[PATCH] percpu counter data type changes to suppport more than 2**31 ext3 free blocks...
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / scsi / libata-core.c
blobde9ba7890b5adceeea4c909062de63e9afeb6f71
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
62 #include "libata.h"
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
68 static void ata_set_mode(struct ata_port *ap);
69 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
70 struct ata_device *dev);
71 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
73 static unsigned int ata_unique_id = 1;
74 static struct workqueue_struct *ata_wq;
76 int atapi_enabled = 1;
77 module_param(atapi_enabled, int, 0444);
78 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80 int libata_fua = 0;
81 module_param_named(fua, libata_fua, int, 0444);
82 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
90 /**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
99 * LOCKING:
100 * Inherited from caller.
103 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
139 * LOCKING:
140 * Inherited from caller.
143 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
161 static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
184 ATA_CMD_WRITE_EXT,
188 ATA_CMD_WRITE_FUA_EXT
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
195 * Examine the device configuration and tf->flags to calculate
196 * the proper read/write commands and protocol to use.
198 * LOCKING:
199 * caller.
201 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
205 u8 cmd;
207 int index, fua, lba48, write;
209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
215 index = dev->multi_count ? 0 : 8;
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
219 index = dev->multi_count ? 0 : 8;
220 } else {
221 tf->protocol = ATA_PROT_DMA;
222 index = 16;
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
230 return -1;
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
242 * LOCKING:
243 * None.
245 * RETURNS:
246 * Packed xfer_mask.
248 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
267 static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
280 static const struct ata_xfer_ent {
281 int shift, bits;
282 u8 base;
283 } ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
297 * LOCKING:
298 * None.
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
303 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
318 * Return matching xfer_mask for @xfer_mode.
320 * LOCKING:
321 * None.
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
326 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
328 const struct ata_xfer_ent *ent;
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
340 * Return matching xfer_shift for @xfer_mode.
342 * LOCKING:
343 * None.
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
348 static int ata_xfer_mode2shift(unsigned int xfer_mode)
350 const struct ata_xfer_ent *ent;
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
362 * Determine string which represents the highest speed
363 * (highest bit in @modemask).
365 * LOCKING:
366 * None.
368 * RETURNS:
369 * Constant C string representing highest speed listed in
370 * @mode_mask, or the constant C string "<n/a>".
372 static const char *ata_mode_string(unsigned int xfer_mask)
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
392 int highbit;
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
397 return "<n/a>";
400 static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
402 if (ata_dev_present(dev)) {
403 printk(KERN_WARNING "ata%u: dev %u disabled\n",
404 ap->id, dev->devno);
405 dev->class++;
410 * ata_pio_devchk - PATA device presence detection
411 * @ap: ATA channel to examine
412 * @device: Device to examine (starting at zero)
414 * This technique was originally described in
415 * Hale Landis's ATADRVR (www.ata-atapi.com), and
416 * later found its way into the ATA/ATAPI spec.
418 * Write a pattern to the ATA shadow registers,
419 * and if a device is present, it will respond by
420 * correctly storing and echoing back the
421 * ATA shadow register contents.
423 * LOCKING:
424 * caller.
427 static unsigned int ata_pio_devchk(struct ata_port *ap,
428 unsigned int device)
430 struct ata_ioports *ioaddr = &ap->ioaddr;
431 u8 nsect, lbal;
433 ap->ops->dev_select(ap, device);
435 outb(0x55, ioaddr->nsect_addr);
436 outb(0xaa, ioaddr->lbal_addr);
438 outb(0xaa, ioaddr->nsect_addr);
439 outb(0x55, ioaddr->lbal_addr);
441 outb(0x55, ioaddr->nsect_addr);
442 outb(0xaa, ioaddr->lbal_addr);
444 nsect = inb(ioaddr->nsect_addr);
445 lbal = inb(ioaddr->lbal_addr);
447 if ((nsect == 0x55) && (lbal == 0xaa))
448 return 1; /* we found a device */
450 return 0; /* nothing found */
454 * ata_mmio_devchk - PATA device presence detection
455 * @ap: ATA channel to examine
456 * @device: Device to examine (starting at zero)
458 * This technique was originally described in
459 * Hale Landis's ATADRVR (www.ata-atapi.com), and
460 * later found its way into the ATA/ATAPI spec.
462 * Write a pattern to the ATA shadow registers,
463 * and if a device is present, it will respond by
464 * correctly storing and echoing back the
465 * ATA shadow register contents.
467 * LOCKING:
468 * caller.
471 static unsigned int ata_mmio_devchk(struct ata_port *ap,
472 unsigned int device)
474 struct ata_ioports *ioaddr = &ap->ioaddr;
475 u8 nsect, lbal;
477 ap->ops->dev_select(ap, device);
479 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
480 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
482 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
483 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
485 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
486 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
488 nsect = readb((void __iomem *) ioaddr->nsect_addr);
489 lbal = readb((void __iomem *) ioaddr->lbal_addr);
491 if ((nsect == 0x55) && (lbal == 0xaa))
492 return 1; /* we found a device */
494 return 0; /* nothing found */
498 * ata_devchk - PATA device presence detection
499 * @ap: ATA channel to examine
500 * @device: Device to examine (starting at zero)
502 * Dispatch ATA device presence detection, depending
503 * on whether we are using PIO or MMIO to talk to the
504 * ATA shadow registers.
506 * LOCKING:
507 * caller.
510 static unsigned int ata_devchk(struct ata_port *ap,
511 unsigned int device)
513 if (ap->flags & ATA_FLAG_MMIO)
514 return ata_mmio_devchk(ap, device);
515 return ata_pio_devchk(ap, device);
519 * ata_dev_classify - determine device type based on ATA-spec signature
520 * @tf: ATA taskfile register set for device to be identified
522 * Determine from taskfile register contents whether a device is
523 * ATA or ATAPI, as per "Signature and persistence" section
524 * of ATA/PI spec (volume 1, sect 5.14).
526 * LOCKING:
527 * None.
529 * RETURNS:
530 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
531 * the event of failure.
534 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
536 /* Apple's open source Darwin code hints that some devices only
537 * put a proper signature into the LBA mid/high registers,
538 * So, we only check those. It's sufficient for uniqueness.
541 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
542 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
543 DPRINTK("found ATA device by sig\n");
544 return ATA_DEV_ATA;
547 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
548 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
549 DPRINTK("found ATAPI device by sig\n");
550 return ATA_DEV_ATAPI;
553 DPRINTK("unknown device\n");
554 return ATA_DEV_UNKNOWN;
558 * ata_dev_try_classify - Parse returned ATA device signature
559 * @ap: ATA channel to examine
560 * @device: Device to examine (starting at zero)
561 * @r_err: Value of error register on completion
563 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
564 * an ATA/ATAPI-defined set of values is placed in the ATA
565 * shadow registers, indicating the results of device detection
566 * and diagnostics.
568 * Select the ATA device, and read the values from the ATA shadow
569 * registers. Then parse according to the Error register value,
570 * and the spec-defined values examined by ata_dev_classify().
572 * LOCKING:
573 * caller.
575 * RETURNS:
576 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
579 static unsigned int
580 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
582 struct ata_taskfile tf;
583 unsigned int class;
584 u8 err;
586 ap->ops->dev_select(ap, device);
588 memset(&tf, 0, sizeof(tf));
590 ap->ops->tf_read(ap, &tf);
591 err = tf.feature;
592 if (r_err)
593 *r_err = err;
595 /* see if device passed diags */
596 if (err == 1)
597 /* do nothing */ ;
598 else if ((device == 0) && (err == 0x81))
599 /* do nothing */ ;
600 else
601 return ATA_DEV_NONE;
603 /* determine if device is ATA or ATAPI */
604 class = ata_dev_classify(&tf);
606 if (class == ATA_DEV_UNKNOWN)
607 return ATA_DEV_NONE;
608 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
609 return ATA_DEV_NONE;
610 return class;
614 * ata_id_string - Convert IDENTIFY DEVICE page into string
615 * @id: IDENTIFY DEVICE results we will examine
616 * @s: string into which data is output
617 * @ofs: offset into identify device page
618 * @len: length of string to return. must be an even number.
620 * The strings in the IDENTIFY DEVICE page are broken up into
621 * 16-bit chunks. Run through the string, and output each
622 * 8-bit chunk linearly, regardless of platform.
624 * LOCKING:
625 * caller.
628 void ata_id_string(const u16 *id, unsigned char *s,
629 unsigned int ofs, unsigned int len)
631 unsigned int c;
633 while (len > 0) {
634 c = id[ofs] >> 8;
635 *s = c;
636 s++;
638 c = id[ofs] & 0xff;
639 *s = c;
640 s++;
642 ofs++;
643 len -= 2;
648 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
649 * @id: IDENTIFY DEVICE results we will examine
650 * @s: string into which data is output
651 * @ofs: offset into identify device page
652 * @len: length of string to return. must be an odd number.
654 * This function is identical to ata_id_string except that it
655 * trims trailing spaces and terminates the resulting string with
656 * null. @len must be actual maximum length (even number) + 1.
658 * LOCKING:
659 * caller.
661 void ata_id_c_string(const u16 *id, unsigned char *s,
662 unsigned int ofs, unsigned int len)
664 unsigned char *p;
666 WARN_ON(!(len & 1));
668 ata_id_string(id, s, ofs, len - 1);
670 p = s + strnlen(s, len - 1);
671 while (p > s && p[-1] == ' ')
672 p--;
673 *p = '\0';
676 static u64 ata_id_n_sectors(const u16 *id)
678 if (ata_id_has_lba(id)) {
679 if (ata_id_has_lba48(id))
680 return ata_id_u64(id, 100);
681 else
682 return ata_id_u32(id, 60);
683 } else {
684 if (ata_id_current_chs_valid(id))
685 return ata_id_u32(id, 57);
686 else
687 return id[1] * id[3] * id[6];
692 * ata_noop_dev_select - Select device 0/1 on ATA bus
693 * @ap: ATA channel to manipulate
694 * @device: ATA device (numbered from zero) to select
696 * This function performs no actual function.
698 * May be used as the dev_select() entry in ata_port_operations.
700 * LOCKING:
701 * caller.
703 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
709 * ata_std_dev_select - Select device 0/1 on ATA bus
710 * @ap: ATA channel to manipulate
711 * @device: ATA device (numbered from zero) to select
713 * Use the method defined in the ATA specification to
714 * make either device 0, or device 1, active on the
715 * ATA channel. Works with both PIO and MMIO.
717 * May be used as the dev_select() entry in ata_port_operations.
719 * LOCKING:
720 * caller.
723 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
725 u8 tmp;
727 if (device == 0)
728 tmp = ATA_DEVICE_OBS;
729 else
730 tmp = ATA_DEVICE_OBS | ATA_DEV1;
732 if (ap->flags & ATA_FLAG_MMIO) {
733 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
734 } else {
735 outb(tmp, ap->ioaddr.device_addr);
737 ata_pause(ap); /* needed; also flushes, for mmio */
741 * ata_dev_select - Select device 0/1 on ATA bus
742 * @ap: ATA channel to manipulate
743 * @device: ATA device (numbered from zero) to select
744 * @wait: non-zero to wait for Status register BSY bit to clear
745 * @can_sleep: non-zero if context allows sleeping
747 * Use the method defined in the ATA specification to
748 * make either device 0, or device 1, active on the
749 * ATA channel.
751 * This is a high-level version of ata_std_dev_select(),
752 * which additionally provides the services of inserting
753 * the proper pauses and status polling, where needed.
755 * LOCKING:
756 * caller.
759 void ata_dev_select(struct ata_port *ap, unsigned int device,
760 unsigned int wait, unsigned int can_sleep)
762 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
763 ap->id, device, wait);
765 if (wait)
766 ata_wait_idle(ap);
768 ap->ops->dev_select(ap, device);
770 if (wait) {
771 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
772 msleep(150);
773 ata_wait_idle(ap);
778 * ata_dump_id - IDENTIFY DEVICE info debugging output
779 * @id: IDENTIFY DEVICE page to dump
781 * Dump selected 16-bit words from the given IDENTIFY DEVICE
782 * page.
784 * LOCKING:
785 * caller.
788 static inline void ata_dump_id(const u16 *id)
790 DPRINTK("49==0x%04x "
791 "53==0x%04x "
792 "63==0x%04x "
793 "64==0x%04x "
794 "75==0x%04x \n",
795 id[49],
796 id[53],
797 id[63],
798 id[64],
799 id[75]);
800 DPRINTK("80==0x%04x "
801 "81==0x%04x "
802 "82==0x%04x "
803 "83==0x%04x "
804 "84==0x%04x \n",
805 id[80],
806 id[81],
807 id[82],
808 id[83],
809 id[84]);
810 DPRINTK("88==0x%04x "
811 "93==0x%04x\n",
812 id[88],
813 id[93]);
817 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
818 * @id: IDENTIFY data to compute xfer mask from
820 * Compute the xfermask for this device. This is not as trivial
821 * as it seems if we must consider early devices correctly.
823 * FIXME: pre IDE drive timing (do we care ?).
825 * LOCKING:
826 * None.
828 * RETURNS:
829 * Computed xfermask
831 static unsigned int ata_id_xfermask(const u16 *id)
833 unsigned int pio_mask, mwdma_mask, udma_mask;
835 /* Usual case. Word 53 indicates word 64 is valid */
836 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
837 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
838 pio_mask <<= 3;
839 pio_mask |= 0x7;
840 } else {
841 /* If word 64 isn't valid then Word 51 high byte holds
842 * the PIO timing number for the maximum. Turn it into
843 * a mask.
845 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
847 /* But wait.. there's more. Design your standards by
848 * committee and you too can get a free iordy field to
849 * process. However its the speeds not the modes that
850 * are supported... Note drivers using the timing API
851 * will get this right anyway
855 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
857 udma_mask = 0;
858 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
859 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
861 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
865 * ata_port_queue_task - Queue port_task
866 * @ap: The ata_port to queue port_task for
867 * @fn: workqueue function to be scheduled
868 * @data: data value to pass to workqueue function
869 * @delay: delay time for workqueue function
871 * Schedule @fn(@data) for execution after @delay jiffies using
872 * port_task. There is one port_task per port and it's the
873 * user(low level driver)'s responsibility to make sure that only
874 * one task is active at any given time.
876 * libata core layer takes care of synchronization between
877 * port_task and EH. ata_port_queue_task() may be ignored for EH
878 * synchronization.
880 * LOCKING:
881 * Inherited from caller.
883 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
884 unsigned long delay)
886 int rc;
888 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
889 return;
891 PREPARE_WORK(&ap->port_task, fn, data);
893 if (!delay)
894 rc = queue_work(ata_wq, &ap->port_task);
895 else
896 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
898 /* rc == 0 means that another user is using port task */
899 WARN_ON(rc == 0);
903 * ata_port_flush_task - Flush port_task
904 * @ap: The ata_port to flush port_task for
906 * After this function completes, port_task is guranteed not to
907 * be running or scheduled.
909 * LOCKING:
910 * Kernel thread context (may sleep)
912 void ata_port_flush_task(struct ata_port *ap)
914 unsigned long flags;
916 DPRINTK("ENTER\n");
918 spin_lock_irqsave(&ap->host_set->lock, flags);
919 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
920 spin_unlock_irqrestore(&ap->host_set->lock, flags);
922 DPRINTK("flush #1\n");
923 flush_workqueue(ata_wq);
926 * At this point, if a task is running, it's guaranteed to see
927 * the FLUSH flag; thus, it will never queue pio tasks again.
928 * Cancel and flush.
930 if (!cancel_delayed_work(&ap->port_task)) {
931 DPRINTK("flush #2\n");
932 flush_workqueue(ata_wq);
935 spin_lock_irqsave(&ap->host_set->lock, flags);
936 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
937 spin_unlock_irqrestore(&ap->host_set->lock, flags);
939 DPRINTK("EXIT\n");
942 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
944 struct completion *waiting = qc->private_data;
946 qc->ap->ops->tf_read(qc->ap, &qc->tf);
947 complete(waiting);
951 * ata_exec_internal - execute libata internal command
952 * @ap: Port to which the command is sent
953 * @dev: Device to which the command is sent
954 * @tf: Taskfile registers for the command and the result
955 * @dma_dir: Data tranfer direction of the command
956 * @buf: Data buffer of the command
957 * @buflen: Length of data buffer
959 * Executes libata internal command with timeout. @tf contains
960 * command on entry and result on return. Timeout and error
961 * conditions are reported via return value. No recovery action
962 * is taken after a command times out. It's caller's duty to
963 * clean up after timeout.
965 * LOCKING:
966 * None. Should be called with kernel context, might sleep.
969 static unsigned
970 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
971 struct ata_taskfile *tf,
972 int dma_dir, void *buf, unsigned int buflen)
974 u8 command = tf->command;
975 struct ata_queued_cmd *qc;
976 DECLARE_COMPLETION(wait);
977 unsigned long flags;
978 unsigned int err_mask;
980 spin_lock_irqsave(&ap->host_set->lock, flags);
982 qc = ata_qc_new_init(ap, dev);
983 BUG_ON(qc == NULL);
985 qc->tf = *tf;
986 qc->dma_dir = dma_dir;
987 if (dma_dir != DMA_NONE) {
988 ata_sg_init_one(qc, buf, buflen);
989 qc->nsect = buflen / ATA_SECT_SIZE;
992 qc->private_data = &wait;
993 qc->complete_fn = ata_qc_complete_internal;
995 ata_qc_issue(qc);
997 spin_unlock_irqrestore(&ap->host_set->lock, flags);
999 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1000 ata_port_flush_task(ap);
1002 spin_lock_irqsave(&ap->host_set->lock, flags);
1004 /* We're racing with irq here. If we lose, the
1005 * following test prevents us from completing the qc
1006 * again. If completion irq occurs after here but
1007 * before the caller cleans up, it will result in a
1008 * spurious interrupt. We can live with that.
1010 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1011 qc->err_mask = AC_ERR_TIMEOUT;
1012 ata_qc_complete(qc);
1013 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1014 ap->id, command);
1017 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1020 *tf = qc->tf;
1021 err_mask = qc->err_mask;
1023 ata_qc_free(qc);
1025 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1026 * Until those drivers are fixed, we detect the condition
1027 * here, fail the command with AC_ERR_SYSTEM and reenable the
1028 * port.
1030 * Note that this doesn't change any behavior as internal
1031 * command failure results in disabling the device in the
1032 * higher layer for LLDDs without new reset/EH callbacks.
1034 * Kill the following code as soon as those drivers are fixed.
1036 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1037 err_mask |= AC_ERR_SYSTEM;
1038 ata_port_probe(ap);
1041 return err_mask;
1045 * ata_pio_need_iordy - check if iordy needed
1046 * @adev: ATA device
1048 * Check if the current speed of the device requires IORDY. Used
1049 * by various controllers for chip configuration.
1052 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1054 int pio;
1055 int speed = adev->pio_mode - XFER_PIO_0;
1057 if (speed < 2)
1058 return 0;
1059 if (speed > 2)
1060 return 1;
1062 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1064 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1065 pio = adev->id[ATA_ID_EIDE_PIO];
1066 /* Is the speed faster than the drive allows non IORDY ? */
1067 if (pio) {
1068 /* This is cycle times not frequency - watch the logic! */
1069 if (pio > 240) /* PIO2 is 240nS per cycle */
1070 return 1;
1071 return 0;
1074 return 0;
1078 * ata_dev_read_id - Read ID data from the specified device
1079 * @ap: port on which target device resides
1080 * @dev: target device
1081 * @p_class: pointer to class of the target device (may be changed)
1082 * @post_reset: is this read ID post-reset?
1083 * @p_id: read IDENTIFY page (newly allocated)
1085 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1086 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1087 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1088 * for pre-ATA4 drives.
1090 * LOCKING:
1091 * Kernel thread context (may sleep)
1093 * RETURNS:
1094 * 0 on success, -errno otherwise.
1096 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1097 unsigned int *p_class, int post_reset, u16 **p_id)
1099 unsigned int class = *p_class;
1100 struct ata_taskfile tf;
1101 unsigned int err_mask = 0;
1102 u16 *id;
1103 const char *reason;
1104 int rc;
1106 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1108 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1110 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1111 if (id == NULL) {
1112 rc = -ENOMEM;
1113 reason = "out of memory";
1114 goto err_out;
1117 retry:
1118 ata_tf_init(ap, &tf, dev->devno);
1120 switch (class) {
1121 case ATA_DEV_ATA:
1122 tf.command = ATA_CMD_ID_ATA;
1123 break;
1124 case ATA_DEV_ATAPI:
1125 tf.command = ATA_CMD_ID_ATAPI;
1126 break;
1127 default:
1128 rc = -ENODEV;
1129 reason = "unsupported class";
1130 goto err_out;
1133 tf.protocol = ATA_PROT_PIO;
1135 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1136 id, sizeof(id[0]) * ATA_ID_WORDS);
1137 if (err_mask) {
1138 rc = -EIO;
1139 reason = "I/O error";
1140 goto err_out;
1143 swap_buf_le16(id, ATA_ID_WORDS);
1145 /* sanity check */
1146 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1147 rc = -EINVAL;
1148 reason = "device reports illegal type";
1149 goto err_out;
1152 if (post_reset && class == ATA_DEV_ATA) {
1154 * The exact sequence expected by certain pre-ATA4 drives is:
1155 * SRST RESET
1156 * IDENTIFY
1157 * INITIALIZE DEVICE PARAMETERS
1158 * anything else..
1159 * Some drives were very specific about that exact sequence.
1161 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1162 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1163 if (err_mask) {
1164 rc = -EIO;
1165 reason = "INIT_DEV_PARAMS failed";
1166 goto err_out;
1169 /* current CHS translation info (id[53-58]) might be
1170 * changed. reread the identify device info.
1172 post_reset = 0;
1173 goto retry;
1177 *p_class = class;
1178 *p_id = id;
1179 return 0;
1181 err_out:
1182 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1183 ap->id, dev->devno, reason);
1184 kfree(id);
1185 return rc;
1188 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1189 struct ata_device *dev)
1191 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1195 * ata_dev_configure - Configure the specified ATA/ATAPI device
1196 * @ap: Port on which target device resides
1197 * @dev: Target device to configure
1198 * @print_info: Enable device info printout
1200 * Configure @dev according to @dev->id. Generic and low-level
1201 * driver specific fixups are also applied.
1203 * LOCKING:
1204 * Kernel thread context (may sleep)
1206 * RETURNS:
1207 * 0 on success, -errno otherwise
1209 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1210 int print_info)
1212 const u16 *id = dev->id;
1213 unsigned int xfer_mask;
1214 int i, rc;
1216 if (!ata_dev_present(dev)) {
1217 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1218 ap->id, dev->devno);
1219 return 0;
1222 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1224 /* print device capabilities */
1225 if (print_info)
1226 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1227 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1228 ap->id, dev->devno, id[49], id[82], id[83],
1229 id[84], id[85], id[86], id[87], id[88]);
1231 /* initialize to-be-configured parameters */
1232 dev->flags = 0;
1233 dev->max_sectors = 0;
1234 dev->cdb_len = 0;
1235 dev->n_sectors = 0;
1236 dev->cylinders = 0;
1237 dev->heads = 0;
1238 dev->sectors = 0;
1241 * common ATA, ATAPI feature tests
1244 /* find max transfer mode; for printk only */
1245 xfer_mask = ata_id_xfermask(id);
1247 ata_dump_id(id);
1249 /* ATA-specific feature tests */
1250 if (dev->class == ATA_DEV_ATA) {
1251 dev->n_sectors = ata_id_n_sectors(id);
1253 if (ata_id_has_lba(id)) {
1254 const char *lba_desc;
1256 lba_desc = "LBA";
1257 dev->flags |= ATA_DFLAG_LBA;
1258 if (ata_id_has_lba48(id)) {
1259 dev->flags |= ATA_DFLAG_LBA48;
1260 lba_desc = "LBA48";
1263 /* print device info to dmesg */
1264 if (print_info)
1265 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1266 "max %s, %Lu sectors: %s\n",
1267 ap->id, dev->devno,
1268 ata_id_major_version(id),
1269 ata_mode_string(xfer_mask),
1270 (unsigned long long)dev->n_sectors,
1271 lba_desc);
1272 } else {
1273 /* CHS */
1275 /* Default translation */
1276 dev->cylinders = id[1];
1277 dev->heads = id[3];
1278 dev->sectors = id[6];
1280 if (ata_id_current_chs_valid(id)) {
1281 /* Current CHS translation is valid. */
1282 dev->cylinders = id[54];
1283 dev->heads = id[55];
1284 dev->sectors = id[56];
1287 /* print device info to dmesg */
1288 if (print_info)
1289 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1290 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1291 ap->id, dev->devno,
1292 ata_id_major_version(id),
1293 ata_mode_string(xfer_mask),
1294 (unsigned long long)dev->n_sectors,
1295 dev->cylinders, dev->heads, dev->sectors);
1298 dev->cdb_len = 16;
1301 /* ATAPI-specific feature tests */
1302 else if (dev->class == ATA_DEV_ATAPI) {
1303 rc = atapi_cdb_len(id);
1304 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1305 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1306 rc = -EINVAL;
1307 goto err_out_nosup;
1309 dev->cdb_len = (unsigned int) rc;
1311 /* print device info to dmesg */
1312 if (print_info)
1313 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1314 ap->id, dev->devno, ata_mode_string(xfer_mask));
1317 ap->host->max_cmd_len = 0;
1318 for (i = 0; i < ATA_MAX_DEVICES; i++)
1319 ap->host->max_cmd_len = max_t(unsigned int,
1320 ap->host->max_cmd_len,
1321 ap->device[i].cdb_len);
1323 /* limit bridge transfers to udma5, 200 sectors */
1324 if (ata_dev_knobble(ap, dev)) {
1325 if (print_info)
1326 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1327 ap->id, dev->devno);
1328 dev->udma_mask &= ATA_UDMA5;
1329 dev->max_sectors = ATA_MAX_SECTORS;
1332 if (ap->ops->dev_config)
1333 ap->ops->dev_config(ap, dev);
1335 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1336 return 0;
1338 err_out_nosup:
1339 DPRINTK("EXIT, err\n");
1340 return rc;
1344 * ata_bus_probe - Reset and probe ATA bus
1345 * @ap: Bus to probe
1347 * Master ATA bus probing function. Initiates a hardware-dependent
1348 * bus reset, then attempts to identify any devices found on
1349 * the bus.
1351 * LOCKING:
1352 * PCI/etc. bus probe sem.
1354 * RETURNS:
1355 * Zero on success, non-zero on error.
1358 static int ata_bus_probe(struct ata_port *ap)
1360 unsigned int classes[ATA_MAX_DEVICES];
1361 unsigned int i, rc, found = 0;
1363 ata_port_probe(ap);
1365 /* reset and determine device classes */
1366 for (i = 0; i < ATA_MAX_DEVICES; i++)
1367 classes[i] = ATA_DEV_UNKNOWN;
1369 if (ap->ops->probe_reset) {
1370 rc = ap->ops->probe_reset(ap, classes);
1371 if (rc) {
1372 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1373 return rc;
1375 } else {
1376 ap->ops->phy_reset(ap);
1378 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1379 for (i = 0; i < ATA_MAX_DEVICES; i++)
1380 classes[i] = ap->device[i].class;
1382 ata_port_probe(ap);
1385 for (i = 0; i < ATA_MAX_DEVICES; i++)
1386 if (classes[i] == ATA_DEV_UNKNOWN)
1387 classes[i] = ATA_DEV_NONE;
1389 /* read IDENTIFY page and configure devices */
1390 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1391 struct ata_device *dev = &ap->device[i];
1393 dev->class = classes[i];
1395 if (!ata_dev_present(dev))
1396 continue;
1398 WARN_ON(dev->id != NULL);
1399 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1400 dev->class = ATA_DEV_NONE;
1401 continue;
1404 if (ata_dev_configure(ap, dev, 1)) {
1405 ata_dev_disable(ap, dev);
1406 continue;
1409 found = 1;
1412 if (!found)
1413 goto err_out_disable;
1415 if (ap->ops->set_mode)
1416 ap->ops->set_mode(ap);
1417 else
1418 ata_set_mode(ap);
1420 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1421 goto err_out_disable;
1423 return 0;
1425 err_out_disable:
1426 ap->ops->port_disable(ap);
1427 return -1;
1431 * ata_port_probe - Mark port as enabled
1432 * @ap: Port for which we indicate enablement
1434 * Modify @ap data structure such that the system
1435 * thinks that the entire port is enabled.
1437 * LOCKING: host_set lock, or some other form of
1438 * serialization.
1441 void ata_port_probe(struct ata_port *ap)
1443 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1447 * sata_print_link_status - Print SATA link status
1448 * @ap: SATA port to printk link status about
1450 * This function prints link speed and status of a SATA link.
1452 * LOCKING:
1453 * None.
1455 static void sata_print_link_status(struct ata_port *ap)
1457 u32 sstatus, tmp;
1458 const char *speed;
1460 if (!ap->ops->scr_read)
1461 return;
1463 sstatus = scr_read(ap, SCR_STATUS);
1465 if (sata_dev_present(ap)) {
1466 tmp = (sstatus >> 4) & 0xf;
1467 if (tmp & (1 << 0))
1468 speed = "1.5";
1469 else if (tmp & (1 << 1))
1470 speed = "3.0";
1471 else
1472 speed = "<unknown>";
1473 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1474 ap->id, speed, sstatus);
1475 } else {
1476 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1477 ap->id, sstatus);
1482 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1483 * @ap: SATA port associated with target SATA PHY.
1485 * This function issues commands to standard SATA Sxxx
1486 * PHY registers, to wake up the phy (and device), and
1487 * clear any reset condition.
1489 * LOCKING:
1490 * PCI/etc. bus probe sem.
1493 void __sata_phy_reset(struct ata_port *ap)
1495 u32 sstatus;
1496 unsigned long timeout = jiffies + (HZ * 5);
1498 if (ap->flags & ATA_FLAG_SATA_RESET) {
1499 /* issue phy wake/reset */
1500 scr_write_flush(ap, SCR_CONTROL, 0x301);
1501 /* Couldn't find anything in SATA I/II specs, but
1502 * AHCI-1.1 10.4.2 says at least 1 ms. */
1503 mdelay(1);
1505 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1507 /* wait for phy to become ready, if necessary */
1508 do {
1509 msleep(200);
1510 sstatus = scr_read(ap, SCR_STATUS);
1511 if ((sstatus & 0xf) != 1)
1512 break;
1513 } while (time_before(jiffies, timeout));
1515 /* print link status */
1516 sata_print_link_status(ap);
1518 /* TODO: phy layer with polling, timeouts, etc. */
1519 if (sata_dev_present(ap))
1520 ata_port_probe(ap);
1521 else
1522 ata_port_disable(ap);
1524 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1525 return;
1527 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1528 ata_port_disable(ap);
1529 return;
1532 ap->cbl = ATA_CBL_SATA;
1536 * sata_phy_reset - Reset SATA bus.
1537 * @ap: SATA port associated with target SATA PHY.
1539 * This function resets the SATA bus, and then probes
1540 * the bus for devices.
1542 * LOCKING:
1543 * PCI/etc. bus probe sem.
1546 void sata_phy_reset(struct ata_port *ap)
1548 __sata_phy_reset(ap);
1549 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1550 return;
1551 ata_bus_reset(ap);
1555 * ata_dev_pair - return other device on cable
1556 * @ap: port
1557 * @adev: device
1559 * Obtain the other device on the same cable, or if none is
1560 * present NULL is returned
1563 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1565 struct ata_device *pair = &ap->device[1 - adev->devno];
1566 if (!ata_dev_present(pair))
1567 return NULL;
1568 return pair;
1572 * ata_port_disable - Disable port.
1573 * @ap: Port to be disabled.
1575 * Modify @ap data structure such that the system
1576 * thinks that the entire port is disabled, and should
1577 * never attempt to probe or communicate with devices
1578 * on this port.
1580 * LOCKING: host_set lock, or some other form of
1581 * serialization.
1584 void ata_port_disable(struct ata_port *ap)
1586 ap->device[0].class = ATA_DEV_NONE;
1587 ap->device[1].class = ATA_DEV_NONE;
1588 ap->flags |= ATA_FLAG_PORT_DISABLED;
1592 * This mode timing computation functionality is ported over from
1593 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1596 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1597 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1598 * for PIO 5, which is a nonstandard extension and UDMA6, which
1599 * is currently supported only by Maxtor drives.
1602 static const struct ata_timing ata_timing[] = {
1604 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1605 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1606 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1607 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1609 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1610 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1611 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1613 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1615 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1616 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1617 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1619 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1620 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1621 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1623 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1624 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1625 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1627 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1628 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1629 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1631 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1633 { 0xFF }
1636 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1637 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1639 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1641 q->setup = EZ(t->setup * 1000, T);
1642 q->act8b = EZ(t->act8b * 1000, T);
1643 q->rec8b = EZ(t->rec8b * 1000, T);
1644 q->cyc8b = EZ(t->cyc8b * 1000, T);
1645 q->active = EZ(t->active * 1000, T);
1646 q->recover = EZ(t->recover * 1000, T);
1647 q->cycle = EZ(t->cycle * 1000, T);
1648 q->udma = EZ(t->udma * 1000, UT);
1651 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1652 struct ata_timing *m, unsigned int what)
1654 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1655 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1656 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1657 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1658 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1659 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1660 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1661 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1664 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1666 const struct ata_timing *t;
1668 for (t = ata_timing; t->mode != speed; t++)
1669 if (t->mode == 0xFF)
1670 return NULL;
1671 return t;
1674 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1675 struct ata_timing *t, int T, int UT)
1677 const struct ata_timing *s;
1678 struct ata_timing p;
1681 * Find the mode.
1684 if (!(s = ata_timing_find_mode(speed)))
1685 return -EINVAL;
1687 memcpy(t, s, sizeof(*s));
1690 * If the drive is an EIDE drive, it can tell us it needs extended
1691 * PIO/MW_DMA cycle timing.
1694 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1695 memset(&p, 0, sizeof(p));
1696 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1697 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1698 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1699 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1700 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1702 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1706 * Convert the timing to bus clock counts.
1709 ata_timing_quantize(t, t, T, UT);
1712 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1713 * S.M.A.R.T * and some other commands. We have to ensure that the
1714 * DMA cycle timing is slower/equal than the fastest PIO timing.
1717 if (speed > XFER_PIO_4) {
1718 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1719 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1723 * Lengthen active & recovery time so that cycle time is correct.
1726 if (t->act8b + t->rec8b < t->cyc8b) {
1727 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1728 t->rec8b = t->cyc8b - t->act8b;
1731 if (t->active + t->recover < t->cycle) {
1732 t->active += (t->cycle - (t->active + t->recover)) / 2;
1733 t->recover = t->cycle - t->active;
1736 return 0;
1739 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1741 unsigned int err_mask;
1742 int rc;
1744 if (dev->xfer_shift == ATA_SHIFT_PIO)
1745 dev->flags |= ATA_DFLAG_PIO;
1747 err_mask = ata_dev_set_xfermode(ap, dev);
1748 if (err_mask) {
1749 printk(KERN_ERR
1750 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1751 ap->id, err_mask);
1752 return -EIO;
1755 rc = ata_dev_revalidate(ap, dev, 0);
1756 if (rc) {
1757 printk(KERN_ERR
1758 "ata%u: failed to revalidate after set xfermode\n",
1759 ap->id);
1760 return rc;
1763 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1764 dev->xfer_shift, (int)dev->xfer_mode);
1766 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1767 ap->id, dev->devno,
1768 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1769 return 0;
1772 static int ata_host_set_pio(struct ata_port *ap)
1774 int i;
1776 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1777 struct ata_device *dev = &ap->device[i];
1779 if (!ata_dev_present(dev))
1780 continue;
1782 if (!dev->pio_mode) {
1783 printk(KERN_WARNING "ata%u: no PIO support for device %d.\n", ap->id, i);
1784 return -1;
1787 dev->xfer_mode = dev->pio_mode;
1788 dev->xfer_shift = ATA_SHIFT_PIO;
1789 if (ap->ops->set_piomode)
1790 ap->ops->set_piomode(ap, dev);
1793 return 0;
1796 static void ata_host_set_dma(struct ata_port *ap)
1798 int i;
1800 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1801 struct ata_device *dev = &ap->device[i];
1803 if (!ata_dev_present(dev) || !dev->dma_mode)
1804 continue;
1806 dev->xfer_mode = dev->dma_mode;
1807 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1808 if (ap->ops->set_dmamode)
1809 ap->ops->set_dmamode(ap, dev);
1814 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1815 * @ap: port on which timings will be programmed
1817 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1819 * LOCKING:
1820 * PCI/etc. bus probe sem.
1822 static void ata_set_mode(struct ata_port *ap)
1824 int i, rc, used_dma = 0;
1826 /* step 1: calculate xfer_mask */
1827 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1828 struct ata_device *dev = &ap->device[i];
1829 unsigned int pio_mask, dma_mask;
1831 if (!ata_dev_present(dev))
1832 continue;
1834 ata_dev_xfermask(ap, dev);
1836 /* TODO: let LLDD filter dev->*_mask here */
1838 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1839 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1840 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1841 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
1843 if (dev->dma_mode)
1844 used_dma = 1;
1847 /* step 2: always set host PIO timings */
1848 rc = ata_host_set_pio(ap);
1849 if (rc)
1850 goto err_out;
1852 /* step 3: set host DMA timings */
1853 ata_host_set_dma(ap);
1855 /* step 4: update devices' xfer mode */
1856 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1857 struct ata_device *dev = &ap->device[i];
1859 if (!ata_dev_present(dev))
1860 continue;
1862 if (ata_dev_set_mode(ap, dev))
1863 goto err_out;
1867 * Record simplex status. If we selected DMA then the other
1868 * host channels are not permitted to do so.
1871 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
1872 ap->host_set->simplex_claimed = 1;
1875 * Chip specific finalisation
1877 if (ap->ops->post_set_mode)
1878 ap->ops->post_set_mode(ap);
1880 return;
1882 err_out:
1883 ata_port_disable(ap);
1887 * ata_tf_to_host - issue ATA taskfile to host controller
1888 * @ap: port to which command is being issued
1889 * @tf: ATA taskfile register set
1891 * Issues ATA taskfile register set to ATA host controller,
1892 * with proper synchronization with interrupt handler and
1893 * other threads.
1895 * LOCKING:
1896 * spin_lock_irqsave(host_set lock)
1899 static inline void ata_tf_to_host(struct ata_port *ap,
1900 const struct ata_taskfile *tf)
1902 ap->ops->tf_load(ap, tf);
1903 ap->ops->exec_command(ap, tf);
1907 * ata_busy_sleep - sleep until BSY clears, or timeout
1908 * @ap: port containing status register to be polled
1909 * @tmout_pat: impatience timeout
1910 * @tmout: overall timeout
1912 * Sleep until ATA Status register bit BSY clears,
1913 * or a timeout occurs.
1915 * LOCKING: None.
1918 unsigned int ata_busy_sleep (struct ata_port *ap,
1919 unsigned long tmout_pat, unsigned long tmout)
1921 unsigned long timer_start, timeout;
1922 u8 status;
1924 status = ata_busy_wait(ap, ATA_BUSY, 300);
1925 timer_start = jiffies;
1926 timeout = timer_start + tmout_pat;
1927 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1928 msleep(50);
1929 status = ata_busy_wait(ap, ATA_BUSY, 3);
1932 if (status & ATA_BUSY)
1933 printk(KERN_WARNING "ata%u is slow to respond, "
1934 "please be patient\n", ap->id);
1936 timeout = timer_start + tmout;
1937 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1938 msleep(50);
1939 status = ata_chk_status(ap);
1942 if (status & ATA_BUSY) {
1943 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1944 ap->id, tmout / HZ);
1945 return 1;
1948 return 0;
1951 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1953 struct ata_ioports *ioaddr = &ap->ioaddr;
1954 unsigned int dev0 = devmask & (1 << 0);
1955 unsigned int dev1 = devmask & (1 << 1);
1956 unsigned long timeout;
1958 /* if device 0 was found in ata_devchk, wait for its
1959 * BSY bit to clear
1961 if (dev0)
1962 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1964 /* if device 1 was found in ata_devchk, wait for
1965 * register access, then wait for BSY to clear
1967 timeout = jiffies + ATA_TMOUT_BOOT;
1968 while (dev1) {
1969 u8 nsect, lbal;
1971 ap->ops->dev_select(ap, 1);
1972 if (ap->flags & ATA_FLAG_MMIO) {
1973 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1974 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1975 } else {
1976 nsect = inb(ioaddr->nsect_addr);
1977 lbal = inb(ioaddr->lbal_addr);
1979 if ((nsect == 1) && (lbal == 1))
1980 break;
1981 if (time_after(jiffies, timeout)) {
1982 dev1 = 0;
1983 break;
1985 msleep(50); /* give drive a breather */
1987 if (dev1)
1988 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1990 /* is all this really necessary? */
1991 ap->ops->dev_select(ap, 0);
1992 if (dev1)
1993 ap->ops->dev_select(ap, 1);
1994 if (dev0)
1995 ap->ops->dev_select(ap, 0);
1998 static unsigned int ata_bus_softreset(struct ata_port *ap,
1999 unsigned int devmask)
2001 struct ata_ioports *ioaddr = &ap->ioaddr;
2003 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2005 /* software reset. causes dev0 to be selected */
2006 if (ap->flags & ATA_FLAG_MMIO) {
2007 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2008 udelay(20); /* FIXME: flush */
2009 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2010 udelay(20); /* FIXME: flush */
2011 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2012 } else {
2013 outb(ap->ctl, ioaddr->ctl_addr);
2014 udelay(10);
2015 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2016 udelay(10);
2017 outb(ap->ctl, ioaddr->ctl_addr);
2020 /* spec mandates ">= 2ms" before checking status.
2021 * We wait 150ms, because that was the magic delay used for
2022 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2023 * between when the ATA command register is written, and then
2024 * status is checked. Because waiting for "a while" before
2025 * checking status is fine, post SRST, we perform this magic
2026 * delay here as well.
2028 * Old drivers/ide uses the 2mS rule and then waits for ready
2030 msleep(150);
2032 /* Before we perform post reset processing we want to see if
2033 * the bus shows 0xFF because the odd clown forgets the D7
2034 * pulldown resistor.
2036 if (ata_check_status(ap) == 0xFF)
2037 return AC_ERR_OTHER;
2039 ata_bus_post_reset(ap, devmask);
2041 return 0;
2045 * ata_bus_reset - reset host port and associated ATA channel
2046 * @ap: port to reset
2048 * This is typically the first time we actually start issuing
2049 * commands to the ATA channel. We wait for BSY to clear, then
2050 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2051 * result. Determine what devices, if any, are on the channel
2052 * by looking at the device 0/1 error register. Look at the signature
2053 * stored in each device's taskfile registers, to determine if
2054 * the device is ATA or ATAPI.
2056 * LOCKING:
2057 * PCI/etc. bus probe sem.
2058 * Obtains host_set lock.
2060 * SIDE EFFECTS:
2061 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2064 void ata_bus_reset(struct ata_port *ap)
2066 struct ata_ioports *ioaddr = &ap->ioaddr;
2067 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2068 u8 err;
2069 unsigned int dev0, dev1 = 0, devmask = 0;
2071 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2073 /* determine if device 0/1 are present */
2074 if (ap->flags & ATA_FLAG_SATA_RESET)
2075 dev0 = 1;
2076 else {
2077 dev0 = ata_devchk(ap, 0);
2078 if (slave_possible)
2079 dev1 = ata_devchk(ap, 1);
2082 if (dev0)
2083 devmask |= (1 << 0);
2084 if (dev1)
2085 devmask |= (1 << 1);
2087 /* select device 0 again */
2088 ap->ops->dev_select(ap, 0);
2090 /* issue bus reset */
2091 if (ap->flags & ATA_FLAG_SRST)
2092 if (ata_bus_softreset(ap, devmask))
2093 goto err_out;
2096 * determine by signature whether we have ATA or ATAPI devices
2098 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2099 if ((slave_possible) && (err != 0x81))
2100 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2102 /* re-enable interrupts */
2103 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2104 ata_irq_on(ap);
2106 /* is double-select really necessary? */
2107 if (ap->device[1].class != ATA_DEV_NONE)
2108 ap->ops->dev_select(ap, 1);
2109 if (ap->device[0].class != ATA_DEV_NONE)
2110 ap->ops->dev_select(ap, 0);
2112 /* if no devices were detected, disable this port */
2113 if ((ap->device[0].class == ATA_DEV_NONE) &&
2114 (ap->device[1].class == ATA_DEV_NONE))
2115 goto err_out;
2117 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2118 /* set up device control for ATA_FLAG_SATA_RESET */
2119 if (ap->flags & ATA_FLAG_MMIO)
2120 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2121 else
2122 outb(ap->ctl, ioaddr->ctl_addr);
2125 DPRINTK("EXIT\n");
2126 return;
2128 err_out:
2129 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2130 ap->ops->port_disable(ap);
2132 DPRINTK("EXIT\n");
2135 static int sata_phy_resume(struct ata_port *ap)
2137 unsigned long timeout = jiffies + (HZ * 5);
2138 u32 sstatus;
2140 scr_write_flush(ap, SCR_CONTROL, 0x300);
2142 /* Wait for phy to become ready, if necessary. */
2143 do {
2144 msleep(200);
2145 sstatus = scr_read(ap, SCR_STATUS);
2146 if ((sstatus & 0xf) != 1)
2147 return 0;
2148 } while (time_before(jiffies, timeout));
2150 return -1;
2154 * ata_std_probeinit - initialize probing
2155 * @ap: port to be probed
2157 * @ap is about to be probed. Initialize it. This function is
2158 * to be used as standard callback for ata_drive_probe_reset().
2160 * NOTE!!! Do not use this function as probeinit if a low level
2161 * driver implements only hardreset. Just pass NULL as probeinit
2162 * in that case. Using this function is probably okay but doing
2163 * so makes reset sequence different from the original
2164 * ->phy_reset implementation and Jeff nervous. :-P
2166 void ata_std_probeinit(struct ata_port *ap)
2168 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2169 sata_phy_resume(ap);
2170 if (sata_dev_present(ap))
2171 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2176 * ata_std_softreset - reset host port via ATA SRST
2177 * @ap: port to reset
2178 * @verbose: fail verbosely
2179 * @classes: resulting classes of attached devices
2181 * Reset host port using ATA SRST. This function is to be used
2182 * as standard callback for ata_drive_*_reset() functions.
2184 * LOCKING:
2185 * Kernel thread context (may sleep)
2187 * RETURNS:
2188 * 0 on success, -errno otherwise.
2190 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2192 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2193 unsigned int devmask = 0, err_mask;
2194 u8 err;
2196 DPRINTK("ENTER\n");
2198 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2199 classes[0] = ATA_DEV_NONE;
2200 goto out;
2203 /* determine if device 0/1 are present */
2204 if (ata_devchk(ap, 0))
2205 devmask |= (1 << 0);
2206 if (slave_possible && ata_devchk(ap, 1))
2207 devmask |= (1 << 1);
2209 /* select device 0 again */
2210 ap->ops->dev_select(ap, 0);
2212 /* issue bus reset */
2213 DPRINTK("about to softreset, devmask=%x\n", devmask);
2214 err_mask = ata_bus_softreset(ap, devmask);
2215 if (err_mask) {
2216 if (verbose)
2217 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2218 ap->id, err_mask);
2219 else
2220 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2221 err_mask);
2222 return -EIO;
2225 /* determine by signature whether we have ATA or ATAPI devices */
2226 classes[0] = ata_dev_try_classify(ap, 0, &err);
2227 if (slave_possible && err != 0x81)
2228 classes[1] = ata_dev_try_classify(ap, 1, &err);
2230 out:
2231 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2232 return 0;
2236 * sata_std_hardreset - reset host port via SATA phy reset
2237 * @ap: port to reset
2238 * @verbose: fail verbosely
2239 * @class: resulting class of attached device
2241 * SATA phy-reset host port using DET bits of SControl register.
2242 * This function is to be used as standard callback for
2243 * ata_drive_*_reset().
2245 * LOCKING:
2246 * Kernel thread context (may sleep)
2248 * RETURNS:
2249 * 0 on success, -errno otherwise.
2251 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2253 DPRINTK("ENTER\n");
2255 /* Issue phy wake/reset */
2256 scr_write_flush(ap, SCR_CONTROL, 0x301);
2259 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2260 * 10.4.2 says at least 1 ms.
2262 msleep(1);
2264 /* Bring phy back */
2265 sata_phy_resume(ap);
2267 /* TODO: phy layer with polling, timeouts, etc. */
2268 if (!sata_dev_present(ap)) {
2269 *class = ATA_DEV_NONE;
2270 DPRINTK("EXIT, link offline\n");
2271 return 0;
2274 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2275 if (verbose)
2276 printk(KERN_ERR "ata%u: COMRESET failed "
2277 "(device not ready)\n", ap->id);
2278 else
2279 DPRINTK("EXIT, device not ready\n");
2280 return -EIO;
2283 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2285 *class = ata_dev_try_classify(ap, 0, NULL);
2287 DPRINTK("EXIT, class=%u\n", *class);
2288 return 0;
2292 * ata_std_postreset - standard postreset callback
2293 * @ap: the target ata_port
2294 * @classes: classes of attached devices
2296 * This function is invoked after a successful reset. Note that
2297 * the device might have been reset more than once using
2298 * different reset methods before postreset is invoked.
2300 * This function is to be used as standard callback for
2301 * ata_drive_*_reset().
2303 * LOCKING:
2304 * Kernel thread context (may sleep)
2306 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2308 DPRINTK("ENTER\n");
2310 /* set cable type if it isn't already set */
2311 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2312 ap->cbl = ATA_CBL_SATA;
2314 /* print link status */
2315 if (ap->cbl == ATA_CBL_SATA)
2316 sata_print_link_status(ap);
2318 /* re-enable interrupts */
2319 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2320 ata_irq_on(ap);
2322 /* is double-select really necessary? */
2323 if (classes[0] != ATA_DEV_NONE)
2324 ap->ops->dev_select(ap, 1);
2325 if (classes[1] != ATA_DEV_NONE)
2326 ap->ops->dev_select(ap, 0);
2328 /* bail out if no device is present */
2329 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2330 DPRINTK("EXIT, no device\n");
2331 return;
2334 /* set up device control */
2335 if (ap->ioaddr.ctl_addr) {
2336 if (ap->flags & ATA_FLAG_MMIO)
2337 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2338 else
2339 outb(ap->ctl, ap->ioaddr.ctl_addr);
2342 DPRINTK("EXIT\n");
2346 * ata_std_probe_reset - standard probe reset method
2347 * @ap: prot to perform probe-reset
2348 * @classes: resulting classes of attached devices
2350 * The stock off-the-shelf ->probe_reset method.
2352 * LOCKING:
2353 * Kernel thread context (may sleep)
2355 * RETURNS:
2356 * 0 on success, -errno otherwise.
2358 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2360 ata_reset_fn_t hardreset;
2362 hardreset = NULL;
2363 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2364 hardreset = sata_std_hardreset;
2366 return ata_drive_probe_reset(ap, ata_std_probeinit,
2367 ata_std_softreset, hardreset,
2368 ata_std_postreset, classes);
2371 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2372 ata_postreset_fn_t postreset,
2373 unsigned int *classes)
2375 int i, rc;
2377 for (i = 0; i < ATA_MAX_DEVICES; i++)
2378 classes[i] = ATA_DEV_UNKNOWN;
2380 rc = reset(ap, 0, classes);
2381 if (rc)
2382 return rc;
2384 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2385 * is complete and convert all ATA_DEV_UNKNOWN to
2386 * ATA_DEV_NONE.
2388 for (i = 0; i < ATA_MAX_DEVICES; i++)
2389 if (classes[i] != ATA_DEV_UNKNOWN)
2390 break;
2392 if (i < ATA_MAX_DEVICES)
2393 for (i = 0; i < ATA_MAX_DEVICES; i++)
2394 if (classes[i] == ATA_DEV_UNKNOWN)
2395 classes[i] = ATA_DEV_NONE;
2397 if (postreset)
2398 postreset(ap, classes);
2400 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2404 * ata_drive_probe_reset - Perform probe reset with given methods
2405 * @ap: port to reset
2406 * @probeinit: probeinit method (can be NULL)
2407 * @softreset: softreset method (can be NULL)
2408 * @hardreset: hardreset method (can be NULL)
2409 * @postreset: postreset method (can be NULL)
2410 * @classes: resulting classes of attached devices
2412 * Reset the specified port and classify attached devices using
2413 * given methods. This function prefers softreset but tries all
2414 * possible reset sequences to reset and classify devices. This
2415 * function is intended to be used for constructing ->probe_reset
2416 * callback by low level drivers.
2418 * Reset methods should follow the following rules.
2420 * - Return 0 on sucess, -errno on failure.
2421 * - If classification is supported, fill classes[] with
2422 * recognized class codes.
2423 * - If classification is not supported, leave classes[] alone.
2424 * - If verbose is non-zero, print error message on failure;
2425 * otherwise, shut up.
2427 * LOCKING:
2428 * Kernel thread context (may sleep)
2430 * RETURNS:
2431 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2432 * if classification fails, and any error code from reset
2433 * methods.
2435 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2436 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2437 ata_postreset_fn_t postreset, unsigned int *classes)
2439 int rc = -EINVAL;
2441 if (probeinit)
2442 probeinit(ap);
2444 if (softreset) {
2445 rc = do_probe_reset(ap, softreset, postreset, classes);
2446 if (rc == 0)
2447 return 0;
2450 if (!hardreset)
2451 return rc;
2453 rc = do_probe_reset(ap, hardreset, postreset, classes);
2454 if (rc == 0 || rc != -ENODEV)
2455 return rc;
2457 if (softreset)
2458 rc = do_probe_reset(ap, softreset, postreset, classes);
2460 return rc;
2464 * ata_dev_same_device - Determine whether new ID matches configured device
2465 * @ap: port on which the device to compare against resides
2466 * @dev: device to compare against
2467 * @new_class: class of the new device
2468 * @new_id: IDENTIFY page of the new device
2470 * Compare @new_class and @new_id against @dev and determine
2471 * whether @dev is the device indicated by @new_class and
2472 * @new_id.
2474 * LOCKING:
2475 * None.
2477 * RETURNS:
2478 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2480 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2481 unsigned int new_class, const u16 *new_id)
2483 const u16 *old_id = dev->id;
2484 unsigned char model[2][41], serial[2][21];
2485 u64 new_n_sectors;
2487 if (dev->class != new_class) {
2488 printk(KERN_INFO
2489 "ata%u: dev %u class mismatch %d != %d\n",
2490 ap->id, dev->devno, dev->class, new_class);
2491 return 0;
2494 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2495 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2496 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2497 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2498 new_n_sectors = ata_id_n_sectors(new_id);
2500 if (strcmp(model[0], model[1])) {
2501 printk(KERN_INFO
2502 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2503 ap->id, dev->devno, model[0], model[1]);
2504 return 0;
2507 if (strcmp(serial[0], serial[1])) {
2508 printk(KERN_INFO
2509 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2510 ap->id, dev->devno, serial[0], serial[1]);
2511 return 0;
2514 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2515 printk(KERN_INFO
2516 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2517 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2518 (unsigned long long)new_n_sectors);
2519 return 0;
2522 return 1;
2526 * ata_dev_revalidate - Revalidate ATA device
2527 * @ap: port on which the device to revalidate resides
2528 * @dev: device to revalidate
2529 * @post_reset: is this revalidation after reset?
2531 * Re-read IDENTIFY page and make sure @dev is still attached to
2532 * the port.
2534 * LOCKING:
2535 * Kernel thread context (may sleep)
2537 * RETURNS:
2538 * 0 on success, negative errno otherwise
2540 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2541 int post_reset)
2543 unsigned int class;
2544 u16 *id;
2545 int rc;
2547 if (!ata_dev_present(dev))
2548 return -ENODEV;
2550 class = dev->class;
2551 id = NULL;
2553 /* allocate & read ID data */
2554 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2555 if (rc)
2556 goto fail;
2558 /* is the device still there? */
2559 if (!ata_dev_same_device(ap, dev, class, id)) {
2560 rc = -ENODEV;
2561 goto fail;
2564 kfree(dev->id);
2565 dev->id = id;
2567 /* configure device according to the new ID */
2568 return ata_dev_configure(ap, dev, 0);
2570 fail:
2571 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2572 ap->id, dev->devno, rc);
2573 kfree(id);
2574 return rc;
2577 static const char * const ata_dma_blacklist [] = {
2578 "WDC AC11000H", NULL,
2579 "WDC AC22100H", NULL,
2580 "WDC AC32500H", NULL,
2581 "WDC AC33100H", NULL,
2582 "WDC AC31600H", NULL,
2583 "WDC AC32100H", "24.09P07",
2584 "WDC AC23200L", "21.10N21",
2585 "Compaq CRD-8241B", NULL,
2586 "CRD-8400B", NULL,
2587 "CRD-8480B", NULL,
2588 "CRD-8482B", NULL,
2589 "CRD-84", NULL,
2590 "SanDisk SDP3B", NULL,
2591 "SanDisk SDP3B-64", NULL,
2592 "SANYO CD-ROM CRD", NULL,
2593 "HITACHI CDR-8", NULL,
2594 "HITACHI CDR-8335", NULL,
2595 "HITACHI CDR-8435", NULL,
2596 "Toshiba CD-ROM XM-6202B", NULL,
2597 "TOSHIBA CD-ROM XM-1702BC", NULL,
2598 "CD-532E-A", NULL,
2599 "E-IDE CD-ROM CR-840", NULL,
2600 "CD-ROM Drive/F5A", NULL,
2601 "WPI CDD-820", NULL,
2602 "SAMSUNG CD-ROM SC-148C", NULL,
2603 "SAMSUNG CD-ROM SC", NULL,
2604 "SanDisk SDP3B-64", NULL,
2605 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2606 "_NEC DV5800A", NULL,
2607 "SAMSUNG CD-ROM SN-124", "N001"
2610 static int ata_strim(char *s, size_t len)
2612 len = strnlen(s, len);
2614 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2615 while ((len > 0) && (s[len - 1] == ' ')) {
2616 len--;
2617 s[len] = 0;
2619 return len;
2622 static int ata_dma_blacklisted(const struct ata_device *dev)
2624 unsigned char model_num[40];
2625 unsigned char model_rev[16];
2626 unsigned int nlen, rlen;
2627 int i;
2629 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2630 sizeof(model_num));
2631 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2632 sizeof(model_rev));
2633 nlen = ata_strim(model_num, sizeof(model_num));
2634 rlen = ata_strim(model_rev, sizeof(model_rev));
2636 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2637 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2638 if (ata_dma_blacklist[i+1] == NULL)
2639 return 1;
2640 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2641 return 1;
2644 return 0;
2648 * ata_dev_xfermask - Compute supported xfermask of the given device
2649 * @ap: Port on which the device to compute xfermask for resides
2650 * @dev: Device to compute xfermask for
2652 * Compute supported xfermask of @dev and store it in
2653 * dev->*_mask. This function is responsible for applying all
2654 * known limits including host controller limits, device
2655 * blacklist, etc...
2657 * FIXME: The current implementation limits all transfer modes to
2658 * the fastest of the lowested device on the port. This is not
2659 * required on most controllers.
2661 * LOCKING:
2662 * None.
2664 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2666 struct ata_host_set *hs = ap->host_set;
2667 unsigned long xfer_mask;
2668 int i;
2670 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2671 ap->udma_mask);
2673 /* FIXME: Use port-wide xfermask for now */
2674 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2675 struct ata_device *d = &ap->device[i];
2676 if (!ata_dev_present(d))
2677 continue;
2678 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2679 d->udma_mask);
2680 xfer_mask &= ata_id_xfermask(d->id);
2681 if (ata_dma_blacklisted(d))
2682 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2683 /* Apply cable rule here. Don't apply it early because when
2684 we handle hot plug the cable type can itself change */
2685 if (ap->cbl == ATA_CBL_PATA40)
2686 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2689 if (ata_dma_blacklisted(dev))
2690 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2691 "disabling DMA\n", ap->id, dev->devno);
2693 if (hs->flags & ATA_HOST_SIMPLEX) {
2694 if (hs->simplex_claimed)
2695 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2697 if (ap->ops->mode_filter)
2698 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2700 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2701 &dev->udma_mask);
2705 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2706 * @ap: Port associated with device @dev
2707 * @dev: Device to which command will be sent
2709 * Issue SET FEATURES - XFER MODE command to device @dev
2710 * on port @ap.
2712 * LOCKING:
2713 * PCI/etc. bus probe sem.
2715 * RETURNS:
2716 * 0 on success, AC_ERR_* mask otherwise.
2719 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2720 struct ata_device *dev)
2722 struct ata_taskfile tf;
2723 unsigned int err_mask;
2725 /* set up set-features taskfile */
2726 DPRINTK("set features - xfer mode\n");
2728 ata_tf_init(ap, &tf, dev->devno);
2729 tf.command = ATA_CMD_SET_FEATURES;
2730 tf.feature = SETFEATURES_XFER;
2731 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2732 tf.protocol = ATA_PROT_NODATA;
2733 tf.nsect = dev->xfer_mode;
2735 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2737 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2738 return err_mask;
2742 * ata_dev_init_params - Issue INIT DEV PARAMS command
2743 * @ap: Port associated with device @dev
2744 * @dev: Device to which command will be sent
2745 * @heads: Number of heads (taskfile parameter)
2746 * @sectors: Number of sectors (taskfile parameter)
2748 * LOCKING:
2749 * Kernel thread context (may sleep)
2751 * RETURNS:
2752 * 0 on success, AC_ERR_* mask otherwise.
2755 static unsigned int ata_dev_init_params(struct ata_port *ap,
2756 struct ata_device *dev,
2757 u16 heads,
2758 u16 sectors)
2760 struct ata_taskfile tf;
2761 unsigned int err_mask;
2763 /* Number of sectors per track 1-255. Number of heads 1-16 */
2764 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2765 return AC_ERR_INVALID;
2767 /* set up init dev params taskfile */
2768 DPRINTK("init dev params \n");
2770 ata_tf_init(ap, &tf, dev->devno);
2771 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2772 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2773 tf.protocol = ATA_PROT_NODATA;
2774 tf.nsect = sectors;
2775 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2777 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2779 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2780 return err_mask;
2784 * ata_sg_clean - Unmap DMA memory associated with command
2785 * @qc: Command containing DMA memory to be released
2787 * Unmap all mapped DMA memory associated with this command.
2789 * LOCKING:
2790 * spin_lock_irqsave(host_set lock)
2793 static void ata_sg_clean(struct ata_queued_cmd *qc)
2795 struct ata_port *ap = qc->ap;
2796 struct scatterlist *sg = qc->__sg;
2797 int dir = qc->dma_dir;
2798 void *pad_buf = NULL;
2800 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2801 WARN_ON(sg == NULL);
2803 if (qc->flags & ATA_QCFLAG_SINGLE)
2804 WARN_ON(qc->n_elem > 1);
2806 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2808 /* if we padded the buffer out to 32-bit bound, and data
2809 * xfer direction is from-device, we must copy from the
2810 * pad buffer back into the supplied buffer
2812 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2813 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2815 if (qc->flags & ATA_QCFLAG_SG) {
2816 if (qc->n_elem)
2817 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
2818 /* restore last sg */
2819 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2820 if (pad_buf) {
2821 struct scatterlist *psg = &qc->pad_sgent;
2822 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2823 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2824 kunmap_atomic(addr, KM_IRQ0);
2826 } else {
2827 if (qc->n_elem)
2828 dma_unmap_single(ap->dev,
2829 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2830 dir);
2831 /* restore sg */
2832 sg->length += qc->pad_len;
2833 if (pad_buf)
2834 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2835 pad_buf, qc->pad_len);
2838 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2839 qc->__sg = NULL;
2843 * ata_fill_sg - Fill PCI IDE PRD table
2844 * @qc: Metadata associated with taskfile to be transferred
2846 * Fill PCI IDE PRD (scatter-gather) table with segments
2847 * associated with the current disk command.
2849 * LOCKING:
2850 * spin_lock_irqsave(host_set lock)
2853 static void ata_fill_sg(struct ata_queued_cmd *qc)
2855 struct ata_port *ap = qc->ap;
2856 struct scatterlist *sg;
2857 unsigned int idx;
2859 WARN_ON(qc->__sg == NULL);
2860 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
2862 idx = 0;
2863 ata_for_each_sg(sg, qc) {
2864 u32 addr, offset;
2865 u32 sg_len, len;
2867 /* determine if physical DMA addr spans 64K boundary.
2868 * Note h/w doesn't support 64-bit, so we unconditionally
2869 * truncate dma_addr_t to u32.
2871 addr = (u32) sg_dma_address(sg);
2872 sg_len = sg_dma_len(sg);
2874 while (sg_len) {
2875 offset = addr & 0xffff;
2876 len = sg_len;
2877 if ((offset + sg_len) > 0x10000)
2878 len = 0x10000 - offset;
2880 ap->prd[idx].addr = cpu_to_le32(addr);
2881 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2882 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2884 idx++;
2885 sg_len -= len;
2886 addr += len;
2890 if (idx)
2891 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2894 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2895 * @qc: Metadata associated with taskfile to check
2897 * Allow low-level driver to filter ATA PACKET commands, returning
2898 * a status indicating whether or not it is OK to use DMA for the
2899 * supplied PACKET command.
2901 * LOCKING:
2902 * spin_lock_irqsave(host_set lock)
2904 * RETURNS: 0 when ATAPI DMA can be used
2905 * nonzero otherwise
2907 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2909 struct ata_port *ap = qc->ap;
2910 int rc = 0; /* Assume ATAPI DMA is OK by default */
2912 if (ap->ops->check_atapi_dma)
2913 rc = ap->ops->check_atapi_dma(qc);
2915 return rc;
2918 * ata_qc_prep - Prepare taskfile for submission
2919 * @qc: Metadata associated with taskfile to be prepared
2921 * Prepare ATA taskfile for submission.
2923 * LOCKING:
2924 * spin_lock_irqsave(host_set lock)
2926 void ata_qc_prep(struct ata_queued_cmd *qc)
2928 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2929 return;
2931 ata_fill_sg(qc);
2934 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2937 * ata_sg_init_one - Associate command with memory buffer
2938 * @qc: Command to be associated
2939 * @buf: Memory buffer
2940 * @buflen: Length of memory buffer, in bytes.
2942 * Initialize the data-related elements of queued_cmd @qc
2943 * to point to a single memory buffer, @buf of byte length @buflen.
2945 * LOCKING:
2946 * spin_lock_irqsave(host_set lock)
2949 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2951 struct scatterlist *sg;
2953 qc->flags |= ATA_QCFLAG_SINGLE;
2955 memset(&qc->sgent, 0, sizeof(qc->sgent));
2956 qc->__sg = &qc->sgent;
2957 qc->n_elem = 1;
2958 qc->orig_n_elem = 1;
2959 qc->buf_virt = buf;
2961 sg = qc->__sg;
2962 sg_init_one(sg, buf, buflen);
2966 * ata_sg_init - Associate command with scatter-gather table.
2967 * @qc: Command to be associated
2968 * @sg: Scatter-gather table.
2969 * @n_elem: Number of elements in s/g table.
2971 * Initialize the data-related elements of queued_cmd @qc
2972 * to point to a scatter-gather table @sg, containing @n_elem
2973 * elements.
2975 * LOCKING:
2976 * spin_lock_irqsave(host_set lock)
2979 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2980 unsigned int n_elem)
2982 qc->flags |= ATA_QCFLAG_SG;
2983 qc->__sg = sg;
2984 qc->n_elem = n_elem;
2985 qc->orig_n_elem = n_elem;
2989 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2990 * @qc: Command with memory buffer to be mapped.
2992 * DMA-map the memory buffer associated with queued_cmd @qc.
2994 * LOCKING:
2995 * spin_lock_irqsave(host_set lock)
2997 * RETURNS:
2998 * Zero on success, negative on error.
3001 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3003 struct ata_port *ap = qc->ap;
3004 int dir = qc->dma_dir;
3005 struct scatterlist *sg = qc->__sg;
3006 dma_addr_t dma_address;
3007 int trim_sg = 0;
3009 /* we must lengthen transfers to end on a 32-bit boundary */
3010 qc->pad_len = sg->length & 3;
3011 if (qc->pad_len) {
3012 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3013 struct scatterlist *psg = &qc->pad_sgent;
3015 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3017 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3019 if (qc->tf.flags & ATA_TFLAG_WRITE)
3020 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3021 qc->pad_len);
3023 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3024 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3025 /* trim sg */
3026 sg->length -= qc->pad_len;
3027 if (sg->length == 0)
3028 trim_sg = 1;
3030 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3031 sg->length, qc->pad_len);
3034 if (trim_sg) {
3035 qc->n_elem--;
3036 goto skip_map;
3039 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3040 sg->length, dir);
3041 if (dma_mapping_error(dma_address)) {
3042 /* restore sg */
3043 sg->length += qc->pad_len;
3044 return -1;
3047 sg_dma_address(sg) = dma_address;
3048 sg_dma_len(sg) = sg->length;
3050 skip_map:
3051 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3052 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3054 return 0;
3058 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3059 * @qc: Command with scatter-gather table to be mapped.
3061 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3063 * LOCKING:
3064 * spin_lock_irqsave(host_set lock)
3066 * RETURNS:
3067 * Zero on success, negative on error.
3071 static int ata_sg_setup(struct ata_queued_cmd *qc)
3073 struct ata_port *ap = qc->ap;
3074 struct scatterlist *sg = qc->__sg;
3075 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3076 int n_elem, pre_n_elem, dir, trim_sg = 0;
3078 VPRINTK("ENTER, ata%u\n", ap->id);
3079 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3081 /* we must lengthen transfers to end on a 32-bit boundary */
3082 qc->pad_len = lsg->length & 3;
3083 if (qc->pad_len) {
3084 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3085 struct scatterlist *psg = &qc->pad_sgent;
3086 unsigned int offset;
3088 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3090 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3093 * psg->page/offset are used to copy to-be-written
3094 * data in this function or read data in ata_sg_clean.
3096 offset = lsg->offset + lsg->length - qc->pad_len;
3097 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3098 psg->offset = offset_in_page(offset);
3100 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3101 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3102 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3103 kunmap_atomic(addr, KM_IRQ0);
3106 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3107 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3108 /* trim last sg */
3109 lsg->length -= qc->pad_len;
3110 if (lsg->length == 0)
3111 trim_sg = 1;
3113 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3114 qc->n_elem - 1, lsg->length, qc->pad_len);
3117 pre_n_elem = qc->n_elem;
3118 if (trim_sg && pre_n_elem)
3119 pre_n_elem--;
3121 if (!pre_n_elem) {
3122 n_elem = 0;
3123 goto skip_map;
3126 dir = qc->dma_dir;
3127 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3128 if (n_elem < 1) {
3129 /* restore last sg */
3130 lsg->length += qc->pad_len;
3131 return -1;
3134 DPRINTK("%d sg elements mapped\n", n_elem);
3136 skip_map:
3137 qc->n_elem = n_elem;
3139 return 0;
3143 * ata_poll_qc_complete - turn irq back on and finish qc
3144 * @qc: Command to complete
3145 * @err_mask: ATA status register content
3147 * LOCKING:
3148 * None. (grabs host lock)
3151 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3153 struct ata_port *ap = qc->ap;
3154 unsigned long flags;
3156 spin_lock_irqsave(&ap->host_set->lock, flags);
3157 ap->flags &= ~ATA_FLAG_NOINTR;
3158 ata_irq_on(ap);
3159 ata_qc_complete(qc);
3160 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3164 * ata_pio_poll - poll using PIO, depending on current state
3165 * @ap: the target ata_port
3167 * LOCKING:
3168 * None. (executing in kernel thread context)
3170 * RETURNS:
3171 * timeout value to use
3174 static unsigned long ata_pio_poll(struct ata_port *ap)
3176 struct ata_queued_cmd *qc;
3177 u8 status;
3178 unsigned int poll_state = HSM_ST_UNKNOWN;
3179 unsigned int reg_state = HSM_ST_UNKNOWN;
3181 qc = ata_qc_from_tag(ap, ap->active_tag);
3182 WARN_ON(qc == NULL);
3184 switch (ap->hsm_task_state) {
3185 case HSM_ST:
3186 case HSM_ST_POLL:
3187 poll_state = HSM_ST_POLL;
3188 reg_state = HSM_ST;
3189 break;
3190 case HSM_ST_LAST:
3191 case HSM_ST_LAST_POLL:
3192 poll_state = HSM_ST_LAST_POLL;
3193 reg_state = HSM_ST_LAST;
3194 break;
3195 default:
3196 BUG();
3197 break;
3200 status = ata_chk_status(ap);
3201 if (status & ATA_BUSY) {
3202 if (time_after(jiffies, ap->pio_task_timeout)) {
3203 qc->err_mask |= AC_ERR_TIMEOUT;
3204 ap->hsm_task_state = HSM_ST_TMOUT;
3205 return 0;
3207 ap->hsm_task_state = poll_state;
3208 return ATA_SHORT_PAUSE;
3211 ap->hsm_task_state = reg_state;
3212 return 0;
3216 * ata_pio_complete - check if drive is busy or idle
3217 * @ap: the target ata_port
3219 * LOCKING:
3220 * None. (executing in kernel thread context)
3222 * RETURNS:
3223 * Non-zero if qc completed, zero otherwise.
3226 static int ata_pio_complete (struct ata_port *ap)
3228 struct ata_queued_cmd *qc;
3229 u8 drv_stat;
3232 * This is purely heuristic. This is a fast path. Sometimes when
3233 * we enter, BSY will be cleared in a chk-status or two. If not,
3234 * the drive is probably seeking or something. Snooze for a couple
3235 * msecs, then chk-status again. If still busy, fall back to
3236 * HSM_ST_POLL state.
3238 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3239 if (drv_stat & ATA_BUSY) {
3240 msleep(2);
3241 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3242 if (drv_stat & ATA_BUSY) {
3243 ap->hsm_task_state = HSM_ST_LAST_POLL;
3244 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3245 return 0;
3249 qc = ata_qc_from_tag(ap, ap->active_tag);
3250 WARN_ON(qc == NULL);
3252 drv_stat = ata_wait_idle(ap);
3253 if (!ata_ok(drv_stat)) {
3254 qc->err_mask |= __ac_err_mask(drv_stat);
3255 ap->hsm_task_state = HSM_ST_ERR;
3256 return 0;
3259 ap->hsm_task_state = HSM_ST_IDLE;
3261 WARN_ON(qc->err_mask);
3262 ata_poll_qc_complete(qc);
3264 /* another command may start at this point */
3266 return 1;
3271 * swap_buf_le16 - swap halves of 16-bit words in place
3272 * @buf: Buffer to swap
3273 * @buf_words: Number of 16-bit words in buffer.
3275 * Swap halves of 16-bit words if needed to convert from
3276 * little-endian byte order to native cpu byte order, or
3277 * vice-versa.
3279 * LOCKING:
3280 * Inherited from caller.
3282 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3284 #ifdef __BIG_ENDIAN
3285 unsigned int i;
3287 for (i = 0; i < buf_words; i++)
3288 buf[i] = le16_to_cpu(buf[i]);
3289 #endif /* __BIG_ENDIAN */
3293 * ata_mmio_data_xfer - Transfer data by MMIO
3294 * @ap: port to read/write
3295 * @buf: data buffer
3296 * @buflen: buffer length
3297 * @write_data: read/write
3299 * Transfer data from/to the device data register by MMIO.
3301 * LOCKING:
3302 * Inherited from caller.
3305 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3306 unsigned int buflen, int write_data)
3308 unsigned int i;
3309 unsigned int words = buflen >> 1;
3310 u16 *buf16 = (u16 *) buf;
3311 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3313 /* Transfer multiple of 2 bytes */
3314 if (write_data) {
3315 for (i = 0; i < words; i++)
3316 writew(le16_to_cpu(buf16[i]), mmio);
3317 } else {
3318 for (i = 0; i < words; i++)
3319 buf16[i] = cpu_to_le16(readw(mmio));
3322 /* Transfer trailing 1 byte, if any. */
3323 if (unlikely(buflen & 0x01)) {
3324 u16 align_buf[1] = { 0 };
3325 unsigned char *trailing_buf = buf + buflen - 1;
3327 if (write_data) {
3328 memcpy(align_buf, trailing_buf, 1);
3329 writew(le16_to_cpu(align_buf[0]), mmio);
3330 } else {
3331 align_buf[0] = cpu_to_le16(readw(mmio));
3332 memcpy(trailing_buf, align_buf, 1);
3338 * ata_pio_data_xfer - Transfer data by PIO
3339 * @ap: port to read/write
3340 * @buf: data buffer
3341 * @buflen: buffer length
3342 * @write_data: read/write
3344 * Transfer data from/to the device data register by PIO.
3346 * LOCKING:
3347 * Inherited from caller.
3350 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3351 unsigned int buflen, int write_data)
3353 unsigned int words = buflen >> 1;
3355 /* Transfer multiple of 2 bytes */
3356 if (write_data)
3357 outsw(ap->ioaddr.data_addr, buf, words);
3358 else
3359 insw(ap->ioaddr.data_addr, buf, words);
3361 /* Transfer trailing 1 byte, if any. */
3362 if (unlikely(buflen & 0x01)) {
3363 u16 align_buf[1] = { 0 };
3364 unsigned char *trailing_buf = buf + buflen - 1;
3366 if (write_data) {
3367 memcpy(align_buf, trailing_buf, 1);
3368 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3369 } else {
3370 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3371 memcpy(trailing_buf, align_buf, 1);
3377 * ata_data_xfer - Transfer data from/to the data register.
3378 * @ap: port to read/write
3379 * @buf: data buffer
3380 * @buflen: buffer length
3381 * @do_write: read/write
3383 * Transfer data from/to the device data register.
3385 * LOCKING:
3386 * Inherited from caller.
3389 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3390 unsigned int buflen, int do_write)
3392 /* Make the crap hardware pay the costs not the good stuff */
3393 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3394 unsigned long flags;
3395 local_irq_save(flags);
3396 if (ap->flags & ATA_FLAG_MMIO)
3397 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3398 else
3399 ata_pio_data_xfer(ap, buf, buflen, do_write);
3400 local_irq_restore(flags);
3401 } else {
3402 if (ap->flags & ATA_FLAG_MMIO)
3403 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3404 else
3405 ata_pio_data_xfer(ap, buf, buflen, do_write);
3410 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3411 * @qc: Command on going
3413 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3415 * LOCKING:
3416 * Inherited from caller.
3419 static void ata_pio_sector(struct ata_queued_cmd *qc)
3421 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3422 struct scatterlist *sg = qc->__sg;
3423 struct ata_port *ap = qc->ap;
3424 struct page *page;
3425 unsigned int offset;
3426 unsigned char *buf;
3428 if (qc->cursect == (qc->nsect - 1))
3429 ap->hsm_task_state = HSM_ST_LAST;
3431 page = sg[qc->cursg].page;
3432 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3434 /* get the current page and offset */
3435 page = nth_page(page, (offset >> PAGE_SHIFT));
3436 offset %= PAGE_SIZE;
3438 buf = kmap(page) + offset;
3440 qc->cursect++;
3441 qc->cursg_ofs++;
3443 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3444 qc->cursg++;
3445 qc->cursg_ofs = 0;
3448 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3450 /* do the actual data transfer */
3451 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3452 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3454 kunmap(page);
3458 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3459 * @qc: Command on going
3460 * @bytes: number of bytes
3462 * Transfer Transfer data from/to the ATAPI device.
3464 * LOCKING:
3465 * Inherited from caller.
3469 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3471 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3472 struct scatterlist *sg = qc->__sg;
3473 struct ata_port *ap = qc->ap;
3474 struct page *page;
3475 unsigned char *buf;
3476 unsigned int offset, count;
3478 if (qc->curbytes + bytes >= qc->nbytes)
3479 ap->hsm_task_state = HSM_ST_LAST;
3481 next_sg:
3482 if (unlikely(qc->cursg >= qc->n_elem)) {
3484 * The end of qc->sg is reached and the device expects
3485 * more data to transfer. In order not to overrun qc->sg
3486 * and fulfill length specified in the byte count register,
3487 * - for read case, discard trailing data from the device
3488 * - for write case, padding zero data to the device
3490 u16 pad_buf[1] = { 0 };
3491 unsigned int words = bytes >> 1;
3492 unsigned int i;
3494 if (words) /* warning if bytes > 1 */
3495 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3496 ap->id, bytes);
3498 for (i = 0; i < words; i++)
3499 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3501 ap->hsm_task_state = HSM_ST_LAST;
3502 return;
3505 sg = &qc->__sg[qc->cursg];
3507 page = sg->page;
3508 offset = sg->offset + qc->cursg_ofs;
3510 /* get the current page and offset */
3511 page = nth_page(page, (offset >> PAGE_SHIFT));
3512 offset %= PAGE_SIZE;
3514 /* don't overrun current sg */
3515 count = min(sg->length - qc->cursg_ofs, bytes);
3517 /* don't cross page boundaries */
3518 count = min(count, (unsigned int)PAGE_SIZE - offset);
3520 buf = kmap(page) + offset;
3522 bytes -= count;
3523 qc->curbytes += count;
3524 qc->cursg_ofs += count;
3526 if (qc->cursg_ofs == sg->length) {
3527 qc->cursg++;
3528 qc->cursg_ofs = 0;
3531 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3533 /* do the actual data transfer */
3534 ata_data_xfer(ap, buf, count, do_write);
3536 kunmap(page);
3538 if (bytes)
3539 goto next_sg;
3543 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3544 * @qc: Command on going
3546 * Transfer Transfer data from/to the ATAPI device.
3548 * LOCKING:
3549 * Inherited from caller.
3552 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3554 struct ata_port *ap = qc->ap;
3555 struct ata_device *dev = qc->dev;
3556 unsigned int ireason, bc_lo, bc_hi, bytes;
3557 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3559 ap->ops->tf_read(ap, &qc->tf);
3560 ireason = qc->tf.nsect;
3561 bc_lo = qc->tf.lbam;
3562 bc_hi = qc->tf.lbah;
3563 bytes = (bc_hi << 8) | bc_lo;
3565 /* shall be cleared to zero, indicating xfer of data */
3566 if (ireason & (1 << 0))
3567 goto err_out;
3569 /* make sure transfer direction matches expected */
3570 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3571 if (do_write != i_write)
3572 goto err_out;
3574 __atapi_pio_bytes(qc, bytes);
3576 return;
3578 err_out:
3579 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3580 ap->id, dev->devno);
3581 qc->err_mask |= AC_ERR_HSM;
3582 ap->hsm_task_state = HSM_ST_ERR;
3586 * ata_pio_block - start PIO on a block
3587 * @ap: the target ata_port
3589 * LOCKING:
3590 * None. (executing in kernel thread context)
3593 static void ata_pio_block(struct ata_port *ap)
3595 struct ata_queued_cmd *qc;
3596 u8 status;
3599 * This is purely heuristic. This is a fast path.
3600 * Sometimes when we enter, BSY will be cleared in
3601 * a chk-status or two. If not, the drive is probably seeking
3602 * or something. Snooze for a couple msecs, then
3603 * chk-status again. If still busy, fall back to
3604 * HSM_ST_POLL state.
3606 status = ata_busy_wait(ap, ATA_BUSY, 5);
3607 if (status & ATA_BUSY) {
3608 msleep(2);
3609 status = ata_busy_wait(ap, ATA_BUSY, 10);
3610 if (status & ATA_BUSY) {
3611 ap->hsm_task_state = HSM_ST_POLL;
3612 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3613 return;
3617 qc = ata_qc_from_tag(ap, ap->active_tag);
3618 WARN_ON(qc == NULL);
3620 /* check error */
3621 if (status & (ATA_ERR | ATA_DF)) {
3622 qc->err_mask |= AC_ERR_DEV;
3623 ap->hsm_task_state = HSM_ST_ERR;
3624 return;
3627 /* transfer data if any */
3628 if (is_atapi_taskfile(&qc->tf)) {
3629 /* DRQ=0 means no more data to transfer */
3630 if ((status & ATA_DRQ) == 0) {
3631 ap->hsm_task_state = HSM_ST_LAST;
3632 return;
3635 atapi_pio_bytes(qc);
3636 } else {
3637 /* handle BSY=0, DRQ=0 as error */
3638 if ((status & ATA_DRQ) == 0) {
3639 qc->err_mask |= AC_ERR_HSM;
3640 ap->hsm_task_state = HSM_ST_ERR;
3641 return;
3644 ata_pio_sector(qc);
3647 ata_altstatus(ap); /* flush */
3650 static void ata_pio_error(struct ata_port *ap)
3652 struct ata_queued_cmd *qc;
3654 qc = ata_qc_from_tag(ap, ap->active_tag);
3655 WARN_ON(qc == NULL);
3657 if (qc->tf.command != ATA_CMD_PACKET)
3658 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3660 /* make sure qc->err_mask is available to
3661 * know what's wrong and recover
3663 WARN_ON(qc->err_mask == 0);
3665 ap->hsm_task_state = HSM_ST_IDLE;
3667 ata_poll_qc_complete(qc);
3670 static void ata_pio_task(void *_data)
3672 struct ata_port *ap = _data;
3673 unsigned long timeout;
3674 int qc_completed;
3676 fsm_start:
3677 timeout = 0;
3678 qc_completed = 0;
3680 switch (ap->hsm_task_state) {
3681 case HSM_ST_IDLE:
3682 return;
3684 case HSM_ST:
3685 ata_pio_block(ap);
3686 break;
3688 case HSM_ST_LAST:
3689 qc_completed = ata_pio_complete(ap);
3690 break;
3692 case HSM_ST_POLL:
3693 case HSM_ST_LAST_POLL:
3694 timeout = ata_pio_poll(ap);
3695 break;
3697 case HSM_ST_TMOUT:
3698 case HSM_ST_ERR:
3699 ata_pio_error(ap);
3700 return;
3703 if (timeout)
3704 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
3705 else if (!qc_completed)
3706 goto fsm_start;
3710 * atapi_packet_task - Write CDB bytes to hardware
3711 * @_data: Port to which ATAPI device is attached.
3713 * When device has indicated its readiness to accept
3714 * a CDB, this function is called. Send the CDB.
3715 * If DMA is to be performed, exit immediately.
3716 * Otherwise, we are in polling mode, so poll
3717 * status under operation succeeds or fails.
3719 * LOCKING:
3720 * Kernel thread context (may sleep)
3723 static void atapi_packet_task(void *_data)
3725 struct ata_port *ap = _data;
3726 struct ata_queued_cmd *qc;
3727 u8 status;
3729 qc = ata_qc_from_tag(ap, ap->active_tag);
3730 WARN_ON(qc == NULL);
3731 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3733 /* sleep-wait for BSY to clear */
3734 DPRINTK("busy wait\n");
3735 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3736 qc->err_mask |= AC_ERR_TIMEOUT;
3737 goto err_out;
3740 /* make sure DRQ is set */
3741 status = ata_chk_status(ap);
3742 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3743 qc->err_mask |= AC_ERR_HSM;
3744 goto err_out;
3747 /* send SCSI cdb */
3748 DPRINTK("send cdb\n");
3749 WARN_ON(qc->dev->cdb_len < 12);
3751 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3752 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3753 unsigned long flags;
3755 /* Once we're done issuing command and kicking bmdma,
3756 * irq handler takes over. To not lose irq, we need
3757 * to clear NOINTR flag before sending cdb, but
3758 * interrupt handler shouldn't be invoked before we're
3759 * finished. Hence, the following locking.
3761 spin_lock_irqsave(&ap->host_set->lock, flags);
3762 ap->flags &= ~ATA_FLAG_NOINTR;
3763 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3764 ata_altstatus(ap); /* flush */
3766 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3767 ap->ops->bmdma_start(qc); /* initiate bmdma */
3768 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3769 } else {
3770 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3771 ata_altstatus(ap); /* flush */
3773 /* PIO commands are handled by polling */
3774 ap->hsm_task_state = HSM_ST;
3775 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3778 return;
3780 err_out:
3781 ata_poll_qc_complete(qc);
3785 * ata_qc_timeout - Handle timeout of queued command
3786 * @qc: Command that timed out
3788 * Some part of the kernel (currently, only the SCSI layer)
3789 * has noticed that the active command on port @ap has not
3790 * completed after a specified length of time. Handle this
3791 * condition by disabling DMA (if necessary) and completing
3792 * transactions, with error if necessary.
3794 * This also handles the case of the "lost interrupt", where
3795 * for some reason (possibly hardware bug, possibly driver bug)
3796 * an interrupt was not delivered to the driver, even though the
3797 * transaction completed successfully.
3799 * LOCKING:
3800 * Inherited from SCSI layer (none, can sleep)
3803 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3805 struct ata_port *ap = qc->ap;
3806 struct ata_host_set *host_set = ap->host_set;
3807 u8 host_stat = 0, drv_stat;
3808 unsigned long flags;
3810 DPRINTK("ENTER\n");
3812 ap->hsm_task_state = HSM_ST_IDLE;
3814 spin_lock_irqsave(&host_set->lock, flags);
3816 switch (qc->tf.protocol) {
3818 case ATA_PROT_DMA:
3819 case ATA_PROT_ATAPI_DMA:
3820 host_stat = ap->ops->bmdma_status(ap);
3822 /* before we do anything else, clear DMA-Start bit */
3823 ap->ops->bmdma_stop(qc);
3825 /* fall through */
3827 default:
3828 ata_altstatus(ap);
3829 drv_stat = ata_chk_status(ap);
3831 /* ack bmdma irq events */
3832 ap->ops->irq_clear(ap);
3834 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3835 ap->id, qc->tf.command, drv_stat, host_stat);
3837 /* complete taskfile transaction */
3838 qc->err_mask |= ac_err_mask(drv_stat);
3839 break;
3842 spin_unlock_irqrestore(&host_set->lock, flags);
3844 ata_eh_qc_complete(qc);
3846 DPRINTK("EXIT\n");
3850 * ata_eng_timeout - Handle timeout of queued command
3851 * @ap: Port on which timed-out command is active
3853 * Some part of the kernel (currently, only the SCSI layer)
3854 * has noticed that the active command on port @ap has not
3855 * completed after a specified length of time. Handle this
3856 * condition by disabling DMA (if necessary) and completing
3857 * transactions, with error if necessary.
3859 * This also handles the case of the "lost interrupt", where
3860 * for some reason (possibly hardware bug, possibly driver bug)
3861 * an interrupt was not delivered to the driver, even though the
3862 * transaction completed successfully.
3864 * LOCKING:
3865 * Inherited from SCSI layer (none, can sleep)
3868 void ata_eng_timeout(struct ata_port *ap)
3870 DPRINTK("ENTER\n");
3872 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
3874 DPRINTK("EXIT\n");
3878 * ata_qc_new - Request an available ATA command, for queueing
3879 * @ap: Port associated with device @dev
3880 * @dev: Device from whom we request an available command structure
3882 * LOCKING:
3883 * None.
3886 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3888 struct ata_queued_cmd *qc = NULL;
3889 unsigned int i;
3891 for (i = 0; i < ATA_MAX_QUEUE; i++)
3892 if (!test_and_set_bit(i, &ap->qactive)) {
3893 qc = ata_qc_from_tag(ap, i);
3894 break;
3897 if (qc)
3898 qc->tag = i;
3900 return qc;
3904 * ata_qc_new_init - Request an available ATA command, and initialize it
3905 * @ap: Port associated with device @dev
3906 * @dev: Device from whom we request an available command structure
3908 * LOCKING:
3909 * None.
3912 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3913 struct ata_device *dev)
3915 struct ata_queued_cmd *qc;
3917 qc = ata_qc_new(ap);
3918 if (qc) {
3919 qc->scsicmd = NULL;
3920 qc->ap = ap;
3921 qc->dev = dev;
3923 ata_qc_reinit(qc);
3926 return qc;
3930 * ata_qc_free - free unused ata_queued_cmd
3931 * @qc: Command to complete
3933 * Designed to free unused ata_queued_cmd object
3934 * in case something prevents using it.
3936 * LOCKING:
3937 * spin_lock_irqsave(host_set lock)
3939 void ata_qc_free(struct ata_queued_cmd *qc)
3941 struct ata_port *ap = qc->ap;
3942 unsigned int tag;
3944 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3946 qc->flags = 0;
3947 tag = qc->tag;
3948 if (likely(ata_tag_valid(tag))) {
3949 if (tag == ap->active_tag)
3950 ap->active_tag = ATA_TAG_POISON;
3951 qc->tag = ATA_TAG_POISON;
3952 clear_bit(tag, &ap->qactive);
3956 void __ata_qc_complete(struct ata_queued_cmd *qc)
3958 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3959 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3961 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3962 ata_sg_clean(qc);
3964 /* atapi: mark qc as inactive to prevent the interrupt handler
3965 * from completing the command twice later, before the error handler
3966 * is called. (when rc != 0 and atapi request sense is needed)
3968 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3970 /* call completion callback */
3971 qc->complete_fn(qc);
3974 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3976 struct ata_port *ap = qc->ap;
3978 switch (qc->tf.protocol) {
3979 case ATA_PROT_DMA:
3980 case ATA_PROT_ATAPI_DMA:
3981 return 1;
3983 case ATA_PROT_ATAPI:
3984 case ATA_PROT_PIO:
3985 if (ap->flags & ATA_FLAG_PIO_DMA)
3986 return 1;
3988 /* fall through */
3990 default:
3991 return 0;
3994 /* never reached */
3998 * ata_qc_issue - issue taskfile to device
3999 * @qc: command to issue to device
4001 * Prepare an ATA command to submission to device.
4002 * This includes mapping the data into a DMA-able
4003 * area, filling in the S/G table, and finally
4004 * writing the taskfile to hardware, starting the command.
4006 * LOCKING:
4007 * spin_lock_irqsave(host_set lock)
4009 void ata_qc_issue(struct ata_queued_cmd *qc)
4011 struct ata_port *ap = qc->ap;
4013 qc->ap->active_tag = qc->tag;
4014 qc->flags |= ATA_QCFLAG_ACTIVE;
4016 if (ata_should_dma_map(qc)) {
4017 if (qc->flags & ATA_QCFLAG_SG) {
4018 if (ata_sg_setup(qc))
4019 goto sg_err;
4020 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4021 if (ata_sg_setup_one(qc))
4022 goto sg_err;
4024 } else {
4025 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4028 ap->ops->qc_prep(qc);
4030 qc->err_mask |= ap->ops->qc_issue(qc);
4031 if (unlikely(qc->err_mask))
4032 goto err;
4033 return;
4035 sg_err:
4036 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4037 qc->err_mask |= AC_ERR_SYSTEM;
4038 err:
4039 ata_qc_complete(qc);
4043 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4044 * @qc: command to issue to device
4046 * Using various libata functions and hooks, this function
4047 * starts an ATA command. ATA commands are grouped into
4048 * classes called "protocols", and issuing each type of protocol
4049 * is slightly different.
4051 * May be used as the qc_issue() entry in ata_port_operations.
4053 * LOCKING:
4054 * spin_lock_irqsave(host_set lock)
4056 * RETURNS:
4057 * Zero on success, AC_ERR_* mask on failure
4060 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4062 struct ata_port *ap = qc->ap;
4064 ata_dev_select(ap, qc->dev->devno, 1, 0);
4066 switch (qc->tf.protocol) {
4067 case ATA_PROT_NODATA:
4068 ata_tf_to_host(ap, &qc->tf);
4069 break;
4071 case ATA_PROT_DMA:
4072 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4073 ap->ops->bmdma_setup(qc); /* set up bmdma */
4074 ap->ops->bmdma_start(qc); /* initiate bmdma */
4075 break;
4077 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4078 ata_qc_set_polling(qc);
4079 ata_tf_to_host(ap, &qc->tf);
4080 ap->hsm_task_state = HSM_ST;
4081 ata_port_queue_task(ap, ata_pio_task, ap, 0);
4082 break;
4084 case ATA_PROT_ATAPI:
4085 ata_qc_set_polling(qc);
4086 ata_tf_to_host(ap, &qc->tf);
4087 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4088 break;
4090 case ATA_PROT_ATAPI_NODATA:
4091 ap->flags |= ATA_FLAG_NOINTR;
4092 ata_tf_to_host(ap, &qc->tf);
4093 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4094 break;
4096 case ATA_PROT_ATAPI_DMA:
4097 ap->flags |= ATA_FLAG_NOINTR;
4098 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4099 ap->ops->bmdma_setup(qc); /* set up bmdma */
4100 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4101 break;
4103 default:
4104 WARN_ON(1);
4105 return AC_ERR_SYSTEM;
4108 return 0;
4112 * ata_host_intr - Handle host interrupt for given (port, task)
4113 * @ap: Port on which interrupt arrived (possibly...)
4114 * @qc: Taskfile currently active in engine
4116 * Handle host interrupt for given queued command. Currently,
4117 * only DMA interrupts are handled. All other commands are
4118 * handled via polling with interrupts disabled (nIEN bit).
4120 * LOCKING:
4121 * spin_lock_irqsave(host_set lock)
4123 * RETURNS:
4124 * One if interrupt was handled, zero if not (shared irq).
4127 inline unsigned int ata_host_intr (struct ata_port *ap,
4128 struct ata_queued_cmd *qc)
4130 u8 status, host_stat;
4132 switch (qc->tf.protocol) {
4134 case ATA_PROT_DMA:
4135 case ATA_PROT_ATAPI_DMA:
4136 case ATA_PROT_ATAPI:
4137 /* check status of DMA engine */
4138 host_stat = ap->ops->bmdma_status(ap);
4139 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4141 /* if it's not our irq... */
4142 if (!(host_stat & ATA_DMA_INTR))
4143 goto idle_irq;
4145 /* before we do anything else, clear DMA-Start bit */
4146 ap->ops->bmdma_stop(qc);
4148 /* fall through */
4150 case ATA_PROT_ATAPI_NODATA:
4151 case ATA_PROT_NODATA:
4152 /* check altstatus */
4153 status = ata_altstatus(ap);
4154 if (status & ATA_BUSY)
4155 goto idle_irq;
4157 /* check main status, clearing INTRQ */
4158 status = ata_chk_status(ap);
4159 if (unlikely(status & ATA_BUSY))
4160 goto idle_irq;
4161 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4162 ap->id, qc->tf.protocol, status);
4164 /* ack bmdma irq events */
4165 ap->ops->irq_clear(ap);
4167 /* complete taskfile transaction */
4168 qc->err_mask |= ac_err_mask(status);
4169 ata_qc_complete(qc);
4170 break;
4172 default:
4173 goto idle_irq;
4176 return 1; /* irq handled */
4178 idle_irq:
4179 ap->stats.idle_irq++;
4181 #ifdef ATA_IRQ_TRAP
4182 if ((ap->stats.idle_irq % 1000) == 0) {
4183 ata_irq_ack(ap, 0); /* debug trap */
4184 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4185 return 1;
4187 #endif
4188 return 0; /* irq not handled */
4192 * ata_interrupt - Default ATA host interrupt handler
4193 * @irq: irq line (unused)
4194 * @dev_instance: pointer to our ata_host_set information structure
4195 * @regs: unused
4197 * Default interrupt handler for PCI IDE devices. Calls
4198 * ata_host_intr() for each port that is not disabled.
4200 * LOCKING:
4201 * Obtains host_set lock during operation.
4203 * RETURNS:
4204 * IRQ_NONE or IRQ_HANDLED.
4207 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4209 struct ata_host_set *host_set = dev_instance;
4210 unsigned int i;
4211 unsigned int handled = 0;
4212 unsigned long flags;
4214 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4215 spin_lock_irqsave(&host_set->lock, flags);
4217 for (i = 0; i < host_set->n_ports; i++) {
4218 struct ata_port *ap;
4220 ap = host_set->ports[i];
4221 if (ap &&
4222 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4223 struct ata_queued_cmd *qc;
4225 qc = ata_qc_from_tag(ap, ap->active_tag);
4226 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4227 (qc->flags & ATA_QCFLAG_ACTIVE))
4228 handled |= ata_host_intr(ap, qc);
4232 spin_unlock_irqrestore(&host_set->lock, flags);
4234 return IRQ_RETVAL(handled);
4239 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4240 * without filling any other registers
4242 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4243 u8 cmd)
4245 struct ata_taskfile tf;
4246 int err;
4248 ata_tf_init(ap, &tf, dev->devno);
4250 tf.command = cmd;
4251 tf.flags |= ATA_TFLAG_DEVICE;
4252 tf.protocol = ATA_PROT_NODATA;
4254 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4255 if (err)
4256 printk(KERN_ERR "%s: ata command failed: %d\n",
4257 __FUNCTION__, err);
4259 return err;
4262 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4264 u8 cmd;
4266 if (!ata_try_flush_cache(dev))
4267 return 0;
4269 if (ata_id_has_flush_ext(dev->id))
4270 cmd = ATA_CMD_FLUSH_EXT;
4271 else
4272 cmd = ATA_CMD_FLUSH;
4274 return ata_do_simple_cmd(ap, dev, cmd);
4277 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4279 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4282 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4284 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4288 * ata_device_resume - wakeup a previously suspended devices
4289 * @ap: port the device is connected to
4290 * @dev: the device to resume
4292 * Kick the drive back into action, by sending it an idle immediate
4293 * command and making sure its transfer mode matches between drive
4294 * and host.
4297 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4299 if (ap->flags & ATA_FLAG_SUSPENDED) {
4300 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
4301 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
4302 ap->flags &= ~ATA_FLAG_SUSPENDED;
4303 ata_set_mode(ap);
4305 if (!ata_dev_present(dev))
4306 return 0;
4307 if (dev->class == ATA_DEV_ATA)
4308 ata_start_drive(ap, dev);
4310 return 0;
4314 * ata_device_suspend - prepare a device for suspend
4315 * @ap: port the device is connected to
4316 * @dev: the device to suspend
4317 * @state: target power management state
4319 * Flush the cache on the drive, if appropriate, then issue a
4320 * standbynow command.
4322 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4324 if (!ata_dev_present(dev))
4325 return 0;
4326 if (dev->class == ATA_DEV_ATA)
4327 ata_flush_cache(ap, dev);
4329 if (state.event != PM_EVENT_FREEZE)
4330 ata_standby_drive(ap, dev);
4331 ap->flags |= ATA_FLAG_SUSPENDED;
4332 return 0;
4336 * ata_port_start - Set port up for dma.
4337 * @ap: Port to initialize
4339 * Called just after data structures for each port are
4340 * initialized. Allocates space for PRD table.
4342 * May be used as the port_start() entry in ata_port_operations.
4344 * LOCKING:
4345 * Inherited from caller.
4348 int ata_port_start (struct ata_port *ap)
4350 struct device *dev = ap->dev;
4351 int rc;
4353 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4354 if (!ap->prd)
4355 return -ENOMEM;
4357 rc = ata_pad_alloc(ap, dev);
4358 if (rc) {
4359 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4360 return rc;
4363 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4365 return 0;
4370 * ata_port_stop - Undo ata_port_start()
4371 * @ap: Port to shut down
4373 * Frees the PRD table.
4375 * May be used as the port_stop() entry in ata_port_operations.
4377 * LOCKING:
4378 * Inherited from caller.
4381 void ata_port_stop (struct ata_port *ap)
4383 struct device *dev = ap->dev;
4385 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4386 ata_pad_free(ap, dev);
4389 void ata_host_stop (struct ata_host_set *host_set)
4391 if (host_set->mmio_base)
4392 iounmap(host_set->mmio_base);
4397 * ata_host_remove - Unregister SCSI host structure with upper layers
4398 * @ap: Port to unregister
4399 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4401 * LOCKING:
4402 * Inherited from caller.
4405 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4407 struct Scsi_Host *sh = ap->host;
4409 DPRINTK("ENTER\n");
4411 if (do_unregister)
4412 scsi_remove_host(sh);
4414 ap->ops->port_stop(ap);
4418 * ata_host_init - Initialize an ata_port structure
4419 * @ap: Structure to initialize
4420 * @host: associated SCSI mid-layer structure
4421 * @host_set: Collection of hosts to which @ap belongs
4422 * @ent: Probe information provided by low-level driver
4423 * @port_no: Port number associated with this ata_port
4425 * Initialize a new ata_port structure, and its associated
4426 * scsi_host.
4428 * LOCKING:
4429 * Inherited from caller.
4432 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4433 struct ata_host_set *host_set,
4434 const struct ata_probe_ent *ent, unsigned int port_no)
4436 unsigned int i;
4438 host->max_id = 16;
4439 host->max_lun = 1;
4440 host->max_channel = 1;
4441 host->unique_id = ata_unique_id++;
4442 host->max_cmd_len = 12;
4444 ap->flags = ATA_FLAG_PORT_DISABLED;
4445 ap->id = host->unique_id;
4446 ap->host = host;
4447 ap->ctl = ATA_DEVCTL_OBS;
4448 ap->host_set = host_set;
4449 ap->dev = ent->dev;
4450 ap->port_no = port_no;
4451 ap->hard_port_no =
4452 ent->legacy_mode ? ent->hard_port_no : port_no;
4453 ap->pio_mask = ent->pio_mask;
4454 ap->mwdma_mask = ent->mwdma_mask;
4455 ap->udma_mask = ent->udma_mask;
4456 ap->flags |= ent->host_flags;
4457 ap->ops = ent->port_ops;
4458 ap->cbl = ATA_CBL_NONE;
4459 ap->active_tag = ATA_TAG_POISON;
4460 ap->last_ctl = 0xFF;
4462 INIT_WORK(&ap->port_task, NULL, NULL);
4463 INIT_LIST_HEAD(&ap->eh_done_q);
4465 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4466 struct ata_device *dev = &ap->device[i];
4467 dev->devno = i;
4468 dev->pio_mask = UINT_MAX;
4469 dev->mwdma_mask = UINT_MAX;
4470 dev->udma_mask = UINT_MAX;
4473 #ifdef ATA_IRQ_TRAP
4474 ap->stats.unhandled_irq = 1;
4475 ap->stats.idle_irq = 1;
4476 #endif
4478 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4482 * ata_host_add - Attach low-level ATA driver to system
4483 * @ent: Information provided by low-level driver
4484 * @host_set: Collections of ports to which we add
4485 * @port_no: Port number associated with this host
4487 * Attach low-level ATA driver to system.
4489 * LOCKING:
4490 * PCI/etc. bus probe sem.
4492 * RETURNS:
4493 * New ata_port on success, for NULL on error.
4496 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4497 struct ata_host_set *host_set,
4498 unsigned int port_no)
4500 struct Scsi_Host *host;
4501 struct ata_port *ap;
4502 int rc;
4504 DPRINTK("ENTER\n");
4506 if (!ent->port_ops->probe_reset &&
4507 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4508 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4509 port_no);
4510 return NULL;
4513 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4514 if (!host)
4515 return NULL;
4517 host->transportt = &ata_scsi_transport_template;
4519 ap = (struct ata_port *) &host->hostdata[0];
4521 ata_host_init(ap, host, host_set, ent, port_no);
4523 rc = ap->ops->port_start(ap);
4524 if (rc)
4525 goto err_out;
4527 return ap;
4529 err_out:
4530 scsi_host_put(host);
4531 return NULL;
4535 * ata_device_add - Register hardware device with ATA and SCSI layers
4536 * @ent: Probe information describing hardware device to be registered
4538 * This function processes the information provided in the probe
4539 * information struct @ent, allocates the necessary ATA and SCSI
4540 * host information structures, initializes them, and registers
4541 * everything with requisite kernel subsystems.
4543 * This function requests irqs, probes the ATA bus, and probes
4544 * the SCSI bus.
4546 * LOCKING:
4547 * PCI/etc. bus probe sem.
4549 * RETURNS:
4550 * Number of ports registered. Zero on error (no ports registered).
4553 int ata_device_add(const struct ata_probe_ent *ent)
4555 unsigned int count = 0, i;
4556 struct device *dev = ent->dev;
4557 struct ata_host_set *host_set;
4559 DPRINTK("ENTER\n");
4560 /* alloc a container for our list of ATA ports (buses) */
4561 host_set = kzalloc(sizeof(struct ata_host_set) +
4562 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4563 if (!host_set)
4564 return 0;
4565 spin_lock_init(&host_set->lock);
4567 host_set->dev = dev;
4568 host_set->n_ports = ent->n_ports;
4569 host_set->irq = ent->irq;
4570 host_set->mmio_base = ent->mmio_base;
4571 host_set->private_data = ent->private_data;
4572 host_set->ops = ent->port_ops;
4573 host_set->flags = ent->host_set_flags;
4575 /* register each port bound to this device */
4576 for (i = 0; i < ent->n_ports; i++) {
4577 struct ata_port *ap;
4578 unsigned long xfer_mode_mask;
4580 ap = ata_host_add(ent, host_set, i);
4581 if (!ap)
4582 goto err_out;
4584 host_set->ports[i] = ap;
4585 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4586 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4587 (ap->pio_mask << ATA_SHIFT_PIO);
4589 /* print per-port info to dmesg */
4590 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4591 "bmdma 0x%lX irq %lu\n",
4592 ap->id,
4593 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4594 ata_mode_string(xfer_mode_mask),
4595 ap->ioaddr.cmd_addr,
4596 ap->ioaddr.ctl_addr,
4597 ap->ioaddr.bmdma_addr,
4598 ent->irq);
4600 ata_chk_status(ap);
4601 host_set->ops->irq_clear(ap);
4602 count++;
4605 if (!count)
4606 goto err_free_ret;
4608 /* obtain irq, that is shared between channels */
4609 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4610 DRV_NAME, host_set))
4611 goto err_out;
4613 /* perform each probe synchronously */
4614 DPRINTK("probe begin\n");
4615 for (i = 0; i < count; i++) {
4616 struct ata_port *ap;
4617 int rc;
4619 ap = host_set->ports[i];
4621 DPRINTK("ata%u: bus probe begin\n", ap->id);
4622 rc = ata_bus_probe(ap);
4623 DPRINTK("ata%u: bus probe end\n", ap->id);
4625 if (rc) {
4626 /* FIXME: do something useful here?
4627 * Current libata behavior will
4628 * tear down everything when
4629 * the module is removed
4630 * or the h/w is unplugged.
4634 rc = scsi_add_host(ap->host, dev);
4635 if (rc) {
4636 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4637 ap->id);
4638 /* FIXME: do something useful here */
4639 /* FIXME: handle unconditional calls to
4640 * scsi_scan_host and ata_host_remove, below,
4641 * at the very least
4646 /* probes are done, now scan each port's disk(s) */
4647 DPRINTK("host probe begin\n");
4648 for (i = 0; i < count; i++) {
4649 struct ata_port *ap = host_set->ports[i];
4651 ata_scsi_scan_host(ap);
4654 dev_set_drvdata(dev, host_set);
4656 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4657 return ent->n_ports; /* success */
4659 err_out:
4660 for (i = 0; i < count; i++) {
4661 ata_host_remove(host_set->ports[i], 1);
4662 scsi_host_put(host_set->ports[i]->host);
4664 err_free_ret:
4665 kfree(host_set);
4666 VPRINTK("EXIT, returning 0\n");
4667 return 0;
4671 * ata_host_set_remove - PCI layer callback for device removal
4672 * @host_set: ATA host set that was removed
4674 * Unregister all objects associated with this host set. Free those
4675 * objects.
4677 * LOCKING:
4678 * Inherited from calling layer (may sleep).
4681 void ata_host_set_remove(struct ata_host_set *host_set)
4683 struct ata_port *ap;
4684 unsigned int i;
4686 for (i = 0; i < host_set->n_ports; i++) {
4687 ap = host_set->ports[i];
4688 scsi_remove_host(ap->host);
4691 free_irq(host_set->irq, host_set);
4693 for (i = 0; i < host_set->n_ports; i++) {
4694 ap = host_set->ports[i];
4696 ata_scsi_release(ap->host);
4698 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4699 struct ata_ioports *ioaddr = &ap->ioaddr;
4701 if (ioaddr->cmd_addr == 0x1f0)
4702 release_region(0x1f0, 8);
4703 else if (ioaddr->cmd_addr == 0x170)
4704 release_region(0x170, 8);
4707 scsi_host_put(ap->host);
4710 if (host_set->ops->host_stop)
4711 host_set->ops->host_stop(host_set);
4713 kfree(host_set);
4717 * ata_scsi_release - SCSI layer callback hook for host unload
4718 * @host: libata host to be unloaded
4720 * Performs all duties necessary to shut down a libata port...
4721 * Kill port kthread, disable port, and release resources.
4723 * LOCKING:
4724 * Inherited from SCSI layer.
4726 * RETURNS:
4727 * One.
4730 int ata_scsi_release(struct Scsi_Host *host)
4732 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4733 int i;
4735 DPRINTK("ENTER\n");
4737 ap->ops->port_disable(ap);
4738 ata_host_remove(ap, 0);
4739 for (i = 0; i < ATA_MAX_DEVICES; i++)
4740 kfree(ap->device[i].id);
4742 DPRINTK("EXIT\n");
4743 return 1;
4747 * ata_std_ports - initialize ioaddr with standard port offsets.
4748 * @ioaddr: IO address structure to be initialized
4750 * Utility function which initializes data_addr, error_addr,
4751 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4752 * device_addr, status_addr, and command_addr to standard offsets
4753 * relative to cmd_addr.
4755 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4758 void ata_std_ports(struct ata_ioports *ioaddr)
4760 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4761 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4762 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4763 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4764 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4765 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4766 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4767 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4768 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4769 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4773 #ifdef CONFIG_PCI
4775 void ata_pci_host_stop (struct ata_host_set *host_set)
4777 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4779 pci_iounmap(pdev, host_set->mmio_base);
4783 * ata_pci_remove_one - PCI layer callback for device removal
4784 * @pdev: PCI device that was removed
4786 * PCI layer indicates to libata via this hook that
4787 * hot-unplug or module unload event has occurred.
4788 * Handle this by unregistering all objects associated
4789 * with this PCI device. Free those objects. Then finally
4790 * release PCI resources and disable device.
4792 * LOCKING:
4793 * Inherited from PCI layer (may sleep).
4796 void ata_pci_remove_one (struct pci_dev *pdev)
4798 struct device *dev = pci_dev_to_dev(pdev);
4799 struct ata_host_set *host_set = dev_get_drvdata(dev);
4801 ata_host_set_remove(host_set);
4802 pci_release_regions(pdev);
4803 pci_disable_device(pdev);
4804 dev_set_drvdata(dev, NULL);
4807 /* move to PCI subsystem */
4808 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4810 unsigned long tmp = 0;
4812 switch (bits->width) {
4813 case 1: {
4814 u8 tmp8 = 0;
4815 pci_read_config_byte(pdev, bits->reg, &tmp8);
4816 tmp = tmp8;
4817 break;
4819 case 2: {
4820 u16 tmp16 = 0;
4821 pci_read_config_word(pdev, bits->reg, &tmp16);
4822 tmp = tmp16;
4823 break;
4825 case 4: {
4826 u32 tmp32 = 0;
4827 pci_read_config_dword(pdev, bits->reg, &tmp32);
4828 tmp = tmp32;
4829 break;
4832 default:
4833 return -EINVAL;
4836 tmp &= bits->mask;
4838 return (tmp == bits->val) ? 1 : 0;
4841 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4843 pci_save_state(pdev);
4844 pci_disable_device(pdev);
4845 pci_set_power_state(pdev, PCI_D3hot);
4846 return 0;
4849 int ata_pci_device_resume(struct pci_dev *pdev)
4851 pci_set_power_state(pdev, PCI_D0);
4852 pci_restore_state(pdev);
4853 pci_enable_device(pdev);
4854 pci_set_master(pdev);
4855 return 0;
4857 #endif /* CONFIG_PCI */
4860 static int __init ata_init(void)
4862 ata_wq = create_workqueue("ata");
4863 if (!ata_wq)
4864 return -ENOMEM;
4866 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4867 return 0;
4870 static void __exit ata_exit(void)
4872 destroy_workqueue(ata_wq);
4875 module_init(ata_init);
4876 module_exit(ata_exit);
4878 static unsigned long ratelimit_time;
4879 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4881 int ata_ratelimit(void)
4883 int rc;
4884 unsigned long flags;
4886 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4888 if (time_after(jiffies, ratelimit_time)) {
4889 rc = 1;
4890 ratelimit_time = jiffies + (HZ/5);
4891 } else
4892 rc = 0;
4894 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4896 return rc;
4900 * libata is essentially a library of internal helper functions for
4901 * low-level ATA host controller drivers. As such, the API/ABI is
4902 * likely to change as new drivers are added and updated.
4903 * Do not depend on ABI/API stability.
4906 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4907 EXPORT_SYMBOL_GPL(ata_std_ports);
4908 EXPORT_SYMBOL_GPL(ata_device_add);
4909 EXPORT_SYMBOL_GPL(ata_host_set_remove);
4910 EXPORT_SYMBOL_GPL(ata_sg_init);
4911 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4912 EXPORT_SYMBOL_GPL(__ata_qc_complete);
4913 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4914 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4915 EXPORT_SYMBOL_GPL(ata_tf_load);
4916 EXPORT_SYMBOL_GPL(ata_tf_read);
4917 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4918 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4919 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4920 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4921 EXPORT_SYMBOL_GPL(ata_check_status);
4922 EXPORT_SYMBOL_GPL(ata_altstatus);
4923 EXPORT_SYMBOL_GPL(ata_exec_command);
4924 EXPORT_SYMBOL_GPL(ata_port_start);
4925 EXPORT_SYMBOL_GPL(ata_port_stop);
4926 EXPORT_SYMBOL_GPL(ata_host_stop);
4927 EXPORT_SYMBOL_GPL(ata_interrupt);
4928 EXPORT_SYMBOL_GPL(ata_qc_prep);
4929 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4930 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4931 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4932 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4933 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4934 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4935 EXPORT_SYMBOL_GPL(ata_port_probe);
4936 EXPORT_SYMBOL_GPL(sata_phy_reset);
4937 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4938 EXPORT_SYMBOL_GPL(ata_bus_reset);
4939 EXPORT_SYMBOL_GPL(ata_std_probeinit);
4940 EXPORT_SYMBOL_GPL(ata_std_softreset);
4941 EXPORT_SYMBOL_GPL(sata_std_hardreset);
4942 EXPORT_SYMBOL_GPL(ata_std_postreset);
4943 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
4944 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
4945 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
4946 EXPORT_SYMBOL_GPL(ata_dev_classify);
4947 EXPORT_SYMBOL_GPL(ata_dev_pair);
4948 EXPORT_SYMBOL_GPL(ata_port_disable);
4949 EXPORT_SYMBOL_GPL(ata_ratelimit);
4950 EXPORT_SYMBOL_GPL(ata_busy_sleep);
4951 EXPORT_SYMBOL_GPL(ata_port_queue_task);
4952 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4953 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4954 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4955 EXPORT_SYMBOL_GPL(ata_scsi_release);
4956 EXPORT_SYMBOL_GPL(ata_host_intr);
4957 EXPORT_SYMBOL_GPL(ata_id_string);
4958 EXPORT_SYMBOL_GPL(ata_id_c_string);
4959 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4960 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4961 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
4963 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
4964 EXPORT_SYMBOL_GPL(ata_timing_compute);
4965 EXPORT_SYMBOL_GPL(ata_timing_merge);
4967 #ifdef CONFIG_PCI
4968 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4969 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4970 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4971 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4972 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4973 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4974 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
4975 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
4976 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
4977 #endif /* CONFIG_PCI */
4979 EXPORT_SYMBOL_GPL(ata_device_suspend);
4980 EXPORT_SYMBOL_GPL(ata_device_resume);
4981 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4982 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);