPORT_SYMBOL(jiffies_to_timespec);
518 /* Same for "timeval"
520 * Well, almost. The problem here is that the real system resolution is
521 * in nanoseconds and the value being converted is in micro seconds.
522 * Also for some machines (those that use HZ = 1024, in-particular),
523 * there is a LARGE error in the tick size in microseconds.
525 * The solution we use is to do the rounding AFTER we convert the
526 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
527 * Instruction wise, this should cost only an additional add with carry
528 * instruction above the way it was done above.
530 unsigned long
531 timeval_to_jiffies(const struct timeval *value)
533 unsigned long sec = value->tv_sec;
534 long usec = value->tv_usec;
536 if (sec >= MAX_SEC_IN_JIFFIES){
537 sec = MAX_SEC_IN_JIFFIES;
538 usec = 0;
540 return (((u64)sec * SEC_CONVERSION) +
541 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
542 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
544 EXPORT_SYMBOL(timeval_to_jiffies);
546 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
549 * Convert jiffies to nanoseconds and separate with
550 * one divide.
552 u64 nsec = (u64)jiffies * TICK_NSEC;
553 long tv_usec;
555 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
556 tv_usec /= NSEC_PER_USEC;
557 value->tv_usec = tv_usec;
559 EXPORT_SYMBOL(jiffies_to_timeval);
562 * Convert jiffies/jiffies_64 to clock_t and back.
564 clock_t jiffies_to_clock_t(long x)
566 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
567 return x / (HZ / USER_HZ);
568 #else
569 u64 tmp = (u64)x * TICK_NSEC;
570 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
571 return (long)tmp;
572 #endif
574 EXPORT_SYMBOL(jiffies_to_clock_t);
576 unsigned long clock_t_to_jiffies(unsigned long x)
578 #if (HZ % USER_HZ)==0
579 if (x >= ~0UL / (HZ / USER_HZ))
580 return ~0UL;
581 return x * (HZ / USER_HZ);
582 #else
583 u64 jif;
585 /* Don't worry about loss of precision here .. */
586 if (x >= ~0UL / HZ * USER_HZ)
587 return ~0UL;
589 /* .. but do try to contain it here */
590 jif = x * (u64) HZ;
591 do_div(jif, USER_HZ);
592 return jif;
593 #endif
595 EXPORT_SYMBOL(clock_t_to_jiffies);
597 u64 jiffies_64_to_clock_t(u64 x)
599 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
600 do_div(x, HZ / USER_HZ);
601 #else
603 * There are better ways that don't overflow early,
604 * but even this doesn't overflow in hundreds of years
605 * in 64 bits, so..
607 x *= TICK_NSEC;
608 do_div(x, (NSEC_PER_SEC / USER_HZ));
609 #endif
610 return x;
613 EXPORT_SYMBOL(jiffies_64_to_clock_t);
615 u64 nsec_to_clock_t(u64 x)
617 #if (NSEC_PER_SEC % USER_HZ) == 0
618 do_div(x, (NSEC_PER_SEC / USER_HZ));
619 #elif (USER_HZ % 512) == 0
620 x *= USER_HZ/512;
621 do_div(x, (NSEC_PER_SEC / 512));
622 #else
624 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
625 * overflow after 64.99 years.
626 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
628 x *= 9;
629 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
630 USER_HZ));
631 #endif
632 return x;
635 #if (BITS_PER_LONG < 64)
636 u64 get_jiffies_64(void)
638 unsigned long seq;
639 u64 ret;
641 do {
642 seq = read_seqbegin(&xtime_lock);
643 ret = jiffies_64;
644 } while (read_seqretry(&xtime_lock, seq));
645 return ret;
648 EXPORT_SYMBOL(get_jiffies_64);
649 #endif
651 EXPORT_SYMBOL(jiffies);