4 * AES Cipher Algorithm.
6 * Based on Brian Gladman's code.
9 * Alexander Kjeldaas <astor@fast.no>
10 * Herbert Valerio Riedel <hvr@hvrlab.org>
11 * Kyle McMartin <kyle@debian.org>
12 * Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
13 * Andreas Steinmetz <ast@domdv.de> (adapted to x86_64 assembler)
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * ---------------------------------------------------------------------------
21 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
22 * All rights reserved.
26 * The free distribution and use of this software in both source and binary
27 * form is allowed (with or without changes) provided that:
29 * 1. distributions of this source code include the above copyright
30 * notice, this list of conditions and the following disclaimer;
32 * 2. distributions in binary form include the above copyright
33 * notice, this list of conditions and the following disclaimer
34 * in the documentation and/or other associated materials;
36 * 3. the copyright holder's name is not used to endorse products
37 * built using this software without specific written permission.
39 * ALTERNATIVELY, provided that this notice is retained in full, this product
40 * may be distributed under the terms of the GNU General Public License (GPL),
41 * in which case the provisions of the GPL apply INSTEAD OF those given above.
45 * This software is provided 'as is' with no explicit or implied warranties
46 * in respect of its properties, including, but not limited to, correctness
47 * and/or fitness for purpose.
48 * ---------------------------------------------------------------------------
51 /* Some changes from the Gladman version:
52 s/RIJNDAEL(e_key)/E_KEY/g
53 s/RIJNDAEL(d_key)/D_KEY/g
56 #include <asm/byteorder.h>
57 #include <linux/bitops.h>
58 #include <linux/crypto.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/module.h>
62 #include <linux/types.h>
64 #define AES_MIN_KEY_SIZE 16
65 #define AES_MAX_KEY_SIZE 32
67 #define AES_BLOCK_SIZE 16
70 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
72 static inline u8
byte(const u32 x
, const unsigned n
)
83 #define E_KEY (&ctx->buf[0])
84 #define D_KEY (&ctx->buf[60])
86 static u8 pow_tab
[256] __initdata
;
87 static u8 log_tab
[256] __initdata
;
88 static u8 sbx_tab
[256] __initdata
;
89 static u8 isb_tab
[256] __initdata
;
90 static u32 rco_tab
[10];
91 u32 aes_ft_tab
[4][256];
92 u32 aes_it_tab
[4][256];
94 u32 aes_fl_tab
[4][256];
95 u32 aes_il_tab
[4][256];
97 static inline u8
f_mult(u8 a
, u8 b
)
99 u8 aa
= log_tab
[a
], cc
= aa
+ log_tab
[b
];
101 return pow_tab
[cc
+ (cc
< aa
? 1 : 0)];
104 #define ff_mult(a, b) (a && b ? f_mult(a, b) : 0)
107 (aes_fl_tab[0][byte(x, 0)] ^ \
108 aes_fl_tab[1][byte(x, 1)] ^ \
109 aes_fl_tab[2][byte(x, 2)] ^ \
110 aes_fl_tab[3][byte(x, 3)])
112 static void __init
gen_tabs(void)
117 /* log and power tables for GF(2**8) finite field with
118 0x011b as modular polynomial - the simplest primitive
119 root is 0x03, used here to generate the tables */
121 for (i
= 0, p
= 1; i
< 256; ++i
) {
125 p
^= (p
<< 1) ^ (p
& 0x80 ? 0x01b : 0);
130 for (i
= 0, p
= 1; i
< 10; ++i
) {
133 p
= (p
<< 1) ^ (p
& 0x80 ? 0x01b : 0);
136 for (i
= 0; i
< 256; ++i
) {
137 p
= (i
? pow_tab
[255 - log_tab
[i
]] : 0);
138 q
= ((p
>> 7) | (p
<< 1)) ^ ((p
>> 6) | (p
<< 2));
139 p
^= 0x63 ^ q
^ ((q
>> 6) | (q
<< 2));
144 for (i
= 0; i
< 256; ++i
) {
148 aes_fl_tab
[0][i
] = t
;
149 aes_fl_tab
[1][i
] = rol32(t
, 8);
150 aes_fl_tab
[2][i
] = rol32(t
, 16);
151 aes_fl_tab
[3][i
] = rol32(t
, 24);
153 t
= ((u32
)ff_mult(2, p
)) |
155 ((u32
)p
<< 16) | ((u32
)ff_mult(3, p
) << 24);
157 aes_ft_tab
[0][i
] = t
;
158 aes_ft_tab
[1][i
] = rol32(t
, 8);
159 aes_ft_tab
[2][i
] = rol32(t
, 16);
160 aes_ft_tab
[3][i
] = rol32(t
, 24);
165 aes_il_tab
[0][i
] = t
;
166 aes_il_tab
[1][i
] = rol32(t
, 8);
167 aes_il_tab
[2][i
] = rol32(t
, 16);
168 aes_il_tab
[3][i
] = rol32(t
, 24);
170 t
= ((u32
)ff_mult(14, p
)) |
171 ((u32
)ff_mult(9, p
) << 8) |
172 ((u32
)ff_mult(13, p
) << 16) |
173 ((u32
)ff_mult(11, p
) << 24);
175 aes_it_tab
[0][i
] = t
;
176 aes_it_tab
[1][i
] = rol32(t
, 8);
177 aes_it_tab
[2][i
] = rol32(t
, 16);
178 aes_it_tab
[3][i
] = rol32(t
, 24);
182 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
184 #define imix_col(y, x) \
190 (y) ^= ror32(u ^ t, 8) ^ \
194 /* initialise the key schedule from the user supplied key */
198 t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
199 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
200 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
201 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
202 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
207 t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
208 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
209 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
210 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
211 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
212 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
213 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
218 t = ror32(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
219 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
220 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
221 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
222 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
223 t = E_KEY[8 * i + 4] ^ ls_box(t); \
224 E_KEY[8 * i + 12] = t; \
225 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
226 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
227 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
230 static int aes_set_key(struct crypto_tfm
*tfm
, const u8
*in_key
,
231 unsigned int key_len
)
233 struct aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
234 const __le32
*key
= (const __le32
*)in_key
;
235 u32
*flags
= &tfm
->crt_flags
;
236 u32 i
, j
, t
, u
, v
, w
;
239 *flags
|= CRYPTO_TFM_RES_BAD_KEY_LEN
;
243 ctx
->key_length
= key_len
;
245 D_KEY
[key_len
+ 24] = E_KEY
[0] = le32_to_cpu(key
[0]);
246 D_KEY
[key_len
+ 25] = E_KEY
[1] = le32_to_cpu(key
[1]);
247 D_KEY
[key_len
+ 26] = E_KEY
[2] = le32_to_cpu(key
[2]);
248 D_KEY
[key_len
+ 27] = E_KEY
[3] = le32_to_cpu(key
[3]);
253 for (i
= 0; i
< 10; ++i
)
258 E_KEY
[4] = le32_to_cpu(key
[4]);
259 t
= E_KEY
[5] = le32_to_cpu(key
[5]);
260 for (i
= 0; i
< 8; ++i
)
265 E_KEY
[4] = le32_to_cpu(key
[4]);
266 E_KEY
[5] = le32_to_cpu(key
[5]);
267 E_KEY
[6] = le32_to_cpu(key
[6]);
268 t
= E_KEY
[7] = le32_to_cpu(key
[7]);
269 for (i
= 0; i
< 7; ++i
)
274 D_KEY
[0] = E_KEY
[key_len
+ 24];
275 D_KEY
[1] = E_KEY
[key_len
+ 25];
276 D_KEY
[2] = E_KEY
[key_len
+ 26];
277 D_KEY
[3] = E_KEY
[key_len
+ 27];
279 for (i
= 4; i
< key_len
+ 24; ++i
) {
280 j
= key_len
+ 24 - (i
& ~3) + (i
& 3);
281 imix_col(D_KEY
[j
], E_KEY
[i
]);
287 asmlinkage
void aes_enc_blk(struct crypto_tfm
*tfm
, u8
*out
, const u8
*in
);
288 asmlinkage
void aes_dec_blk(struct crypto_tfm
*tfm
, u8
*out
, const u8
*in
);
290 static void aes_encrypt(struct crypto_tfm
*tfm
, u8
*dst
, const u8
*src
)
292 aes_enc_blk(tfm
, dst
, src
);
295 static void aes_decrypt(struct crypto_tfm
*tfm
, u8
*dst
, const u8
*src
)
297 aes_dec_blk(tfm
, dst
, src
);
300 static struct crypto_alg aes_alg
= {
302 .cra_driver_name
= "aes-x86_64",
304 .cra_flags
= CRYPTO_ALG_TYPE_CIPHER
,
305 .cra_blocksize
= AES_BLOCK_SIZE
,
306 .cra_ctxsize
= sizeof(struct aes_ctx
),
307 .cra_module
= THIS_MODULE
,
308 .cra_list
= LIST_HEAD_INIT(aes_alg
.cra_list
),
311 .cia_min_keysize
= AES_MIN_KEY_SIZE
,
312 .cia_max_keysize
= AES_MAX_KEY_SIZE
,
313 .cia_setkey
= aes_set_key
,
314 .cia_encrypt
= aes_encrypt
,
315 .cia_decrypt
= aes_decrypt
320 static int __init
aes_init(void)
323 return crypto_register_alg(&aes_alg
);
326 static void __exit
aes_fini(void)
328 crypto_unregister_alg(&aes_alg
);
331 module_init(aes_init
);
332 module_exit(aes_fini
);
334 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
335 MODULE_LICENSE("GPL");