2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
27 #define DEF_FREQUENCY_UP_THRESHOLD (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
32 * The polling frequency of this governor depends on the capability of
33 * the processor. Default polling frequency is 1000 times the transition
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
41 static unsigned int def_sampling_rate
;
42 #define MIN_SAMPLING_RATE_RATIO (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE \
45 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46 #define MIN_SAMPLING_RATE \
47 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
48 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
50 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
52 static void do_dbs_timer(struct work_struct
*work
);
55 enum {DBS_NORMAL_SAMPLE
, DBS_SUB_SAMPLE
};
57 struct cpu_dbs_info_s
{
58 cputime64_t prev_cpu_idle
;
59 cputime64_t prev_cpu_wall
;
60 struct cpufreq_policy
*cur_policy
;
61 struct delayed_work work
;
62 struct cpufreq_frequency_table
*freq_table
;
64 unsigned int freq_lo_jiffies
;
65 unsigned int freq_hi_jiffies
;
67 unsigned int enable
:1,
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cpu_dbs_info
);
72 static unsigned int dbs_enable
; /* number of CPUs using this policy */
75 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
76 * lock and dbs_mutex. cpu_hotplug lock should always be held before
77 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
78 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
79 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
80 * is recursive for the same process. -Venki
82 static DEFINE_MUTEX(dbs_mutex
);
84 static struct workqueue_struct
*kondemand_wq
;
86 static struct dbs_tuners
{
87 unsigned int sampling_rate
;
88 unsigned int up_threshold
;
89 unsigned int ignore_nice
;
90 unsigned int powersave_bias
;
92 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
97 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
)
101 retval
= cputime64_add(kstat_cpu(cpu
).cpustat
.idle
,
102 kstat_cpu(cpu
).cpustat
.iowait
);
104 if (dbs_tuners_ins
.ignore_nice
)
105 retval
= cputime64_add(retval
, kstat_cpu(cpu
).cpustat
.nice
);
111 * Find right freq to be set now with powersave_bias on.
112 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
113 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
115 static unsigned int powersave_bias_target(struct cpufreq_policy
*policy
,
116 unsigned int freq_next
,
117 unsigned int relation
)
119 unsigned int freq_req
, freq_reduc
, freq_avg
;
120 unsigned int freq_hi
, freq_lo
;
121 unsigned int index
= 0;
122 unsigned int jiffies_total
, jiffies_hi
, jiffies_lo
;
123 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, policy
->cpu
);
125 if (!dbs_info
->freq_table
) {
126 dbs_info
->freq_lo
= 0;
127 dbs_info
->freq_lo_jiffies
= 0;
131 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_next
,
133 freq_req
= dbs_info
->freq_table
[index
].frequency
;
134 freq_reduc
= freq_req
* dbs_tuners_ins
.powersave_bias
/ 1000;
135 freq_avg
= freq_req
- freq_reduc
;
137 /* Find freq bounds for freq_avg in freq_table */
139 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
140 CPUFREQ_RELATION_H
, &index
);
141 freq_lo
= dbs_info
->freq_table
[index
].frequency
;
143 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
144 CPUFREQ_RELATION_L
, &index
);
145 freq_hi
= dbs_info
->freq_table
[index
].frequency
;
147 /* Find out how long we have to be in hi and lo freqs */
148 if (freq_hi
== freq_lo
) {
149 dbs_info
->freq_lo
= 0;
150 dbs_info
->freq_lo_jiffies
= 0;
153 jiffies_total
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
154 jiffies_hi
= (freq_avg
- freq_lo
) * jiffies_total
;
155 jiffies_hi
+= ((freq_hi
- freq_lo
) / 2);
156 jiffies_hi
/= (freq_hi
- freq_lo
);
157 jiffies_lo
= jiffies_total
- jiffies_hi
;
158 dbs_info
->freq_lo
= freq_lo
;
159 dbs_info
->freq_lo_jiffies
= jiffies_lo
;
160 dbs_info
->freq_hi_jiffies
= jiffies_hi
;
164 static void ondemand_powersave_bias_init(void)
167 for_each_online_cpu(i
) {
168 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, i
);
169 dbs_info
->freq_table
= cpufreq_frequency_get_table(i
);
170 dbs_info
->freq_lo
= 0;
174 /************************** sysfs interface ************************/
175 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
177 return sprintf (buf
, "%u\n", MAX_SAMPLING_RATE
);
180 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
182 return sprintf (buf
, "%u\n", MIN_SAMPLING_RATE
);
185 #define define_one_ro(_name) \
186 static struct freq_attr _name = \
187 __ATTR(_name, 0444, show_##_name, NULL)
189 define_one_ro(sampling_rate_max
);
190 define_one_ro(sampling_rate_min
);
192 /* cpufreq_ondemand Governor Tunables */
193 #define show_one(file_name, object) \
194 static ssize_t show_##file_name \
195 (struct cpufreq_policy *unused, char *buf) \
197 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
199 show_one(sampling_rate
, sampling_rate
);
200 show_one(up_threshold
, up_threshold
);
201 show_one(ignore_nice_load
, ignore_nice
);
202 show_one(powersave_bias
, powersave_bias
);
204 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
205 const char *buf
, size_t count
)
209 ret
= sscanf(buf
, "%u", &input
);
211 mutex_lock(&dbs_mutex
);
212 if (ret
!= 1 || input
> MAX_SAMPLING_RATE
213 || input
< MIN_SAMPLING_RATE
) {
214 mutex_unlock(&dbs_mutex
);
218 dbs_tuners_ins
.sampling_rate
= input
;
219 mutex_unlock(&dbs_mutex
);
224 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
225 const char *buf
, size_t count
)
229 ret
= sscanf(buf
, "%u", &input
);
231 mutex_lock(&dbs_mutex
);
232 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
233 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
234 mutex_unlock(&dbs_mutex
);
238 dbs_tuners_ins
.up_threshold
= input
;
239 mutex_unlock(&dbs_mutex
);
244 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
245 const char *buf
, size_t count
)
252 ret
= sscanf(buf
, "%u", &input
);
259 mutex_lock(&dbs_mutex
);
260 if ( input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
261 mutex_unlock(&dbs_mutex
);
264 dbs_tuners_ins
.ignore_nice
= input
;
266 /* we need to re-evaluate prev_cpu_idle */
267 for_each_online_cpu(j
) {
268 struct cpu_dbs_info_s
*dbs_info
;
269 dbs_info
= &per_cpu(cpu_dbs_info
, j
);
270 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
);
271 dbs_info
->prev_cpu_wall
= get_jiffies_64();
273 mutex_unlock(&dbs_mutex
);
278 static ssize_t
store_powersave_bias(struct cpufreq_policy
*unused
,
279 const char *buf
, size_t count
)
283 ret
= sscanf(buf
, "%u", &input
);
291 mutex_lock(&dbs_mutex
);
292 dbs_tuners_ins
.powersave_bias
= input
;
293 ondemand_powersave_bias_init();
294 mutex_unlock(&dbs_mutex
);
299 #define define_one_rw(_name) \
300 static struct freq_attr _name = \
301 __ATTR(_name, 0644, show_##_name, store_##_name)
303 define_one_rw(sampling_rate
);
304 define_one_rw(up_threshold
);
305 define_one_rw(ignore_nice_load
);
306 define_one_rw(powersave_bias
);
308 static struct attribute
* dbs_attributes
[] = {
309 &sampling_rate_max
.attr
,
310 &sampling_rate_min
.attr
,
313 &ignore_nice_load
.attr
,
314 &powersave_bias
.attr
,
318 static struct attribute_group dbs_attr_group
= {
319 .attrs
= dbs_attributes
,
323 /************************** sysfs end ************************/
325 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
327 unsigned int idle_ticks
, total_ticks
;
329 cputime64_t cur_jiffies
;
331 struct cpufreq_policy
*policy
;
334 if (!this_dbs_info
->enable
)
337 this_dbs_info
->freq_lo
= 0;
338 policy
= this_dbs_info
->cur_policy
;
339 cur_jiffies
= jiffies64_to_cputime64(get_jiffies_64());
340 total_ticks
= (unsigned int) cputime64_sub(cur_jiffies
,
341 this_dbs_info
->prev_cpu_wall
);
342 this_dbs_info
->prev_cpu_wall
= cur_jiffies
;
346 * Every sampling_rate, we check, if current idle time is less
347 * than 20% (default), then we try to increase frequency
348 * Every sampling_rate, we look for a the lowest
349 * frequency which can sustain the load while keeping idle time over
350 * 30%. If such a frequency exist, we try to decrease to this frequency.
352 * Any frequency increase takes it to the maximum frequency.
353 * Frequency reduction happens at minimum steps of
354 * 5% (default) of current frequency
358 idle_ticks
= UINT_MAX
;
359 for_each_cpu_mask(j
, policy
->cpus
) {
360 cputime64_t total_idle_ticks
;
361 unsigned int tmp_idle_ticks
;
362 struct cpu_dbs_info_s
*j_dbs_info
;
364 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
365 total_idle_ticks
= get_cpu_idle_time(j
);
366 tmp_idle_ticks
= (unsigned int) cputime64_sub(total_idle_ticks
,
367 j_dbs_info
->prev_cpu_idle
);
368 j_dbs_info
->prev_cpu_idle
= total_idle_ticks
;
370 if (tmp_idle_ticks
< idle_ticks
)
371 idle_ticks
= tmp_idle_ticks
;
373 load
= (100 * (total_ticks
- idle_ticks
)) / total_ticks
;
375 /* Check for frequency increase */
376 if (load
> dbs_tuners_ins
.up_threshold
) {
377 /* if we are already at full speed then break out early */
378 if (!dbs_tuners_ins
.powersave_bias
) {
379 if (policy
->cur
== policy
->max
)
382 __cpufreq_driver_target(policy
, policy
->max
,
385 int freq
= powersave_bias_target(policy
, policy
->max
,
387 __cpufreq_driver_target(policy
, freq
,
393 /* Check for frequency decrease */
394 /* if we cannot reduce the frequency anymore, break out early */
395 if (policy
->cur
== policy
->min
)
399 * The optimal frequency is the frequency that is the lowest that
400 * can support the current CPU usage without triggering the up
401 * policy. To be safe, we focus 10 points under the threshold.
403 if (load
< (dbs_tuners_ins
.up_threshold
- 10)) {
404 unsigned int freq_next
, freq_cur
;
406 freq_cur
= __cpufreq_driver_getavg(policy
);
408 freq_cur
= policy
->cur
;
410 freq_next
= (freq_cur
* load
) /
411 (dbs_tuners_ins
.up_threshold
- 10);
413 if (!dbs_tuners_ins
.powersave_bias
) {
414 __cpufreq_driver_target(policy
, freq_next
,
417 int freq
= powersave_bias_target(policy
, freq_next
,
419 __cpufreq_driver_target(policy
, freq
,
425 static void do_dbs_timer(struct work_struct
*work
)
427 struct cpu_dbs_info_s
*dbs_info
=
428 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
429 unsigned int cpu
= dbs_info
->cpu
;
430 int sample_type
= dbs_info
->sample_type
;
432 /* We want all CPUs to do sampling nearly on same jiffy */
433 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
435 delay
-= jiffies
% delay
;
437 if (lock_policy_rwsem_write(cpu
) < 0)
440 if (!dbs_info
->enable
) {
441 unlock_policy_rwsem_write(cpu
);
445 /* Common NORMAL_SAMPLE setup */
446 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
447 if (!dbs_tuners_ins
.powersave_bias
||
448 sample_type
== DBS_NORMAL_SAMPLE
) {
449 dbs_check_cpu(dbs_info
);
450 if (dbs_info
->freq_lo
) {
451 /* Setup timer for SUB_SAMPLE */
452 dbs_info
->sample_type
= DBS_SUB_SAMPLE
;
453 delay
= dbs_info
->freq_hi_jiffies
;
456 __cpufreq_driver_target(dbs_info
->cur_policy
,
460 queue_delayed_work_on(cpu
, kondemand_wq
, &dbs_info
->work
, delay
);
461 unlock_policy_rwsem_write(cpu
);
464 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
466 /* We want all CPUs to do sampling nearly on same jiffy */
467 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
468 delay
-= jiffies
% delay
;
470 dbs_info
->enable
= 1;
471 ondemand_powersave_bias_init();
472 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
473 INIT_DELAYED_WORK(&dbs_info
->work
, do_dbs_timer
);
474 queue_delayed_work_on(dbs_info
->cpu
, kondemand_wq
, &dbs_info
->work
,
478 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
480 dbs_info
->enable
= 0;
481 cancel_delayed_work(&dbs_info
->work
);
484 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
487 unsigned int cpu
= policy
->cpu
;
488 struct cpu_dbs_info_s
*this_dbs_info
;
492 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
495 case CPUFREQ_GOV_START
:
496 if ((!cpu_online(cpu
)) || (!policy
->cur
))
499 if (policy
->cpuinfo
.transition_latency
>
500 (TRANSITION_LATENCY_LIMIT
* 1000)) {
501 printk(KERN_WARNING
"ondemand governor failed to load "
502 "due to too long transition latency\n");
505 if (this_dbs_info
->enable
) /* Already enabled */
508 mutex_lock(&dbs_mutex
);
511 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
514 mutex_unlock(&dbs_mutex
);
518 for_each_cpu_mask(j
, policy
->cpus
) {
519 struct cpu_dbs_info_s
*j_dbs_info
;
520 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
521 j_dbs_info
->cur_policy
= policy
;
523 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
);
524 j_dbs_info
->prev_cpu_wall
= get_jiffies_64();
526 this_dbs_info
->cpu
= cpu
;
528 * Start the timerschedule work, when this governor
529 * is used for first time
531 if (dbs_enable
== 1) {
532 unsigned int latency
;
533 /* policy latency is in nS. Convert it to uS first */
534 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
538 def_sampling_rate
= latency
*
539 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER
;
541 if (def_sampling_rate
< MIN_STAT_SAMPLING_RATE
)
542 def_sampling_rate
= MIN_STAT_SAMPLING_RATE
;
544 dbs_tuners_ins
.sampling_rate
= def_sampling_rate
;
546 dbs_timer_init(this_dbs_info
);
548 mutex_unlock(&dbs_mutex
);
551 case CPUFREQ_GOV_STOP
:
552 mutex_lock(&dbs_mutex
);
553 dbs_timer_exit(this_dbs_info
);
554 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
556 mutex_unlock(&dbs_mutex
);
560 case CPUFREQ_GOV_LIMITS
:
561 mutex_lock(&dbs_mutex
);
562 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
563 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
566 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
567 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
570 mutex_unlock(&dbs_mutex
);
576 static struct cpufreq_governor cpufreq_gov_dbs
= {
578 .governor
= cpufreq_governor_dbs
,
579 .owner
= THIS_MODULE
,
582 static int __init
cpufreq_gov_dbs_init(void)
584 kondemand_wq
= create_workqueue("kondemand");
586 printk(KERN_ERR
"Creation of kondemand failed\n");
589 return cpufreq_register_governor(&cpufreq_gov_dbs
);
592 static void __exit
cpufreq_gov_dbs_exit(void)
594 cpufreq_unregister_governor(&cpufreq_gov_dbs
);
595 destroy_workqueue(kondemand_wq
);
599 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
600 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
601 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
602 "Low Latency Frequency Transition capable processors");
603 MODULE_LICENSE("GPL");
605 module_init(cpufreq_gov_dbs_init
);
606 module_exit(cpufreq_gov_dbs_exit
);