Subject: jsm driver fix for linuxpps support
[linux-2.6/openmoko-kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
blob8d053f500fc25907d9f1d6f1691297199ecaa62a
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
27 #define DEF_FREQUENCY_UP_THRESHOLD (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
32 * The polling frequency of this governor depends on the capability of
33 * the processor. Default polling frequency is 1000 times the transition
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE \
45 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46 #define MIN_SAMPLING_RATE \
47 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
48 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
50 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
52 static void do_dbs_timer(struct work_struct *work);
54 /* Sampling types */
55 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
57 struct cpu_dbs_info_s {
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 struct cpufreq_policy *cur_policy;
61 struct delayed_work work;
62 struct cpufreq_frequency_table *freq_table;
63 unsigned int freq_lo;
64 unsigned int freq_lo_jiffies;
65 unsigned int freq_hi_jiffies;
66 int cpu;
67 unsigned int enable:1,
68 sample_type:1;
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
72 static unsigned int dbs_enable; /* number of CPUs using this policy */
75 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
76 * lock and dbs_mutex. cpu_hotplug lock should always be held before
77 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
78 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
79 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
80 * is recursive for the same process. -Venki
82 static DEFINE_MUTEX(dbs_mutex);
84 static struct workqueue_struct *kondemand_wq;
86 static struct dbs_tuners {
87 unsigned int sampling_rate;
88 unsigned int up_threshold;
89 unsigned int ignore_nice;
90 unsigned int powersave_bias;
91 } dbs_tuners_ins = {
92 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
93 .ignore_nice = 0,
94 .powersave_bias = 0,
97 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
99 cputime64_t retval;
101 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
102 kstat_cpu(cpu).cpustat.iowait);
104 if (dbs_tuners_ins.ignore_nice)
105 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
107 return retval;
111 * Find right freq to be set now with powersave_bias on.
112 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
113 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
115 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
116 unsigned int freq_next,
117 unsigned int relation)
119 unsigned int freq_req, freq_reduc, freq_avg;
120 unsigned int freq_hi, freq_lo;
121 unsigned int index = 0;
122 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
123 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
125 if (!dbs_info->freq_table) {
126 dbs_info->freq_lo = 0;
127 dbs_info->freq_lo_jiffies = 0;
128 return freq_next;
131 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
132 relation, &index);
133 freq_req = dbs_info->freq_table[index].frequency;
134 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
135 freq_avg = freq_req - freq_reduc;
137 /* Find freq bounds for freq_avg in freq_table */
138 index = 0;
139 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
140 CPUFREQ_RELATION_H, &index);
141 freq_lo = dbs_info->freq_table[index].frequency;
142 index = 0;
143 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
144 CPUFREQ_RELATION_L, &index);
145 freq_hi = dbs_info->freq_table[index].frequency;
147 /* Find out how long we have to be in hi and lo freqs */
148 if (freq_hi == freq_lo) {
149 dbs_info->freq_lo = 0;
150 dbs_info->freq_lo_jiffies = 0;
151 return freq_lo;
153 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
154 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
155 jiffies_hi += ((freq_hi - freq_lo) / 2);
156 jiffies_hi /= (freq_hi - freq_lo);
157 jiffies_lo = jiffies_total - jiffies_hi;
158 dbs_info->freq_lo = freq_lo;
159 dbs_info->freq_lo_jiffies = jiffies_lo;
160 dbs_info->freq_hi_jiffies = jiffies_hi;
161 return freq_hi;
164 static void ondemand_powersave_bias_init(void)
166 int i;
167 for_each_online_cpu(i) {
168 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
169 dbs_info->freq_table = cpufreq_frequency_get_table(i);
170 dbs_info->freq_lo = 0;
174 /************************** sysfs interface ************************/
175 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
177 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
180 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
182 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
185 #define define_one_ro(_name) \
186 static struct freq_attr _name = \
187 __ATTR(_name, 0444, show_##_name, NULL)
189 define_one_ro(sampling_rate_max);
190 define_one_ro(sampling_rate_min);
192 /* cpufreq_ondemand Governor Tunables */
193 #define show_one(file_name, object) \
194 static ssize_t show_##file_name \
195 (struct cpufreq_policy *unused, char *buf) \
197 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
199 show_one(sampling_rate, sampling_rate);
200 show_one(up_threshold, up_threshold);
201 show_one(ignore_nice_load, ignore_nice);
202 show_one(powersave_bias, powersave_bias);
204 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
205 const char *buf, size_t count)
207 unsigned int input;
208 int ret;
209 ret = sscanf(buf, "%u", &input);
211 mutex_lock(&dbs_mutex);
212 if (ret != 1 || input > MAX_SAMPLING_RATE
213 || input < MIN_SAMPLING_RATE) {
214 mutex_unlock(&dbs_mutex);
215 return -EINVAL;
218 dbs_tuners_ins.sampling_rate = input;
219 mutex_unlock(&dbs_mutex);
221 return count;
224 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
225 const char *buf, size_t count)
227 unsigned int input;
228 int ret;
229 ret = sscanf(buf, "%u", &input);
231 mutex_lock(&dbs_mutex);
232 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
233 input < MIN_FREQUENCY_UP_THRESHOLD) {
234 mutex_unlock(&dbs_mutex);
235 return -EINVAL;
238 dbs_tuners_ins.up_threshold = input;
239 mutex_unlock(&dbs_mutex);
241 return count;
244 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
245 const char *buf, size_t count)
247 unsigned int input;
248 int ret;
250 unsigned int j;
252 ret = sscanf(buf, "%u", &input);
253 if ( ret != 1 )
254 return -EINVAL;
256 if ( input > 1 )
257 input = 1;
259 mutex_lock(&dbs_mutex);
260 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
261 mutex_unlock(&dbs_mutex);
262 return count;
264 dbs_tuners_ins.ignore_nice = input;
266 /* we need to re-evaluate prev_cpu_idle */
267 for_each_online_cpu(j) {
268 struct cpu_dbs_info_s *dbs_info;
269 dbs_info = &per_cpu(cpu_dbs_info, j);
270 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
271 dbs_info->prev_cpu_wall = get_jiffies_64();
273 mutex_unlock(&dbs_mutex);
275 return count;
278 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
279 const char *buf, size_t count)
281 unsigned int input;
282 int ret;
283 ret = sscanf(buf, "%u", &input);
285 if (ret != 1)
286 return -EINVAL;
288 if (input > 1000)
289 input = 1000;
291 mutex_lock(&dbs_mutex);
292 dbs_tuners_ins.powersave_bias = input;
293 ondemand_powersave_bias_init();
294 mutex_unlock(&dbs_mutex);
296 return count;
299 #define define_one_rw(_name) \
300 static struct freq_attr _name = \
301 __ATTR(_name, 0644, show_##_name, store_##_name)
303 define_one_rw(sampling_rate);
304 define_one_rw(up_threshold);
305 define_one_rw(ignore_nice_load);
306 define_one_rw(powersave_bias);
308 static struct attribute * dbs_attributes[] = {
309 &sampling_rate_max.attr,
310 &sampling_rate_min.attr,
311 &sampling_rate.attr,
312 &up_threshold.attr,
313 &ignore_nice_load.attr,
314 &powersave_bias.attr,
315 NULL
318 static struct attribute_group dbs_attr_group = {
319 .attrs = dbs_attributes,
320 .name = "ondemand",
323 /************************** sysfs end ************************/
325 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
327 unsigned int idle_ticks, total_ticks;
328 unsigned int load;
329 cputime64_t cur_jiffies;
331 struct cpufreq_policy *policy;
332 unsigned int j;
334 if (!this_dbs_info->enable)
335 return;
337 this_dbs_info->freq_lo = 0;
338 policy = this_dbs_info->cur_policy;
339 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
340 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
341 this_dbs_info->prev_cpu_wall);
342 this_dbs_info->prev_cpu_wall = cur_jiffies;
343 if (!total_ticks)
344 return;
346 * Every sampling_rate, we check, if current idle time is less
347 * than 20% (default), then we try to increase frequency
348 * Every sampling_rate, we look for a the lowest
349 * frequency which can sustain the load while keeping idle time over
350 * 30%. If such a frequency exist, we try to decrease to this frequency.
352 * Any frequency increase takes it to the maximum frequency.
353 * Frequency reduction happens at minimum steps of
354 * 5% (default) of current frequency
357 /* Get Idle Time */
358 idle_ticks = UINT_MAX;
359 for_each_cpu_mask(j, policy->cpus) {
360 cputime64_t total_idle_ticks;
361 unsigned int tmp_idle_ticks;
362 struct cpu_dbs_info_s *j_dbs_info;
364 j_dbs_info = &per_cpu(cpu_dbs_info, j);
365 total_idle_ticks = get_cpu_idle_time(j);
366 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
367 j_dbs_info->prev_cpu_idle);
368 j_dbs_info->prev_cpu_idle = total_idle_ticks;
370 if (tmp_idle_ticks < idle_ticks)
371 idle_ticks = tmp_idle_ticks;
373 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
375 /* Check for frequency increase */
376 if (load > dbs_tuners_ins.up_threshold) {
377 /* if we are already at full speed then break out early */
378 if (!dbs_tuners_ins.powersave_bias) {
379 if (policy->cur == policy->max)
380 return;
382 __cpufreq_driver_target(policy, policy->max,
383 CPUFREQ_RELATION_H);
384 } else {
385 int freq = powersave_bias_target(policy, policy->max,
386 CPUFREQ_RELATION_H);
387 __cpufreq_driver_target(policy, freq,
388 CPUFREQ_RELATION_L);
390 return;
393 /* Check for frequency decrease */
394 /* if we cannot reduce the frequency anymore, break out early */
395 if (policy->cur == policy->min)
396 return;
399 * The optimal frequency is the frequency that is the lowest that
400 * can support the current CPU usage without triggering the up
401 * policy. To be safe, we focus 10 points under the threshold.
403 if (load < (dbs_tuners_ins.up_threshold - 10)) {
404 unsigned int freq_next, freq_cur;
406 freq_cur = __cpufreq_driver_getavg(policy);
407 if (!freq_cur)
408 freq_cur = policy->cur;
410 freq_next = (freq_cur * load) /
411 (dbs_tuners_ins.up_threshold - 10);
413 if (!dbs_tuners_ins.powersave_bias) {
414 __cpufreq_driver_target(policy, freq_next,
415 CPUFREQ_RELATION_L);
416 } else {
417 int freq = powersave_bias_target(policy, freq_next,
418 CPUFREQ_RELATION_L);
419 __cpufreq_driver_target(policy, freq,
420 CPUFREQ_RELATION_L);
425 static void do_dbs_timer(struct work_struct *work)
427 struct cpu_dbs_info_s *dbs_info =
428 container_of(work, struct cpu_dbs_info_s, work.work);
429 unsigned int cpu = dbs_info->cpu;
430 int sample_type = dbs_info->sample_type;
432 /* We want all CPUs to do sampling nearly on same jiffy */
433 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
435 delay -= jiffies % delay;
437 if (lock_policy_rwsem_write(cpu) < 0)
438 return;
440 if (!dbs_info->enable) {
441 unlock_policy_rwsem_write(cpu);
442 return;
445 /* Common NORMAL_SAMPLE setup */
446 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
447 if (!dbs_tuners_ins.powersave_bias ||
448 sample_type == DBS_NORMAL_SAMPLE) {
449 dbs_check_cpu(dbs_info);
450 if (dbs_info->freq_lo) {
451 /* Setup timer for SUB_SAMPLE */
452 dbs_info->sample_type = DBS_SUB_SAMPLE;
453 delay = dbs_info->freq_hi_jiffies;
455 } else {
456 __cpufreq_driver_target(dbs_info->cur_policy,
457 dbs_info->freq_lo,
458 CPUFREQ_RELATION_H);
460 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
461 unlock_policy_rwsem_write(cpu);
464 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
466 /* We want all CPUs to do sampling nearly on same jiffy */
467 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
468 delay -= jiffies % delay;
470 dbs_info->enable = 1;
471 ondemand_powersave_bias_init();
472 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
473 INIT_DELAYED_WORK(&dbs_info->work, do_dbs_timer);
474 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
475 delay);
478 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
480 dbs_info->enable = 0;
481 cancel_delayed_work(&dbs_info->work);
484 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
485 unsigned int event)
487 unsigned int cpu = policy->cpu;
488 struct cpu_dbs_info_s *this_dbs_info;
489 unsigned int j;
490 int rc;
492 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
494 switch (event) {
495 case CPUFREQ_GOV_START:
496 if ((!cpu_online(cpu)) || (!policy->cur))
497 return -EINVAL;
499 if (policy->cpuinfo.transition_latency >
500 (TRANSITION_LATENCY_LIMIT * 1000)) {
501 printk(KERN_WARNING "ondemand governor failed to load "
502 "due to too long transition latency\n");
503 return -EINVAL;
505 if (this_dbs_info->enable) /* Already enabled */
506 break;
508 mutex_lock(&dbs_mutex);
509 dbs_enable++;
511 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
512 if (rc) {
513 dbs_enable--;
514 mutex_unlock(&dbs_mutex);
515 return rc;
518 for_each_cpu_mask(j, policy->cpus) {
519 struct cpu_dbs_info_s *j_dbs_info;
520 j_dbs_info = &per_cpu(cpu_dbs_info, j);
521 j_dbs_info->cur_policy = policy;
523 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
524 j_dbs_info->prev_cpu_wall = get_jiffies_64();
526 this_dbs_info->cpu = cpu;
528 * Start the timerschedule work, when this governor
529 * is used for first time
531 if (dbs_enable == 1) {
532 unsigned int latency;
533 /* policy latency is in nS. Convert it to uS first */
534 latency = policy->cpuinfo.transition_latency / 1000;
535 if (latency == 0)
536 latency = 1;
538 def_sampling_rate = latency *
539 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
541 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
542 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
544 dbs_tuners_ins.sampling_rate = def_sampling_rate;
546 dbs_timer_init(this_dbs_info);
548 mutex_unlock(&dbs_mutex);
549 break;
551 case CPUFREQ_GOV_STOP:
552 mutex_lock(&dbs_mutex);
553 dbs_timer_exit(this_dbs_info);
554 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
555 dbs_enable--;
556 mutex_unlock(&dbs_mutex);
558 break;
560 case CPUFREQ_GOV_LIMITS:
561 mutex_lock(&dbs_mutex);
562 if (policy->max < this_dbs_info->cur_policy->cur)
563 __cpufreq_driver_target(this_dbs_info->cur_policy,
564 policy->max,
565 CPUFREQ_RELATION_H);
566 else if (policy->min > this_dbs_info->cur_policy->cur)
567 __cpufreq_driver_target(this_dbs_info->cur_policy,
568 policy->min,
569 CPUFREQ_RELATION_L);
570 mutex_unlock(&dbs_mutex);
571 break;
573 return 0;
576 static struct cpufreq_governor cpufreq_gov_dbs = {
577 .name = "ondemand",
578 .governor = cpufreq_governor_dbs,
579 .owner = THIS_MODULE,
582 static int __init cpufreq_gov_dbs_init(void)
584 kondemand_wq = create_workqueue("kondemand");
585 if (!kondemand_wq) {
586 printk(KERN_ERR "Creation of kondemand failed\n");
587 return -EFAULT;
589 return cpufreq_register_governor(&cpufreq_gov_dbs);
592 static void __exit cpufreq_gov_dbs_exit(void)
594 cpufreq_unregister_governor(&cpufreq_gov_dbs);
595 destroy_workqueue(kondemand_wq);
599 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
600 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
601 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
602 "Low Latency Frequency Transition capable processors");
603 MODULE_LICENSE("GPL");
605 module_init(cpufreq_gov_dbs_init);
606 module_exit(cpufreq_gov_dbs_exit);