[ARM] S3C: Move regs-rtc.h to arch/arm/plat-s3c/include/plat
[linux-2.6/openmoko-kernel.git] / kernel / profile.c
bloba9e422df6bf63e28648432efa7f0503aa09ffe8f
1 /*
2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 * Red Hat, July 2004
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <asm/sections.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
31 struct profile_hit {
32 u32 pc, hits;
34 #define PROFILE_GRPSHIFT 3
35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
48 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
55 int profile_setup(char *str)
57 static char schedstr[] = "schedule";
58 static char sleepstr[] = "sleep";
59 static char kvmstr[] = "kvm";
60 int par;
62 if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 prof_on = SLEEP_PROFILING;
65 if (str[strlen(sleepstr)] == ',')
66 str += strlen(sleepstr) + 1;
67 if (get_option(&str, &par))
68 prof_shift = par;
69 printk(KERN_INFO
70 "kernel sleep profiling enabled (shift: %ld)\n",
71 prof_shift);
72 #else
73 printk(KERN_WARNING
74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 } else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 prof_on = SCHED_PROFILING;
78 if (str[strlen(schedstr)] == ',')
79 str += strlen(schedstr) + 1;
80 if (get_option(&str, &par))
81 prof_shift = par;
82 printk(KERN_INFO
83 "kernel schedule profiling enabled (shift: %ld)\n",
84 prof_shift);
85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 prof_on = KVM_PROFILING;
87 if (str[strlen(kvmstr)] == ',')
88 str += strlen(kvmstr) + 1;
89 if (get_option(&str, &par))
90 prof_shift = par;
91 printk(KERN_INFO
92 "kernel KVM profiling enabled (shift: %ld)\n",
93 prof_shift);
94 } else if (get_option(&str, &par)) {
95 prof_shift = par;
96 prof_on = CPU_PROFILING;
97 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 prof_shift);
100 return 1;
102 __setup("profile=", profile_setup);
105 int profile_init(void)
107 int buffer_bytes;
108 if (!prof_on)
109 return 0;
111 /* only text is profiled */
112 prof_len = (_etext - _stext) >> prof_shift;
113 buffer_bytes = prof_len*sizeof(atomic_t);
114 if (!slab_is_available()) {
115 prof_buffer = alloc_bootmem(buffer_bytes);
116 return 0;
119 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL);
120 if (prof_buffer)
121 return 0;
123 prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO);
124 if (prof_buffer)
125 return 0;
127 prof_buffer = vmalloc(buffer_bytes);
128 if (prof_buffer)
129 return 0;
131 return -ENOMEM;
134 /* Profile event notifications */
136 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
137 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
138 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
140 void profile_task_exit(struct task_struct *task)
142 blocking_notifier_call_chain(&task_exit_notifier, 0, task);
145 int profile_handoff_task(struct task_struct *task)
147 int ret;
148 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
149 return (ret == NOTIFY_OK) ? 1 : 0;
152 void profile_munmap(unsigned long addr)
154 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
157 int task_handoff_register(struct notifier_block *n)
159 return atomic_notifier_chain_register(&task_free_notifier, n);
161 EXPORT_SYMBOL_GPL(task_handoff_register);
163 int task_handoff_unregister(struct notifier_block *n)
165 return atomic_notifier_chain_unregister(&task_free_notifier, n);
167 EXPORT_SYMBOL_GPL(task_handoff_unregister);
169 int profile_event_register(enum profile_type type, struct notifier_block *n)
171 int err = -EINVAL;
173 switch (type) {
174 case PROFILE_TASK_EXIT:
175 err = blocking_notifier_chain_register(
176 &task_exit_notifier, n);
177 break;
178 case PROFILE_MUNMAP:
179 err = blocking_notifier_chain_register(
180 &munmap_notifier, n);
181 break;
184 return err;
186 EXPORT_SYMBOL_GPL(profile_event_register);
188 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
190 int err = -EINVAL;
192 switch (type) {
193 case PROFILE_TASK_EXIT:
194 err = blocking_notifier_chain_unregister(
195 &task_exit_notifier, n);
196 break;
197 case PROFILE_MUNMAP:
198 err = blocking_notifier_chain_unregister(
199 &munmap_notifier, n);
200 break;
203 return err;
205 EXPORT_SYMBOL_GPL(profile_event_unregister);
207 int register_timer_hook(int (*hook)(struct pt_regs *))
209 if (timer_hook)
210 return -EBUSY;
211 timer_hook = hook;
212 return 0;
214 EXPORT_SYMBOL_GPL(register_timer_hook);
216 void unregister_timer_hook(int (*hook)(struct pt_regs *))
218 WARN_ON(hook != timer_hook);
219 timer_hook = NULL;
220 /* make sure all CPUs see the NULL hook */
221 synchronize_sched(); /* Allow ongoing interrupts to complete. */
223 EXPORT_SYMBOL_GPL(unregister_timer_hook);
226 #ifdef CONFIG_SMP
228 * Each cpu has a pair of open-addressed hashtables for pending
229 * profile hits. read_profile() IPI's all cpus to request them
230 * to flip buffers and flushes their contents to prof_buffer itself.
231 * Flip requests are serialized by the profile_flip_mutex. The sole
232 * use of having a second hashtable is for avoiding cacheline
233 * contention that would otherwise happen during flushes of pending
234 * profile hits required for the accuracy of reported profile hits
235 * and so resurrect the interrupt livelock issue.
237 * The open-addressed hashtables are indexed by profile buffer slot
238 * and hold the number of pending hits to that profile buffer slot on
239 * a cpu in an entry. When the hashtable overflows, all pending hits
240 * are accounted to their corresponding profile buffer slots with
241 * atomic_add() and the hashtable emptied. As numerous pending hits
242 * may be accounted to a profile buffer slot in a hashtable entry,
243 * this amortizes a number of atomic profile buffer increments likely
244 * to be far larger than the number of entries in the hashtable,
245 * particularly given that the number of distinct profile buffer
246 * positions to which hits are accounted during short intervals (e.g.
247 * several seconds) is usually very small. Exclusion from buffer
248 * flipping is provided by interrupt disablement (note that for
249 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
250 * process context).
251 * The hash function is meant to be lightweight as opposed to strong,
252 * and was vaguely inspired by ppc64 firmware-supported inverted
253 * pagetable hash functions, but uses a full hashtable full of finite
254 * collision chains, not just pairs of them.
256 * -- wli
258 static void __profile_flip_buffers(void *unused)
260 int cpu = smp_processor_id();
262 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
265 static void profile_flip_buffers(void)
267 int i, j, cpu;
269 mutex_lock(&profile_flip_mutex);
270 j = per_cpu(cpu_profile_flip, get_cpu());
271 put_cpu();
272 on_each_cpu(__profile_flip_buffers, NULL, 1);
273 for_each_online_cpu(cpu) {
274 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
275 for (i = 0; i < NR_PROFILE_HIT; ++i) {
276 if (!hits[i].hits) {
277 if (hits[i].pc)
278 hits[i].pc = 0;
279 continue;
281 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
282 hits[i].hits = hits[i].pc = 0;
285 mutex_unlock(&profile_flip_mutex);
288 static void profile_discard_flip_buffers(void)
290 int i, cpu;
292 mutex_lock(&profile_flip_mutex);
293 i = per_cpu(cpu_profile_flip, get_cpu());
294 put_cpu();
295 on_each_cpu(__profile_flip_buffers, NULL, 1);
296 for_each_online_cpu(cpu) {
297 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
298 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
300 mutex_unlock(&profile_flip_mutex);
303 void profile_hits(int type, void *__pc, unsigned int nr_hits)
305 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
306 int i, j, cpu;
307 struct profile_hit *hits;
309 if (prof_on != type || !prof_buffer)
310 return;
311 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
312 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
313 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
314 cpu = get_cpu();
315 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
316 if (!hits) {
317 put_cpu();
318 return;
321 * We buffer the global profiler buffer into a per-CPU
322 * queue and thus reduce the number of global (and possibly
323 * NUMA-alien) accesses. The write-queue is self-coalescing:
325 local_irq_save(flags);
326 do {
327 for (j = 0; j < PROFILE_GRPSZ; ++j) {
328 if (hits[i + j].pc == pc) {
329 hits[i + j].hits += nr_hits;
330 goto out;
331 } else if (!hits[i + j].hits) {
332 hits[i + j].pc = pc;
333 hits[i + j].hits = nr_hits;
334 goto out;
337 i = (i + secondary) & (NR_PROFILE_HIT - 1);
338 } while (i != primary);
341 * Add the current hit(s) and flush the write-queue out
342 * to the global buffer:
344 atomic_add(nr_hits, &prof_buffer[pc]);
345 for (i = 0; i < NR_PROFILE_HIT; ++i) {
346 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
347 hits[i].pc = hits[i].hits = 0;
349 out:
350 local_irq_restore(flags);
351 put_cpu();
354 static int __devinit profile_cpu_callback(struct notifier_block *info,
355 unsigned long action, void *__cpu)
357 int node, cpu = (unsigned long)__cpu;
358 struct page *page;
360 switch (action) {
361 case CPU_UP_PREPARE:
362 case CPU_UP_PREPARE_FROZEN:
363 node = cpu_to_node(cpu);
364 per_cpu(cpu_profile_flip, cpu) = 0;
365 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
366 page = alloc_pages_node(node,
367 GFP_KERNEL | __GFP_ZERO,
369 if (!page)
370 return NOTIFY_BAD;
371 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
373 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
374 page = alloc_pages_node(node,
375 GFP_KERNEL | __GFP_ZERO,
377 if (!page)
378 goto out_free;
379 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
381 break;
382 out_free:
383 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
384 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
385 __free_page(page);
386 return NOTIFY_BAD;
387 case CPU_ONLINE:
388 case CPU_ONLINE_FROZEN:
389 cpu_set(cpu, prof_cpu_mask);
390 break;
391 case CPU_UP_CANCELED:
392 case CPU_UP_CANCELED_FROZEN:
393 case CPU_DEAD:
394 case CPU_DEAD_FROZEN:
395 cpu_clear(cpu, prof_cpu_mask);
396 if (per_cpu(cpu_profile_hits, cpu)[0]) {
397 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
398 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
399 __free_page(page);
401 if (per_cpu(cpu_profile_hits, cpu)[1]) {
402 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
403 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
404 __free_page(page);
406 break;
408 return NOTIFY_OK;
410 #else /* !CONFIG_SMP */
411 #define profile_flip_buffers() do { } while (0)
412 #define profile_discard_flip_buffers() do { } while (0)
413 #define profile_cpu_callback NULL
415 void profile_hits(int type, void *__pc, unsigned int nr_hits)
417 unsigned long pc;
419 if (prof_on != type || !prof_buffer)
420 return;
421 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
422 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
424 #endif /* !CONFIG_SMP */
425 EXPORT_SYMBOL_GPL(profile_hits);
427 void profile_tick(int type)
429 struct pt_regs *regs = get_irq_regs();
431 if (type == CPU_PROFILING && timer_hook)
432 timer_hook(regs);
433 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
434 profile_hit(type, (void *)profile_pc(regs));
437 #ifdef CONFIG_PROC_FS
438 #include <linux/proc_fs.h>
439 #include <asm/uaccess.h>
440 #include <asm/ptrace.h>
442 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
443 int count, int *eof, void *data)
445 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
446 if (count - len < 2)
447 return -EINVAL;
448 len += sprintf(page + len, "\n");
449 return len;
452 static int prof_cpu_mask_write_proc(struct file *file,
453 const char __user *buffer, unsigned long count, void *data)
455 cpumask_t *mask = (cpumask_t *)data;
456 unsigned long full_count = count, err;
457 cpumask_t new_value;
459 err = cpumask_parse_user(buffer, count, new_value);
460 if (err)
461 return err;
463 *mask = new_value;
464 return full_count;
467 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
469 struct proc_dir_entry *entry;
471 /* create /proc/irq/prof_cpu_mask */
472 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
473 if (!entry)
474 return;
475 entry->data = (void *)&prof_cpu_mask;
476 entry->read_proc = prof_cpu_mask_read_proc;
477 entry->write_proc = prof_cpu_mask_write_proc;
481 * This function accesses profiling information. The returned data is
482 * binary: the sampling step and the actual contents of the profile
483 * buffer. Use of the program readprofile is recommended in order to
484 * get meaningful info out of these data.
486 static ssize_t
487 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
489 unsigned long p = *ppos;
490 ssize_t read;
491 char *pnt;
492 unsigned int sample_step = 1 << prof_shift;
494 profile_flip_buffers();
495 if (p >= (prof_len+1)*sizeof(unsigned int))
496 return 0;
497 if (count > (prof_len+1)*sizeof(unsigned int) - p)
498 count = (prof_len+1)*sizeof(unsigned int) - p;
499 read = 0;
501 while (p < sizeof(unsigned int) && count > 0) {
502 if (put_user(*((char *)(&sample_step)+p), buf))
503 return -EFAULT;
504 buf++; p++; count--; read++;
506 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
507 if (copy_to_user(buf, (void *)pnt, count))
508 return -EFAULT;
509 read += count;
510 *ppos += read;
511 return read;
515 * Writing to /proc/profile resets the counters
517 * Writing a 'profiling multiplier' value into it also re-sets the profiling
518 * interrupt frequency, on architectures that support this.
520 static ssize_t write_profile(struct file *file, const char __user *buf,
521 size_t count, loff_t *ppos)
523 #ifdef CONFIG_SMP
524 extern int setup_profiling_timer(unsigned int multiplier);
526 if (count == sizeof(int)) {
527 unsigned int multiplier;
529 if (copy_from_user(&multiplier, buf, sizeof(int)))
530 return -EFAULT;
532 if (setup_profiling_timer(multiplier))
533 return -EINVAL;
535 #endif
536 profile_discard_flip_buffers();
537 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
538 return count;
541 static const struct file_operations proc_profile_operations = {
542 .read = read_profile,
543 .write = write_profile,
546 #ifdef CONFIG_SMP
547 static void __init profile_nop(void *unused)
551 static int create_hash_tables(void)
553 int cpu;
555 for_each_online_cpu(cpu) {
556 int node = cpu_to_node(cpu);
557 struct page *page;
559 page = alloc_pages_node(node,
560 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
562 if (!page)
563 goto out_cleanup;
564 per_cpu(cpu_profile_hits, cpu)[1]
565 = (struct profile_hit *)page_address(page);
566 page = alloc_pages_node(node,
567 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
569 if (!page)
570 goto out_cleanup;
571 per_cpu(cpu_profile_hits, cpu)[0]
572 = (struct profile_hit *)page_address(page);
574 return 0;
575 out_cleanup:
576 prof_on = 0;
577 smp_mb();
578 on_each_cpu(profile_nop, NULL, 1);
579 for_each_online_cpu(cpu) {
580 struct page *page;
582 if (per_cpu(cpu_profile_hits, cpu)[0]) {
583 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
584 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
585 __free_page(page);
587 if (per_cpu(cpu_profile_hits, cpu)[1]) {
588 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
589 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
590 __free_page(page);
593 return -1;
595 #else
596 #define create_hash_tables() ({ 0; })
597 #endif
599 int create_proc_profile(void)
601 struct proc_dir_entry *entry;
603 if (!prof_on)
604 return 0;
605 if (create_hash_tables())
606 return -ENOMEM;
607 entry = proc_create("profile", S_IWUSR | S_IRUGO,
608 NULL, &proc_profile_operations);
609 if (!entry)
610 return 0;
611 entry->size = (1+prof_len) * sizeof(atomic_t);
612 hotcpu_notifier(profile_cpu_callback, 0);
613 return 0;
615 module_init(create_proc_profile);
616 #endif /* CONFIG_PROC_FS */