4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
20 #include <linux/fdtable.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
38 int sysctl_vfs_cache_pressure __read_mostly
= 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
42 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
44 EXPORT_SYMBOL(dcache_lock
);
46 static struct kmem_cache
*dentry_cache __read_mostly
;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly
;
62 static unsigned int d_hash_shift __read_mostly
;
63 static struct hlist_head
*dentry_hashtable __read_mostly
;
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat
= {
70 static void __d_free(struct dentry
*dentry
)
72 if (dname_external(dentry
))
73 kfree(dentry
->d_name
.name
);
74 kmem_cache_free(dentry_cache
, dentry
);
77 static void d_callback(struct rcu_head
*head
)
79 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
84 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
87 static void d_free(struct dentry
*dentry
)
89 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
90 dentry
->d_op
->d_release(dentry
);
91 /* if dentry was never inserted into hash, immediate free is OK */
92 if (hlist_unhashed(&dentry
->d_hash
))
95 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
99 * Release the dentry's inode, using the filesystem
100 * d_iput() operation if defined.
102 static void dentry_iput(struct dentry
* dentry
)
103 __releases(dentry
->d_lock
)
104 __releases(dcache_lock
)
106 struct inode
*inode
= dentry
->d_inode
;
108 dentry
->d_inode
= NULL
;
109 list_del_init(&dentry
->d_alias
);
110 spin_unlock(&dentry
->d_lock
);
111 spin_unlock(&dcache_lock
);
113 fsnotify_inoderemove(inode
);
114 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
115 dentry
->d_op
->d_iput(dentry
, inode
);
119 spin_unlock(&dentry
->d_lock
);
120 spin_unlock(&dcache_lock
);
125 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127 static void dentry_lru_add(struct dentry
*dentry
)
129 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
130 dentry
->d_sb
->s_nr_dentry_unused
++;
131 dentry_stat
.nr_unused
++;
134 static void dentry_lru_add_tail(struct dentry
*dentry
)
136 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
137 dentry
->d_sb
->s_nr_dentry_unused
++;
138 dentry_stat
.nr_unused
++;
141 static void dentry_lru_del(struct dentry
*dentry
)
143 if (!list_empty(&dentry
->d_lru
)) {
144 list_del(&dentry
->d_lru
);
145 dentry
->d_sb
->s_nr_dentry_unused
--;
146 dentry_stat
.nr_unused
--;
150 static void dentry_lru_del_init(struct dentry
*dentry
)
152 if (likely(!list_empty(&dentry
->d_lru
))) {
153 list_del_init(&dentry
->d_lru
);
154 dentry
->d_sb
->s_nr_dentry_unused
--;
155 dentry_stat
.nr_unused
--;
160 * d_kill - kill dentry and return parent
161 * @dentry: dentry to kill
163 * The dentry must already be unhashed and removed from the LRU.
165 * If this is the root of the dentry tree, return NULL.
167 static struct dentry
*d_kill(struct dentry
*dentry
)
168 __releases(dentry
->d_lock
)
169 __releases(dcache_lock
)
171 struct dentry
*parent
;
173 list_del(&dentry
->d_u
.d_child
);
174 dentry_stat
.nr_dentry
--; /* For d_free, below */
175 /*drops the locks, at that point nobody can reach this dentry */
177 parent
= dentry
->d_parent
;
179 return dentry
== parent
? NULL
: parent
;
185 * This is complicated by the fact that we do not want to put
186 * dentries that are no longer on any hash chain on the unused
187 * list: we'd much rather just get rid of them immediately.
189 * However, that implies that we have to traverse the dentry
190 * tree upwards to the parents which might _also_ now be
191 * scheduled for deletion (it may have been only waiting for
192 * its last child to go away).
194 * This tail recursion is done by hand as we don't want to depend
195 * on the compiler to always get this right (gcc generally doesn't).
196 * Real recursion would eat up our stack space.
200 * dput - release a dentry
201 * @dentry: dentry to release
203 * Release a dentry. This will drop the usage count and if appropriate
204 * call the dentry unlink method as well as removing it from the queues and
205 * releasing its resources. If the parent dentries were scheduled for release
206 * they too may now get deleted.
208 * no dcache lock, please.
211 void dput(struct dentry
*dentry
)
217 if (atomic_read(&dentry
->d_count
) == 1)
219 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
222 spin_lock(&dentry
->d_lock
);
223 if (atomic_read(&dentry
->d_count
)) {
224 spin_unlock(&dentry
->d_lock
);
225 spin_unlock(&dcache_lock
);
230 * AV: ->d_delete() is _NOT_ allowed to block now.
232 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
233 if (dentry
->d_op
->d_delete(dentry
))
236 /* Unreachable? Get rid of it */
237 if (d_unhashed(dentry
))
239 if (list_empty(&dentry
->d_lru
)) {
240 dentry
->d_flags
|= DCACHE_REFERENCED
;
241 dentry_lru_add(dentry
);
243 spin_unlock(&dentry
->d_lock
);
244 spin_unlock(&dcache_lock
);
250 /* if dentry was on the d_lru list delete it from there */
251 dentry_lru_del(dentry
);
252 dentry
= d_kill(dentry
);
258 * d_invalidate - invalidate a dentry
259 * @dentry: dentry to invalidate
261 * Try to invalidate the dentry if it turns out to be
262 * possible. If there are other dentries that can be
263 * reached through this one we can't delete it and we
264 * return -EBUSY. On success we return 0.
269 int d_invalidate(struct dentry
* dentry
)
272 * If it's already been dropped, return OK.
274 spin_lock(&dcache_lock
);
275 if (d_unhashed(dentry
)) {
276 spin_unlock(&dcache_lock
);
280 * Check whether to do a partial shrink_dcache
281 * to get rid of unused child entries.
283 if (!list_empty(&dentry
->d_subdirs
)) {
284 spin_unlock(&dcache_lock
);
285 shrink_dcache_parent(dentry
);
286 spin_lock(&dcache_lock
);
290 * Somebody else still using it?
292 * If it's a directory, we can't drop it
293 * for fear of somebody re-populating it
294 * with children (even though dropping it
295 * would make it unreachable from the root,
296 * we might still populate it if it was a
297 * working directory or similar).
299 spin_lock(&dentry
->d_lock
);
300 if (atomic_read(&dentry
->d_count
) > 1) {
301 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
302 spin_unlock(&dentry
->d_lock
);
303 spin_unlock(&dcache_lock
);
309 spin_unlock(&dentry
->d_lock
);
310 spin_unlock(&dcache_lock
);
314 /* This should be called _only_ with dcache_lock held */
316 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
318 atomic_inc(&dentry
->d_count
);
319 dentry_lru_del_init(dentry
);
323 struct dentry
* dget_locked(struct dentry
*dentry
)
325 return __dget_locked(dentry
);
329 * d_find_alias - grab a hashed alias of inode
330 * @inode: inode in question
331 * @want_discon: flag, used by d_splice_alias, to request
332 * that only a DISCONNECTED alias be returned.
334 * If inode has a hashed alias, or is a directory and has any alias,
335 * acquire the reference to alias and return it. Otherwise return NULL.
336 * Notice that if inode is a directory there can be only one alias and
337 * it can be unhashed only if it has no children, or if it is the root
340 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
341 * any other hashed alias over that one unless @want_discon is set,
342 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
345 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
347 struct list_head
*head
, *next
, *tmp
;
348 struct dentry
*alias
, *discon_alias
=NULL
;
350 head
= &inode
->i_dentry
;
351 next
= inode
->i_dentry
.next
;
352 while (next
!= head
) {
356 alias
= list_entry(tmp
, struct dentry
, d_alias
);
357 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
358 if (IS_ROOT(alias
) &&
359 (alias
->d_flags
& DCACHE_DISCONNECTED
))
360 discon_alias
= alias
;
361 else if (!want_discon
) {
362 __dget_locked(alias
);
368 __dget_locked(discon_alias
);
372 struct dentry
* d_find_alias(struct inode
*inode
)
374 struct dentry
*de
= NULL
;
376 if (!list_empty(&inode
->i_dentry
)) {
377 spin_lock(&dcache_lock
);
378 de
= __d_find_alias(inode
, 0);
379 spin_unlock(&dcache_lock
);
385 * Try to kill dentries associated with this inode.
386 * WARNING: you must own a reference to inode.
388 void d_prune_aliases(struct inode
*inode
)
390 struct dentry
*dentry
;
392 spin_lock(&dcache_lock
);
393 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
394 spin_lock(&dentry
->d_lock
);
395 if (!atomic_read(&dentry
->d_count
)) {
396 __dget_locked(dentry
);
398 spin_unlock(&dentry
->d_lock
);
399 spin_unlock(&dcache_lock
);
403 spin_unlock(&dentry
->d_lock
);
405 spin_unlock(&dcache_lock
);
409 * Throw away a dentry - free the inode, dput the parent. This requires that
410 * the LRU list has already been removed.
412 * Try to prune ancestors as well. This is necessary to prevent
413 * quadratic behavior of shrink_dcache_parent(), but is also expected
414 * to be beneficial in reducing dentry cache fragmentation.
416 static void prune_one_dentry(struct dentry
* dentry
)
417 __releases(dentry
->d_lock
)
418 __releases(dcache_lock
)
419 __acquires(dcache_lock
)
422 dentry
= d_kill(dentry
);
425 * Prune ancestors. Locking is simpler than in dput(),
426 * because dcache_lock needs to be taken anyway.
428 spin_lock(&dcache_lock
);
430 if (!atomic_dec_and_lock(&dentry
->d_count
, &dentry
->d_lock
))
433 if (dentry
->d_op
&& dentry
->d_op
->d_delete
)
434 dentry
->d_op
->d_delete(dentry
);
435 dentry_lru_del_init(dentry
);
437 dentry
= d_kill(dentry
);
438 spin_lock(&dcache_lock
);
443 * Shrink the dentry LRU on a given superblock.
444 * @sb : superblock to shrink dentry LRU.
445 * @count: If count is NULL, we prune all dentries on superblock.
446 * @flags: If flags is non-zero, we need to do special processing based on
447 * which flags are set. This means we don't need to maintain multiple
448 * similar copies of this loop.
450 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
452 LIST_HEAD(referenced
);
454 struct dentry
*dentry
;
458 BUG_ON((flags
& DCACHE_REFERENCED
) && count
== NULL
);
459 spin_lock(&dcache_lock
);
461 /* called from prune_dcache() and shrink_dcache_parent() */
465 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
467 while (!list_empty(&sb
->s_dentry_lru
)) {
468 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
469 struct dentry
, d_lru
);
470 BUG_ON(dentry
->d_sb
!= sb
);
472 spin_lock(&dentry
->d_lock
);
474 * If we are honouring the DCACHE_REFERENCED flag and
475 * the dentry has this flag set, don't free it. Clear
476 * the flag and put it back on the LRU.
478 if ((flags
& DCACHE_REFERENCED
)
479 && (dentry
->d_flags
& DCACHE_REFERENCED
)) {
480 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
481 list_move_tail(&dentry
->d_lru
, &referenced
);
482 spin_unlock(&dentry
->d_lock
);
484 list_move_tail(&dentry
->d_lru
, &tmp
);
485 spin_unlock(&dentry
->d_lock
);
492 while (!list_empty(&tmp
)) {
493 dentry
= list_entry(tmp
.prev
, struct dentry
, d_lru
);
494 dentry_lru_del_init(dentry
);
495 spin_lock(&dentry
->d_lock
);
497 * We found an inuse dentry which was not removed from
498 * the LRU because of laziness during lookup. Do not free
499 * it - just keep it off the LRU list.
501 if (atomic_read(&dentry
->d_count
)) {
502 spin_unlock(&dentry
->d_lock
);
505 prune_one_dentry(dentry
);
506 /* dentry->d_lock was dropped in prune_one_dentry() */
507 cond_resched_lock(&dcache_lock
);
509 if (count
== NULL
&& !list_empty(&sb
->s_dentry_lru
))
513 if (!list_empty(&referenced
))
514 list_splice(&referenced
, &sb
->s_dentry_lru
);
515 spin_unlock(&dcache_lock
);
519 * prune_dcache - shrink the dcache
520 * @count: number of entries to try to free
522 * Shrink the dcache. This is done when we need more memory, or simply when we
523 * need to unmount something (at which point we need to unuse all dentries).
525 * This function may fail to free any resources if all the dentries are in use.
527 static void prune_dcache(int count
)
529 struct super_block
*sb
;
531 int unused
= dentry_stat
.nr_unused
;
535 if (unused
== 0 || count
== 0)
537 spin_lock(&dcache_lock
);
542 prune_ratio
= unused
/ count
;
544 list_for_each_entry(sb
, &super_blocks
, s_list
) {
545 if (sb
->s_nr_dentry_unused
== 0)
548 /* Now, we reclaim unused dentrins with fairness.
549 * We reclaim them same percentage from each superblock.
550 * We calculate number of dentries to scan on this sb
551 * as follows, but the implementation is arranged to avoid
553 * number of dentries to scan on this sb =
554 * count * (number of dentries on this sb /
555 * number of dentries in the machine)
557 spin_unlock(&sb_lock
);
558 if (prune_ratio
!= 1)
559 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
561 w_count
= sb
->s_nr_dentry_unused
;
564 * We need to be sure this filesystem isn't being unmounted,
565 * otherwise we could race with generic_shutdown_super(), and
566 * end up holding a reference to an inode while the filesystem
567 * is unmounted. So we try to get s_umount, and make sure
570 if (down_read_trylock(&sb
->s_umount
)) {
571 if ((sb
->s_root
!= NULL
) &&
572 (!list_empty(&sb
->s_dentry_lru
))) {
573 spin_unlock(&dcache_lock
);
574 __shrink_dcache_sb(sb
, &w_count
,
577 spin_lock(&dcache_lock
);
579 up_read(&sb
->s_umount
);
584 * restart only when sb is no longer on the list and
585 * we have more work to do.
587 if (__put_super_and_need_restart(sb
) && count
> 0) {
588 spin_unlock(&sb_lock
);
592 spin_unlock(&sb_lock
);
593 spin_unlock(&dcache_lock
);
597 * shrink_dcache_sb - shrink dcache for a superblock
600 * Shrink the dcache for the specified super block. This
601 * is used to free the dcache before unmounting a file
604 void shrink_dcache_sb(struct super_block
* sb
)
606 __shrink_dcache_sb(sb
, NULL
, 0);
610 * destroy a single subtree of dentries for unmount
611 * - see the comments on shrink_dcache_for_umount() for a description of the
614 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
616 struct dentry
*parent
;
617 unsigned detached
= 0;
619 BUG_ON(!IS_ROOT(dentry
));
621 /* detach this root from the system */
622 spin_lock(&dcache_lock
);
623 dentry_lru_del_init(dentry
);
625 spin_unlock(&dcache_lock
);
628 /* descend to the first leaf in the current subtree */
629 while (!list_empty(&dentry
->d_subdirs
)) {
632 /* this is a branch with children - detach all of them
633 * from the system in one go */
634 spin_lock(&dcache_lock
);
635 list_for_each_entry(loop
, &dentry
->d_subdirs
,
637 dentry_lru_del_init(loop
);
639 cond_resched_lock(&dcache_lock
);
641 spin_unlock(&dcache_lock
);
643 /* move to the first child */
644 dentry
= list_entry(dentry
->d_subdirs
.next
,
645 struct dentry
, d_u
.d_child
);
648 /* consume the dentries from this leaf up through its parents
649 * until we find one with children or run out altogether */
653 if (atomic_read(&dentry
->d_count
) != 0) {
655 "BUG: Dentry %p{i=%lx,n=%s}"
657 " [unmount of %s %s]\n",
660 dentry
->d_inode
->i_ino
: 0UL,
662 atomic_read(&dentry
->d_count
),
663 dentry
->d_sb
->s_type
->name
,
668 parent
= dentry
->d_parent
;
669 if (parent
== dentry
)
672 atomic_dec(&parent
->d_count
);
674 list_del(&dentry
->d_u
.d_child
);
677 inode
= dentry
->d_inode
;
679 dentry
->d_inode
= NULL
;
680 list_del_init(&dentry
->d_alias
);
681 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
682 dentry
->d_op
->d_iput(dentry
, inode
);
689 /* finished when we fall off the top of the tree,
690 * otherwise we ascend to the parent and move to the
691 * next sibling if there is one */
697 } while (list_empty(&dentry
->d_subdirs
));
699 dentry
= list_entry(dentry
->d_subdirs
.next
,
700 struct dentry
, d_u
.d_child
);
703 /* several dentries were freed, need to correct nr_dentry */
704 spin_lock(&dcache_lock
);
705 dentry_stat
.nr_dentry
-= detached
;
706 spin_unlock(&dcache_lock
);
710 * destroy the dentries attached to a superblock on unmounting
711 * - we don't need to use dentry->d_lock, and only need dcache_lock when
712 * removing the dentry from the system lists and hashes because:
713 * - the superblock is detached from all mountings and open files, so the
714 * dentry trees will not be rearranged by the VFS
715 * - s_umount is write-locked, so the memory pressure shrinker will ignore
716 * any dentries belonging to this superblock that it comes across
717 * - the filesystem itself is no longer permitted to rearrange the dentries
720 void shrink_dcache_for_umount(struct super_block
*sb
)
722 struct dentry
*dentry
;
724 if (down_read_trylock(&sb
->s_umount
))
729 atomic_dec(&dentry
->d_count
);
730 shrink_dcache_for_umount_subtree(dentry
);
732 while (!hlist_empty(&sb
->s_anon
)) {
733 dentry
= hlist_entry(sb
->s_anon
.first
, struct dentry
, d_hash
);
734 shrink_dcache_for_umount_subtree(dentry
);
739 * Search for at least 1 mount point in the dentry's subdirs.
740 * We descend to the next level whenever the d_subdirs
741 * list is non-empty and continue searching.
745 * have_submounts - check for mounts over a dentry
746 * @parent: dentry to check.
748 * Return true if the parent or its subdirectories contain
752 int have_submounts(struct dentry
*parent
)
754 struct dentry
*this_parent
= parent
;
755 struct list_head
*next
;
757 spin_lock(&dcache_lock
);
758 if (d_mountpoint(parent
))
761 next
= this_parent
->d_subdirs
.next
;
763 while (next
!= &this_parent
->d_subdirs
) {
764 struct list_head
*tmp
= next
;
765 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
767 /* Have we found a mount point ? */
768 if (d_mountpoint(dentry
))
770 if (!list_empty(&dentry
->d_subdirs
)) {
771 this_parent
= dentry
;
776 * All done at this level ... ascend and resume the search.
778 if (this_parent
!= parent
) {
779 next
= this_parent
->d_u
.d_child
.next
;
780 this_parent
= this_parent
->d_parent
;
783 spin_unlock(&dcache_lock
);
784 return 0; /* No mount points found in tree */
786 spin_unlock(&dcache_lock
);
791 * Search the dentry child list for the specified parent,
792 * and move any unused dentries to the end of the unused
793 * list for prune_dcache(). We descend to the next level
794 * whenever the d_subdirs list is non-empty and continue
797 * It returns zero iff there are no unused children,
798 * otherwise it returns the number of children moved to
799 * the end of the unused list. This may not be the total
800 * number of unused children, because select_parent can
801 * drop the lock and return early due to latency
804 static int select_parent(struct dentry
* parent
)
806 struct dentry
*this_parent
= parent
;
807 struct list_head
*next
;
810 spin_lock(&dcache_lock
);
812 next
= this_parent
->d_subdirs
.next
;
814 while (next
!= &this_parent
->d_subdirs
) {
815 struct list_head
*tmp
= next
;
816 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
819 dentry_lru_del_init(dentry
);
821 * move only zero ref count dentries to the end
822 * of the unused list for prune_dcache
824 if (!atomic_read(&dentry
->d_count
)) {
825 dentry_lru_add_tail(dentry
);
830 * We can return to the caller if we have found some (this
831 * ensures forward progress). We'll be coming back to find
834 if (found
&& need_resched())
838 * Descend a level if the d_subdirs list is non-empty.
840 if (!list_empty(&dentry
->d_subdirs
)) {
841 this_parent
= dentry
;
846 * All done at this level ... ascend and resume the search.
848 if (this_parent
!= parent
) {
849 next
= this_parent
->d_u
.d_child
.next
;
850 this_parent
= this_parent
->d_parent
;
854 spin_unlock(&dcache_lock
);
859 * shrink_dcache_parent - prune dcache
860 * @parent: parent of entries to prune
862 * Prune the dcache to remove unused children of the parent dentry.
865 void shrink_dcache_parent(struct dentry
* parent
)
867 struct super_block
*sb
= parent
->d_sb
;
870 while ((found
= select_parent(parent
)) != 0)
871 __shrink_dcache_sb(sb
, &found
, 0);
875 * Scan `nr' dentries and return the number which remain.
877 * We need to avoid reentering the filesystem if the caller is performing a
878 * GFP_NOFS allocation attempt. One example deadlock is:
880 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
881 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
882 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
884 * In this case we return -1 to tell the caller that we baled.
886 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
889 if (!(gfp_mask
& __GFP_FS
))
893 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
896 static struct shrinker dcache_shrinker
= {
897 .shrink
= shrink_dcache_memory
,
898 .seeks
= DEFAULT_SEEKS
,
902 * d_alloc - allocate a dcache entry
903 * @parent: parent of entry to allocate
904 * @name: qstr of the name
906 * Allocates a dentry. It returns %NULL if there is insufficient memory
907 * available. On a success the dentry is returned. The name passed in is
908 * copied and the copy passed in may be reused after this call.
911 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
913 struct dentry
*dentry
;
916 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
920 if (name
->len
> DNAME_INLINE_LEN
-1) {
921 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
923 kmem_cache_free(dentry_cache
, dentry
);
927 dname
= dentry
->d_iname
;
929 dentry
->d_name
.name
= dname
;
931 dentry
->d_name
.len
= name
->len
;
932 dentry
->d_name
.hash
= name
->hash
;
933 memcpy(dname
, name
->name
, name
->len
);
934 dname
[name
->len
] = 0;
936 atomic_set(&dentry
->d_count
, 1);
937 dentry
->d_flags
= DCACHE_UNHASHED
;
938 spin_lock_init(&dentry
->d_lock
);
939 dentry
->d_inode
= NULL
;
940 dentry
->d_parent
= NULL
;
943 dentry
->d_fsdata
= NULL
;
944 dentry
->d_mounted
= 0;
945 #ifdef CONFIG_PROFILING
946 dentry
->d_cookie
= NULL
;
948 INIT_HLIST_NODE(&dentry
->d_hash
);
949 INIT_LIST_HEAD(&dentry
->d_lru
);
950 INIT_LIST_HEAD(&dentry
->d_subdirs
);
951 INIT_LIST_HEAD(&dentry
->d_alias
);
954 dentry
->d_parent
= dget(parent
);
955 dentry
->d_sb
= parent
->d_sb
;
957 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
960 spin_lock(&dcache_lock
);
962 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
963 dentry_stat
.nr_dentry
++;
964 spin_unlock(&dcache_lock
);
969 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
974 q
.len
= strlen(name
);
975 q
.hash
= full_name_hash(q
.name
, q
.len
);
976 return d_alloc(parent
, &q
);
980 * d_instantiate - fill in inode information for a dentry
981 * @entry: dentry to complete
982 * @inode: inode to attach to this dentry
984 * Fill in inode information in the entry.
986 * This turns negative dentries into productive full members
989 * NOTE! This assumes that the inode count has been incremented
990 * (or otherwise set) by the caller to indicate that it is now
991 * in use by the dcache.
994 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
996 BUG_ON(!list_empty(&entry
->d_alias
));
997 spin_lock(&dcache_lock
);
999 list_add(&entry
->d_alias
, &inode
->i_dentry
);
1000 entry
->d_inode
= inode
;
1001 fsnotify_d_instantiate(entry
, inode
);
1002 spin_unlock(&dcache_lock
);
1003 security_d_instantiate(entry
, inode
);
1007 * d_instantiate_unique - instantiate a non-aliased dentry
1008 * @entry: dentry to instantiate
1009 * @inode: inode to attach to this dentry
1011 * Fill in inode information in the entry. On success, it returns NULL.
1012 * If an unhashed alias of "entry" already exists, then we return the
1013 * aliased dentry instead and drop one reference to inode.
1015 * Note that in order to avoid conflicts with rename() etc, the caller
1016 * had better be holding the parent directory semaphore.
1018 * This also assumes that the inode count has been incremented
1019 * (or otherwise set) by the caller to indicate that it is now
1020 * in use by the dcache.
1022 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1023 struct inode
*inode
)
1025 struct dentry
*alias
;
1026 int len
= entry
->d_name
.len
;
1027 const char *name
= entry
->d_name
.name
;
1028 unsigned int hash
= entry
->d_name
.hash
;
1031 entry
->d_inode
= NULL
;
1035 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1036 struct qstr
*qstr
= &alias
->d_name
;
1038 if (qstr
->hash
!= hash
)
1040 if (alias
->d_parent
!= entry
->d_parent
)
1042 if (qstr
->len
!= len
)
1044 if (memcmp(qstr
->name
, name
, len
))
1050 list_add(&entry
->d_alias
, &inode
->i_dentry
);
1051 entry
->d_inode
= inode
;
1052 fsnotify_d_instantiate(entry
, inode
);
1056 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1058 struct dentry
*result
;
1060 BUG_ON(!list_empty(&entry
->d_alias
));
1062 spin_lock(&dcache_lock
);
1063 result
= __d_instantiate_unique(entry
, inode
);
1064 spin_unlock(&dcache_lock
);
1067 security_d_instantiate(entry
, inode
);
1071 BUG_ON(!d_unhashed(result
));
1076 EXPORT_SYMBOL(d_instantiate_unique
);
1079 * d_alloc_root - allocate root dentry
1080 * @root_inode: inode to allocate the root for
1082 * Allocate a root ("/") dentry for the inode given. The inode is
1083 * instantiated and returned. %NULL is returned if there is insufficient
1084 * memory or the inode passed is %NULL.
1087 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1089 struct dentry
*res
= NULL
;
1092 static const struct qstr name
= { .name
= "/", .len
= 1 };
1094 res
= d_alloc(NULL
, &name
);
1096 res
->d_sb
= root_inode
->i_sb
;
1097 res
->d_parent
= res
;
1098 d_instantiate(res
, root_inode
);
1104 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
1107 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
1108 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
1109 return dentry_hashtable
+ (hash
& D_HASHMASK
);
1113 * d_alloc_anon - allocate an anonymous dentry
1114 * @inode: inode to allocate the dentry for
1116 * This is similar to d_alloc_root. It is used by filesystems when
1117 * creating a dentry for a given inode, often in the process of
1118 * mapping a filehandle to a dentry. The returned dentry may be
1119 * anonymous, or may have a full name (if the inode was already
1120 * in the cache). The file system may need to make further
1121 * efforts to connect this dentry into the dcache properly.
1123 * When called on a directory inode, we must ensure that
1124 * the inode only ever has one dentry. If a dentry is
1125 * found, that is returned instead of allocating a new one.
1127 * On successful return, the reference to the inode has been transferred
1128 * to the dentry. If %NULL is returned (indicating kmalloc failure),
1129 * the reference on the inode has not been released.
1132 struct dentry
* d_alloc_anon(struct inode
*inode
)
1134 static const struct qstr anonstring
= { .name
= "" };
1138 if ((res
= d_find_alias(inode
))) {
1143 tmp
= d_alloc(NULL
, &anonstring
);
1147 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1149 spin_lock(&dcache_lock
);
1150 res
= __d_find_alias(inode
, 0);
1152 /* attach a disconnected dentry */
1155 spin_lock(&res
->d_lock
);
1156 res
->d_sb
= inode
->i_sb
;
1157 res
->d_parent
= res
;
1158 res
->d_inode
= inode
;
1159 res
->d_flags
|= DCACHE_DISCONNECTED
;
1160 res
->d_flags
&= ~DCACHE_UNHASHED
;
1161 list_add(&res
->d_alias
, &inode
->i_dentry
);
1162 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
1163 spin_unlock(&res
->d_lock
);
1165 inode
= NULL
; /* don't drop reference */
1167 spin_unlock(&dcache_lock
);
1178 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1179 * @inode: the inode which may have a disconnected dentry
1180 * @dentry: a negative dentry which we want to point to the inode.
1182 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1183 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1184 * and return it, else simply d_add the inode to the dentry and return NULL.
1186 * This is needed in the lookup routine of any filesystem that is exportable
1187 * (via knfsd) so that we can build dcache paths to directories effectively.
1189 * If a dentry was found and moved, then it is returned. Otherwise NULL
1190 * is returned. This matches the expected return value of ->lookup.
1193 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1195 struct dentry
*new = NULL
;
1197 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1198 spin_lock(&dcache_lock
);
1199 new = __d_find_alias(inode
, 1);
1201 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1202 fsnotify_d_instantiate(new, inode
);
1203 spin_unlock(&dcache_lock
);
1204 security_d_instantiate(new, inode
);
1206 d_move(new, dentry
);
1209 /* d_instantiate takes dcache_lock, so we do it by hand */
1210 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1211 dentry
->d_inode
= inode
;
1212 fsnotify_d_instantiate(dentry
, inode
);
1213 spin_unlock(&dcache_lock
);
1214 security_d_instantiate(dentry
, inode
);
1218 d_add(dentry
, inode
);
1224 * d_lookup - search for a dentry
1225 * @parent: parent dentry
1226 * @name: qstr of name we wish to find
1228 * Searches the children of the parent dentry for the name in question. If
1229 * the dentry is found its reference count is incremented and the dentry
1230 * is returned. The caller must use d_put to free the entry when it has
1231 * finished using it. %NULL is returned on failure.
1233 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1234 * Memory barriers are used while updating and doing lockless traversal.
1235 * To avoid races with d_move while rename is happening, d_lock is used.
1237 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1238 * and name pointer in one structure pointed by d_qstr.
1240 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1241 * lookup is going on.
1243 * The dentry unused LRU is not updated even if lookup finds the required dentry
1244 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1245 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1248 * d_lookup() is protected against the concurrent renames in some unrelated
1249 * directory using the seqlockt_t rename_lock.
1252 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1254 struct dentry
* dentry
= NULL
;
1258 seq
= read_seqbegin(&rename_lock
);
1259 dentry
= __d_lookup(parent
, name
);
1262 } while (read_seqretry(&rename_lock
, seq
));
1266 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1268 unsigned int len
= name
->len
;
1269 unsigned int hash
= name
->hash
;
1270 const unsigned char *str
= name
->name
;
1271 struct hlist_head
*head
= d_hash(parent
,hash
);
1272 struct dentry
*found
= NULL
;
1273 struct hlist_node
*node
;
1274 struct dentry
*dentry
;
1278 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1281 if (dentry
->d_name
.hash
!= hash
)
1283 if (dentry
->d_parent
!= parent
)
1286 spin_lock(&dentry
->d_lock
);
1289 * Recheck the dentry after taking the lock - d_move may have
1290 * changed things. Don't bother checking the hash because we're
1291 * about to compare the whole name anyway.
1293 if (dentry
->d_parent
!= parent
)
1297 * It is safe to compare names since d_move() cannot
1298 * change the qstr (protected by d_lock).
1300 qstr
= &dentry
->d_name
;
1301 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1302 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1305 if (qstr
->len
!= len
)
1307 if (memcmp(qstr
->name
, str
, len
))
1311 if (!d_unhashed(dentry
)) {
1312 atomic_inc(&dentry
->d_count
);
1315 spin_unlock(&dentry
->d_lock
);
1318 spin_unlock(&dentry
->d_lock
);
1326 * d_hash_and_lookup - hash the qstr then search for a dentry
1327 * @dir: Directory to search in
1328 * @name: qstr of name we wish to find
1330 * On hash failure or on lookup failure NULL is returned.
1332 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1334 struct dentry
*dentry
= NULL
;
1337 * Check for a fs-specific hash function. Note that we must
1338 * calculate the standard hash first, as the d_op->d_hash()
1339 * routine may choose to leave the hash value unchanged.
1341 name
->hash
= full_name_hash(name
->name
, name
->len
);
1342 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1343 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1346 dentry
= d_lookup(dir
, name
);
1352 * d_validate - verify dentry provided from insecure source
1353 * @dentry: The dentry alleged to be valid child of @dparent
1354 * @dparent: The parent dentry (known to be valid)
1355 * @hash: Hash of the dentry
1356 * @len: Length of the name
1358 * An insecure source has sent us a dentry, here we verify it and dget() it.
1359 * This is used by ncpfs in its readdir implementation.
1360 * Zero is returned in the dentry is invalid.
1363 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1365 struct hlist_head
*base
;
1366 struct hlist_node
*lhp
;
1368 /* Check whether the ptr might be valid at all.. */
1369 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1372 if (dentry
->d_parent
!= dparent
)
1375 spin_lock(&dcache_lock
);
1376 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1377 hlist_for_each(lhp
,base
) {
1378 /* hlist_for_each_entry_rcu() not required for d_hash list
1379 * as it is parsed under dcache_lock
1381 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1382 __dget_locked(dentry
);
1383 spin_unlock(&dcache_lock
);
1387 spin_unlock(&dcache_lock
);
1393 * When a file is deleted, we have two options:
1394 * - turn this dentry into a negative dentry
1395 * - unhash this dentry and free it.
1397 * Usually, we want to just turn this into
1398 * a negative dentry, but if anybody else is
1399 * currently using the dentry or the inode
1400 * we can't do that and we fall back on removing
1401 * it from the hash queues and waiting for
1402 * it to be deleted later when it has no users
1406 * d_delete - delete a dentry
1407 * @dentry: The dentry to delete
1409 * Turn the dentry into a negative dentry if possible, otherwise
1410 * remove it from the hash queues so it can be deleted later
1413 void d_delete(struct dentry
* dentry
)
1417 * Are we the only user?
1419 spin_lock(&dcache_lock
);
1420 spin_lock(&dentry
->d_lock
);
1421 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1422 if (atomic_read(&dentry
->d_count
) == 1) {
1423 dentry_iput(dentry
);
1424 fsnotify_nameremove(dentry
, isdir
);
1428 if (!d_unhashed(dentry
))
1431 spin_unlock(&dentry
->d_lock
);
1432 spin_unlock(&dcache_lock
);
1434 fsnotify_nameremove(dentry
, isdir
);
1437 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1440 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1441 hlist_add_head_rcu(&entry
->d_hash
, list
);
1444 static void _d_rehash(struct dentry
* entry
)
1446 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
1450 * d_rehash - add an entry back to the hash
1451 * @entry: dentry to add to the hash
1453 * Adds a dentry to the hash according to its name.
1456 void d_rehash(struct dentry
* entry
)
1458 spin_lock(&dcache_lock
);
1459 spin_lock(&entry
->d_lock
);
1461 spin_unlock(&entry
->d_lock
);
1462 spin_unlock(&dcache_lock
);
1465 #define do_switch(x,y) do { \
1466 __typeof__ (x) __tmp = x; \
1467 x = y; y = __tmp; } while (0)
1470 * When switching names, the actual string doesn't strictly have to
1471 * be preserved in the target - because we're dropping the target
1472 * anyway. As such, we can just do a simple memcpy() to copy over
1473 * the new name before we switch.
1475 * Note that we have to be a lot more careful about getting the hash
1476 * switched - we have to switch the hash value properly even if it
1477 * then no longer matches the actual (corrupted) string of the target.
1478 * The hash value has to match the hash queue that the dentry is on..
1480 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1482 if (dname_external(target
)) {
1483 if (dname_external(dentry
)) {
1485 * Both external: swap the pointers
1487 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1490 * dentry:internal, target:external. Steal target's
1491 * storage and make target internal.
1493 memcpy(target
->d_iname
, dentry
->d_name
.name
,
1494 dentry
->d_name
.len
+ 1);
1495 dentry
->d_name
.name
= target
->d_name
.name
;
1496 target
->d_name
.name
= target
->d_iname
;
1499 if (dname_external(dentry
)) {
1501 * dentry:external, target:internal. Give dentry's
1502 * storage to target and make dentry internal
1504 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1505 target
->d_name
.len
+ 1);
1506 target
->d_name
.name
= dentry
->d_name
.name
;
1507 dentry
->d_name
.name
= dentry
->d_iname
;
1510 * Both are internal. Just copy target to dentry
1512 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1513 target
->d_name
.len
+ 1);
1519 * We cannibalize "target" when moving dentry on top of it,
1520 * because it's going to be thrown away anyway. We could be more
1521 * polite about it, though.
1523 * This forceful removal will result in ugly /proc output if
1524 * somebody holds a file open that got deleted due to a rename.
1525 * We could be nicer about the deleted file, and let it show
1526 * up under the name it had before it was deleted rather than
1527 * under the original name of the file that was moved on top of it.
1531 * d_move_locked - move a dentry
1532 * @dentry: entry to move
1533 * @target: new dentry
1535 * Update the dcache to reflect the move of a file name. Negative
1536 * dcache entries should not be moved in this way.
1538 static void d_move_locked(struct dentry
* dentry
, struct dentry
* target
)
1540 struct hlist_head
*list
;
1542 if (!dentry
->d_inode
)
1543 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1545 write_seqlock(&rename_lock
);
1547 * XXXX: do we really need to take target->d_lock?
1549 if (target
< dentry
) {
1550 spin_lock(&target
->d_lock
);
1551 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1553 spin_lock(&dentry
->d_lock
);
1554 spin_lock_nested(&target
->d_lock
, DENTRY_D_LOCK_NESTED
);
1557 /* Move the dentry to the target hash queue, if on different bucket */
1558 if (d_unhashed(dentry
))
1559 goto already_unhashed
;
1561 hlist_del_rcu(&dentry
->d_hash
);
1564 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1565 __d_rehash(dentry
, list
);
1567 /* Unhash the target: dput() will then get rid of it */
1570 list_del(&dentry
->d_u
.d_child
);
1571 list_del(&target
->d_u
.d_child
);
1573 /* Switch the names.. */
1574 switch_names(dentry
, target
);
1575 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1576 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1578 /* ... and switch the parents */
1579 if (IS_ROOT(dentry
)) {
1580 dentry
->d_parent
= target
->d_parent
;
1581 target
->d_parent
= target
;
1582 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1584 do_switch(dentry
->d_parent
, target
->d_parent
);
1586 /* And add them back to the (new) parent lists */
1587 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1590 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1591 spin_unlock(&target
->d_lock
);
1592 fsnotify_d_move(dentry
);
1593 spin_unlock(&dentry
->d_lock
);
1594 write_sequnlock(&rename_lock
);
1598 * d_move - move a dentry
1599 * @dentry: entry to move
1600 * @target: new dentry
1602 * Update the dcache to reflect the move of a file name. Negative
1603 * dcache entries should not be moved in this way.
1606 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1608 spin_lock(&dcache_lock
);
1609 d_move_locked(dentry
, target
);
1610 spin_unlock(&dcache_lock
);
1614 * Helper that returns 1 if p1 is a parent of p2, else 0
1616 static int d_isparent(struct dentry
*p1
, struct dentry
*p2
)
1620 for (p
= p2
; p
->d_parent
!= p
; p
= p
->d_parent
) {
1621 if (p
->d_parent
== p1
)
1628 * This helper attempts to cope with remotely renamed directories
1630 * It assumes that the caller is already holding
1631 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1633 * Note: If ever the locking in lock_rename() changes, then please
1634 * remember to update this too...
1636 static struct dentry
*__d_unalias(struct dentry
*dentry
, struct dentry
*alias
)
1637 __releases(dcache_lock
)
1639 struct mutex
*m1
= NULL
, *m2
= NULL
;
1642 /* If alias and dentry share a parent, then no extra locks required */
1643 if (alias
->d_parent
== dentry
->d_parent
)
1646 /* Check for loops */
1647 ret
= ERR_PTR(-ELOOP
);
1648 if (d_isparent(alias
, dentry
))
1651 /* See lock_rename() */
1652 ret
= ERR_PTR(-EBUSY
);
1653 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
1655 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
1656 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
1658 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
1660 d_move_locked(alias
, dentry
);
1663 spin_unlock(&dcache_lock
);
1672 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1673 * named dentry in place of the dentry to be replaced.
1675 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
1677 struct dentry
*dparent
, *aparent
;
1679 switch_names(dentry
, anon
);
1680 do_switch(dentry
->d_name
.len
, anon
->d_name
.len
);
1681 do_switch(dentry
->d_name
.hash
, anon
->d_name
.hash
);
1683 dparent
= dentry
->d_parent
;
1684 aparent
= anon
->d_parent
;
1686 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
1687 list_del(&dentry
->d_u
.d_child
);
1688 if (!IS_ROOT(dentry
))
1689 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1691 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1693 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
1694 list_del(&anon
->d_u
.d_child
);
1696 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
1698 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
1700 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
1704 * d_materialise_unique - introduce an inode into the tree
1705 * @dentry: candidate dentry
1706 * @inode: inode to bind to the dentry, to which aliases may be attached
1708 * Introduces an dentry into the tree, substituting an extant disconnected
1709 * root directory alias in its place if there is one
1711 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
1713 struct dentry
*actual
;
1715 BUG_ON(!d_unhashed(dentry
));
1717 spin_lock(&dcache_lock
);
1721 dentry
->d_inode
= NULL
;
1725 if (S_ISDIR(inode
->i_mode
)) {
1726 struct dentry
*alias
;
1728 /* Does an aliased dentry already exist? */
1729 alias
= __d_find_alias(inode
, 0);
1732 /* Is this an anonymous mountpoint that we could splice
1734 if (IS_ROOT(alias
)) {
1735 spin_lock(&alias
->d_lock
);
1736 __d_materialise_dentry(dentry
, alias
);
1740 /* Nope, but we must(!) avoid directory aliasing */
1741 actual
= __d_unalias(dentry
, alias
);
1748 /* Add a unique reference */
1749 actual
= __d_instantiate_unique(dentry
, inode
);
1752 else if (unlikely(!d_unhashed(actual
)))
1753 goto shouldnt_be_hashed
;
1756 spin_lock(&actual
->d_lock
);
1759 spin_unlock(&actual
->d_lock
);
1760 spin_unlock(&dcache_lock
);
1762 if (actual
== dentry
) {
1763 security_d_instantiate(dentry
, inode
);
1771 spin_unlock(&dcache_lock
);
1775 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
1779 return -ENAMETOOLONG
;
1781 memcpy(*buffer
, str
, namelen
);
1785 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
1787 return prepend(buffer
, buflen
, name
->name
, name
->len
);
1791 * __d_path - return the path of a dentry
1792 * @path: the dentry/vfsmount to report
1793 * @root: root vfsmnt/dentry (may be modified by this function)
1794 * @buffer: buffer to return value in
1795 * @buflen: buffer length
1797 * Convert a dentry into an ASCII path name. If the entry has been deleted
1798 * the string " (deleted)" is appended. Note that this is ambiguous.
1800 * Returns the buffer or an error code if the path was too long.
1802 * "buflen" should be positive. Caller holds the dcache_lock.
1804 * If path is not reachable from the supplied root, then the value of
1805 * root is changed (without modifying refcounts).
1807 char *__d_path(const struct path
*path
, struct path
*root
,
1808 char *buffer
, int buflen
)
1810 struct dentry
*dentry
= path
->dentry
;
1811 struct vfsmount
*vfsmnt
= path
->mnt
;
1812 char *end
= buffer
+ buflen
;
1815 spin_lock(&vfsmount_lock
);
1816 prepend(&end
, &buflen
, "\0", 1);
1817 if (!IS_ROOT(dentry
) && d_unhashed(dentry
) &&
1818 (prepend(&end
, &buflen
, " (deleted)", 10) != 0))
1828 struct dentry
* parent
;
1830 if (dentry
== root
->dentry
&& vfsmnt
== root
->mnt
)
1832 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1834 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1837 dentry
= vfsmnt
->mnt_mountpoint
;
1838 vfsmnt
= vfsmnt
->mnt_parent
;
1841 parent
= dentry
->d_parent
;
1843 if ((prepend_name(&end
, &buflen
, &dentry
->d_name
) != 0) ||
1844 (prepend(&end
, &buflen
, "/", 1) != 0))
1851 spin_unlock(&vfsmount_lock
);
1855 retval
+= 1; /* hit the slash */
1856 if (prepend_name(&retval
, &buflen
, &dentry
->d_name
) != 0)
1859 root
->dentry
= dentry
;
1863 retval
= ERR_PTR(-ENAMETOOLONG
);
1868 * d_path - return the path of a dentry
1869 * @path: path to report
1870 * @buf: buffer to return value in
1871 * @buflen: buffer length
1873 * Convert a dentry into an ASCII path name. If the entry has been deleted
1874 * the string " (deleted)" is appended. Note that this is ambiguous.
1876 * Returns the buffer or an error code if the path was too long.
1878 * "buflen" should be positive.
1880 char *d_path(const struct path
*path
, char *buf
, int buflen
)
1887 * We have various synthetic filesystems that never get mounted. On
1888 * these filesystems dentries are never used for lookup purposes, and
1889 * thus don't need to be hashed. They also don't need a name until a
1890 * user wants to identify the object in /proc/pid/fd/. The little hack
1891 * below allows us to generate a name for these objects on demand:
1893 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
1894 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
1896 read_lock(¤t
->fs
->lock
);
1897 root
= current
->fs
->root
;
1899 read_unlock(¤t
->fs
->lock
);
1900 spin_lock(&dcache_lock
);
1902 res
= __d_path(path
, &tmp
, buf
, buflen
);
1903 spin_unlock(&dcache_lock
);
1909 * Helper function for dentry_operations.d_dname() members
1911 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
1912 const char *fmt
, ...)
1918 va_start(args
, fmt
);
1919 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
1922 if (sz
> sizeof(temp
) || sz
> buflen
)
1923 return ERR_PTR(-ENAMETOOLONG
);
1925 buffer
+= buflen
- sz
;
1926 return memcpy(buffer
, temp
, sz
);
1930 * Write full pathname from the root of the filesystem into the buffer.
1932 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
1934 char *end
= buf
+ buflen
;
1937 spin_lock(&dcache_lock
);
1938 prepend(&end
, &buflen
, "\0", 1);
1939 if (!IS_ROOT(dentry
) && d_unhashed(dentry
) &&
1940 (prepend(&end
, &buflen
, "//deleted", 9) != 0))
1948 while (!IS_ROOT(dentry
)) {
1949 struct dentry
*parent
= dentry
->d_parent
;
1952 if ((prepend_name(&end
, &buflen
, &dentry
->d_name
) != 0) ||
1953 (prepend(&end
, &buflen
, "/", 1) != 0))
1959 spin_unlock(&dcache_lock
);
1962 spin_unlock(&dcache_lock
);
1963 return ERR_PTR(-ENAMETOOLONG
);
1967 * NOTE! The user-level library version returns a
1968 * character pointer. The kernel system call just
1969 * returns the length of the buffer filled (which
1970 * includes the ending '\0' character), or a negative
1971 * error value. So libc would do something like
1973 * char *getcwd(char * buf, size_t size)
1977 * retval = sys_getcwd(buf, size);
1984 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1987 struct path pwd
, root
;
1988 char *page
= (char *) __get_free_page(GFP_USER
);
1993 read_lock(¤t
->fs
->lock
);
1994 pwd
= current
->fs
->pwd
;
1996 root
= current
->fs
->root
;
1998 read_unlock(¤t
->fs
->lock
);
2001 /* Has the current directory has been unlinked? */
2002 spin_lock(&dcache_lock
);
2003 if (IS_ROOT(pwd
.dentry
) || !d_unhashed(pwd
.dentry
)) {
2005 struct path tmp
= root
;
2008 cwd
= __d_path(&pwd
, &tmp
, page
, PAGE_SIZE
);
2009 spin_unlock(&dcache_lock
);
2011 error
= PTR_ERR(cwd
);
2016 len
= PAGE_SIZE
+ page
- cwd
;
2019 if (copy_to_user(buf
, cwd
, len
))
2023 spin_unlock(&dcache_lock
);
2028 free_page((unsigned long) page
);
2033 * Test whether new_dentry is a subdirectory of old_dentry.
2035 * Trivially implemented using the dcache structure
2039 * is_subdir - is new dentry a subdirectory of old_dentry
2040 * @new_dentry: new dentry
2041 * @old_dentry: old dentry
2043 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2044 * Returns 0 otherwise.
2045 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2048 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
2051 struct dentry
* saved
= new_dentry
;
2054 /* need rcu_readlock to protect against the d_parent trashing due to
2059 /* for restarting inner loop in case of seq retry */
2062 seq
= read_seqbegin(&rename_lock
);
2064 if (new_dentry
!= old_dentry
) {
2065 struct dentry
* parent
= new_dentry
->d_parent
;
2066 if (parent
== new_dentry
)
2068 new_dentry
= parent
;
2074 } while (read_seqretry(&rename_lock
, seq
));
2080 void d_genocide(struct dentry
*root
)
2082 struct dentry
*this_parent
= root
;
2083 struct list_head
*next
;
2085 spin_lock(&dcache_lock
);
2087 next
= this_parent
->d_subdirs
.next
;
2089 while (next
!= &this_parent
->d_subdirs
) {
2090 struct list_head
*tmp
= next
;
2091 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2093 if (d_unhashed(dentry
)||!dentry
->d_inode
)
2095 if (!list_empty(&dentry
->d_subdirs
)) {
2096 this_parent
= dentry
;
2099 atomic_dec(&dentry
->d_count
);
2101 if (this_parent
!= root
) {
2102 next
= this_parent
->d_u
.d_child
.next
;
2103 atomic_dec(&this_parent
->d_count
);
2104 this_parent
= this_parent
->d_parent
;
2107 spin_unlock(&dcache_lock
);
2111 * find_inode_number - check for dentry with name
2112 * @dir: directory to check
2113 * @name: Name to find.
2115 * Check whether a dentry already exists for the given name,
2116 * and return the inode number if it has an inode. Otherwise
2119 * This routine is used to post-process directory listings for
2120 * filesystems using synthetic inode numbers, and is necessary
2121 * to keep getcwd() working.
2124 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2126 struct dentry
* dentry
;
2129 dentry
= d_hash_and_lookup(dir
, name
);
2131 if (dentry
->d_inode
)
2132 ino
= dentry
->d_inode
->i_ino
;
2138 static __initdata
unsigned long dhash_entries
;
2139 static int __init
set_dhash_entries(char *str
)
2143 dhash_entries
= simple_strtoul(str
, &str
, 0);
2146 __setup("dhash_entries=", set_dhash_entries
);
2148 static void __init
dcache_init_early(void)
2152 /* If hashes are distributed across NUMA nodes, defer
2153 * hash allocation until vmalloc space is available.
2159 alloc_large_system_hash("Dentry cache",
2160 sizeof(struct hlist_head
),
2168 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2169 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2172 static void __init
dcache_init(void)
2177 * A constructor could be added for stable state like the lists,
2178 * but it is probably not worth it because of the cache nature
2181 dentry_cache
= KMEM_CACHE(dentry
,
2182 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
2184 register_shrinker(&dcache_shrinker
);
2186 /* Hash may have been set up in dcache_init_early */
2191 alloc_large_system_hash("Dentry cache",
2192 sizeof(struct hlist_head
),
2200 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2201 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2204 /* SLAB cache for __getname() consumers */
2205 struct kmem_cache
*names_cachep __read_mostly
;
2207 /* SLAB cache for file structures */
2208 struct kmem_cache
*filp_cachep __read_mostly
;
2210 EXPORT_SYMBOL(d_genocide
);
2212 void __init
vfs_caches_init_early(void)
2214 dcache_init_early();
2218 void __init
vfs_caches_init(unsigned long mempages
)
2220 unsigned long reserve
;
2222 /* Base hash sizes on available memory, with a reserve equal to
2223 150% of current kernel size */
2225 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
2226 mempages
-= reserve
;
2228 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
2229 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2231 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
2232 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2236 files_init(mempages
);
2242 EXPORT_SYMBOL(d_alloc
);
2243 EXPORT_SYMBOL(d_alloc_anon
);
2244 EXPORT_SYMBOL(d_alloc_root
);
2245 EXPORT_SYMBOL(d_delete
);
2246 EXPORT_SYMBOL(d_find_alias
);
2247 EXPORT_SYMBOL(d_instantiate
);
2248 EXPORT_SYMBOL(d_invalidate
);
2249 EXPORT_SYMBOL(d_lookup
);
2250 EXPORT_SYMBOL(d_move
);
2251 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2252 EXPORT_SYMBOL(d_path
);
2253 EXPORT_SYMBOL(d_prune_aliases
);
2254 EXPORT_SYMBOL(d_rehash
);
2255 EXPORT_SYMBOL(d_splice_alias
);
2256 EXPORT_SYMBOL(d_validate
);
2257 EXPORT_SYMBOL(dget_locked
);
2258 EXPORT_SYMBOL(dput
);
2259 EXPORT_SYMBOL(find_inode_number
);
2260 EXPORT_SYMBOL(have_submounts
);
2261 EXPORT_SYMBOL(names_cachep
);
2262 EXPORT_SYMBOL(shrink_dcache_parent
);
2263 EXPORT_SYMBOL(shrink_dcache_sb
);