2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
94 #include <net/net_namespace.h>
95 #include <net/protocol.h>
97 #include <net/route.h>
98 #include <net/inetpeer.h>
100 #include <net/ip_fib.h>
103 #include <net/icmp.h>
104 #include <net/xfrm.h>
105 #include <net/netevent.h>
106 #include <net/rtnetlink.h>
108 #include <linux/sysctl.h>
111 #define RT_FL_TOS(oldflp) \
112 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
114 #define IP_MAX_MTU 0xFFF0
116 #define RT_GC_TIMEOUT (300*HZ)
118 static int ip_rt_max_size
;
119 static int ip_rt_gc_timeout __read_mostly
= RT_GC_TIMEOUT
;
120 static int ip_rt_gc_interval __read_mostly
= 60 * HZ
;
121 static int ip_rt_gc_min_interval __read_mostly
= HZ
/ 2;
122 static int ip_rt_redirect_number __read_mostly
= 9;
123 static int ip_rt_redirect_load __read_mostly
= HZ
/ 50;
124 static int ip_rt_redirect_silence __read_mostly
= ((HZ
/ 50) << (9 + 1));
125 static int ip_rt_error_cost __read_mostly
= HZ
;
126 static int ip_rt_error_burst __read_mostly
= 5 * HZ
;
127 static int ip_rt_gc_elasticity __read_mostly
= 8;
128 static int ip_rt_mtu_expires __read_mostly
= 10 * 60 * HZ
;
129 static int ip_rt_min_pmtu __read_mostly
= 512 + 20 + 20;
130 static int ip_rt_min_advmss __read_mostly
= 256;
131 static int ip_rt_secret_interval __read_mostly
= 10 * 60 * HZ
;
133 static void rt_worker_func(struct work_struct
*work
);
134 static DECLARE_DELAYED_WORK(expires_work
, rt_worker_func
);
137 * Interface to generic destination cache.
140 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
);
141 static void ipv4_dst_destroy(struct dst_entry
*dst
);
142 static void ipv4_dst_ifdown(struct dst_entry
*dst
,
143 struct net_device
*dev
, int how
);
144 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
);
145 static void ipv4_link_failure(struct sk_buff
*skb
);
146 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
);
147 static int rt_garbage_collect(struct dst_ops
*ops
);
150 static struct dst_ops ipv4_dst_ops
= {
152 .protocol
= __constant_htons(ETH_P_IP
),
153 .gc
= rt_garbage_collect
,
154 .check
= ipv4_dst_check
,
155 .destroy
= ipv4_dst_destroy
,
156 .ifdown
= ipv4_dst_ifdown
,
157 .negative_advice
= ipv4_negative_advice
,
158 .link_failure
= ipv4_link_failure
,
159 .update_pmtu
= ip_rt_update_pmtu
,
160 .local_out
= __ip_local_out
,
161 .entry_size
= sizeof(struct rtable
),
162 .entries
= ATOMIC_INIT(0),
165 #define ECN_OR_COST(class) TC_PRIO_##class
167 const __u8 ip_tos2prio
[16] = {
171 ECN_OR_COST(BESTEFFORT
),
177 ECN_OR_COST(INTERACTIVE
),
179 ECN_OR_COST(INTERACTIVE
),
180 TC_PRIO_INTERACTIVE_BULK
,
181 ECN_OR_COST(INTERACTIVE_BULK
),
182 TC_PRIO_INTERACTIVE_BULK
,
183 ECN_OR_COST(INTERACTIVE_BULK
)
191 /* The locking scheme is rather straight forward:
193 * 1) Read-Copy Update protects the buckets of the central route hash.
194 * 2) Only writers remove entries, and they hold the lock
195 * as they look at rtable reference counts.
196 * 3) Only readers acquire references to rtable entries,
197 * they do so with atomic increments and with the
201 struct rt_hash_bucket
{
202 struct rtable
*chain
;
204 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
205 defined(CONFIG_PROVE_LOCKING)
207 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
208 * The size of this table is a power of two and depends on the number of CPUS.
209 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
211 #ifdef CONFIG_LOCKDEP
212 # define RT_HASH_LOCK_SZ 256
215 # define RT_HASH_LOCK_SZ 4096
217 # define RT_HASH_LOCK_SZ 2048
219 # define RT_HASH_LOCK_SZ 1024
221 # define RT_HASH_LOCK_SZ 512
223 # define RT_HASH_LOCK_SZ 256
227 static spinlock_t
*rt_hash_locks
;
228 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
230 static __init
void rt_hash_lock_init(void)
234 rt_hash_locks
= kmalloc(sizeof(spinlock_t
) * RT_HASH_LOCK_SZ
,
237 panic("IP: failed to allocate rt_hash_locks\n");
239 for (i
= 0; i
< RT_HASH_LOCK_SZ
; i
++)
240 spin_lock_init(&rt_hash_locks
[i
]);
243 # define rt_hash_lock_addr(slot) NULL
245 static inline void rt_hash_lock_init(void)
250 static struct rt_hash_bucket
*rt_hash_table __read_mostly
;
251 static unsigned rt_hash_mask __read_mostly
;
252 static unsigned int rt_hash_log __read_mostly
;
254 static DEFINE_PER_CPU(struct rt_cache_stat
, rt_cache_stat
);
255 #define RT_CACHE_STAT_INC(field) \
256 (__raw_get_cpu_var(rt_cache_stat).field++)
258 static inline unsigned int rt_hash(__be32 daddr
, __be32 saddr
, int idx
,
261 return jhash_3words((__force u32
)(__be32
)(daddr
),
262 (__force u32
)(__be32
)(saddr
),
267 static inline int rt_genid(struct net
*net
)
269 return atomic_read(&net
->ipv4
.rt_genid
);
272 #ifdef CONFIG_PROC_FS
273 struct rt_cache_iter_state
{
274 struct seq_net_private p
;
279 static struct rtable
*rt_cache_get_first(struct seq_file
*seq
)
281 struct rt_cache_iter_state
*st
= seq
->private;
282 struct rtable
*r
= NULL
;
284 for (st
->bucket
= rt_hash_mask
; st
->bucket
>= 0; --st
->bucket
) {
285 if (!rt_hash_table
[st
->bucket
].chain
)
288 r
= rcu_dereference(rt_hash_table
[st
->bucket
].chain
);
290 if (dev_net(r
->u
.dst
.dev
) == seq_file_net(seq
) &&
291 r
->rt_genid
== st
->genid
)
293 r
= rcu_dereference(r
->u
.dst
.rt_next
);
295 rcu_read_unlock_bh();
300 static struct rtable
*__rt_cache_get_next(struct seq_file
*seq
,
303 struct rt_cache_iter_state
*st
= seq
->private;
305 r
= r
->u
.dst
.rt_next
;
307 rcu_read_unlock_bh();
309 if (--st
->bucket
< 0)
311 } while (!rt_hash_table
[st
->bucket
].chain
);
313 r
= rt_hash_table
[st
->bucket
].chain
;
315 return rcu_dereference(r
);
318 static struct rtable
*rt_cache_get_next(struct seq_file
*seq
,
321 struct rt_cache_iter_state
*st
= seq
->private;
322 while ((r
= __rt_cache_get_next(seq
, r
)) != NULL
) {
323 if (dev_net(r
->u
.dst
.dev
) != seq_file_net(seq
))
325 if (r
->rt_genid
== st
->genid
)
331 static struct rtable
*rt_cache_get_idx(struct seq_file
*seq
, loff_t pos
)
333 struct rtable
*r
= rt_cache_get_first(seq
);
336 while (pos
&& (r
= rt_cache_get_next(seq
, r
)))
338 return pos
? NULL
: r
;
341 static void *rt_cache_seq_start(struct seq_file
*seq
, loff_t
*pos
)
343 struct rt_cache_iter_state
*st
= seq
->private;
345 return rt_cache_get_idx(seq
, *pos
- 1);
346 st
->genid
= rt_genid(seq_file_net(seq
));
347 return SEQ_START_TOKEN
;
350 static void *rt_cache_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
354 if (v
== SEQ_START_TOKEN
)
355 r
= rt_cache_get_first(seq
);
357 r
= rt_cache_get_next(seq
, v
);
362 static void rt_cache_seq_stop(struct seq_file
*seq
, void *v
)
364 if (v
&& v
!= SEQ_START_TOKEN
)
365 rcu_read_unlock_bh();
368 static int rt_cache_seq_show(struct seq_file
*seq
, void *v
)
370 if (v
== SEQ_START_TOKEN
)
371 seq_printf(seq
, "%-127s\n",
372 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
373 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
376 struct rtable
*r
= v
;
379 seq_printf(seq
, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
380 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
381 r
->u
.dst
.dev
? r
->u
.dst
.dev
->name
: "*",
382 (unsigned long)r
->rt_dst
, (unsigned long)r
->rt_gateway
,
383 r
->rt_flags
, atomic_read(&r
->u
.dst
.__refcnt
),
384 r
->u
.dst
.__use
, 0, (unsigned long)r
->rt_src
,
385 (dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) ?
386 (int)dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) + 40 : 0),
387 dst_metric(&r
->u
.dst
, RTAX_WINDOW
),
388 (int)((dst_metric(&r
->u
.dst
, RTAX_RTT
) >> 3) +
389 dst_metric(&r
->u
.dst
, RTAX_RTTVAR
)),
391 r
->u
.dst
.hh
? atomic_read(&r
->u
.dst
.hh
->hh_refcnt
) : -1,
392 r
->u
.dst
.hh
? (r
->u
.dst
.hh
->hh_output
==
394 r
->rt_spec_dst
, &len
);
396 seq_printf(seq
, "%*s\n", 127 - len
, "");
401 static const struct seq_operations rt_cache_seq_ops
= {
402 .start
= rt_cache_seq_start
,
403 .next
= rt_cache_seq_next
,
404 .stop
= rt_cache_seq_stop
,
405 .show
= rt_cache_seq_show
,
408 static int rt_cache_seq_open(struct inode
*inode
, struct file
*file
)
410 return seq_open_net(inode
, file
, &rt_cache_seq_ops
,
411 sizeof(struct rt_cache_iter_state
));
414 static const struct file_operations rt_cache_seq_fops
= {
415 .owner
= THIS_MODULE
,
416 .open
= rt_cache_seq_open
,
419 .release
= seq_release_net
,
423 static void *rt_cpu_seq_start(struct seq_file
*seq
, loff_t
*pos
)
428 return SEQ_START_TOKEN
;
430 for (cpu
= *pos
-1; cpu
< NR_CPUS
; ++cpu
) {
431 if (!cpu_possible(cpu
))
434 return &per_cpu(rt_cache_stat
, cpu
);
439 static void *rt_cpu_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
443 for (cpu
= *pos
; cpu
< NR_CPUS
; ++cpu
) {
444 if (!cpu_possible(cpu
))
447 return &per_cpu(rt_cache_stat
, cpu
);
453 static void rt_cpu_seq_stop(struct seq_file
*seq
, void *v
)
458 static int rt_cpu_seq_show(struct seq_file
*seq
, void *v
)
460 struct rt_cache_stat
*st
= v
;
462 if (v
== SEQ_START_TOKEN
) {
463 seq_printf(seq
, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
467 seq_printf(seq
,"%08x %08x %08x %08x %08x %08x %08x %08x "
468 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
469 atomic_read(&ipv4_dst_ops
.entries
),
492 static const struct seq_operations rt_cpu_seq_ops
= {
493 .start
= rt_cpu_seq_start
,
494 .next
= rt_cpu_seq_next
,
495 .stop
= rt_cpu_seq_stop
,
496 .show
= rt_cpu_seq_show
,
500 static int rt_cpu_seq_open(struct inode
*inode
, struct file
*file
)
502 return seq_open(file
, &rt_cpu_seq_ops
);
505 static const struct file_operations rt_cpu_seq_fops
= {
506 .owner
= THIS_MODULE
,
507 .open
= rt_cpu_seq_open
,
510 .release
= seq_release
,
513 #ifdef CONFIG_NET_CLS_ROUTE
514 static int ip_rt_acct_read(char *buffer
, char **start
, off_t offset
,
515 int length
, int *eof
, void *data
)
519 if ((offset
& 3) || (length
& 3))
522 if (offset
>= sizeof(struct ip_rt_acct
) * 256) {
527 if (offset
+ length
>= sizeof(struct ip_rt_acct
) * 256) {
528 length
= sizeof(struct ip_rt_acct
) * 256 - offset
;
532 offset
/= sizeof(u32
);
535 u32
*dst
= (u32
*) buffer
;
538 memset(dst
, 0, length
);
540 for_each_possible_cpu(i
) {
544 src
= ((u32
*) per_cpu_ptr(ip_rt_acct
, i
)) + offset
;
545 for (j
= 0; j
< length
/4; j
++)
553 static int __net_init
ip_rt_do_proc_init(struct net
*net
)
555 struct proc_dir_entry
*pde
;
557 pde
= proc_net_fops_create(net
, "rt_cache", S_IRUGO
,
562 pde
= proc_create("rt_cache", S_IRUGO
,
563 net
->proc_net_stat
, &rt_cpu_seq_fops
);
567 #ifdef CONFIG_NET_CLS_ROUTE
568 pde
= create_proc_read_entry("rt_acct", 0, net
->proc_net
,
569 ip_rt_acct_read
, NULL
);
575 #ifdef CONFIG_NET_CLS_ROUTE
577 remove_proc_entry("rt_cache", net
->proc_net_stat
);
580 remove_proc_entry("rt_cache", net
->proc_net
);
585 static void __net_exit
ip_rt_do_proc_exit(struct net
*net
)
587 remove_proc_entry("rt_cache", net
->proc_net_stat
);
588 remove_proc_entry("rt_cache", net
->proc_net
);
589 remove_proc_entry("rt_acct", net
->proc_net
);
592 static struct pernet_operations ip_rt_proc_ops __net_initdata
= {
593 .init
= ip_rt_do_proc_init
,
594 .exit
= ip_rt_do_proc_exit
,
597 static int __init
ip_rt_proc_init(void)
599 return register_pernet_subsys(&ip_rt_proc_ops
);
603 static inline int ip_rt_proc_init(void)
607 #endif /* CONFIG_PROC_FS */
609 static inline void rt_free(struct rtable
*rt
)
611 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
614 static inline void rt_drop(struct rtable
*rt
)
617 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
620 static inline int rt_fast_clean(struct rtable
*rth
)
622 /* Kill broadcast/multicast entries very aggresively, if they
623 collide in hash table with more useful entries */
624 return (rth
->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) &&
625 rth
->fl
.iif
&& rth
->u
.dst
.rt_next
;
628 static inline int rt_valuable(struct rtable
*rth
)
630 return (rth
->rt_flags
& (RTCF_REDIRECTED
| RTCF_NOTIFY
)) ||
634 static int rt_may_expire(struct rtable
*rth
, unsigned long tmo1
, unsigned long tmo2
)
639 if (atomic_read(&rth
->u
.dst
.__refcnt
))
643 if (rth
->u
.dst
.expires
&&
644 time_after_eq(jiffies
, rth
->u
.dst
.expires
))
647 age
= jiffies
- rth
->u
.dst
.lastuse
;
649 if ((age
<= tmo1
&& !rt_fast_clean(rth
)) ||
650 (age
<= tmo2
&& rt_valuable(rth
)))
656 /* Bits of score are:
658 * 30: not quite useless
659 * 29..0: usage counter
661 static inline u32
rt_score(struct rtable
*rt
)
663 u32 score
= jiffies
- rt
->u
.dst
.lastuse
;
665 score
= ~score
& ~(3<<30);
671 !(rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
|RTCF_LOCAL
)))
677 static inline int compare_keys(struct flowi
*fl1
, struct flowi
*fl2
)
679 return ((__force u32
)((fl1
->nl_u
.ip4_u
.daddr
^ fl2
->nl_u
.ip4_u
.daddr
) |
680 (fl1
->nl_u
.ip4_u
.saddr
^ fl2
->nl_u
.ip4_u
.saddr
)) |
681 (fl1
->mark
^ fl2
->mark
) |
682 (*(u16
*)&fl1
->nl_u
.ip4_u
.tos
^
683 *(u16
*)&fl2
->nl_u
.ip4_u
.tos
) |
684 (fl1
->oif
^ fl2
->oif
) |
685 (fl1
->iif
^ fl2
->iif
)) == 0;
688 static inline int compare_netns(struct rtable
*rt1
, struct rtable
*rt2
)
690 return dev_net(rt1
->u
.dst
.dev
) == dev_net(rt2
->u
.dst
.dev
);
693 static inline int rt_is_expired(struct rtable
*rth
)
695 return rth
->rt_genid
!= rt_genid(dev_net(rth
->u
.dst
.dev
));
699 * Perform a full scan of hash table and free all entries.
700 * Can be called by a softirq or a process.
701 * In the later case, we want to be reschedule if necessary
703 static void rt_do_flush(int process_context
)
706 struct rtable
*rth
, *next
;
707 struct rtable
* tail
;
709 for (i
= 0; i
<= rt_hash_mask
; i
++) {
710 if (process_context
&& need_resched())
712 rth
= rt_hash_table
[i
].chain
;
716 spin_lock_bh(rt_hash_lock_addr(i
));
719 struct rtable
** prev
, * p
;
721 rth
= rt_hash_table
[i
].chain
;
723 /* defer releasing the head of the list after spin_unlock */
724 for (tail
= rth
; tail
; tail
= tail
->u
.dst
.rt_next
)
725 if (!rt_is_expired(tail
))
728 rt_hash_table
[i
].chain
= tail
;
730 /* call rt_free on entries after the tail requiring flush */
731 prev
= &rt_hash_table
[i
].chain
;
732 for (p
= *prev
; p
; p
= next
) {
733 next
= p
->u
.dst
.rt_next
;
734 if (!rt_is_expired(p
)) {
735 prev
= &p
->u
.dst
.rt_next
;
743 rth
= rt_hash_table
[i
].chain
;
744 rt_hash_table
[i
].chain
= NULL
;
747 spin_unlock_bh(rt_hash_lock_addr(i
));
749 for (; rth
!= tail
; rth
= next
) {
750 next
= rth
->u
.dst
.rt_next
;
756 static void rt_check_expire(void)
758 static unsigned int rover
;
759 unsigned int i
= rover
, goal
;
760 struct rtable
*rth
, **rthp
;
763 mult
= ((u64
)ip_rt_gc_interval
) << rt_hash_log
;
764 if (ip_rt_gc_timeout
> 1)
765 do_div(mult
, ip_rt_gc_timeout
);
766 goal
= (unsigned int)mult
;
767 if (goal
> rt_hash_mask
)
768 goal
= rt_hash_mask
+ 1;
769 for (; goal
> 0; goal
--) {
770 unsigned long tmo
= ip_rt_gc_timeout
;
772 i
= (i
+ 1) & rt_hash_mask
;
773 rthp
= &rt_hash_table
[i
].chain
;
780 spin_lock_bh(rt_hash_lock_addr(i
));
781 while ((rth
= *rthp
) != NULL
) {
782 if (rt_is_expired(rth
)) {
783 *rthp
= rth
->u
.dst
.rt_next
;
787 if (rth
->u
.dst
.expires
) {
788 /* Entry is expired even if it is in use */
789 if (time_before_eq(jiffies
, rth
->u
.dst
.expires
)) {
791 rthp
= &rth
->u
.dst
.rt_next
;
794 } else if (!rt_may_expire(rth
, tmo
, ip_rt_gc_timeout
)) {
796 rthp
= &rth
->u
.dst
.rt_next
;
800 /* Cleanup aged off entries. */
801 *rthp
= rth
->u
.dst
.rt_next
;
804 spin_unlock_bh(rt_hash_lock_addr(i
));
810 * rt_worker_func() is run in process context.
811 * we call rt_check_expire() to scan part of the hash table
813 static void rt_worker_func(struct work_struct
*work
)
816 schedule_delayed_work(&expires_work
, ip_rt_gc_interval
);
820 * Pertubation of rt_genid by a small quantity [1..256]
821 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
822 * many times (2^24) without giving recent rt_genid.
823 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
825 static void rt_cache_invalidate(struct net
*net
)
827 unsigned char shuffle
;
829 get_random_bytes(&shuffle
, sizeof(shuffle
));
830 atomic_add(shuffle
+ 1U, &net
->ipv4
.rt_genid
);
834 * delay < 0 : invalidate cache (fast : entries will be deleted later)
835 * delay >= 0 : invalidate & flush cache (can be long)
837 void rt_cache_flush(struct net
*net
, int delay
)
839 rt_cache_invalidate(net
);
841 rt_do_flush(!in_softirq());
845 * We change rt_genid and let gc do the cleanup
847 static void rt_secret_rebuild(unsigned long __net
)
849 struct net
*net
= (struct net
*)__net
;
850 rt_cache_invalidate(net
);
851 mod_timer(&net
->ipv4
.rt_secret_timer
, jiffies
+ ip_rt_secret_interval
);
855 Short description of GC goals.
857 We want to build algorithm, which will keep routing cache
858 at some equilibrium point, when number of aged off entries
859 is kept approximately equal to newly generated ones.
861 Current expiration strength is variable "expire".
862 We try to adjust it dynamically, so that if networking
863 is idle expires is large enough to keep enough of warm entries,
864 and when load increases it reduces to limit cache size.
867 static int rt_garbage_collect(struct dst_ops
*ops
)
869 static unsigned long expire
= RT_GC_TIMEOUT
;
870 static unsigned long last_gc
;
872 static int equilibrium
;
873 struct rtable
*rth
, **rthp
;
874 unsigned long now
= jiffies
;
878 * Garbage collection is pretty expensive,
879 * do not make it too frequently.
882 RT_CACHE_STAT_INC(gc_total
);
884 if (now
- last_gc
< ip_rt_gc_min_interval
&&
885 atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
) {
886 RT_CACHE_STAT_INC(gc_ignored
);
890 /* Calculate number of entries, which we want to expire now. */
891 goal
= atomic_read(&ipv4_dst_ops
.entries
) -
892 (ip_rt_gc_elasticity
<< rt_hash_log
);
894 if (equilibrium
< ipv4_dst_ops
.gc_thresh
)
895 equilibrium
= ipv4_dst_ops
.gc_thresh
;
896 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
898 equilibrium
+= min_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
899 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
902 /* We are in dangerous area. Try to reduce cache really
905 goal
= max_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
906 equilibrium
= atomic_read(&ipv4_dst_ops
.entries
) - goal
;
909 if (now
- last_gc
>= ip_rt_gc_min_interval
)
920 for (i
= rt_hash_mask
, k
= rover
; i
>= 0; i
--) {
921 unsigned long tmo
= expire
;
923 k
= (k
+ 1) & rt_hash_mask
;
924 rthp
= &rt_hash_table
[k
].chain
;
925 spin_lock_bh(rt_hash_lock_addr(k
));
926 while ((rth
= *rthp
) != NULL
) {
927 if (!rt_is_expired(rth
) &&
928 !rt_may_expire(rth
, tmo
, expire
)) {
930 rthp
= &rth
->u
.dst
.rt_next
;
933 *rthp
= rth
->u
.dst
.rt_next
;
937 spin_unlock_bh(rt_hash_lock_addr(k
));
946 /* Goal is not achieved. We stop process if:
948 - if expire reduced to zero. Otherwise, expire is halfed.
949 - if table is not full.
950 - if we are called from interrupt.
951 - jiffies check is just fallback/debug loop breaker.
952 We will not spin here for long time in any case.
955 RT_CACHE_STAT_INC(gc_goal_miss
);
961 #if RT_CACHE_DEBUG >= 2
962 printk(KERN_DEBUG
"expire>> %u %d %d %d\n", expire
,
963 atomic_read(&ipv4_dst_ops
.entries
), goal
, i
);
966 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
968 } while (!in_softirq() && time_before_eq(jiffies
, now
));
970 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
973 printk(KERN_WARNING
"dst cache overflow\n");
974 RT_CACHE_STAT_INC(gc_dst_overflow
);
978 expire
+= ip_rt_gc_min_interval
;
979 if (expire
> ip_rt_gc_timeout
||
980 atomic_read(&ipv4_dst_ops
.entries
) < ipv4_dst_ops
.gc_thresh
)
981 expire
= ip_rt_gc_timeout
;
982 #if RT_CACHE_DEBUG >= 2
983 printk(KERN_DEBUG
"expire++ %u %d %d %d\n", expire
,
984 atomic_read(&ipv4_dst_ops
.entries
), goal
, rover
);
989 static int rt_intern_hash(unsigned hash
, struct rtable
*rt
, struct rtable
**rp
)
991 struct rtable
*rth
, **rthp
;
993 struct rtable
*cand
, **candp
;
996 int attempts
= !in_softirq();
1000 min_score
= ~(u32
)0;
1005 rthp
= &rt_hash_table
[hash
].chain
;
1007 spin_lock_bh(rt_hash_lock_addr(hash
));
1008 while ((rth
= *rthp
) != NULL
) {
1009 if (rt_is_expired(rth
)) {
1010 *rthp
= rth
->u
.dst
.rt_next
;
1014 if (compare_keys(&rth
->fl
, &rt
->fl
) && compare_netns(rth
, rt
)) {
1016 *rthp
= rth
->u
.dst
.rt_next
;
1018 * Since lookup is lockfree, the deletion
1019 * must be visible to another weakly ordered CPU before
1020 * the insertion at the start of the hash chain.
1022 rcu_assign_pointer(rth
->u
.dst
.rt_next
,
1023 rt_hash_table
[hash
].chain
);
1025 * Since lookup is lockfree, the update writes
1026 * must be ordered for consistency on SMP.
1028 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rth
);
1030 dst_use(&rth
->u
.dst
, now
);
1031 spin_unlock_bh(rt_hash_lock_addr(hash
));
1038 if (!atomic_read(&rth
->u
.dst
.__refcnt
)) {
1039 u32 score
= rt_score(rth
);
1041 if (score
<= min_score
) {
1050 rthp
= &rth
->u
.dst
.rt_next
;
1054 /* ip_rt_gc_elasticity used to be average length of chain
1055 * length, when exceeded gc becomes really aggressive.
1057 * The second limit is less certain. At the moment it allows
1058 * only 2 entries per bucket. We will see.
1060 if (chain_length
> ip_rt_gc_elasticity
) {
1061 *candp
= cand
->u
.dst
.rt_next
;
1066 /* Try to bind route to arp only if it is output
1067 route or unicast forwarding path.
1069 if (rt
->rt_type
== RTN_UNICAST
|| rt
->fl
.iif
== 0) {
1070 int err
= arp_bind_neighbour(&rt
->u
.dst
);
1072 spin_unlock_bh(rt_hash_lock_addr(hash
));
1074 if (err
!= -ENOBUFS
) {
1079 /* Neighbour tables are full and nothing
1080 can be released. Try to shrink route cache,
1081 it is most likely it holds some neighbour records.
1083 if (attempts
-- > 0) {
1084 int saved_elasticity
= ip_rt_gc_elasticity
;
1085 int saved_int
= ip_rt_gc_min_interval
;
1086 ip_rt_gc_elasticity
= 1;
1087 ip_rt_gc_min_interval
= 0;
1088 rt_garbage_collect(&ipv4_dst_ops
);
1089 ip_rt_gc_min_interval
= saved_int
;
1090 ip_rt_gc_elasticity
= saved_elasticity
;
1094 if (net_ratelimit())
1095 printk(KERN_WARNING
"Neighbour table overflow.\n");
1101 rt
->u
.dst
.rt_next
= rt_hash_table
[hash
].chain
;
1102 #if RT_CACHE_DEBUG >= 2
1103 if (rt
->u
.dst
.rt_next
) {
1105 printk(KERN_DEBUG
"rt_cache @%02x: " NIPQUAD_FMT
, hash
,
1106 NIPQUAD(rt
->rt_dst
));
1107 for (trt
= rt
->u
.dst
.rt_next
; trt
; trt
= trt
->u
.dst
.rt_next
)
1108 printk(" . " NIPQUAD_FMT
, NIPQUAD(trt
->rt_dst
));
1113 * Since lookup is lockfree, we must make sure
1114 * previous writes to rt are comitted to memory
1115 * before making rt visible to other CPUS.
1117 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rt
);
1118 spin_unlock_bh(rt_hash_lock_addr(hash
));
1123 void rt_bind_peer(struct rtable
*rt
, int create
)
1125 static DEFINE_SPINLOCK(rt_peer_lock
);
1126 struct inet_peer
*peer
;
1128 peer
= inet_getpeer(rt
->rt_dst
, create
);
1130 spin_lock_bh(&rt_peer_lock
);
1131 if (rt
->peer
== NULL
) {
1135 spin_unlock_bh(&rt_peer_lock
);
1141 * Peer allocation may fail only in serious out-of-memory conditions. However
1142 * we still can generate some output.
1143 * Random ID selection looks a bit dangerous because we have no chances to
1144 * select ID being unique in a reasonable period of time.
1145 * But broken packet identifier may be better than no packet at all.
1147 static void ip_select_fb_ident(struct iphdr
*iph
)
1149 static DEFINE_SPINLOCK(ip_fb_id_lock
);
1150 static u32 ip_fallback_id
;
1153 spin_lock_bh(&ip_fb_id_lock
);
1154 salt
= secure_ip_id((__force __be32
)ip_fallback_id
^ iph
->daddr
);
1155 iph
->id
= htons(salt
& 0xFFFF);
1156 ip_fallback_id
= salt
;
1157 spin_unlock_bh(&ip_fb_id_lock
);
1160 void __ip_select_ident(struct iphdr
*iph
, struct dst_entry
*dst
, int more
)
1162 struct rtable
*rt
= (struct rtable
*) dst
;
1165 if (rt
->peer
== NULL
)
1166 rt_bind_peer(rt
, 1);
1168 /* If peer is attached to destination, it is never detached,
1169 so that we need not to grab a lock to dereference it.
1172 iph
->id
= htons(inet_getid(rt
->peer
, more
));
1176 printk(KERN_DEBUG
"rt_bind_peer(0) @%p\n",
1177 __builtin_return_address(0));
1179 ip_select_fb_ident(iph
);
1182 static void rt_del(unsigned hash
, struct rtable
*rt
)
1184 struct rtable
**rthp
, *aux
;
1186 rthp
= &rt_hash_table
[hash
].chain
;
1187 spin_lock_bh(rt_hash_lock_addr(hash
));
1189 while ((aux
= *rthp
) != NULL
) {
1190 if (aux
== rt
|| rt_is_expired(aux
)) {
1191 *rthp
= aux
->u
.dst
.rt_next
;
1195 rthp
= &aux
->u
.dst
.rt_next
;
1197 spin_unlock_bh(rt_hash_lock_addr(hash
));
1200 void ip_rt_redirect(__be32 old_gw
, __be32 daddr
, __be32 new_gw
,
1201 __be32 saddr
, struct net_device
*dev
)
1204 struct in_device
*in_dev
= in_dev_get(dev
);
1205 struct rtable
*rth
, **rthp
;
1206 __be32 skeys
[2] = { saddr
, 0 };
1207 int ikeys
[2] = { dev
->ifindex
, 0 };
1208 struct netevent_redirect netevent
;
1215 if (new_gw
== old_gw
|| !IN_DEV_RX_REDIRECTS(in_dev
)
1216 || ipv4_is_multicast(new_gw
) || ipv4_is_lbcast(new_gw
)
1217 || ipv4_is_zeronet(new_gw
))
1218 goto reject_redirect
;
1220 if (!IN_DEV_SHARED_MEDIA(in_dev
)) {
1221 if (!inet_addr_onlink(in_dev
, new_gw
, old_gw
))
1222 goto reject_redirect
;
1223 if (IN_DEV_SEC_REDIRECTS(in_dev
) && ip_fib_check_default(new_gw
, dev
))
1224 goto reject_redirect
;
1226 if (inet_addr_type(net
, new_gw
) != RTN_UNICAST
)
1227 goto reject_redirect
;
1230 for (i
= 0; i
< 2; i
++) {
1231 for (k
= 0; k
< 2; k
++) {
1232 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
],
1235 rthp
=&rt_hash_table
[hash
].chain
;
1238 while ((rth
= rcu_dereference(*rthp
)) != NULL
) {
1241 if (rth
->fl
.fl4_dst
!= daddr
||
1242 rth
->fl
.fl4_src
!= skeys
[i
] ||
1243 rth
->fl
.oif
!= ikeys
[k
] ||
1245 rt_is_expired(rth
) ||
1246 !net_eq(dev_net(rth
->u
.dst
.dev
), net
)) {
1247 rthp
= &rth
->u
.dst
.rt_next
;
1251 if (rth
->rt_dst
!= daddr
||
1252 rth
->rt_src
!= saddr
||
1254 rth
->rt_gateway
!= old_gw
||
1255 rth
->u
.dst
.dev
!= dev
)
1258 dst_hold(&rth
->u
.dst
);
1261 rt
= dst_alloc(&ipv4_dst_ops
);
1268 /* Copy all the information. */
1270 INIT_RCU_HEAD(&rt
->u
.dst
.rcu_head
);
1271 rt
->u
.dst
.__use
= 1;
1272 atomic_set(&rt
->u
.dst
.__refcnt
, 1);
1273 rt
->u
.dst
.child
= NULL
;
1275 dev_hold(rt
->u
.dst
.dev
);
1277 in_dev_hold(rt
->idev
);
1278 rt
->u
.dst
.obsolete
= 0;
1279 rt
->u
.dst
.lastuse
= jiffies
;
1280 rt
->u
.dst
.path
= &rt
->u
.dst
;
1281 rt
->u
.dst
.neighbour
= NULL
;
1282 rt
->u
.dst
.hh
= NULL
;
1283 rt
->u
.dst
.xfrm
= NULL
;
1284 rt
->rt_genid
= rt_genid(net
);
1285 rt
->rt_flags
|= RTCF_REDIRECTED
;
1287 /* Gateway is different ... */
1288 rt
->rt_gateway
= new_gw
;
1290 /* Redirect received -> path was valid */
1291 dst_confirm(&rth
->u
.dst
);
1294 atomic_inc(&rt
->peer
->refcnt
);
1296 if (arp_bind_neighbour(&rt
->u
.dst
) ||
1297 !(rt
->u
.dst
.neighbour
->nud_state
&
1299 if (rt
->u
.dst
.neighbour
)
1300 neigh_event_send(rt
->u
.dst
.neighbour
, NULL
);
1306 netevent
.old
= &rth
->u
.dst
;
1307 netevent
.new = &rt
->u
.dst
;
1308 call_netevent_notifiers(NETEVENT_REDIRECT
,
1312 if (!rt_intern_hash(hash
, rt
, &rt
))
1325 #ifdef CONFIG_IP_ROUTE_VERBOSE
1326 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
1327 printk(KERN_INFO
"Redirect from " NIPQUAD_FMT
" on %s about "
1328 NIPQUAD_FMT
" ignored.\n"
1329 " Advised path = " NIPQUAD_FMT
" -> " NIPQUAD_FMT
"\n",
1330 NIPQUAD(old_gw
), dev
->name
, NIPQUAD(new_gw
),
1331 NIPQUAD(saddr
), NIPQUAD(daddr
));
1336 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
)
1338 struct rtable
*rt
= (struct rtable
*)dst
;
1339 struct dst_entry
*ret
= dst
;
1342 if (dst
->obsolete
) {
1345 } else if ((rt
->rt_flags
& RTCF_REDIRECTED
) ||
1346 rt
->u
.dst
.expires
) {
1347 unsigned hash
= rt_hash(rt
->fl
.fl4_dst
, rt
->fl
.fl4_src
,
1349 rt_genid(dev_net(dst
->dev
)));
1350 #if RT_CACHE_DEBUG >= 1
1351 printk(KERN_DEBUG
"ipv4_negative_advice: redirect to "
1352 NIPQUAD_FMT
"/%02x dropped\n",
1353 NIPQUAD(rt
->rt_dst
), rt
->fl
.fl4_tos
);
1364 * 1. The first ip_rt_redirect_number redirects are sent
1365 * with exponential backoff, then we stop sending them at all,
1366 * assuming that the host ignores our redirects.
1367 * 2. If we did not see packets requiring redirects
1368 * during ip_rt_redirect_silence, we assume that the host
1369 * forgot redirected route and start to send redirects again.
1371 * This algorithm is much cheaper and more intelligent than dumb load limiting
1374 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1375 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1378 void ip_rt_send_redirect(struct sk_buff
*skb
)
1380 struct rtable
*rt
= skb
->rtable
;
1381 struct in_device
*in_dev
= in_dev_get(rt
->u
.dst
.dev
);
1386 if (!IN_DEV_TX_REDIRECTS(in_dev
))
1389 /* No redirected packets during ip_rt_redirect_silence;
1390 * reset the algorithm.
1392 if (time_after(jiffies
, rt
->u
.dst
.rate_last
+ ip_rt_redirect_silence
))
1393 rt
->u
.dst
.rate_tokens
= 0;
1395 /* Too many ignored redirects; do not send anything
1396 * set u.dst.rate_last to the last seen redirected packet.
1398 if (rt
->u
.dst
.rate_tokens
>= ip_rt_redirect_number
) {
1399 rt
->u
.dst
.rate_last
= jiffies
;
1403 /* Check for load limit; set rate_last to the latest sent
1406 if (rt
->u
.dst
.rate_tokens
== 0 ||
1408 (rt
->u
.dst
.rate_last
+
1409 (ip_rt_redirect_load
<< rt
->u
.dst
.rate_tokens
)))) {
1410 icmp_send(skb
, ICMP_REDIRECT
, ICMP_REDIR_HOST
, rt
->rt_gateway
);
1411 rt
->u
.dst
.rate_last
= jiffies
;
1412 ++rt
->u
.dst
.rate_tokens
;
1413 #ifdef CONFIG_IP_ROUTE_VERBOSE
1414 if (IN_DEV_LOG_MARTIANS(in_dev
) &&
1415 rt
->u
.dst
.rate_tokens
== ip_rt_redirect_number
&&
1417 printk(KERN_WARNING
"host " NIPQUAD_FMT
"/if%d ignores "
1418 "redirects for " NIPQUAD_FMT
" to " NIPQUAD_FMT
".\n",
1419 NIPQUAD(rt
->rt_src
), rt
->rt_iif
,
1420 NIPQUAD(rt
->rt_dst
), NIPQUAD(rt
->rt_gateway
));
1427 static int ip_error(struct sk_buff
*skb
)
1429 struct rtable
*rt
= skb
->rtable
;
1433 switch (rt
->u
.dst
.error
) {
1438 code
= ICMP_HOST_UNREACH
;
1441 code
= ICMP_NET_UNREACH
;
1442 IP_INC_STATS_BH(dev_net(rt
->u
.dst
.dev
),
1443 IPSTATS_MIB_INNOROUTES
);
1446 code
= ICMP_PKT_FILTERED
;
1451 rt
->u
.dst
.rate_tokens
+= now
- rt
->u
.dst
.rate_last
;
1452 if (rt
->u
.dst
.rate_tokens
> ip_rt_error_burst
)
1453 rt
->u
.dst
.rate_tokens
= ip_rt_error_burst
;
1454 rt
->u
.dst
.rate_last
= now
;
1455 if (rt
->u
.dst
.rate_tokens
>= ip_rt_error_cost
) {
1456 rt
->u
.dst
.rate_tokens
-= ip_rt_error_cost
;
1457 icmp_send(skb
, ICMP_DEST_UNREACH
, code
, 0);
1460 out
: kfree_skb(skb
);
1465 * The last two values are not from the RFC but
1466 * are needed for AMPRnet AX.25 paths.
1469 static const unsigned short mtu_plateau
[] =
1470 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1472 static inline unsigned short guess_mtu(unsigned short old_mtu
)
1476 for (i
= 0; i
< ARRAY_SIZE(mtu_plateau
); i
++)
1477 if (old_mtu
> mtu_plateau
[i
])
1478 return mtu_plateau
[i
];
1482 unsigned short ip_rt_frag_needed(struct net
*net
, struct iphdr
*iph
,
1483 unsigned short new_mtu
,
1484 struct net_device
*dev
)
1487 unsigned short old_mtu
= ntohs(iph
->tot_len
);
1489 int ikeys
[2] = { dev
->ifindex
, 0 };
1490 __be32 skeys
[2] = { iph
->saddr
, 0, };
1491 __be32 daddr
= iph
->daddr
;
1492 unsigned short est_mtu
= 0;
1494 if (ipv4_config
.no_pmtu_disc
)
1497 for (k
= 0; k
< 2; k
++) {
1498 for (i
= 0; i
< 2; i
++) {
1499 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
],
1503 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
1504 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
1505 unsigned short mtu
= new_mtu
;
1507 if (rth
->fl
.fl4_dst
!= daddr
||
1508 rth
->fl
.fl4_src
!= skeys
[i
] ||
1509 rth
->rt_dst
!= daddr
||
1510 rth
->rt_src
!= iph
->saddr
||
1511 rth
->fl
.oif
!= ikeys
[k
] ||
1513 dst_metric_locked(&rth
->u
.dst
, RTAX_MTU
) ||
1514 !net_eq(dev_net(rth
->u
.dst
.dev
), net
) ||
1518 if (new_mtu
< 68 || new_mtu
>= old_mtu
) {
1520 /* BSD 4.2 compatibility hack :-( */
1522 old_mtu
>= dst_mtu(&rth
->u
.dst
) &&
1523 old_mtu
>= 68 + (iph
->ihl
<< 2))
1524 old_mtu
-= iph
->ihl
<< 2;
1526 mtu
= guess_mtu(old_mtu
);
1528 if (mtu
<= dst_mtu(&rth
->u
.dst
)) {
1529 if (mtu
< dst_mtu(&rth
->u
.dst
)) {
1530 dst_confirm(&rth
->u
.dst
);
1531 if (mtu
< ip_rt_min_pmtu
) {
1532 mtu
= ip_rt_min_pmtu
;
1533 rth
->u
.dst
.metrics
[RTAX_LOCK
-1] |=
1536 rth
->u
.dst
.metrics
[RTAX_MTU
-1] = mtu
;
1537 dst_set_expires(&rth
->u
.dst
,
1546 return est_mtu
? : new_mtu
;
1549 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
1551 if (dst_mtu(dst
) > mtu
&& mtu
>= 68 &&
1552 !(dst_metric_locked(dst
, RTAX_MTU
))) {
1553 if (mtu
< ip_rt_min_pmtu
) {
1554 mtu
= ip_rt_min_pmtu
;
1555 dst
->metrics
[RTAX_LOCK
-1] |= (1 << RTAX_MTU
);
1557 dst
->metrics
[RTAX_MTU
-1] = mtu
;
1558 dst_set_expires(dst
, ip_rt_mtu_expires
);
1559 call_netevent_notifiers(NETEVENT_PMTU_UPDATE
, dst
);
1563 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
)
1568 static void ipv4_dst_destroy(struct dst_entry
*dst
)
1570 struct rtable
*rt
= (struct rtable
*) dst
;
1571 struct inet_peer
*peer
= rt
->peer
;
1572 struct in_device
*idev
= rt
->idev
;
1585 static void ipv4_dst_ifdown(struct dst_entry
*dst
, struct net_device
*dev
,
1588 struct rtable
*rt
= (struct rtable
*) dst
;
1589 struct in_device
*idev
= rt
->idev
;
1590 if (dev
!= dev_net(dev
)->loopback_dev
&& idev
&& idev
->dev
== dev
) {
1591 struct in_device
*loopback_idev
=
1592 in_dev_get(dev_net(dev
)->loopback_dev
);
1593 if (loopback_idev
) {
1594 rt
->idev
= loopback_idev
;
1600 static void ipv4_link_failure(struct sk_buff
*skb
)
1604 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_HOST_UNREACH
, 0);
1608 dst_set_expires(&rt
->u
.dst
, 0);
1611 static int ip_rt_bug(struct sk_buff
*skb
)
1613 printk(KERN_DEBUG
"ip_rt_bug: " NIPQUAD_FMT
" -> " NIPQUAD_FMT
", %s\n",
1614 NIPQUAD(ip_hdr(skb
)->saddr
), NIPQUAD(ip_hdr(skb
)->daddr
),
1615 skb
->dev
? skb
->dev
->name
: "?");
1621 We do not cache source address of outgoing interface,
1622 because it is used only by IP RR, TS and SRR options,
1623 so that it out of fast path.
1625 BTW remember: "addr" is allowed to be not aligned
1629 void ip_rt_get_source(u8
*addr
, struct rtable
*rt
)
1632 struct fib_result res
;
1634 if (rt
->fl
.iif
== 0)
1636 else if (fib_lookup(dev_net(rt
->u
.dst
.dev
), &rt
->fl
, &res
) == 0) {
1637 src
= FIB_RES_PREFSRC(res
);
1640 src
= inet_select_addr(rt
->u
.dst
.dev
, rt
->rt_gateway
,
1642 memcpy(addr
, &src
, 4);
1645 #ifdef CONFIG_NET_CLS_ROUTE
1646 static void set_class_tag(struct rtable
*rt
, u32 tag
)
1648 if (!(rt
->u
.dst
.tclassid
& 0xFFFF))
1649 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF;
1650 if (!(rt
->u
.dst
.tclassid
& 0xFFFF0000))
1651 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF0000;
1655 static void rt_set_nexthop(struct rtable
*rt
, struct fib_result
*res
, u32 itag
)
1657 struct fib_info
*fi
= res
->fi
;
1660 if (FIB_RES_GW(*res
) &&
1661 FIB_RES_NH(*res
).nh_scope
== RT_SCOPE_LINK
)
1662 rt
->rt_gateway
= FIB_RES_GW(*res
);
1663 memcpy(rt
->u
.dst
.metrics
, fi
->fib_metrics
,
1664 sizeof(rt
->u
.dst
.metrics
));
1665 if (fi
->fib_mtu
== 0) {
1666 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = rt
->u
.dst
.dev
->mtu
;
1667 if (dst_metric_locked(&rt
->u
.dst
, RTAX_MTU
) &&
1668 rt
->rt_gateway
!= rt
->rt_dst
&&
1669 rt
->u
.dst
.dev
->mtu
> 576)
1670 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = 576;
1672 #ifdef CONFIG_NET_CLS_ROUTE
1673 rt
->u
.dst
.tclassid
= FIB_RES_NH(*res
).nh_tclassid
;
1676 rt
->u
.dst
.metrics
[RTAX_MTU
-1]= rt
->u
.dst
.dev
->mtu
;
1678 if (dst_metric(&rt
->u
.dst
, RTAX_HOPLIMIT
) == 0)
1679 rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] = sysctl_ip_default_ttl
;
1680 if (dst_mtu(&rt
->u
.dst
) > IP_MAX_MTU
)
1681 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = IP_MAX_MTU
;
1682 if (dst_metric(&rt
->u
.dst
, RTAX_ADVMSS
) == 0)
1683 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = max_t(unsigned int, rt
->u
.dst
.dev
->mtu
- 40,
1685 if (dst_metric(&rt
->u
.dst
, RTAX_ADVMSS
) > 65535 - 40)
1686 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = 65535 - 40;
1688 #ifdef CONFIG_NET_CLS_ROUTE
1689 #ifdef CONFIG_IP_MULTIPLE_TABLES
1690 set_class_tag(rt
, fib_rules_tclass(res
));
1692 set_class_tag(rt
, itag
);
1694 rt
->rt_type
= res
->type
;
1697 static int ip_route_input_mc(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1698 u8 tos
, struct net_device
*dev
, int our
)
1703 struct in_device
*in_dev
= in_dev_get(dev
);
1706 /* Primary sanity checks. */
1711 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
1712 ipv4_is_loopback(saddr
) || skb
->protocol
!= htons(ETH_P_IP
))
1715 if (ipv4_is_zeronet(saddr
)) {
1716 if (!ipv4_is_local_multicast(daddr
))
1718 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1719 } else if (fib_validate_source(saddr
, 0, tos
, 0,
1720 dev
, &spec_dst
, &itag
) < 0)
1723 rth
= dst_alloc(&ipv4_dst_ops
);
1727 rth
->u
.dst
.output
= ip_rt_bug
;
1729 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1730 rth
->u
.dst
.flags
= DST_HOST
;
1731 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1732 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1733 rth
->fl
.fl4_dst
= daddr
;
1734 rth
->rt_dst
= daddr
;
1735 rth
->fl
.fl4_tos
= tos
;
1736 rth
->fl
.mark
= skb
->mark
;
1737 rth
->fl
.fl4_src
= saddr
;
1738 rth
->rt_src
= saddr
;
1739 #ifdef CONFIG_NET_CLS_ROUTE
1740 rth
->u
.dst
.tclassid
= itag
;
1743 rth
->fl
.iif
= dev
->ifindex
;
1744 rth
->u
.dst
.dev
= init_net
.loopback_dev
;
1745 dev_hold(rth
->u
.dst
.dev
);
1746 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1748 rth
->rt_gateway
= daddr
;
1749 rth
->rt_spec_dst
= spec_dst
;
1750 rth
->rt_genid
= rt_genid(dev_net(dev
));
1751 rth
->rt_flags
= RTCF_MULTICAST
;
1752 rth
->rt_type
= RTN_MULTICAST
;
1754 rth
->u
.dst
.input
= ip_local_deliver
;
1755 rth
->rt_flags
|= RTCF_LOCAL
;
1758 #ifdef CONFIG_IP_MROUTE
1759 if (!ipv4_is_local_multicast(daddr
) && IN_DEV_MFORWARD(in_dev
))
1760 rth
->u
.dst
.input
= ip_mr_input
;
1762 RT_CACHE_STAT_INC(in_slow_mc
);
1765 hash
= rt_hash(daddr
, saddr
, dev
->ifindex
, rt_genid(dev_net(dev
)));
1766 return rt_intern_hash(hash
, rth
, &skb
->rtable
);
1778 static void ip_handle_martian_source(struct net_device
*dev
,
1779 struct in_device
*in_dev
,
1780 struct sk_buff
*skb
,
1784 RT_CACHE_STAT_INC(in_martian_src
);
1785 #ifdef CONFIG_IP_ROUTE_VERBOSE
1786 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit()) {
1788 * RFC1812 recommendation, if source is martian,
1789 * the only hint is MAC header.
1791 printk(KERN_WARNING
"martian source " NIPQUAD_FMT
" from "
1792 NIPQUAD_FMT
", on dev %s\n",
1793 NIPQUAD(daddr
), NIPQUAD(saddr
), dev
->name
);
1794 if (dev
->hard_header_len
&& skb_mac_header_was_set(skb
)) {
1796 const unsigned char *p
= skb_mac_header(skb
);
1797 printk(KERN_WARNING
"ll header: ");
1798 for (i
= 0; i
< dev
->hard_header_len
; i
++, p
++) {
1800 if (i
< (dev
->hard_header_len
- 1))
1809 static int __mkroute_input(struct sk_buff
*skb
,
1810 struct fib_result
*res
,
1811 struct in_device
*in_dev
,
1812 __be32 daddr
, __be32 saddr
, u32 tos
,
1813 struct rtable
**result
)
1818 struct in_device
*out_dev
;
1823 /* get a working reference to the output device */
1824 out_dev
= in_dev_get(FIB_RES_DEV(*res
));
1825 if (out_dev
== NULL
) {
1826 if (net_ratelimit())
1827 printk(KERN_CRIT
"Bug in ip_route_input" \
1828 "_slow(). Please, report\n");
1833 err
= fib_validate_source(saddr
, daddr
, tos
, FIB_RES_OIF(*res
),
1834 in_dev
->dev
, &spec_dst
, &itag
);
1836 ip_handle_martian_source(in_dev
->dev
, in_dev
, skb
, daddr
,
1844 flags
|= RTCF_DIRECTSRC
;
1846 if (out_dev
== in_dev
&& err
&&
1847 (IN_DEV_SHARED_MEDIA(out_dev
) ||
1848 inet_addr_onlink(out_dev
, saddr
, FIB_RES_GW(*res
))))
1849 flags
|= RTCF_DOREDIRECT
;
1851 if (skb
->protocol
!= htons(ETH_P_IP
)) {
1852 /* Not IP (i.e. ARP). Do not create route, if it is
1853 * invalid for proxy arp. DNAT routes are always valid.
1855 if (out_dev
== in_dev
) {
1862 rth
= dst_alloc(&ipv4_dst_ops
);
1868 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1869 rth
->u
.dst
.flags
= DST_HOST
;
1870 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1871 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1872 if (IN_DEV_CONF_GET(out_dev
, NOXFRM
))
1873 rth
->u
.dst
.flags
|= DST_NOXFRM
;
1874 rth
->fl
.fl4_dst
= daddr
;
1875 rth
->rt_dst
= daddr
;
1876 rth
->fl
.fl4_tos
= tos
;
1877 rth
->fl
.mark
= skb
->mark
;
1878 rth
->fl
.fl4_src
= saddr
;
1879 rth
->rt_src
= saddr
;
1880 rth
->rt_gateway
= daddr
;
1882 rth
->fl
.iif
= in_dev
->dev
->ifindex
;
1883 rth
->u
.dst
.dev
= (out_dev
)->dev
;
1884 dev_hold(rth
->u
.dst
.dev
);
1885 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1887 rth
->rt_spec_dst
= spec_dst
;
1889 rth
->u
.dst
.input
= ip_forward
;
1890 rth
->u
.dst
.output
= ip_output
;
1891 rth
->rt_genid
= rt_genid(dev_net(rth
->u
.dst
.dev
));
1893 rt_set_nexthop(rth
, res
, itag
);
1895 rth
->rt_flags
= flags
;
1900 /* release the working reference to the output device */
1901 in_dev_put(out_dev
);
1905 static int ip_mkroute_input(struct sk_buff
*skb
,
1906 struct fib_result
*res
,
1907 const struct flowi
*fl
,
1908 struct in_device
*in_dev
,
1909 __be32 daddr
, __be32 saddr
, u32 tos
)
1911 struct rtable
* rth
= NULL
;
1915 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1916 if (res
->fi
&& res
->fi
->fib_nhs
> 1 && fl
->oif
== 0)
1917 fib_select_multipath(fl
, res
);
1920 /* create a routing cache entry */
1921 err
= __mkroute_input(skb
, res
, in_dev
, daddr
, saddr
, tos
, &rth
);
1925 /* put it into the cache */
1926 hash
= rt_hash(daddr
, saddr
, fl
->iif
,
1927 rt_genid(dev_net(rth
->u
.dst
.dev
)));
1928 return rt_intern_hash(hash
, rth
, &skb
->rtable
);
1932 * NOTE. We drop all the packets that has local source
1933 * addresses, because every properly looped back packet
1934 * must have correct destination already attached by output routine.
1936 * Such approach solves two big problems:
1937 * 1. Not simplex devices are handled properly.
1938 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1941 static int ip_route_input_slow(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1942 u8 tos
, struct net_device
*dev
)
1944 struct fib_result res
;
1945 struct in_device
*in_dev
= in_dev_get(dev
);
1946 struct flowi fl
= { .nl_u
= { .ip4_u
=
1950 .scope
= RT_SCOPE_UNIVERSE
,
1953 .iif
= dev
->ifindex
};
1956 struct rtable
* rth
;
1961 struct net
* net
= dev_net(dev
);
1963 /* IP on this device is disabled. */
1968 /* Check for the most weird martians, which can be not detected
1972 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
1973 ipv4_is_loopback(saddr
))
1974 goto martian_source
;
1976 if (daddr
== htonl(0xFFFFFFFF) || (saddr
== 0 && daddr
== 0))
1979 /* Accept zero addresses only to limited broadcast;
1980 * I even do not know to fix it or not. Waiting for complains :-)
1982 if (ipv4_is_zeronet(saddr
))
1983 goto martian_source
;
1985 if (ipv4_is_lbcast(daddr
) || ipv4_is_zeronet(daddr
) ||
1986 ipv4_is_loopback(daddr
))
1987 goto martian_destination
;
1990 * Now we are ready to route packet.
1992 if ((err
= fib_lookup(net
, &fl
, &res
)) != 0) {
1993 if (!IN_DEV_FORWARD(in_dev
))
1999 RT_CACHE_STAT_INC(in_slow_tot
);
2001 if (res
.type
== RTN_BROADCAST
)
2004 if (res
.type
== RTN_LOCAL
) {
2006 result
= fib_validate_source(saddr
, daddr
, tos
,
2007 net
->loopback_dev
->ifindex
,
2008 dev
, &spec_dst
, &itag
);
2010 goto martian_source
;
2012 flags
|= RTCF_DIRECTSRC
;
2017 if (!IN_DEV_FORWARD(in_dev
))
2019 if (res
.type
!= RTN_UNICAST
)
2020 goto martian_destination
;
2022 err
= ip_mkroute_input(skb
, &res
, &fl
, in_dev
, daddr
, saddr
, tos
);
2030 if (skb
->protocol
!= htons(ETH_P_IP
))
2033 if (ipv4_is_zeronet(saddr
))
2034 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
2036 err
= fib_validate_source(saddr
, 0, tos
, 0, dev
, &spec_dst
,
2039 goto martian_source
;
2041 flags
|= RTCF_DIRECTSRC
;
2043 flags
|= RTCF_BROADCAST
;
2044 res
.type
= RTN_BROADCAST
;
2045 RT_CACHE_STAT_INC(in_brd
);
2048 rth
= dst_alloc(&ipv4_dst_ops
);
2052 rth
->u
.dst
.output
= ip_rt_bug
;
2053 rth
->rt_genid
= rt_genid(net
);
2055 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2056 rth
->u
.dst
.flags
= DST_HOST
;
2057 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2058 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2059 rth
->fl
.fl4_dst
= daddr
;
2060 rth
->rt_dst
= daddr
;
2061 rth
->fl
.fl4_tos
= tos
;
2062 rth
->fl
.mark
= skb
->mark
;
2063 rth
->fl
.fl4_src
= saddr
;
2064 rth
->rt_src
= saddr
;
2065 #ifdef CONFIG_NET_CLS_ROUTE
2066 rth
->u
.dst
.tclassid
= itag
;
2069 rth
->fl
.iif
= dev
->ifindex
;
2070 rth
->u
.dst
.dev
= net
->loopback_dev
;
2071 dev_hold(rth
->u
.dst
.dev
);
2072 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
2073 rth
->rt_gateway
= daddr
;
2074 rth
->rt_spec_dst
= spec_dst
;
2075 rth
->u
.dst
.input
= ip_local_deliver
;
2076 rth
->rt_flags
= flags
|RTCF_LOCAL
;
2077 if (res
.type
== RTN_UNREACHABLE
) {
2078 rth
->u
.dst
.input
= ip_error
;
2079 rth
->u
.dst
.error
= -err
;
2080 rth
->rt_flags
&= ~RTCF_LOCAL
;
2082 rth
->rt_type
= res
.type
;
2083 hash
= rt_hash(daddr
, saddr
, fl
.iif
, rt_genid(net
));
2084 err
= rt_intern_hash(hash
, rth
, &skb
->rtable
);
2088 RT_CACHE_STAT_INC(in_no_route
);
2089 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_UNIVERSE
);
2090 res
.type
= RTN_UNREACHABLE
;
2096 * Do not cache martian addresses: they should be logged (RFC1812)
2098 martian_destination
:
2099 RT_CACHE_STAT_INC(in_martian_dst
);
2100 #ifdef CONFIG_IP_ROUTE_VERBOSE
2101 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
2102 printk(KERN_WARNING
"martian destination " NIPQUAD_FMT
" from "
2103 NIPQUAD_FMT
", dev %s\n",
2104 NIPQUAD(daddr
), NIPQUAD(saddr
), dev
->name
);
2108 err
= -EHOSTUNREACH
;
2120 ip_handle_martian_source(dev
, in_dev
, skb
, daddr
, saddr
);
2124 int ip_route_input(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2125 u8 tos
, struct net_device
*dev
)
2127 struct rtable
* rth
;
2129 int iif
= dev
->ifindex
;
2133 tos
&= IPTOS_RT_MASK
;
2134 hash
= rt_hash(daddr
, saddr
, iif
, rt_genid(net
));
2137 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2138 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2139 if (((rth
->fl
.fl4_dst
^ daddr
) |
2140 (rth
->fl
.fl4_src
^ saddr
) |
2141 (rth
->fl
.iif
^ iif
) |
2143 (rth
->fl
.fl4_tos
^ tos
)) == 0 &&
2144 rth
->fl
.mark
== skb
->mark
&&
2145 net_eq(dev_net(rth
->u
.dst
.dev
), net
) &&
2146 !rt_is_expired(rth
)) {
2147 dst_use(&rth
->u
.dst
, jiffies
);
2148 RT_CACHE_STAT_INC(in_hit
);
2153 RT_CACHE_STAT_INC(in_hlist_search
);
2157 /* Multicast recognition logic is moved from route cache to here.
2158 The problem was that too many Ethernet cards have broken/missing
2159 hardware multicast filters :-( As result the host on multicasting
2160 network acquires a lot of useless route cache entries, sort of
2161 SDR messages from all the world. Now we try to get rid of them.
2162 Really, provided software IP multicast filter is organized
2163 reasonably (at least, hashed), it does not result in a slowdown
2164 comparing with route cache reject entries.
2165 Note, that multicast routers are not affected, because
2166 route cache entry is created eventually.
2168 if (ipv4_is_multicast(daddr
)) {
2169 struct in_device
*in_dev
;
2172 if ((in_dev
= __in_dev_get_rcu(dev
)) != NULL
) {
2173 int our
= ip_check_mc(in_dev
, daddr
, saddr
,
2174 ip_hdr(skb
)->protocol
);
2176 #ifdef CONFIG_IP_MROUTE
2177 || (!ipv4_is_local_multicast(daddr
) &&
2178 IN_DEV_MFORWARD(in_dev
))
2182 return ip_route_input_mc(skb
, daddr
, saddr
,
2189 return ip_route_input_slow(skb
, daddr
, saddr
, tos
, dev
);
2192 static int __mkroute_output(struct rtable
**result
,
2193 struct fib_result
*res
,
2194 const struct flowi
*fl
,
2195 const struct flowi
*oldflp
,
2196 struct net_device
*dev_out
,
2200 struct in_device
*in_dev
;
2201 u32 tos
= RT_FL_TOS(oldflp
);
2204 if (ipv4_is_loopback(fl
->fl4_src
) && !(dev_out
->flags
&IFF_LOOPBACK
))
2207 if (fl
->fl4_dst
== htonl(0xFFFFFFFF))
2208 res
->type
= RTN_BROADCAST
;
2209 else if (ipv4_is_multicast(fl
->fl4_dst
))
2210 res
->type
= RTN_MULTICAST
;
2211 else if (ipv4_is_lbcast(fl
->fl4_dst
) || ipv4_is_zeronet(fl
->fl4_dst
))
2214 if (dev_out
->flags
& IFF_LOOPBACK
)
2215 flags
|= RTCF_LOCAL
;
2217 /* get work reference to inet device */
2218 in_dev
= in_dev_get(dev_out
);
2222 if (res
->type
== RTN_BROADCAST
) {
2223 flags
|= RTCF_BROADCAST
| RTCF_LOCAL
;
2225 fib_info_put(res
->fi
);
2228 } else if (res
->type
== RTN_MULTICAST
) {
2229 flags
|= RTCF_MULTICAST
|RTCF_LOCAL
;
2230 if (!ip_check_mc(in_dev
, oldflp
->fl4_dst
, oldflp
->fl4_src
,
2232 flags
&= ~RTCF_LOCAL
;
2233 /* If multicast route do not exist use
2234 default one, but do not gateway in this case.
2237 if (res
->fi
&& res
->prefixlen
< 4) {
2238 fib_info_put(res
->fi
);
2244 rth
= dst_alloc(&ipv4_dst_ops
);
2250 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2251 rth
->u
.dst
.flags
= DST_HOST
;
2252 if (IN_DEV_CONF_GET(in_dev
, NOXFRM
))
2253 rth
->u
.dst
.flags
|= DST_NOXFRM
;
2254 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2255 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2257 rth
->fl
.fl4_dst
= oldflp
->fl4_dst
;
2258 rth
->fl
.fl4_tos
= tos
;
2259 rth
->fl
.fl4_src
= oldflp
->fl4_src
;
2260 rth
->fl
.oif
= oldflp
->oif
;
2261 rth
->fl
.mark
= oldflp
->mark
;
2262 rth
->rt_dst
= fl
->fl4_dst
;
2263 rth
->rt_src
= fl
->fl4_src
;
2264 rth
->rt_iif
= oldflp
->oif
? : dev_out
->ifindex
;
2265 /* get references to the devices that are to be hold by the routing
2267 rth
->u
.dst
.dev
= dev_out
;
2269 rth
->idev
= in_dev_get(dev_out
);
2270 rth
->rt_gateway
= fl
->fl4_dst
;
2271 rth
->rt_spec_dst
= fl
->fl4_src
;
2273 rth
->u
.dst
.output
=ip_output
;
2274 rth
->rt_genid
= rt_genid(dev_net(dev_out
));
2276 RT_CACHE_STAT_INC(out_slow_tot
);
2278 if (flags
& RTCF_LOCAL
) {
2279 rth
->u
.dst
.input
= ip_local_deliver
;
2280 rth
->rt_spec_dst
= fl
->fl4_dst
;
2282 if (flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) {
2283 rth
->rt_spec_dst
= fl
->fl4_src
;
2284 if (flags
& RTCF_LOCAL
&&
2285 !(dev_out
->flags
& IFF_LOOPBACK
)) {
2286 rth
->u
.dst
.output
= ip_mc_output
;
2287 RT_CACHE_STAT_INC(out_slow_mc
);
2289 #ifdef CONFIG_IP_MROUTE
2290 if (res
->type
== RTN_MULTICAST
) {
2291 if (IN_DEV_MFORWARD(in_dev
) &&
2292 !ipv4_is_local_multicast(oldflp
->fl4_dst
)) {
2293 rth
->u
.dst
.input
= ip_mr_input
;
2294 rth
->u
.dst
.output
= ip_mc_output
;
2300 rt_set_nexthop(rth
, res
, 0);
2302 rth
->rt_flags
= flags
;
2306 /* release work reference to inet device */
2312 static int ip_mkroute_output(struct rtable
**rp
,
2313 struct fib_result
*res
,
2314 const struct flowi
*fl
,
2315 const struct flowi
*oldflp
,
2316 struct net_device
*dev_out
,
2319 struct rtable
*rth
= NULL
;
2320 int err
= __mkroute_output(&rth
, res
, fl
, oldflp
, dev_out
, flags
);
2323 hash
= rt_hash(oldflp
->fl4_dst
, oldflp
->fl4_src
, oldflp
->oif
,
2324 rt_genid(dev_net(dev_out
)));
2325 err
= rt_intern_hash(hash
, rth
, rp
);
2332 * Major route resolver routine.
2335 static int ip_route_output_slow(struct net
*net
, struct rtable
**rp
,
2336 const struct flowi
*oldflp
)
2338 u32 tos
= RT_FL_TOS(oldflp
);
2339 struct flowi fl
= { .nl_u
= { .ip4_u
=
2340 { .daddr
= oldflp
->fl4_dst
,
2341 .saddr
= oldflp
->fl4_src
,
2342 .tos
= tos
& IPTOS_RT_MASK
,
2343 .scope
= ((tos
& RTO_ONLINK
) ?
2347 .mark
= oldflp
->mark
,
2348 .iif
= net
->loopback_dev
->ifindex
,
2349 .oif
= oldflp
->oif
};
2350 struct fib_result res
;
2352 struct net_device
*dev_out
= NULL
;
2358 #ifdef CONFIG_IP_MULTIPLE_TABLES
2362 if (oldflp
->fl4_src
) {
2364 if (ipv4_is_multicast(oldflp
->fl4_src
) ||
2365 ipv4_is_lbcast(oldflp
->fl4_src
) ||
2366 ipv4_is_zeronet(oldflp
->fl4_src
))
2369 /* I removed check for oif == dev_out->oif here.
2370 It was wrong for two reasons:
2371 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2372 is assigned to multiple interfaces.
2373 2. Moreover, we are allowed to send packets with saddr
2374 of another iface. --ANK
2377 if (oldflp
->oif
== 0
2378 && (ipv4_is_multicast(oldflp
->fl4_dst
) ||
2379 oldflp
->fl4_dst
== htonl(0xFFFFFFFF))) {
2380 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2381 dev_out
= ip_dev_find(net
, oldflp
->fl4_src
);
2382 if (dev_out
== NULL
)
2385 /* Special hack: user can direct multicasts
2386 and limited broadcast via necessary interface
2387 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2388 This hack is not just for fun, it allows
2389 vic,vat and friends to work.
2390 They bind socket to loopback, set ttl to zero
2391 and expect that it will work.
2392 From the viewpoint of routing cache they are broken,
2393 because we are not allowed to build multicast path
2394 with loopback source addr (look, routing cache
2395 cannot know, that ttl is zero, so that packet
2396 will not leave this host and route is valid).
2397 Luckily, this hack is good workaround.
2400 fl
.oif
= dev_out
->ifindex
;
2404 if (!(oldflp
->flags
& FLOWI_FLAG_ANYSRC
)) {
2405 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2406 dev_out
= ip_dev_find(net
, oldflp
->fl4_src
);
2407 if (dev_out
== NULL
)
2416 dev_out
= dev_get_by_index(net
, oldflp
->oif
);
2418 if (dev_out
== NULL
)
2421 /* RACE: Check return value of inet_select_addr instead. */
2422 if (__in_dev_get_rtnl(dev_out
) == NULL
) {
2424 goto out
; /* Wrong error code */
2427 if (ipv4_is_local_multicast(oldflp
->fl4_dst
) ||
2428 oldflp
->fl4_dst
== htonl(0xFFFFFFFF)) {
2430 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2435 if (ipv4_is_multicast(oldflp
->fl4_dst
))
2436 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2438 else if (!oldflp
->fl4_dst
)
2439 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2445 fl
.fl4_dst
= fl
.fl4_src
;
2447 fl
.fl4_dst
= fl
.fl4_src
= htonl(INADDR_LOOPBACK
);
2450 dev_out
= net
->loopback_dev
;
2452 fl
.oif
= net
->loopback_dev
->ifindex
;
2453 res
.type
= RTN_LOCAL
;
2454 flags
|= RTCF_LOCAL
;
2458 if (fib_lookup(net
, &fl
, &res
)) {
2461 /* Apparently, routing tables are wrong. Assume,
2462 that the destination is on link.
2465 Because we are allowed to send to iface
2466 even if it has NO routes and NO assigned
2467 addresses. When oif is specified, routing
2468 tables are looked up with only one purpose:
2469 to catch if destination is gatewayed, rather than
2470 direct. Moreover, if MSG_DONTROUTE is set,
2471 we send packet, ignoring both routing tables
2472 and ifaddr state. --ANK
2475 We could make it even if oif is unknown,
2476 likely IPv6, but we do not.
2479 if (fl
.fl4_src
== 0)
2480 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2482 res
.type
= RTN_UNICAST
;
2492 if (res
.type
== RTN_LOCAL
) {
2494 fl
.fl4_src
= fl
.fl4_dst
;
2497 dev_out
= net
->loopback_dev
;
2499 fl
.oif
= dev_out
->ifindex
;
2501 fib_info_put(res
.fi
);
2503 flags
|= RTCF_LOCAL
;
2507 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2508 if (res
.fi
->fib_nhs
> 1 && fl
.oif
== 0)
2509 fib_select_multipath(&fl
, &res
);
2512 if (!res
.prefixlen
&& res
.type
== RTN_UNICAST
&& !fl
.oif
)
2513 fib_select_default(net
, &fl
, &res
);
2516 fl
.fl4_src
= FIB_RES_PREFSRC(res
);
2520 dev_out
= FIB_RES_DEV(res
);
2522 fl
.oif
= dev_out
->ifindex
;
2526 err
= ip_mkroute_output(rp
, &res
, &fl
, oldflp
, dev_out
, flags
);
2536 int __ip_route_output_key(struct net
*net
, struct rtable
**rp
,
2537 const struct flowi
*flp
)
2542 hash
= rt_hash(flp
->fl4_dst
, flp
->fl4_src
, flp
->oif
, rt_genid(net
));
2545 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2546 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2547 if (rth
->fl
.fl4_dst
== flp
->fl4_dst
&&
2548 rth
->fl
.fl4_src
== flp
->fl4_src
&&
2550 rth
->fl
.oif
== flp
->oif
&&
2551 rth
->fl
.mark
== flp
->mark
&&
2552 !((rth
->fl
.fl4_tos
^ flp
->fl4_tos
) &
2553 (IPTOS_RT_MASK
| RTO_ONLINK
)) &&
2554 net_eq(dev_net(rth
->u
.dst
.dev
), net
) &&
2555 !rt_is_expired(rth
)) {
2556 dst_use(&rth
->u
.dst
, jiffies
);
2557 RT_CACHE_STAT_INC(out_hit
);
2558 rcu_read_unlock_bh();
2562 RT_CACHE_STAT_INC(out_hlist_search
);
2564 rcu_read_unlock_bh();
2566 return ip_route_output_slow(net
, rp
, flp
);
2569 EXPORT_SYMBOL_GPL(__ip_route_output_key
);
2571 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
2575 static struct dst_ops ipv4_dst_blackhole_ops
= {
2577 .protocol
= __constant_htons(ETH_P_IP
),
2578 .destroy
= ipv4_dst_destroy
,
2579 .check
= ipv4_dst_check
,
2580 .update_pmtu
= ipv4_rt_blackhole_update_pmtu
,
2581 .entry_size
= sizeof(struct rtable
),
2582 .entries
= ATOMIC_INIT(0),
2586 static int ipv4_dst_blackhole(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
)
2588 struct rtable
*ort
= *rp
;
2589 struct rtable
*rt
= (struct rtable
*)
2590 dst_alloc(&ipv4_dst_blackhole_ops
);
2593 struct dst_entry
*new = &rt
->u
.dst
;
2595 atomic_set(&new->__refcnt
, 1);
2597 new->input
= dst_discard
;
2598 new->output
= dst_discard
;
2599 memcpy(new->metrics
, ort
->u
.dst
.metrics
, RTAX_MAX
*sizeof(u32
));
2601 new->dev
= ort
->u
.dst
.dev
;
2607 rt
->idev
= ort
->idev
;
2609 in_dev_hold(rt
->idev
);
2610 rt
->rt_genid
= rt_genid(net
);
2611 rt
->rt_flags
= ort
->rt_flags
;
2612 rt
->rt_type
= ort
->rt_type
;
2613 rt
->rt_dst
= ort
->rt_dst
;
2614 rt
->rt_src
= ort
->rt_src
;
2615 rt
->rt_iif
= ort
->rt_iif
;
2616 rt
->rt_gateway
= ort
->rt_gateway
;
2617 rt
->rt_spec_dst
= ort
->rt_spec_dst
;
2618 rt
->peer
= ort
->peer
;
2620 atomic_inc(&rt
->peer
->refcnt
);
2625 dst_release(&(*rp
)->u
.dst
);
2627 return (rt
? 0 : -ENOMEM
);
2630 int ip_route_output_flow(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
,
2631 struct sock
*sk
, int flags
)
2635 if ((err
= __ip_route_output_key(net
, rp
, flp
)) != 0)
2640 flp
->fl4_src
= (*rp
)->rt_src
;
2642 flp
->fl4_dst
= (*rp
)->rt_dst
;
2643 err
= __xfrm_lookup((struct dst_entry
**)rp
, flp
, sk
,
2644 flags
? XFRM_LOOKUP_WAIT
: 0);
2645 if (err
== -EREMOTE
)
2646 err
= ipv4_dst_blackhole(net
, rp
, flp
);
2654 EXPORT_SYMBOL_GPL(ip_route_output_flow
);
2656 int ip_route_output_key(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
)
2658 return ip_route_output_flow(net
, rp
, flp
, NULL
, 0);
2661 static int rt_fill_info(struct sk_buff
*skb
, u32 pid
, u32 seq
, int event
,
2662 int nowait
, unsigned int flags
)
2664 struct rtable
*rt
= skb
->rtable
;
2666 struct nlmsghdr
*nlh
;
2668 u32 id
= 0, ts
= 0, tsage
= 0, error
;
2670 nlh
= nlmsg_put(skb
, pid
, seq
, event
, sizeof(*r
), flags
);
2674 r
= nlmsg_data(nlh
);
2675 r
->rtm_family
= AF_INET
;
2676 r
->rtm_dst_len
= 32;
2678 r
->rtm_tos
= rt
->fl
.fl4_tos
;
2679 r
->rtm_table
= RT_TABLE_MAIN
;
2680 NLA_PUT_U32(skb
, RTA_TABLE
, RT_TABLE_MAIN
);
2681 r
->rtm_type
= rt
->rt_type
;
2682 r
->rtm_scope
= RT_SCOPE_UNIVERSE
;
2683 r
->rtm_protocol
= RTPROT_UNSPEC
;
2684 r
->rtm_flags
= (rt
->rt_flags
& ~0xFFFF) | RTM_F_CLONED
;
2685 if (rt
->rt_flags
& RTCF_NOTIFY
)
2686 r
->rtm_flags
|= RTM_F_NOTIFY
;
2688 NLA_PUT_BE32(skb
, RTA_DST
, rt
->rt_dst
);
2690 if (rt
->fl
.fl4_src
) {
2691 r
->rtm_src_len
= 32;
2692 NLA_PUT_BE32(skb
, RTA_SRC
, rt
->fl
.fl4_src
);
2695 NLA_PUT_U32(skb
, RTA_OIF
, rt
->u
.dst
.dev
->ifindex
);
2696 #ifdef CONFIG_NET_CLS_ROUTE
2697 if (rt
->u
.dst
.tclassid
)
2698 NLA_PUT_U32(skb
, RTA_FLOW
, rt
->u
.dst
.tclassid
);
2701 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_spec_dst
);
2702 else if (rt
->rt_src
!= rt
->fl
.fl4_src
)
2703 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_src
);
2705 if (rt
->rt_dst
!= rt
->rt_gateway
)
2706 NLA_PUT_BE32(skb
, RTA_GATEWAY
, rt
->rt_gateway
);
2708 if (rtnetlink_put_metrics(skb
, rt
->u
.dst
.metrics
) < 0)
2709 goto nla_put_failure
;
2711 error
= rt
->u
.dst
.error
;
2712 expires
= rt
->u
.dst
.expires
? rt
->u
.dst
.expires
- jiffies
: 0;
2714 id
= rt
->peer
->ip_id_count
;
2715 if (rt
->peer
->tcp_ts_stamp
) {
2716 ts
= rt
->peer
->tcp_ts
;
2717 tsage
= get_seconds() - rt
->peer
->tcp_ts_stamp
;
2722 #ifdef CONFIG_IP_MROUTE
2723 __be32 dst
= rt
->rt_dst
;
2725 if (ipv4_is_multicast(dst
) && !ipv4_is_local_multicast(dst
) &&
2726 IPV4_DEVCONF_ALL(&init_net
, MC_FORWARDING
)) {
2727 int err
= ipmr_get_route(skb
, r
, nowait
);
2732 goto nla_put_failure
;
2734 if (err
== -EMSGSIZE
)
2735 goto nla_put_failure
;
2741 NLA_PUT_U32(skb
, RTA_IIF
, rt
->fl
.iif
);
2744 if (rtnl_put_cacheinfo(skb
, &rt
->u
.dst
, id
, ts
, tsage
,
2745 expires
, error
) < 0)
2746 goto nla_put_failure
;
2748 return nlmsg_end(skb
, nlh
);
2751 nlmsg_cancel(skb
, nlh
);
2755 static int inet_rtm_getroute(struct sk_buff
*in_skb
, struct nlmsghdr
* nlh
, void *arg
)
2757 struct net
*net
= sock_net(in_skb
->sk
);
2759 struct nlattr
*tb
[RTA_MAX
+1];
2760 struct rtable
*rt
= NULL
;
2765 struct sk_buff
*skb
;
2767 err
= nlmsg_parse(nlh
, sizeof(*rtm
), tb
, RTA_MAX
, rtm_ipv4_policy
);
2771 rtm
= nlmsg_data(nlh
);
2773 skb
= alloc_skb(NLMSG_GOODSIZE
, GFP_KERNEL
);
2779 /* Reserve room for dummy headers, this skb can pass
2780 through good chunk of routing engine.
2782 skb_reset_mac_header(skb
);
2783 skb_reset_network_header(skb
);
2785 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2786 ip_hdr(skb
)->protocol
= IPPROTO_ICMP
;
2787 skb_reserve(skb
, MAX_HEADER
+ sizeof(struct iphdr
));
2789 src
= tb
[RTA_SRC
] ? nla_get_be32(tb
[RTA_SRC
]) : 0;
2790 dst
= tb
[RTA_DST
] ? nla_get_be32(tb
[RTA_DST
]) : 0;
2791 iif
= tb
[RTA_IIF
] ? nla_get_u32(tb
[RTA_IIF
]) : 0;
2794 struct net_device
*dev
;
2796 dev
= __dev_get_by_index(net
, iif
);
2802 skb
->protocol
= htons(ETH_P_IP
);
2805 err
= ip_route_input(skb
, dst
, src
, rtm
->rtm_tos
, dev
);
2809 if (err
== 0 && rt
->u
.dst
.error
)
2810 err
= -rt
->u
.dst
.error
;
2817 .tos
= rtm
->rtm_tos
,
2820 .oif
= tb
[RTA_OIF
] ? nla_get_u32(tb
[RTA_OIF
]) : 0,
2822 err
= ip_route_output_key(net
, &rt
, &fl
);
2829 if (rtm
->rtm_flags
& RTM_F_NOTIFY
)
2830 rt
->rt_flags
|= RTCF_NOTIFY
;
2832 err
= rt_fill_info(skb
, NETLINK_CB(in_skb
).pid
, nlh
->nlmsg_seq
,
2833 RTM_NEWROUTE
, 0, 0);
2837 err
= rtnl_unicast(skb
, net
, NETLINK_CB(in_skb
).pid
);
2846 int ip_rt_dump(struct sk_buff
*skb
, struct netlink_callback
*cb
)
2853 net
= sock_net(skb
->sk
);
2858 s_idx
= idx
= cb
->args
[1];
2859 for (h
= s_h
; h
<= rt_hash_mask
; h
++, s_idx
= 0) {
2860 if (!rt_hash_table
[h
].chain
)
2863 for (rt
= rcu_dereference(rt_hash_table
[h
].chain
), idx
= 0; rt
;
2864 rt
= rcu_dereference(rt
->u
.dst
.rt_next
), idx
++) {
2865 if (!net_eq(dev_net(rt
->u
.dst
.dev
), net
) || idx
< s_idx
)
2867 if (rt_is_expired(rt
))
2869 skb
->dst
= dst_clone(&rt
->u
.dst
);
2870 if (rt_fill_info(skb
, NETLINK_CB(cb
->skb
).pid
,
2871 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
2872 1, NLM_F_MULTI
) <= 0) {
2873 dst_release(xchg(&skb
->dst
, NULL
));
2874 rcu_read_unlock_bh();
2877 dst_release(xchg(&skb
->dst
, NULL
));
2879 rcu_read_unlock_bh();
2888 void ip_rt_multicast_event(struct in_device
*in_dev
)
2890 rt_cache_flush(dev_net(in_dev
->dev
), 0);
2893 #ifdef CONFIG_SYSCTL
2894 static int ipv4_sysctl_rtcache_flush(ctl_table
*__ctl
, int write
,
2895 struct file
*filp
, void __user
*buffer
,
2896 size_t *lenp
, loff_t
*ppos
)
2903 memcpy(&ctl
, __ctl
, sizeof(ctl
));
2904 ctl
.data
= &flush_delay
;
2905 proc_dointvec(&ctl
, write
, filp
, buffer
, lenp
, ppos
);
2907 net
= (struct net
*)__ctl
->extra1
;
2908 rt_cache_flush(net
, flush_delay
);
2915 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table
*table
,
2916 void __user
*oldval
,
2917 size_t __user
*oldlenp
,
2918 void __user
*newval
,
2923 if (newlen
!= sizeof(int))
2925 if (get_user(delay
, (int __user
*)newval
))
2927 net
= (struct net
*)table
->extra1
;
2928 rt_cache_flush(net
, delay
);
2932 static void rt_secret_reschedule(int old
)
2935 int new = ip_rt_secret_interval
;
2936 int diff
= new - old
;
2943 int deleted
= del_timer_sync(&net
->ipv4
.rt_secret_timer
);
2949 long time
= net
->ipv4
.rt_secret_timer
.expires
- jiffies
;
2951 if (time
<= 0 || (time
+= diff
) <= 0)
2954 net
->ipv4
.rt_secret_timer
.expires
= time
;
2956 net
->ipv4
.rt_secret_timer
.expires
= new;
2958 net
->ipv4
.rt_secret_timer
.expires
+= jiffies
;
2959 add_timer(&net
->ipv4
.rt_secret_timer
);
2964 static int ipv4_sysctl_rt_secret_interval(ctl_table
*ctl
, int write
,
2966 void __user
*buffer
, size_t *lenp
,
2969 int old
= ip_rt_secret_interval
;
2970 int ret
= proc_dointvec_jiffies(ctl
, write
, filp
, buffer
, lenp
, ppos
);
2972 rt_secret_reschedule(old
);
2977 static int ipv4_sysctl_rt_secret_interval_strategy(ctl_table
*table
,
2978 void __user
*oldval
,
2979 size_t __user
*oldlenp
,
2980 void __user
*newval
,
2983 int old
= ip_rt_secret_interval
;
2984 int ret
= sysctl_jiffies(table
, oldval
, oldlenp
, newval
, newlen
);
2986 rt_secret_reschedule(old
);
2991 static ctl_table ipv4_route_table
[] = {
2993 .ctl_name
= NET_IPV4_ROUTE_GC_THRESH
,
2994 .procname
= "gc_thresh",
2995 .data
= &ipv4_dst_ops
.gc_thresh
,
2996 .maxlen
= sizeof(int),
2998 .proc_handler
= &proc_dointvec
,
3001 .ctl_name
= NET_IPV4_ROUTE_MAX_SIZE
,
3002 .procname
= "max_size",
3003 .data
= &ip_rt_max_size
,
3004 .maxlen
= sizeof(int),
3006 .proc_handler
= &proc_dointvec
,
3009 /* Deprecated. Use gc_min_interval_ms */
3011 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL
,
3012 .procname
= "gc_min_interval",
3013 .data
= &ip_rt_gc_min_interval
,
3014 .maxlen
= sizeof(int),
3016 .proc_handler
= &proc_dointvec_jiffies
,
3017 .strategy
= &sysctl_jiffies
,
3020 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS
,
3021 .procname
= "gc_min_interval_ms",
3022 .data
= &ip_rt_gc_min_interval
,
3023 .maxlen
= sizeof(int),
3025 .proc_handler
= &proc_dointvec_ms_jiffies
,
3026 .strategy
= &sysctl_ms_jiffies
,
3029 .ctl_name
= NET_IPV4_ROUTE_GC_TIMEOUT
,
3030 .procname
= "gc_timeout",
3031 .data
= &ip_rt_gc_timeout
,
3032 .maxlen
= sizeof(int),
3034 .proc_handler
= &proc_dointvec_jiffies
,
3035 .strategy
= &sysctl_jiffies
,
3038 .ctl_name
= NET_IPV4_ROUTE_GC_INTERVAL
,
3039 .procname
= "gc_interval",
3040 .data
= &ip_rt_gc_interval
,
3041 .maxlen
= sizeof(int),
3043 .proc_handler
= &proc_dointvec_jiffies
,
3044 .strategy
= &sysctl_jiffies
,
3047 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_LOAD
,
3048 .procname
= "redirect_load",
3049 .data
= &ip_rt_redirect_load
,
3050 .maxlen
= sizeof(int),
3052 .proc_handler
= &proc_dointvec
,
3055 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_NUMBER
,
3056 .procname
= "redirect_number",
3057 .data
= &ip_rt_redirect_number
,
3058 .maxlen
= sizeof(int),
3060 .proc_handler
= &proc_dointvec
,
3063 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_SILENCE
,
3064 .procname
= "redirect_silence",
3065 .data
= &ip_rt_redirect_silence
,
3066 .maxlen
= sizeof(int),
3068 .proc_handler
= &proc_dointvec
,
3071 .ctl_name
= NET_IPV4_ROUTE_ERROR_COST
,
3072 .procname
= "error_cost",
3073 .data
= &ip_rt_error_cost
,
3074 .maxlen
= sizeof(int),
3076 .proc_handler
= &proc_dointvec
,
3079 .ctl_name
= NET_IPV4_ROUTE_ERROR_BURST
,
3080 .procname
= "error_burst",
3081 .data
= &ip_rt_error_burst
,
3082 .maxlen
= sizeof(int),
3084 .proc_handler
= &proc_dointvec
,
3087 .ctl_name
= NET_IPV4_ROUTE_GC_ELASTICITY
,
3088 .procname
= "gc_elasticity",
3089 .data
= &ip_rt_gc_elasticity
,
3090 .maxlen
= sizeof(int),
3092 .proc_handler
= &proc_dointvec
,
3095 .ctl_name
= NET_IPV4_ROUTE_MTU_EXPIRES
,
3096 .procname
= "mtu_expires",
3097 .data
= &ip_rt_mtu_expires
,
3098 .maxlen
= sizeof(int),
3100 .proc_handler
= &proc_dointvec_jiffies
,
3101 .strategy
= &sysctl_jiffies
,
3104 .ctl_name
= NET_IPV4_ROUTE_MIN_PMTU
,
3105 .procname
= "min_pmtu",
3106 .data
= &ip_rt_min_pmtu
,
3107 .maxlen
= sizeof(int),
3109 .proc_handler
= &proc_dointvec
,
3112 .ctl_name
= NET_IPV4_ROUTE_MIN_ADVMSS
,
3113 .procname
= "min_adv_mss",
3114 .data
= &ip_rt_min_advmss
,
3115 .maxlen
= sizeof(int),
3117 .proc_handler
= &proc_dointvec
,
3120 .ctl_name
= NET_IPV4_ROUTE_SECRET_INTERVAL
,
3121 .procname
= "secret_interval",
3122 .data
= &ip_rt_secret_interval
,
3123 .maxlen
= sizeof(int),
3125 .proc_handler
= &ipv4_sysctl_rt_secret_interval
,
3126 .strategy
= &ipv4_sysctl_rt_secret_interval_strategy
,
3131 static struct ctl_table empty
[1];
3133 static struct ctl_table ipv4_skeleton
[] =
3135 { .procname
= "route", .ctl_name
= NET_IPV4_ROUTE
,
3136 .mode
= 0555, .child
= ipv4_route_table
},
3137 { .procname
= "neigh", .ctl_name
= NET_IPV4_NEIGH
,
3138 .mode
= 0555, .child
= empty
},
3142 static __net_initdata
struct ctl_path ipv4_path
[] = {
3143 { .procname
= "net", .ctl_name
= CTL_NET
, },
3144 { .procname
= "ipv4", .ctl_name
= NET_IPV4
, },
3148 static struct ctl_table ipv4_route_flush_table
[] = {
3150 .ctl_name
= NET_IPV4_ROUTE_FLUSH
,
3151 .procname
= "flush",
3152 .maxlen
= sizeof(int),
3154 .proc_handler
= &ipv4_sysctl_rtcache_flush
,
3155 .strategy
= &ipv4_sysctl_rtcache_flush_strategy
,
3160 static __net_initdata
struct ctl_path ipv4_route_path
[] = {
3161 { .procname
= "net", .ctl_name
= CTL_NET
, },
3162 { .procname
= "ipv4", .ctl_name
= NET_IPV4
, },
3163 { .procname
= "route", .ctl_name
= NET_IPV4_ROUTE
, },
3167 static __net_init
int sysctl_route_net_init(struct net
*net
)
3169 struct ctl_table
*tbl
;
3171 tbl
= ipv4_route_flush_table
;
3172 if (net
!= &init_net
) {
3173 tbl
= kmemdup(tbl
, sizeof(ipv4_route_flush_table
), GFP_KERNEL
);
3177 tbl
[0].extra1
= net
;
3179 net
->ipv4
.route_hdr
=
3180 register_net_sysctl_table(net
, ipv4_route_path
, tbl
);
3181 if (net
->ipv4
.route_hdr
== NULL
)
3186 if (tbl
!= ipv4_route_flush_table
)
3192 static __net_exit
void sysctl_route_net_exit(struct net
*net
)
3194 struct ctl_table
*tbl
;
3196 tbl
= net
->ipv4
.route_hdr
->ctl_table_arg
;
3197 unregister_net_sysctl_table(net
->ipv4
.route_hdr
);
3198 BUG_ON(tbl
== ipv4_route_flush_table
);
3202 static __net_initdata
struct pernet_operations sysctl_route_ops
= {
3203 .init
= sysctl_route_net_init
,
3204 .exit
= sysctl_route_net_exit
,
3209 static __net_init
int rt_secret_timer_init(struct net
*net
)
3211 atomic_set(&net
->ipv4
.rt_genid
,
3212 (int) ((num_physpages
^ (num_physpages
>>8)) ^
3213 (jiffies
^ (jiffies
>> 7))));
3215 net
->ipv4
.rt_secret_timer
.function
= rt_secret_rebuild
;
3216 net
->ipv4
.rt_secret_timer
.data
= (unsigned long)net
;
3217 init_timer_deferrable(&net
->ipv4
.rt_secret_timer
);
3219 if (ip_rt_secret_interval
) {
3220 net
->ipv4
.rt_secret_timer
.expires
=
3221 jiffies
+ net_random() % ip_rt_secret_interval
+
3222 ip_rt_secret_interval
;
3223 add_timer(&net
->ipv4
.rt_secret_timer
);
3228 static __net_exit
void rt_secret_timer_exit(struct net
*net
)
3230 del_timer_sync(&net
->ipv4
.rt_secret_timer
);
3233 static __net_initdata
struct pernet_operations rt_secret_timer_ops
= {
3234 .init
= rt_secret_timer_init
,
3235 .exit
= rt_secret_timer_exit
,
3239 #ifdef CONFIG_NET_CLS_ROUTE
3240 struct ip_rt_acct
*ip_rt_acct __read_mostly
;
3241 #endif /* CONFIG_NET_CLS_ROUTE */
3243 static __initdata
unsigned long rhash_entries
;
3244 static int __init
set_rhash_entries(char *str
)
3248 rhash_entries
= simple_strtoul(str
, &str
, 0);
3251 __setup("rhash_entries=", set_rhash_entries
);
3253 int __init
ip_rt_init(void)
3257 #ifdef CONFIG_NET_CLS_ROUTE
3258 ip_rt_acct
= __alloc_percpu(256 * sizeof(struct ip_rt_acct
));
3260 panic("IP: failed to allocate ip_rt_acct\n");
3263 ipv4_dst_ops
.kmem_cachep
=
3264 kmem_cache_create("ip_dst_cache", sizeof(struct rtable
), 0,
3265 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3267 ipv4_dst_blackhole_ops
.kmem_cachep
= ipv4_dst_ops
.kmem_cachep
;
3269 rt_hash_table
= (struct rt_hash_bucket
*)
3270 alloc_large_system_hash("IP route cache",
3271 sizeof(struct rt_hash_bucket
),
3273 (num_physpages
>= 128 * 1024) ?
3279 memset(rt_hash_table
, 0, (rt_hash_mask
+ 1) * sizeof(struct rt_hash_bucket
));
3280 rt_hash_lock_init();
3282 ipv4_dst_ops
.gc_thresh
= (rt_hash_mask
+ 1);
3283 ip_rt_max_size
= (rt_hash_mask
+ 1) * 16;
3288 /* All the timers, started at system startup tend
3289 to synchronize. Perturb it a bit.
3291 schedule_delayed_work(&expires_work
,
3292 net_random() % ip_rt_gc_interval
+ ip_rt_gc_interval
);
3294 if (register_pernet_subsys(&rt_secret_timer_ops
))
3295 printk(KERN_ERR
"Unable to setup rt_secret_timer\n");
3297 if (ip_rt_proc_init())
3298 printk(KERN_ERR
"Unable to create route proc files\n");
3303 rtnl_register(PF_INET
, RTM_GETROUTE
, inet_rtm_getroute
, NULL
);
3305 #ifdef CONFIG_SYSCTL
3306 register_pernet_subsys(&sysctl_route_ops
);
3311 #ifdef CONFIG_SYSCTL
3313 * We really need to sanitize the damn ipv4 init order, then all
3314 * this nonsense will go away.
3316 void __init
ip_static_sysctl_init(void)
3318 register_sysctl_paths(ipv4_path
, ipv4_skeleton
);
3322 EXPORT_SYMBOL(__ip_select_ident
);
3323 EXPORT_SYMBOL(ip_route_input
);
3324 EXPORT_SYMBOL(ip_route_output_key
);