Don't print file name and line in die and die_if_kernel.
[linux-2.6/openmoko-kernel/knife-kernel.git] / arch / mips / kernel / traps.c
bloba3c0051269699473de5f7ab315c19b6f85dc91f3
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
14 #include <linux/config.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/smp_lock.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
28 #include <asm/cpu.h>
29 #include <asm/dsp.h>
30 #include <asm/fpu.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/watch.h>
43 #include <asm/types.h>
45 extern asmlinkage void handle_tlbm(void);
46 extern asmlinkage void handle_tlbl(void);
47 extern asmlinkage void handle_tlbs(void);
48 extern asmlinkage void handle_adel(void);
49 extern asmlinkage void handle_ades(void);
50 extern asmlinkage void handle_ibe(void);
51 extern asmlinkage void handle_dbe(void);
52 extern asmlinkage void handle_sys(void);
53 extern asmlinkage void handle_bp(void);
54 extern asmlinkage void handle_ri(void);
55 extern asmlinkage void handle_cpu(void);
56 extern asmlinkage void handle_ov(void);
57 extern asmlinkage void handle_tr(void);
58 extern asmlinkage void handle_fpe(void);
59 extern asmlinkage void handle_mdmx(void);
60 extern asmlinkage void handle_watch(void);
61 extern asmlinkage void handle_mt(void);
62 extern asmlinkage void handle_dsp(void);
63 extern asmlinkage void handle_mcheck(void);
64 extern asmlinkage void handle_reserved(void);
66 extern int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp,
67 struct mips_fpu_soft_struct *ctx);
69 void (*board_be_init)(void);
70 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
71 void (*board_nmi_handler_setup)(void);
72 void (*board_ejtag_handler_setup)(void);
73 void (*board_bind_eic_interrupt)(int irq, int regset);
76 * These constant is for searching for possible module text segments.
77 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
79 #define MODULE_RANGE (8*1024*1024)
82 * This routine abuses get_user()/put_user() to reference pointers
83 * with at least a bit of error checking ...
85 void show_stack(struct task_struct *task, unsigned long *sp)
87 const int field = 2 * sizeof(unsigned long);
88 long stackdata;
89 int i;
91 if (!sp) {
92 if (task && task != current)
93 sp = (unsigned long *) task->thread.reg29;
94 else
95 sp = (unsigned long *) &sp;
98 printk("Stack :");
99 i = 0;
100 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
101 if (i && ((i % (64 / field)) == 0))
102 printk("\n ");
103 if (i > 39) {
104 printk(" ...");
105 break;
108 if (__get_user(stackdata, sp++)) {
109 printk(" (Bad stack address)");
110 break;
113 printk(" %0*lx", field, stackdata);
114 i++;
116 printk("\n");
119 void show_trace(struct task_struct *task, unsigned long *stack)
121 const int field = 2 * sizeof(unsigned long);
122 unsigned long addr;
124 if (!stack) {
125 if (task && task != current)
126 stack = (unsigned long *) task->thread.reg29;
127 else
128 stack = (unsigned long *) &stack;
131 printk("Call Trace:");
132 #ifdef CONFIG_KALLSYMS
133 printk("\n");
134 #endif
135 while (!kstack_end(stack)) {
136 addr = *stack++;
137 if (__kernel_text_address(addr)) {
138 printk(" [<%0*lx>] ", field, addr);
139 print_symbol("%s\n", addr);
142 printk("\n");
146 * The architecture-independent dump_stack generator
148 void dump_stack(void)
150 unsigned long stack;
152 show_trace(current, &stack);
155 EXPORT_SYMBOL(dump_stack);
157 void show_code(unsigned int *pc)
159 long i;
161 printk("\nCode:");
163 for(i = -3 ; i < 6 ; i++) {
164 unsigned int insn;
165 if (__get_user(insn, pc + i)) {
166 printk(" (Bad address in epc)\n");
167 break;
169 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
173 void show_regs(struct pt_regs *regs)
175 const int field = 2 * sizeof(unsigned long);
176 unsigned int cause = regs->cp0_cause;
177 int i;
179 printk("Cpu %d\n", smp_processor_id());
182 * Saved main processor registers
184 for (i = 0; i < 32; ) {
185 if ((i % 4) == 0)
186 printk("$%2d :", i);
187 if (i == 0)
188 printk(" %0*lx", field, 0UL);
189 else if (i == 26 || i == 27)
190 printk(" %*s", field, "");
191 else
192 printk(" %0*lx", field, regs->regs[i]);
194 i++;
195 if ((i % 4) == 0)
196 printk("\n");
199 printk("Hi : %0*lx\n", field, regs->hi);
200 printk("Lo : %0*lx\n", field, regs->lo);
203 * Saved cp0 registers
205 printk("epc : %0*lx ", field, regs->cp0_epc);
206 print_symbol("%s ", regs->cp0_epc);
207 printk(" %s\n", print_tainted());
208 printk("ra : %0*lx ", field, regs->regs[31]);
209 print_symbol("%s\n", regs->regs[31]);
211 printk("Status: %08x ", (uint32_t) regs->cp0_status);
213 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
214 if (regs->cp0_status & ST0_KUO)
215 printk("KUo ");
216 if (regs->cp0_status & ST0_IEO)
217 printk("IEo ");
218 if (regs->cp0_status & ST0_KUP)
219 printk("KUp ");
220 if (regs->cp0_status & ST0_IEP)
221 printk("IEp ");
222 if (regs->cp0_status & ST0_KUC)
223 printk("KUc ");
224 if (regs->cp0_status & ST0_IEC)
225 printk("IEc ");
226 } else {
227 if (regs->cp0_status & ST0_KX)
228 printk("KX ");
229 if (regs->cp0_status & ST0_SX)
230 printk("SX ");
231 if (regs->cp0_status & ST0_UX)
232 printk("UX ");
233 switch (regs->cp0_status & ST0_KSU) {
234 case KSU_USER:
235 printk("USER ");
236 break;
237 case KSU_SUPERVISOR:
238 printk("SUPERVISOR ");
239 break;
240 case KSU_KERNEL:
241 printk("KERNEL ");
242 break;
243 default:
244 printk("BAD_MODE ");
245 break;
247 if (regs->cp0_status & ST0_ERL)
248 printk("ERL ");
249 if (regs->cp0_status & ST0_EXL)
250 printk("EXL ");
251 if (regs->cp0_status & ST0_IE)
252 printk("IE ");
254 printk("\n");
256 printk("Cause : %08x\n", cause);
258 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
259 if (1 <= cause && cause <= 5)
260 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
262 printk("PrId : %08x\n", read_c0_prid());
265 void show_registers(struct pt_regs *regs)
267 show_regs(regs);
268 print_modules();
269 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
270 current->comm, current->pid, current_thread_info(), current);
271 show_stack(current, (long *) regs->regs[29]);
272 show_trace(current, (long *) regs->regs[29]);
273 show_code((unsigned int *) regs->cp0_epc);
274 printk("\n");
277 static DEFINE_SPINLOCK(die_lock);
279 NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
281 static int die_counter;
283 console_verbose();
284 spin_lock_irq(&die_lock);
285 printk("%s[#%d]:\n", str, ++die_counter);
286 show_registers(regs);
287 spin_unlock_irq(&die_lock);
288 do_exit(SIGSEGV);
291 extern const struct exception_table_entry __start___dbe_table[];
292 extern const struct exception_table_entry __stop___dbe_table[];
294 void __declare_dbe_table(void)
296 __asm__ __volatile__(
297 ".section\t__dbe_table,\"a\"\n\t"
298 ".previous"
302 /* Given an address, look for it in the exception tables. */
303 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
305 const struct exception_table_entry *e;
307 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
308 if (!e)
309 e = search_module_dbetables(addr);
310 return e;
313 asmlinkage void do_be(struct pt_regs *regs)
315 const int field = 2 * sizeof(unsigned long);
316 const struct exception_table_entry *fixup = NULL;
317 int data = regs->cp0_cause & 4;
318 int action = MIPS_BE_FATAL;
320 /* XXX For now. Fixme, this searches the wrong table ... */
321 if (data && !user_mode(regs))
322 fixup = search_dbe_tables(exception_epc(regs));
324 if (fixup)
325 action = MIPS_BE_FIXUP;
327 if (board_be_handler)
328 action = board_be_handler(regs, fixup != 0);
330 switch (action) {
331 case MIPS_BE_DISCARD:
332 return;
333 case MIPS_BE_FIXUP:
334 if (fixup) {
335 regs->cp0_epc = fixup->nextinsn;
336 return;
338 break;
339 default:
340 break;
344 * Assume it would be too dangerous to continue ...
346 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
347 data ? "Data" : "Instruction",
348 field, regs->cp0_epc, field, regs->regs[31]);
349 die_if_kernel("Oops", regs);
350 force_sig(SIGBUS, current);
353 static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
355 unsigned int __user *epc;
357 epc = (unsigned int __user *) regs->cp0_epc +
358 ((regs->cp0_cause & CAUSEF_BD) != 0);
359 if (!get_user(*opcode, epc))
360 return 0;
362 force_sig(SIGSEGV, current);
363 return 1;
367 * ll/sc emulation
370 #define OPCODE 0xfc000000
371 #define BASE 0x03e00000
372 #define RT 0x001f0000
373 #define OFFSET 0x0000ffff
374 #define LL 0xc0000000
375 #define SC 0xe0000000
376 #define SPEC3 0x7c000000
377 #define RD 0x0000f800
378 #define FUNC 0x0000003f
379 #define RDHWR 0x0000003b
382 * The ll_bit is cleared by r*_switch.S
385 unsigned long ll_bit;
387 static struct task_struct *ll_task = NULL;
389 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
391 unsigned long value, __user *vaddr;
392 long offset;
393 int signal = 0;
396 * analyse the ll instruction that just caused a ri exception
397 * and put the referenced address to addr.
400 /* sign extend offset */
401 offset = opcode & OFFSET;
402 offset <<= 16;
403 offset >>= 16;
405 vaddr = (unsigned long __user *)
406 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
408 if ((unsigned long)vaddr & 3) {
409 signal = SIGBUS;
410 goto sig;
412 if (get_user(value, vaddr)) {
413 signal = SIGSEGV;
414 goto sig;
417 preempt_disable();
419 if (ll_task == NULL || ll_task == current) {
420 ll_bit = 1;
421 } else {
422 ll_bit = 0;
424 ll_task = current;
426 preempt_enable();
428 compute_return_epc(regs);
430 regs->regs[(opcode & RT) >> 16] = value;
432 return;
434 sig:
435 force_sig(signal, current);
438 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
440 unsigned long __user *vaddr;
441 unsigned long reg;
442 long offset;
443 int signal = 0;
446 * analyse the sc instruction that just caused a ri exception
447 * and put the referenced address to addr.
450 /* sign extend offset */
451 offset = opcode & OFFSET;
452 offset <<= 16;
453 offset >>= 16;
455 vaddr = (unsigned long __user *)
456 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
457 reg = (opcode & RT) >> 16;
459 if ((unsigned long)vaddr & 3) {
460 signal = SIGBUS;
461 goto sig;
464 preempt_disable();
466 if (ll_bit == 0 || ll_task != current) {
467 compute_return_epc(regs);
468 regs->regs[reg] = 0;
469 preempt_enable();
470 return;
473 preempt_enable();
475 if (put_user(regs->regs[reg], vaddr)) {
476 signal = SIGSEGV;
477 goto sig;
480 compute_return_epc(regs);
481 regs->regs[reg] = 1;
483 return;
485 sig:
486 force_sig(signal, current);
490 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
491 * opcodes are supposed to result in coprocessor unusable exceptions if
492 * executed on ll/sc-less processors. That's the theory. In practice a
493 * few processors such as NEC's VR4100 throw reserved instruction exceptions
494 * instead, so we're doing the emulation thing in both exception handlers.
496 static inline int simulate_llsc(struct pt_regs *regs)
498 unsigned int opcode;
500 if (unlikely(get_insn_opcode(regs, &opcode)))
501 return -EFAULT;
503 if ((opcode & OPCODE) == LL) {
504 simulate_ll(regs, opcode);
505 return 0;
507 if ((opcode & OPCODE) == SC) {
508 simulate_sc(regs, opcode);
509 return 0;
512 return -EFAULT; /* Strange things going on ... */
516 * Simulate trapping 'rdhwr' instructions to provide user accessible
517 * registers not implemented in hardware. The only current use of this
518 * is the thread area pointer.
520 static inline int simulate_rdhwr(struct pt_regs *regs)
522 struct thread_info *ti = current->thread_info;
523 unsigned int opcode;
525 if (unlikely(get_insn_opcode(regs, &opcode)))
526 return -EFAULT;
528 if (unlikely(compute_return_epc(regs)))
529 return -EFAULT;
531 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
532 int rd = (opcode & RD) >> 11;
533 int rt = (opcode & RT) >> 16;
534 switch (rd) {
535 case 29:
536 regs->regs[rt] = ti->tp_value;
537 break;
538 default:
539 return -EFAULT;
543 return 0;
546 asmlinkage void do_ov(struct pt_regs *regs)
548 siginfo_t info;
550 info.si_code = FPE_INTOVF;
551 info.si_signo = SIGFPE;
552 info.si_errno = 0;
553 info.si_addr = (void __user *) regs->cp0_epc;
554 force_sig_info(SIGFPE, &info, current);
558 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
560 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
562 if (fcr31 & FPU_CSR_UNI_X) {
563 int sig;
565 preempt_disable();
567 #ifdef CONFIG_PREEMPT
568 if (!is_fpu_owner()) {
569 /* We might lose fpu before disabling preempt... */
570 own_fpu();
571 BUG_ON(!used_math());
572 restore_fp(current);
574 #endif
576 * Unimplemented operation exception. If we've got the full
577 * software emulator on-board, let's use it...
579 * Force FPU to dump state into task/thread context. We're
580 * moving a lot of data here for what is probably a single
581 * instruction, but the alternative is to pre-decode the FP
582 * register operands before invoking the emulator, which seems
583 * a bit extreme for what should be an infrequent event.
585 save_fp(current);
586 /* Ensure 'resume' not overwrite saved fp context again. */
587 lose_fpu();
589 preempt_enable();
591 /* Run the emulator */
592 sig = fpu_emulator_cop1Handler (0, regs,
593 &current->thread.fpu.soft);
595 preempt_disable();
597 own_fpu(); /* Using the FPU again. */
599 * We can't allow the emulated instruction to leave any of
600 * the cause bit set in $fcr31.
602 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
604 /* Restore the hardware register state */
605 restore_fp(current);
607 preempt_enable();
609 /* If something went wrong, signal */
610 if (sig)
611 force_sig(sig, current);
613 return;
616 force_sig(SIGFPE, current);
619 asmlinkage void do_bp(struct pt_regs *regs)
621 unsigned int opcode, bcode;
622 siginfo_t info;
624 die_if_kernel("Break instruction in kernel code", regs);
626 if (get_insn_opcode(regs, &opcode))
627 return;
630 * There is the ancient bug in the MIPS assemblers that the break
631 * code starts left to bit 16 instead to bit 6 in the opcode.
632 * Gas is bug-compatible, but not always, grrr...
633 * We handle both cases with a simple heuristics. --macro
635 bcode = ((opcode >> 6) & ((1 << 20) - 1));
636 if (bcode < (1 << 10))
637 bcode <<= 10;
640 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
641 * insns, even for break codes that indicate arithmetic failures.
642 * Weird ...)
643 * But should we continue the brokenness??? --macro
645 switch (bcode) {
646 case BRK_OVERFLOW << 10:
647 case BRK_DIVZERO << 10:
648 if (bcode == (BRK_DIVZERO << 10))
649 info.si_code = FPE_INTDIV;
650 else
651 info.si_code = FPE_INTOVF;
652 info.si_signo = SIGFPE;
653 info.si_errno = 0;
654 info.si_addr = (void __user *) regs->cp0_epc;
655 force_sig_info(SIGFPE, &info, current);
656 break;
657 default:
658 force_sig(SIGTRAP, current);
662 asmlinkage void do_tr(struct pt_regs *regs)
664 unsigned int opcode, tcode = 0;
665 siginfo_t info;
667 die_if_kernel("Trap instruction in kernel code", regs);
669 if (get_insn_opcode(regs, &opcode))
670 return;
672 /* Immediate versions don't provide a code. */
673 if (!(opcode & OPCODE))
674 tcode = ((opcode >> 6) & ((1 << 10) - 1));
677 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
678 * insns, even for trap codes that indicate arithmetic failures.
679 * Weird ...)
680 * But should we continue the brokenness??? --macro
682 switch (tcode) {
683 case BRK_OVERFLOW:
684 case BRK_DIVZERO:
685 if (tcode == BRK_DIVZERO)
686 info.si_code = FPE_INTDIV;
687 else
688 info.si_code = FPE_INTOVF;
689 info.si_signo = SIGFPE;
690 info.si_errno = 0;
691 info.si_addr = (void __user *) regs->cp0_epc;
692 force_sig_info(SIGFPE, &info, current);
693 break;
694 default:
695 force_sig(SIGTRAP, current);
699 asmlinkage void do_ri(struct pt_regs *regs)
701 die_if_kernel("Reserved instruction in kernel code", regs);
703 if (!cpu_has_llsc)
704 if (!simulate_llsc(regs))
705 return;
707 if (!simulate_rdhwr(regs))
708 return;
710 force_sig(SIGILL, current);
713 asmlinkage void do_cpu(struct pt_regs *regs)
715 unsigned int cpid;
717 die_if_kernel("do_cpu invoked from kernel context!", regs);
719 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
721 switch (cpid) {
722 case 0:
723 if (!cpu_has_llsc)
724 if (!simulate_llsc(regs))
725 return;
727 if (!simulate_rdhwr(regs))
728 return;
730 break;
732 case 1:
733 preempt_disable();
735 own_fpu();
736 if (used_math()) { /* Using the FPU again. */
737 restore_fp(current);
738 } else { /* First time FPU user. */
739 init_fpu();
740 set_used_math();
743 preempt_enable();
745 if (!cpu_has_fpu) {
746 int sig = fpu_emulator_cop1Handler(0, regs,
747 &current->thread.fpu.soft);
748 if (sig)
749 force_sig(sig, current);
752 return;
754 case 2:
755 case 3:
756 break;
759 force_sig(SIGILL, current);
762 asmlinkage void do_mdmx(struct pt_regs *regs)
764 force_sig(SIGILL, current);
767 asmlinkage void do_watch(struct pt_regs *regs)
770 * We use the watch exception where available to detect stack
771 * overflows.
773 dump_tlb_all();
774 show_regs(regs);
775 panic("Caught WATCH exception - probably caused by stack overflow.");
778 asmlinkage void do_mcheck(struct pt_regs *regs)
780 show_regs(regs);
781 dump_tlb_all();
783 * Some chips may have other causes of machine check (e.g. SB1
784 * graduation timer)
786 panic("Caught Machine Check exception - %scaused by multiple "
787 "matching entries in the TLB.",
788 (regs->cp0_status & ST0_TS) ? "" : "not ");
791 asmlinkage void do_mt(struct pt_regs *regs)
793 die_if_kernel("MIPS MT Thread exception in kernel", regs);
795 force_sig(SIGILL, current);
799 asmlinkage void do_dsp(struct pt_regs *regs)
801 if (cpu_has_dsp)
802 panic("Unexpected DSP exception\n");
804 force_sig(SIGILL, current);
807 asmlinkage void do_reserved(struct pt_regs *regs)
810 * Game over - no way to handle this if it ever occurs. Most probably
811 * caused by a new unknown cpu type or after another deadly
812 * hard/software error.
814 show_regs(regs);
815 panic("Caught reserved exception %ld - should not happen.",
816 (regs->cp0_cause & 0x7f) >> 2);
819 asmlinkage void do_default_vi(struct pt_regs *regs)
821 show_regs(regs);
822 panic("Caught unexpected vectored interrupt.");
826 * Some MIPS CPUs can enable/disable for cache parity detection, but do
827 * it different ways.
829 static inline void parity_protection_init(void)
831 switch (current_cpu_data.cputype) {
832 case CPU_24K:
833 case CPU_5KC:
834 write_c0_ecc(0x80000000);
835 back_to_back_c0_hazard();
836 /* Set the PE bit (bit 31) in the c0_errctl register. */
837 printk(KERN_INFO "Cache parity protection %sabled\n",
838 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
839 break;
840 case CPU_20KC:
841 case CPU_25KF:
842 /* Clear the DE bit (bit 16) in the c0_status register. */
843 printk(KERN_INFO "Enable cache parity protection for "
844 "MIPS 20KC/25KF CPUs.\n");
845 clear_c0_status(ST0_DE);
846 break;
847 default:
848 break;
852 asmlinkage void cache_parity_error(void)
854 const int field = 2 * sizeof(unsigned long);
855 unsigned int reg_val;
857 /* For the moment, report the problem and hang. */
858 printk("Cache error exception:\n");
859 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
860 reg_val = read_c0_cacheerr();
861 printk("c0_cacheerr == %08x\n", reg_val);
863 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
864 reg_val & (1<<30) ? "secondary" : "primary",
865 reg_val & (1<<31) ? "data" : "insn");
866 printk("Error bits: %s%s%s%s%s%s%s\n",
867 reg_val & (1<<29) ? "ED " : "",
868 reg_val & (1<<28) ? "ET " : "",
869 reg_val & (1<<26) ? "EE " : "",
870 reg_val & (1<<25) ? "EB " : "",
871 reg_val & (1<<24) ? "EI " : "",
872 reg_val & (1<<23) ? "E1 " : "",
873 reg_val & (1<<22) ? "E0 " : "");
874 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
876 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
877 if (reg_val & (1<<22))
878 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
880 if (reg_val & (1<<23))
881 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
882 #endif
884 panic("Can't handle the cache error!");
888 * SDBBP EJTAG debug exception handler.
889 * We skip the instruction and return to the next instruction.
891 void ejtag_exception_handler(struct pt_regs *regs)
893 const int field = 2 * sizeof(unsigned long);
894 unsigned long depc, old_epc;
895 unsigned int debug;
897 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
898 depc = read_c0_depc();
899 debug = read_c0_debug();
900 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
901 if (debug & 0x80000000) {
903 * In branch delay slot.
904 * We cheat a little bit here and use EPC to calculate the
905 * debug return address (DEPC). EPC is restored after the
906 * calculation.
908 old_epc = regs->cp0_epc;
909 regs->cp0_epc = depc;
910 __compute_return_epc(regs);
911 depc = regs->cp0_epc;
912 regs->cp0_epc = old_epc;
913 } else
914 depc += 4;
915 write_c0_depc(depc);
917 #if 0
918 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
919 write_c0_debug(debug | 0x100);
920 #endif
924 * NMI exception handler.
926 void nmi_exception_handler(struct pt_regs *regs)
928 printk("NMI taken!!!!\n");
929 die("NMI", regs);
930 while(1) ;
933 #define VECTORSPACING 0x100 /* for EI/VI mode */
935 unsigned long ebase;
936 unsigned long exception_handlers[32];
937 unsigned long vi_handlers[64];
940 * As a side effect of the way this is implemented we're limited
941 * to interrupt handlers in the address range from
942 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
944 void *set_except_vector(int n, void *addr)
946 unsigned long handler = (unsigned long) addr;
947 unsigned long old_handler = exception_handlers[n];
949 exception_handlers[n] = handler;
950 if (n == 0 && cpu_has_divec) {
951 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
952 (0x03ffffff & (handler >> 2));
953 flush_icache_range(ebase + 0x200, ebase + 0x204);
955 return (void *)old_handler;
958 #ifdef CONFIG_CPU_MIPSR2
960 * Shadow register allocation
961 * FIXME: SMP...
964 /* MIPSR2 shadow register sets */
965 struct shadow_registers {
966 spinlock_t sr_lock; /* */
967 int sr_supported; /* Number of shadow register sets supported */
968 int sr_allocated; /* Bitmap of allocated shadow registers */
969 } shadow_registers;
971 void mips_srs_init(void)
973 #ifdef CONFIG_CPU_MIPSR2_SRS
974 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
975 printk ("%d MIPSR2 register sets available\n", shadow_registers.sr_supported);
976 #else
977 shadow_registers.sr_supported = 1;
978 #endif
979 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
980 spin_lock_init(&shadow_registers.sr_lock);
983 int mips_srs_max(void)
985 return shadow_registers.sr_supported;
988 int mips_srs_alloc (void)
990 struct shadow_registers *sr = &shadow_registers;
991 unsigned long flags;
992 int set;
994 spin_lock_irqsave(&sr->sr_lock, flags);
996 for (set = 0; set < sr->sr_supported; set++) {
997 if ((sr->sr_allocated & (1 << set)) == 0) {
998 sr->sr_allocated |= 1 << set;
999 spin_unlock_irqrestore(&sr->sr_lock, flags);
1000 return set;
1004 /* None available */
1005 spin_unlock_irqrestore(&sr->sr_lock, flags);
1006 return -1;
1009 void mips_srs_free (int set)
1011 struct shadow_registers *sr = &shadow_registers;
1012 unsigned long flags;
1014 spin_lock_irqsave(&sr->sr_lock, flags);
1015 sr->sr_allocated &= ~(1 << set);
1016 spin_unlock_irqrestore(&sr->sr_lock, flags);
1019 void *set_vi_srs_handler (int n, void *addr, int srs)
1021 unsigned long handler;
1022 unsigned long old_handler = vi_handlers[n];
1023 u32 *w;
1024 unsigned char *b;
1026 if (!cpu_has_veic && !cpu_has_vint)
1027 BUG();
1029 if (addr == NULL) {
1030 handler = (unsigned long) do_default_vi;
1031 srs = 0;
1033 else
1034 handler = (unsigned long) addr;
1035 vi_handlers[n] = (unsigned long) addr;
1037 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1039 if (srs >= mips_srs_max())
1040 panic("Shadow register set %d not supported", srs);
1042 if (cpu_has_veic) {
1043 if (board_bind_eic_interrupt)
1044 board_bind_eic_interrupt (n, srs);
1046 else if (cpu_has_vint) {
1047 /* SRSMap is only defined if shadow sets are implemented */
1048 if (mips_srs_max() > 1)
1049 change_c0_srsmap (0xf << n*4, srs << n*4);
1052 if (srs == 0) {
1054 * If no shadow set is selected then use the default handler
1055 * that does normal register saving and a standard interrupt exit
1058 extern char except_vec_vi, except_vec_vi_lui;
1059 extern char except_vec_vi_ori, except_vec_vi_end;
1060 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1061 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1062 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1064 if (handler_len > VECTORSPACING) {
1066 * Sigh... panicing won't help as the console
1067 * is probably not configured :(
1069 panic ("VECTORSPACING too small");
1072 memcpy (b, &except_vec_vi, handler_len);
1073 w = (u32 *)(b + lui_offset);
1074 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1075 w = (u32 *)(b + ori_offset);
1076 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1077 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1079 else {
1081 * In other cases jump directly to the interrupt handler
1083 * It is the handlers responsibility to save registers if required
1084 * (eg hi/lo) and return from the exception using "eret"
1086 w = (u32 *)b;
1087 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1088 *w = 0;
1089 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1092 return (void *)old_handler;
1095 void *set_vi_handler (int n, void *addr)
1097 return set_vi_srs_handler (n, addr, 0);
1099 #endif
1102 * This is used by native signal handling
1104 asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1105 asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1107 extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1108 extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1110 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1111 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1113 static inline void signal_init(void)
1115 if (cpu_has_fpu) {
1116 save_fp_context = _save_fp_context;
1117 restore_fp_context = _restore_fp_context;
1118 } else {
1119 save_fp_context = fpu_emulator_save_context;
1120 restore_fp_context = fpu_emulator_restore_context;
1124 #ifdef CONFIG_MIPS32_COMPAT
1127 * This is used by 32-bit signal stuff on the 64-bit kernel
1129 asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1130 asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1132 extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1133 extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1135 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1136 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1138 static inline void signal32_init(void)
1140 if (cpu_has_fpu) {
1141 save_fp_context32 = _save_fp_context32;
1142 restore_fp_context32 = _restore_fp_context32;
1143 } else {
1144 save_fp_context32 = fpu_emulator_save_context32;
1145 restore_fp_context32 = fpu_emulator_restore_context32;
1148 #endif
1150 extern void cpu_cache_init(void);
1151 extern void tlb_init(void);
1152 extern void flush_tlb_handlers(void);
1154 void __init per_cpu_trap_init(void)
1156 unsigned int cpu = smp_processor_id();
1157 unsigned int status_set = ST0_CU0;
1160 * Disable coprocessors and select 32-bit or 64-bit addressing
1161 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1162 * flag that some firmware may have left set and the TS bit (for
1163 * IP27). Set XX for ISA IV code to work.
1165 #ifdef CONFIG_64BIT
1166 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1167 #endif
1168 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1169 status_set |= ST0_XX;
1170 change_c0_status(ST0_CU|ST0_MX|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1171 status_set);
1173 if (cpu_has_dsp)
1174 set_c0_status(ST0_MX);
1176 #ifdef CONFIG_CPU_MIPSR2
1177 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1178 #endif
1181 * Interrupt handling.
1183 if (cpu_has_veic || cpu_has_vint) {
1184 write_c0_ebase (ebase);
1185 /* Setting vector spacing enables EI/VI mode */
1186 change_c0_intctl (0x3e0, VECTORSPACING);
1188 if (cpu_has_divec) {
1189 if (cpu_has_mipsmt) {
1190 unsigned int vpflags = dvpe();
1191 set_c0_cause(CAUSEF_IV);
1192 evpe(vpflags);
1193 } else
1194 set_c0_cause(CAUSEF_IV);
1197 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1198 TLBMISS_HANDLER_SETUP();
1200 atomic_inc(&init_mm.mm_count);
1201 current->active_mm = &init_mm;
1202 BUG_ON(current->mm);
1203 enter_lazy_tlb(&init_mm, current);
1205 cpu_cache_init();
1206 tlb_init();
1209 /* Install CPU exception handler */
1210 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1212 memcpy((void *)(ebase + offset), addr, size);
1213 flush_icache_range(ebase + offset, ebase + offset + size);
1216 /* Install uncached CPU exception handler */
1217 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1219 #ifdef CONFIG_32BIT
1220 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1221 #endif
1222 #ifdef CONFIG_64BIT
1223 unsigned long uncached_ebase = TO_UNCAC(ebase);
1224 #endif
1226 memcpy((void *)(uncached_ebase + offset), addr, size);
1229 void __init trap_init(void)
1231 extern char except_vec3_generic, except_vec3_r4000;
1232 extern char except_vec4;
1233 unsigned long i;
1235 if (cpu_has_veic || cpu_has_vint)
1236 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1237 else
1238 ebase = CAC_BASE;
1240 #ifdef CONFIG_CPU_MIPSR2
1241 mips_srs_init();
1242 #endif
1244 per_cpu_trap_init();
1247 * Copy the generic exception handlers to their final destination.
1248 * This will be overriden later as suitable for a particular
1249 * configuration.
1251 set_handler(0x180, &except_vec3_generic, 0x80);
1254 * Setup default vectors
1256 for (i = 0; i <= 31; i++)
1257 set_except_vector(i, handle_reserved);
1260 * Copy the EJTAG debug exception vector handler code to it's final
1261 * destination.
1263 if (cpu_has_ejtag && board_ejtag_handler_setup)
1264 board_ejtag_handler_setup ();
1267 * Only some CPUs have the watch exceptions.
1269 if (cpu_has_watch)
1270 set_except_vector(23, handle_watch);
1273 * Initialise interrupt handlers
1275 if (cpu_has_veic || cpu_has_vint) {
1276 int nvec = cpu_has_veic ? 64 : 8;
1277 for (i = 0; i < nvec; i++)
1278 set_vi_handler (i, NULL);
1280 else if (cpu_has_divec)
1281 set_handler(0x200, &except_vec4, 0x8);
1284 * Some CPUs can enable/disable for cache parity detection, but does
1285 * it different ways.
1287 parity_protection_init();
1290 * The Data Bus Errors / Instruction Bus Errors are signaled
1291 * by external hardware. Therefore these two exceptions
1292 * may have board specific handlers.
1294 if (board_be_init)
1295 board_be_init();
1297 set_except_vector(1, handle_tlbm);
1298 set_except_vector(2, handle_tlbl);
1299 set_except_vector(3, handle_tlbs);
1301 set_except_vector(4, handle_adel);
1302 set_except_vector(5, handle_ades);
1304 set_except_vector(6, handle_ibe);
1305 set_except_vector(7, handle_dbe);
1307 set_except_vector(8, handle_sys);
1308 set_except_vector(9, handle_bp);
1309 set_except_vector(10, handle_ri);
1310 set_except_vector(11, handle_cpu);
1311 set_except_vector(12, handle_ov);
1312 set_except_vector(13, handle_tr);
1314 if (current_cpu_data.cputype == CPU_R6000 ||
1315 current_cpu_data.cputype == CPU_R6000A) {
1317 * The R6000 is the only R-series CPU that features a machine
1318 * check exception (similar to the R4000 cache error) and
1319 * unaligned ldc1/sdc1 exception. The handlers have not been
1320 * written yet. Well, anyway there is no R6000 machine on the
1321 * current list of targets for Linux/MIPS.
1322 * (Duh, crap, there is someone with a triple R6k machine)
1324 //set_except_vector(14, handle_mc);
1325 //set_except_vector(15, handle_ndc);
1329 if (board_nmi_handler_setup)
1330 board_nmi_handler_setup();
1332 if (cpu_has_fpu && !cpu_has_nofpuex)
1333 set_except_vector(15, handle_fpe);
1335 set_except_vector(22, handle_mdmx);
1337 if (cpu_has_mcheck)
1338 set_except_vector(24, handle_mcheck);
1340 if (cpu_has_mipsmt)
1341 set_except_vector(25, handle_mt);
1343 if (cpu_has_dsp)
1344 set_except_vector(26, handle_dsp);
1346 if (cpu_has_vce)
1347 /* Special exception: R4[04]00 uses also the divec space. */
1348 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1349 else if (cpu_has_4kex)
1350 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1351 else
1352 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1354 signal_init();
1355 #ifdef CONFIG_MIPS32_COMPAT
1356 signal32_init();
1357 #endif
1359 flush_icache_range(ebase, ebase + 0x400);
1360 flush_tlb_handlers();