io_edgeport: Fix various bogus returns to the tty layer
[linux-2.6/openmoko-kernel.git] / mm / slub.c
blob6d4a49c1ff2fc27bef0616c03016394d551fc5be
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
28 * Lock order:
29 * 1. slab_lock(page)
30 * 2. slab->list_lock
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
49 * the list lock.
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
82 * Overloading of page flags that are otherwise used for LRU management.
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
96 * freelist that allows lockless access to
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
102 * the fast path and disables lockless freelists.
105 #define FROZEN (1 << PG_active)
107 #ifdef CONFIG_SLUB_DEBUG
108 #define SLABDEBUG (1 << PG_error)
109 #else
110 #define SLABDEBUG 0
111 #endif
113 static inline int SlabFrozen(struct page *page)
115 return page->flags & FROZEN;
118 static inline void SetSlabFrozen(struct page *page)
120 page->flags |= FROZEN;
123 static inline void ClearSlabFrozen(struct page *page)
125 page->flags &= ~FROZEN;
128 static inline int SlabDebug(struct page *page)
130 return page->flags & SLABDEBUG;
133 static inline void SetSlabDebug(struct page *page)
135 page->flags |= SLABDEBUG;
138 static inline void ClearSlabDebug(struct page *page)
140 page->flags &= ~SLABDEBUG;
144 * Issues still to be resolved:
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 * - Variable sizing of the per node arrays
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
155 * Mininum number of partial slabs. These will be left on the partial
156 * lists even if they are empty. kmem_cache_shrink may reclaim them.
158 #define MIN_PARTIAL 5
161 * Maximum number of desirable partial slabs.
162 * The existence of more partial slabs makes kmem_cache_shrink
163 * sort the partial list by the number of objects in the.
165 #define MAX_PARTIAL 10
167 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_STORE_USER)
171 * Set of flags that will prevent slab merging
173 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
176 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 SLAB_CACHE_DMA)
179 #ifndef ARCH_KMALLOC_MINALIGN
180 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
181 #endif
183 #ifndef ARCH_SLAB_MINALIGN
184 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
185 #endif
187 /* Internal SLUB flags */
188 #define __OBJECT_POISON 0x80000000 /* Poison object */
189 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
191 static int kmem_size = sizeof(struct kmem_cache);
193 #ifdef CONFIG_SMP
194 static struct notifier_block slab_notifier;
195 #endif
197 static enum {
198 DOWN, /* No slab functionality available */
199 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
200 UP, /* Everything works but does not show up in sysfs */
201 SYSFS /* Sysfs up */
202 } slab_state = DOWN;
204 /* A list of all slab caches on the system */
205 static DECLARE_RWSEM(slub_lock);
206 static LIST_HEAD(slab_caches);
209 * Tracking user of a slab.
211 struct track {
212 void *addr; /* Called from address */
213 int cpu; /* Was running on cpu */
214 int pid; /* Pid context */
215 unsigned long when; /* When did the operation occur */
218 enum track_item { TRACK_ALLOC, TRACK_FREE };
220 #ifdef CONFIG_SLUB_DEBUG
221 static int sysfs_slab_add(struct kmem_cache *);
222 static int sysfs_slab_alias(struct kmem_cache *, const char *);
223 static void sysfs_slab_remove(struct kmem_cache *);
225 #else
226 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
227 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228 { return 0; }
229 static inline void sysfs_slab_remove(struct kmem_cache *s)
231 kfree(s);
234 #endif
236 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
238 #ifdef CONFIG_SLUB_STATS
239 c->stat[si]++;
240 #endif
243 /********************************************************************
244 * Core slab cache functions
245 *******************************************************************/
247 int slab_is_available(void)
249 return slab_state >= UP;
252 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
254 #ifdef CONFIG_NUMA
255 return s->node[node];
256 #else
257 return &s->local_node;
258 #endif
261 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
263 #ifdef CONFIG_SMP
264 return s->cpu_slab[cpu];
265 #else
266 return &s->cpu_slab;
267 #endif
270 /* Verify that a pointer has an address that is valid within a slab page */
271 static inline int check_valid_pointer(struct kmem_cache *s,
272 struct page *page, const void *object)
274 void *base;
276 if (!object)
277 return 1;
279 base = page_address(page);
280 if (object < base || object >= base + page->objects * s->size ||
281 (object - base) % s->size) {
282 return 0;
285 return 1;
289 * Slow version of get and set free pointer.
291 * This version requires touching the cache lines of kmem_cache which
292 * we avoid to do in the fast alloc free paths. There we obtain the offset
293 * from the page struct.
295 static inline void *get_freepointer(struct kmem_cache *s, void *object)
297 return *(void **)(object + s->offset);
300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302 *(void **)(object + s->offset) = fp;
305 /* Loop over all objects in a slab */
306 #define for_each_object(__p, __s, __addr, __objects) \
307 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
308 __p += (__s)->size)
310 /* Scan freelist */
311 #define for_each_free_object(__p, __s, __free) \
312 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
314 /* Determine object index from a given position */
315 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
317 return (p - addr) / s->size;
320 static inline struct kmem_cache_order_objects oo_make(int order,
321 unsigned long size)
323 struct kmem_cache_order_objects x = {
324 (order << 16) + (PAGE_SIZE << order) / size
327 return x;
330 static inline int oo_order(struct kmem_cache_order_objects x)
332 return x.x >> 16;
335 static inline int oo_objects(struct kmem_cache_order_objects x)
337 return x.x & ((1 << 16) - 1);
340 #ifdef CONFIG_SLUB_DEBUG
342 * Debug settings:
344 #ifdef CONFIG_SLUB_DEBUG_ON
345 static int slub_debug = DEBUG_DEFAULT_FLAGS;
346 #else
347 static int slub_debug;
348 #endif
350 static char *slub_debug_slabs;
353 * Object debugging
355 static void print_section(char *text, u8 *addr, unsigned int length)
357 int i, offset;
358 int newline = 1;
359 char ascii[17];
361 ascii[16] = 0;
363 for (i = 0; i < length; i++) {
364 if (newline) {
365 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
366 newline = 0;
368 printk(KERN_CONT " %02x", addr[i]);
369 offset = i % 16;
370 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
371 if (offset == 15) {
372 printk(KERN_CONT " %s\n", ascii);
373 newline = 1;
376 if (!newline) {
377 i %= 16;
378 while (i < 16) {
379 printk(KERN_CONT " ");
380 ascii[i] = ' ';
381 i++;
383 printk(KERN_CONT " %s\n", ascii);
387 static struct track *get_track(struct kmem_cache *s, void *object,
388 enum track_item alloc)
390 struct track *p;
392 if (s->offset)
393 p = object + s->offset + sizeof(void *);
394 else
395 p = object + s->inuse;
397 return p + alloc;
400 static void set_track(struct kmem_cache *s, void *object,
401 enum track_item alloc, void *addr)
403 struct track *p;
405 if (s->offset)
406 p = object + s->offset + sizeof(void *);
407 else
408 p = object + s->inuse;
410 p += alloc;
411 if (addr) {
412 p->addr = addr;
413 p->cpu = smp_processor_id();
414 p->pid = current->pid;
415 p->when = jiffies;
416 } else
417 memset(p, 0, sizeof(struct track));
420 static void init_tracking(struct kmem_cache *s, void *object)
422 if (!(s->flags & SLAB_STORE_USER))
423 return;
425 set_track(s, object, TRACK_FREE, NULL);
426 set_track(s, object, TRACK_ALLOC, NULL);
429 static void print_track(const char *s, struct track *t)
431 if (!t->addr)
432 return;
434 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
435 s, t->addr, jiffies - t->when, t->cpu, t->pid);
438 static void print_tracking(struct kmem_cache *s, void *object)
440 if (!(s->flags & SLAB_STORE_USER))
441 return;
443 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
444 print_track("Freed", get_track(s, object, TRACK_FREE));
447 static void print_page_info(struct page *page)
449 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
450 page, page->objects, page->inuse, page->freelist, page->flags);
454 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
456 va_list args;
457 char buf[100];
459 va_start(args, fmt);
460 vsnprintf(buf, sizeof(buf), fmt, args);
461 va_end(args);
462 printk(KERN_ERR "========================================"
463 "=====================================\n");
464 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
465 printk(KERN_ERR "----------------------------------------"
466 "-------------------------------------\n\n");
469 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
471 va_list args;
472 char buf[100];
474 va_start(args, fmt);
475 vsnprintf(buf, sizeof(buf), fmt, args);
476 va_end(args);
477 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
480 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
482 unsigned int off; /* Offset of last byte */
483 u8 *addr = page_address(page);
485 print_tracking(s, p);
487 print_page_info(page);
489 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
490 p, p - addr, get_freepointer(s, p));
492 if (p > addr + 16)
493 print_section("Bytes b4", p - 16, 16);
495 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
497 if (s->flags & SLAB_RED_ZONE)
498 print_section("Redzone", p + s->objsize,
499 s->inuse - s->objsize);
501 if (s->offset)
502 off = s->offset + sizeof(void *);
503 else
504 off = s->inuse;
506 if (s->flags & SLAB_STORE_USER)
507 off += 2 * sizeof(struct track);
509 if (off != s->size)
510 /* Beginning of the filler is the free pointer */
511 print_section("Padding", p + off, s->size - off);
513 dump_stack();
516 static void object_err(struct kmem_cache *s, struct page *page,
517 u8 *object, char *reason)
519 slab_bug(s, "%s", reason);
520 print_trailer(s, page, object);
523 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
525 va_list args;
526 char buf[100];
528 va_start(args, fmt);
529 vsnprintf(buf, sizeof(buf), fmt, args);
530 va_end(args);
531 slab_bug(s, "%s", buf);
532 print_page_info(page);
533 dump_stack();
536 static void init_object(struct kmem_cache *s, void *object, int active)
538 u8 *p = object;
540 if (s->flags & __OBJECT_POISON) {
541 memset(p, POISON_FREE, s->objsize - 1);
542 p[s->objsize - 1] = POISON_END;
545 if (s->flags & SLAB_RED_ZONE)
546 memset(p + s->objsize,
547 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
548 s->inuse - s->objsize);
551 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
553 while (bytes) {
554 if (*start != (u8)value)
555 return start;
556 start++;
557 bytes--;
559 return NULL;
562 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
563 void *from, void *to)
565 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
566 memset(from, data, to - from);
569 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
570 u8 *object, char *what,
571 u8 *start, unsigned int value, unsigned int bytes)
573 u8 *fault;
574 u8 *end;
576 fault = check_bytes(start, value, bytes);
577 if (!fault)
578 return 1;
580 end = start + bytes;
581 while (end > fault && end[-1] == value)
582 end--;
584 slab_bug(s, "%s overwritten", what);
585 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
586 fault, end - 1, fault[0], value);
587 print_trailer(s, page, object);
589 restore_bytes(s, what, value, fault, end);
590 return 0;
594 * Object layout:
596 * object address
597 * Bytes of the object to be managed.
598 * If the freepointer may overlay the object then the free
599 * pointer is the first word of the object.
601 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
602 * 0xa5 (POISON_END)
604 * object + s->objsize
605 * Padding to reach word boundary. This is also used for Redzoning.
606 * Padding is extended by another word if Redzoning is enabled and
607 * objsize == inuse.
609 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
610 * 0xcc (RED_ACTIVE) for objects in use.
612 * object + s->inuse
613 * Meta data starts here.
615 * A. Free pointer (if we cannot overwrite object on free)
616 * B. Tracking data for SLAB_STORE_USER
617 * C. Padding to reach required alignment boundary or at mininum
618 * one word if debugging is on to be able to detect writes
619 * before the word boundary.
621 * Padding is done using 0x5a (POISON_INUSE)
623 * object + s->size
624 * Nothing is used beyond s->size.
626 * If slabcaches are merged then the objsize and inuse boundaries are mostly
627 * ignored. And therefore no slab options that rely on these boundaries
628 * may be used with merged slabcaches.
631 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
633 unsigned long off = s->inuse; /* The end of info */
635 if (s->offset)
636 /* Freepointer is placed after the object. */
637 off += sizeof(void *);
639 if (s->flags & SLAB_STORE_USER)
640 /* We also have user information there */
641 off += 2 * sizeof(struct track);
643 if (s->size == off)
644 return 1;
646 return check_bytes_and_report(s, page, p, "Object padding",
647 p + off, POISON_INUSE, s->size - off);
650 /* Check the pad bytes at the end of a slab page */
651 static int slab_pad_check(struct kmem_cache *s, struct page *page)
653 u8 *start;
654 u8 *fault;
655 u8 *end;
656 int length;
657 int remainder;
659 if (!(s->flags & SLAB_POISON))
660 return 1;
662 start = page_address(page);
663 length = (PAGE_SIZE << compound_order(page));
664 end = start + length;
665 remainder = length % s->size;
666 if (!remainder)
667 return 1;
669 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
670 if (!fault)
671 return 1;
672 while (end > fault && end[-1] == POISON_INUSE)
673 end--;
675 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
676 print_section("Padding", end - remainder, remainder);
678 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
679 return 0;
682 static int check_object(struct kmem_cache *s, struct page *page,
683 void *object, int active)
685 u8 *p = object;
686 u8 *endobject = object + s->objsize;
688 if (s->flags & SLAB_RED_ZONE) {
689 unsigned int red =
690 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
692 if (!check_bytes_and_report(s, page, object, "Redzone",
693 endobject, red, s->inuse - s->objsize))
694 return 0;
695 } else {
696 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
697 check_bytes_and_report(s, page, p, "Alignment padding",
698 endobject, POISON_INUSE, s->inuse - s->objsize);
702 if (s->flags & SLAB_POISON) {
703 if (!active && (s->flags & __OBJECT_POISON) &&
704 (!check_bytes_and_report(s, page, p, "Poison", p,
705 POISON_FREE, s->objsize - 1) ||
706 !check_bytes_and_report(s, page, p, "Poison",
707 p + s->objsize - 1, POISON_END, 1)))
708 return 0;
710 * check_pad_bytes cleans up on its own.
712 check_pad_bytes(s, page, p);
715 if (!s->offset && active)
717 * Object and freepointer overlap. Cannot check
718 * freepointer while object is allocated.
720 return 1;
722 /* Check free pointer validity */
723 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
724 object_err(s, page, p, "Freepointer corrupt");
726 * No choice but to zap it and thus loose the remainder
727 * of the free objects in this slab. May cause
728 * another error because the object count is now wrong.
730 set_freepointer(s, p, NULL);
731 return 0;
733 return 1;
736 static int check_slab(struct kmem_cache *s, struct page *page)
738 int maxobj;
740 VM_BUG_ON(!irqs_disabled());
742 if (!PageSlab(page)) {
743 slab_err(s, page, "Not a valid slab page");
744 return 0;
747 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
748 if (page->objects > maxobj) {
749 slab_err(s, page, "objects %u > max %u",
750 s->name, page->objects, maxobj);
751 return 0;
753 if (page->inuse > page->objects) {
754 slab_err(s, page, "inuse %u > max %u",
755 s->name, page->inuse, page->objects);
756 return 0;
758 /* Slab_pad_check fixes things up after itself */
759 slab_pad_check(s, page);
760 return 1;
764 * Determine if a certain object on a page is on the freelist. Must hold the
765 * slab lock to guarantee that the chains are in a consistent state.
767 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
769 int nr = 0;
770 void *fp = page->freelist;
771 void *object = NULL;
772 unsigned long max_objects;
774 while (fp && nr <= page->objects) {
775 if (fp == search)
776 return 1;
777 if (!check_valid_pointer(s, page, fp)) {
778 if (object) {
779 object_err(s, page, object,
780 "Freechain corrupt");
781 set_freepointer(s, object, NULL);
782 break;
783 } else {
784 slab_err(s, page, "Freepointer corrupt");
785 page->freelist = NULL;
786 page->inuse = page->objects;
787 slab_fix(s, "Freelist cleared");
788 return 0;
790 break;
792 object = fp;
793 fp = get_freepointer(s, object);
794 nr++;
797 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
798 if (max_objects > 65535)
799 max_objects = 65535;
801 if (page->objects != max_objects) {
802 slab_err(s, page, "Wrong number of objects. Found %d but "
803 "should be %d", page->objects, max_objects);
804 page->objects = max_objects;
805 slab_fix(s, "Number of objects adjusted.");
807 if (page->inuse != page->objects - nr) {
808 slab_err(s, page, "Wrong object count. Counter is %d but "
809 "counted were %d", page->inuse, page->objects - nr);
810 page->inuse = page->objects - nr;
811 slab_fix(s, "Object count adjusted.");
813 return search == NULL;
816 static void trace(struct kmem_cache *s, struct page *page, void *object,
817 int alloc)
819 if (s->flags & SLAB_TRACE) {
820 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
821 s->name,
822 alloc ? "alloc" : "free",
823 object, page->inuse,
824 page->freelist);
826 if (!alloc)
827 print_section("Object", (void *)object, s->objsize);
829 dump_stack();
834 * Tracking of fully allocated slabs for debugging purposes.
836 static void add_full(struct kmem_cache_node *n, struct page *page)
838 spin_lock(&n->list_lock);
839 list_add(&page->lru, &n->full);
840 spin_unlock(&n->list_lock);
843 static void remove_full(struct kmem_cache *s, struct page *page)
845 struct kmem_cache_node *n;
847 if (!(s->flags & SLAB_STORE_USER))
848 return;
850 n = get_node(s, page_to_nid(page));
852 spin_lock(&n->list_lock);
853 list_del(&page->lru);
854 spin_unlock(&n->list_lock);
857 /* Tracking of the number of slabs for debugging purposes */
858 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
860 struct kmem_cache_node *n = get_node(s, node);
862 return atomic_long_read(&n->nr_slabs);
865 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
867 struct kmem_cache_node *n = get_node(s, node);
870 * May be called early in order to allocate a slab for the
871 * kmem_cache_node structure. Solve the chicken-egg
872 * dilemma by deferring the increment of the count during
873 * bootstrap (see early_kmem_cache_node_alloc).
875 if (!NUMA_BUILD || n) {
876 atomic_long_inc(&n->nr_slabs);
877 atomic_long_add(objects, &n->total_objects);
880 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
882 struct kmem_cache_node *n = get_node(s, node);
884 atomic_long_dec(&n->nr_slabs);
885 atomic_long_sub(objects, &n->total_objects);
888 /* Object debug checks for alloc/free paths */
889 static void setup_object_debug(struct kmem_cache *s, struct page *page,
890 void *object)
892 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
893 return;
895 init_object(s, object, 0);
896 init_tracking(s, object);
899 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
900 void *object, void *addr)
902 if (!check_slab(s, page))
903 goto bad;
905 if (!on_freelist(s, page, object)) {
906 object_err(s, page, object, "Object already allocated");
907 goto bad;
910 if (!check_valid_pointer(s, page, object)) {
911 object_err(s, page, object, "Freelist Pointer check fails");
912 goto bad;
915 if (!check_object(s, page, object, 0))
916 goto bad;
918 /* Success perform special debug activities for allocs */
919 if (s->flags & SLAB_STORE_USER)
920 set_track(s, object, TRACK_ALLOC, addr);
921 trace(s, page, object, 1);
922 init_object(s, object, 1);
923 return 1;
925 bad:
926 if (PageSlab(page)) {
928 * If this is a slab page then lets do the best we can
929 * to avoid issues in the future. Marking all objects
930 * as used avoids touching the remaining objects.
932 slab_fix(s, "Marking all objects used");
933 page->inuse = page->objects;
934 page->freelist = NULL;
936 return 0;
939 static int free_debug_processing(struct kmem_cache *s, struct page *page,
940 void *object, void *addr)
942 if (!check_slab(s, page))
943 goto fail;
945 if (!check_valid_pointer(s, page, object)) {
946 slab_err(s, page, "Invalid object pointer 0x%p", object);
947 goto fail;
950 if (on_freelist(s, page, object)) {
951 object_err(s, page, object, "Object already free");
952 goto fail;
955 if (!check_object(s, page, object, 1))
956 return 0;
958 if (unlikely(s != page->slab)) {
959 if (!PageSlab(page)) {
960 slab_err(s, page, "Attempt to free object(0x%p) "
961 "outside of slab", object);
962 } else if (!page->slab) {
963 printk(KERN_ERR
964 "SLUB <none>: no slab for object 0x%p.\n",
965 object);
966 dump_stack();
967 } else
968 object_err(s, page, object,
969 "page slab pointer corrupt.");
970 goto fail;
973 /* Special debug activities for freeing objects */
974 if (!SlabFrozen(page) && !page->freelist)
975 remove_full(s, page);
976 if (s->flags & SLAB_STORE_USER)
977 set_track(s, object, TRACK_FREE, addr);
978 trace(s, page, object, 0);
979 init_object(s, object, 0);
980 return 1;
982 fail:
983 slab_fix(s, "Object at 0x%p not freed", object);
984 return 0;
987 static int __init setup_slub_debug(char *str)
989 slub_debug = DEBUG_DEFAULT_FLAGS;
990 if (*str++ != '=' || !*str)
992 * No options specified. Switch on full debugging.
994 goto out;
996 if (*str == ',')
998 * No options but restriction on slabs. This means full
999 * debugging for slabs matching a pattern.
1001 goto check_slabs;
1003 slub_debug = 0;
1004 if (*str == '-')
1006 * Switch off all debugging measures.
1008 goto out;
1011 * Determine which debug features should be switched on
1013 for (; *str && *str != ','; str++) {
1014 switch (tolower(*str)) {
1015 case 'f':
1016 slub_debug |= SLAB_DEBUG_FREE;
1017 break;
1018 case 'z':
1019 slub_debug |= SLAB_RED_ZONE;
1020 break;
1021 case 'p':
1022 slub_debug |= SLAB_POISON;
1023 break;
1024 case 'u':
1025 slub_debug |= SLAB_STORE_USER;
1026 break;
1027 case 't':
1028 slub_debug |= SLAB_TRACE;
1029 break;
1030 default:
1031 printk(KERN_ERR "slub_debug option '%c' "
1032 "unknown. skipped\n", *str);
1036 check_slabs:
1037 if (*str == ',')
1038 slub_debug_slabs = str + 1;
1039 out:
1040 return 1;
1043 __setup("slub_debug", setup_slub_debug);
1045 static unsigned long kmem_cache_flags(unsigned long objsize,
1046 unsigned long flags, const char *name,
1047 void (*ctor)(struct kmem_cache *, void *))
1050 * Enable debugging if selected on the kernel commandline.
1052 if (slub_debug && (!slub_debug_slabs ||
1053 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1054 flags |= slub_debug;
1056 return flags;
1058 #else
1059 static inline void setup_object_debug(struct kmem_cache *s,
1060 struct page *page, void *object) {}
1062 static inline int alloc_debug_processing(struct kmem_cache *s,
1063 struct page *page, void *object, void *addr) { return 0; }
1065 static inline int free_debug_processing(struct kmem_cache *s,
1066 struct page *page, void *object, void *addr) { return 0; }
1068 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1069 { return 1; }
1070 static inline int check_object(struct kmem_cache *s, struct page *page,
1071 void *object, int active) { return 1; }
1072 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1073 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1074 unsigned long flags, const char *name,
1075 void (*ctor)(struct kmem_cache *, void *))
1077 return flags;
1079 #define slub_debug 0
1081 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1082 { return 0; }
1083 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1084 int objects) {}
1085 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1086 int objects) {}
1087 #endif
1090 * Slab allocation and freeing
1092 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1093 struct kmem_cache_order_objects oo)
1095 int order = oo_order(oo);
1097 if (node == -1)
1098 return alloc_pages(flags, order);
1099 else
1100 return alloc_pages_node(node, flags, order);
1103 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1105 struct page *page;
1106 struct kmem_cache_order_objects oo = s->oo;
1108 flags |= s->allocflags;
1110 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1111 oo);
1112 if (unlikely(!page)) {
1113 oo = s->min;
1115 * Allocation may have failed due to fragmentation.
1116 * Try a lower order alloc if possible
1118 page = alloc_slab_page(flags, node, oo);
1119 if (!page)
1120 return NULL;
1122 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1124 page->objects = oo_objects(oo);
1125 mod_zone_page_state(page_zone(page),
1126 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1127 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1128 1 << oo_order(oo));
1130 return page;
1133 static void setup_object(struct kmem_cache *s, struct page *page,
1134 void *object)
1136 setup_object_debug(s, page, object);
1137 if (unlikely(s->ctor))
1138 s->ctor(s, object);
1141 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1143 struct page *page;
1144 void *start;
1145 void *last;
1146 void *p;
1148 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1150 page = allocate_slab(s,
1151 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1152 if (!page)
1153 goto out;
1155 inc_slabs_node(s, page_to_nid(page), page->objects);
1156 page->slab = s;
1157 page->flags |= 1 << PG_slab;
1158 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1159 SLAB_STORE_USER | SLAB_TRACE))
1160 SetSlabDebug(page);
1162 start = page_address(page);
1164 if (unlikely(s->flags & SLAB_POISON))
1165 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1167 last = start;
1168 for_each_object(p, s, start, page->objects) {
1169 setup_object(s, page, last);
1170 set_freepointer(s, last, p);
1171 last = p;
1173 setup_object(s, page, last);
1174 set_freepointer(s, last, NULL);
1176 page->freelist = start;
1177 page->inuse = 0;
1178 out:
1179 return page;
1182 static void __free_slab(struct kmem_cache *s, struct page *page)
1184 int order = compound_order(page);
1185 int pages = 1 << order;
1187 if (unlikely(SlabDebug(page))) {
1188 void *p;
1190 slab_pad_check(s, page);
1191 for_each_object(p, s, page_address(page),
1192 page->objects)
1193 check_object(s, page, p, 0);
1194 ClearSlabDebug(page);
1197 mod_zone_page_state(page_zone(page),
1198 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1199 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1200 -pages);
1202 __ClearPageSlab(page);
1203 reset_page_mapcount(page);
1204 __free_pages(page, order);
1207 static void rcu_free_slab(struct rcu_head *h)
1209 struct page *page;
1211 page = container_of((struct list_head *)h, struct page, lru);
1212 __free_slab(page->slab, page);
1215 static void free_slab(struct kmem_cache *s, struct page *page)
1217 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1219 * RCU free overloads the RCU head over the LRU
1221 struct rcu_head *head = (void *)&page->lru;
1223 call_rcu(head, rcu_free_slab);
1224 } else
1225 __free_slab(s, page);
1228 static void discard_slab(struct kmem_cache *s, struct page *page)
1230 dec_slabs_node(s, page_to_nid(page), page->objects);
1231 free_slab(s, page);
1235 * Per slab locking using the pagelock
1237 static __always_inline void slab_lock(struct page *page)
1239 bit_spin_lock(PG_locked, &page->flags);
1242 static __always_inline void slab_unlock(struct page *page)
1244 __bit_spin_unlock(PG_locked, &page->flags);
1247 static __always_inline int slab_trylock(struct page *page)
1249 int rc = 1;
1251 rc = bit_spin_trylock(PG_locked, &page->flags);
1252 return rc;
1256 * Management of partially allocated slabs
1258 static void add_partial(struct kmem_cache_node *n,
1259 struct page *page, int tail)
1261 spin_lock(&n->list_lock);
1262 n->nr_partial++;
1263 if (tail)
1264 list_add_tail(&page->lru, &n->partial);
1265 else
1266 list_add(&page->lru, &n->partial);
1267 spin_unlock(&n->list_lock);
1270 static void remove_partial(struct kmem_cache *s, struct page *page)
1272 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1274 spin_lock(&n->list_lock);
1275 list_del(&page->lru);
1276 n->nr_partial--;
1277 spin_unlock(&n->list_lock);
1281 * Lock slab and remove from the partial list.
1283 * Must hold list_lock.
1285 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1286 struct page *page)
1288 if (slab_trylock(page)) {
1289 list_del(&page->lru);
1290 n->nr_partial--;
1291 SetSlabFrozen(page);
1292 return 1;
1294 return 0;
1298 * Try to allocate a partial slab from a specific node.
1300 static struct page *get_partial_node(struct kmem_cache_node *n)
1302 struct page *page;
1305 * Racy check. If we mistakenly see no partial slabs then we
1306 * just allocate an empty slab. If we mistakenly try to get a
1307 * partial slab and there is none available then get_partials()
1308 * will return NULL.
1310 if (!n || !n->nr_partial)
1311 return NULL;
1313 spin_lock(&n->list_lock);
1314 list_for_each_entry(page, &n->partial, lru)
1315 if (lock_and_freeze_slab(n, page))
1316 goto out;
1317 page = NULL;
1318 out:
1319 spin_unlock(&n->list_lock);
1320 return page;
1324 * Get a page from somewhere. Search in increasing NUMA distances.
1326 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1328 #ifdef CONFIG_NUMA
1329 struct zonelist *zonelist;
1330 struct zoneref *z;
1331 struct zone *zone;
1332 enum zone_type high_zoneidx = gfp_zone(flags);
1333 struct page *page;
1336 * The defrag ratio allows a configuration of the tradeoffs between
1337 * inter node defragmentation and node local allocations. A lower
1338 * defrag_ratio increases the tendency to do local allocations
1339 * instead of attempting to obtain partial slabs from other nodes.
1341 * If the defrag_ratio is set to 0 then kmalloc() always
1342 * returns node local objects. If the ratio is higher then kmalloc()
1343 * may return off node objects because partial slabs are obtained
1344 * from other nodes and filled up.
1346 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1347 * defrag_ratio = 1000) then every (well almost) allocation will
1348 * first attempt to defrag slab caches on other nodes. This means
1349 * scanning over all nodes to look for partial slabs which may be
1350 * expensive if we do it every time we are trying to find a slab
1351 * with available objects.
1353 if (!s->remote_node_defrag_ratio ||
1354 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1355 return NULL;
1357 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1358 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1359 struct kmem_cache_node *n;
1361 n = get_node(s, zone_to_nid(zone));
1363 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1364 n->nr_partial > MIN_PARTIAL) {
1365 page = get_partial_node(n);
1366 if (page)
1367 return page;
1370 #endif
1371 return NULL;
1375 * Get a partial page, lock it and return it.
1377 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1379 struct page *page;
1380 int searchnode = (node == -1) ? numa_node_id() : node;
1382 page = get_partial_node(get_node(s, searchnode));
1383 if (page || (flags & __GFP_THISNODE))
1384 return page;
1386 return get_any_partial(s, flags);
1390 * Move a page back to the lists.
1392 * Must be called with the slab lock held.
1394 * On exit the slab lock will have been dropped.
1396 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1398 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1399 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1401 ClearSlabFrozen(page);
1402 if (page->inuse) {
1404 if (page->freelist) {
1405 add_partial(n, page, tail);
1406 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1407 } else {
1408 stat(c, DEACTIVATE_FULL);
1409 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1410 add_full(n, page);
1412 slab_unlock(page);
1413 } else {
1414 stat(c, DEACTIVATE_EMPTY);
1415 if (n->nr_partial < MIN_PARTIAL) {
1417 * Adding an empty slab to the partial slabs in order
1418 * to avoid page allocator overhead. This slab needs
1419 * to come after the other slabs with objects in
1420 * so that the others get filled first. That way the
1421 * size of the partial list stays small.
1423 * kmem_cache_shrink can reclaim any empty slabs from
1424 * the partial list.
1426 add_partial(n, page, 1);
1427 slab_unlock(page);
1428 } else {
1429 slab_unlock(page);
1430 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1431 discard_slab(s, page);
1437 * Remove the cpu slab
1439 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1441 struct page *page = c->page;
1442 int tail = 1;
1444 if (page->freelist)
1445 stat(c, DEACTIVATE_REMOTE_FREES);
1447 * Merge cpu freelist into slab freelist. Typically we get here
1448 * because both freelists are empty. So this is unlikely
1449 * to occur.
1451 while (unlikely(c->freelist)) {
1452 void **object;
1454 tail = 0; /* Hot objects. Put the slab first */
1456 /* Retrieve object from cpu_freelist */
1457 object = c->freelist;
1458 c->freelist = c->freelist[c->offset];
1460 /* And put onto the regular freelist */
1461 object[c->offset] = page->freelist;
1462 page->freelist = object;
1463 page->inuse--;
1465 c->page = NULL;
1466 unfreeze_slab(s, page, tail);
1469 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1471 stat(c, CPUSLAB_FLUSH);
1472 slab_lock(c->page);
1473 deactivate_slab(s, c);
1477 * Flush cpu slab.
1479 * Called from IPI handler with interrupts disabled.
1481 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1483 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1485 if (likely(c && c->page))
1486 flush_slab(s, c);
1489 static void flush_cpu_slab(void *d)
1491 struct kmem_cache *s = d;
1493 __flush_cpu_slab(s, smp_processor_id());
1496 static void flush_all(struct kmem_cache *s)
1498 on_each_cpu(flush_cpu_slab, s, 1);
1502 * Check if the objects in a per cpu structure fit numa
1503 * locality expectations.
1505 static inline int node_match(struct kmem_cache_cpu *c, int node)
1507 #ifdef CONFIG_NUMA
1508 if (node != -1 && c->node != node)
1509 return 0;
1510 #endif
1511 return 1;
1515 * Slow path. The lockless freelist is empty or we need to perform
1516 * debugging duties.
1518 * Interrupts are disabled.
1520 * Processing is still very fast if new objects have been freed to the
1521 * regular freelist. In that case we simply take over the regular freelist
1522 * as the lockless freelist and zap the regular freelist.
1524 * If that is not working then we fall back to the partial lists. We take the
1525 * first element of the freelist as the object to allocate now and move the
1526 * rest of the freelist to the lockless freelist.
1528 * And if we were unable to get a new slab from the partial slab lists then
1529 * we need to allocate a new slab. This is the slowest path since it involves
1530 * a call to the page allocator and the setup of a new slab.
1532 static void *__slab_alloc(struct kmem_cache *s,
1533 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1535 void **object;
1536 struct page *new;
1538 /* We handle __GFP_ZERO in the caller */
1539 gfpflags &= ~__GFP_ZERO;
1541 if (!c->page)
1542 goto new_slab;
1544 slab_lock(c->page);
1545 if (unlikely(!node_match(c, node)))
1546 goto another_slab;
1548 stat(c, ALLOC_REFILL);
1550 load_freelist:
1551 object = c->page->freelist;
1552 if (unlikely(!object))
1553 goto another_slab;
1554 if (unlikely(SlabDebug(c->page)))
1555 goto debug;
1557 c->freelist = object[c->offset];
1558 c->page->inuse = c->page->objects;
1559 c->page->freelist = NULL;
1560 c->node = page_to_nid(c->page);
1561 unlock_out:
1562 slab_unlock(c->page);
1563 stat(c, ALLOC_SLOWPATH);
1564 return object;
1566 another_slab:
1567 deactivate_slab(s, c);
1569 new_slab:
1570 new = get_partial(s, gfpflags, node);
1571 if (new) {
1572 c->page = new;
1573 stat(c, ALLOC_FROM_PARTIAL);
1574 goto load_freelist;
1577 if (gfpflags & __GFP_WAIT)
1578 local_irq_enable();
1580 new = new_slab(s, gfpflags, node);
1582 if (gfpflags & __GFP_WAIT)
1583 local_irq_disable();
1585 if (new) {
1586 c = get_cpu_slab(s, smp_processor_id());
1587 stat(c, ALLOC_SLAB);
1588 if (c->page)
1589 flush_slab(s, c);
1590 slab_lock(new);
1591 SetSlabFrozen(new);
1592 c->page = new;
1593 goto load_freelist;
1595 return NULL;
1596 debug:
1597 if (!alloc_debug_processing(s, c->page, object, addr))
1598 goto another_slab;
1600 c->page->inuse++;
1601 c->page->freelist = object[c->offset];
1602 c->node = -1;
1603 goto unlock_out;
1607 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1608 * have the fastpath folded into their functions. So no function call
1609 * overhead for requests that can be satisfied on the fastpath.
1611 * The fastpath works by first checking if the lockless freelist can be used.
1612 * If not then __slab_alloc is called for slow processing.
1614 * Otherwise we can simply pick the next object from the lockless free list.
1616 static __always_inline void *slab_alloc(struct kmem_cache *s,
1617 gfp_t gfpflags, int node, void *addr)
1619 void **object;
1620 struct kmem_cache_cpu *c;
1621 unsigned long flags;
1622 unsigned int objsize;
1624 local_irq_save(flags);
1625 c = get_cpu_slab(s, smp_processor_id());
1626 objsize = c->objsize;
1627 if (unlikely(!c->freelist || !node_match(c, node)))
1629 object = __slab_alloc(s, gfpflags, node, addr, c);
1631 else {
1632 object = c->freelist;
1633 c->freelist = object[c->offset];
1634 stat(c, ALLOC_FASTPATH);
1636 local_irq_restore(flags);
1638 if (unlikely((gfpflags & __GFP_ZERO) && object))
1639 memset(object, 0, objsize);
1641 return object;
1644 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1646 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1648 EXPORT_SYMBOL(kmem_cache_alloc);
1650 #ifdef CONFIG_NUMA
1651 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1653 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1655 EXPORT_SYMBOL(kmem_cache_alloc_node);
1656 #endif
1659 * Slow patch handling. This may still be called frequently since objects
1660 * have a longer lifetime than the cpu slabs in most processing loads.
1662 * So we still attempt to reduce cache line usage. Just take the slab
1663 * lock and free the item. If there is no additional partial page
1664 * handling required then we can return immediately.
1666 static void __slab_free(struct kmem_cache *s, struct page *page,
1667 void *x, void *addr, unsigned int offset)
1669 void *prior;
1670 void **object = (void *)x;
1671 struct kmem_cache_cpu *c;
1673 c = get_cpu_slab(s, raw_smp_processor_id());
1674 stat(c, FREE_SLOWPATH);
1675 slab_lock(page);
1677 if (unlikely(SlabDebug(page)))
1678 goto debug;
1680 checks_ok:
1681 prior = object[offset] = page->freelist;
1682 page->freelist = object;
1683 page->inuse--;
1685 if (unlikely(SlabFrozen(page))) {
1686 stat(c, FREE_FROZEN);
1687 goto out_unlock;
1690 if (unlikely(!page->inuse))
1691 goto slab_empty;
1694 * Objects left in the slab. If it was not on the partial list before
1695 * then add it.
1697 if (unlikely(!prior)) {
1698 add_partial(get_node(s, page_to_nid(page)), page, 1);
1699 stat(c, FREE_ADD_PARTIAL);
1702 out_unlock:
1703 slab_unlock(page);
1704 return;
1706 slab_empty:
1707 if (prior) {
1709 * Slab still on the partial list.
1711 remove_partial(s, page);
1712 stat(c, FREE_REMOVE_PARTIAL);
1714 slab_unlock(page);
1715 stat(c, FREE_SLAB);
1716 discard_slab(s, page);
1717 return;
1719 debug:
1720 if (!free_debug_processing(s, page, x, addr))
1721 goto out_unlock;
1722 goto checks_ok;
1726 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1727 * can perform fastpath freeing without additional function calls.
1729 * The fastpath is only possible if we are freeing to the current cpu slab
1730 * of this processor. This typically the case if we have just allocated
1731 * the item before.
1733 * If fastpath is not possible then fall back to __slab_free where we deal
1734 * with all sorts of special processing.
1736 static __always_inline void slab_free(struct kmem_cache *s,
1737 struct page *page, void *x, void *addr)
1739 void **object = (void *)x;
1740 struct kmem_cache_cpu *c;
1741 unsigned long flags;
1743 local_irq_save(flags);
1744 c = get_cpu_slab(s, smp_processor_id());
1745 debug_check_no_locks_freed(object, c->objsize);
1746 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1747 debug_check_no_obj_freed(object, s->objsize);
1748 if (likely(page == c->page && c->node >= 0)) {
1749 object[c->offset] = c->freelist;
1750 c->freelist = object;
1751 stat(c, FREE_FASTPATH);
1752 } else
1753 __slab_free(s, page, x, addr, c->offset);
1755 local_irq_restore(flags);
1758 void kmem_cache_free(struct kmem_cache *s, void *x)
1760 struct page *page;
1762 page = virt_to_head_page(x);
1764 slab_free(s, page, x, __builtin_return_address(0));
1766 EXPORT_SYMBOL(kmem_cache_free);
1768 /* Figure out on which slab object the object resides */
1769 static struct page *get_object_page(const void *x)
1771 struct page *page = virt_to_head_page(x);
1773 if (!PageSlab(page))
1774 return NULL;
1776 return page;
1780 * Object placement in a slab is made very easy because we always start at
1781 * offset 0. If we tune the size of the object to the alignment then we can
1782 * get the required alignment by putting one properly sized object after
1783 * another.
1785 * Notice that the allocation order determines the sizes of the per cpu
1786 * caches. Each processor has always one slab available for allocations.
1787 * Increasing the allocation order reduces the number of times that slabs
1788 * must be moved on and off the partial lists and is therefore a factor in
1789 * locking overhead.
1793 * Mininum / Maximum order of slab pages. This influences locking overhead
1794 * and slab fragmentation. A higher order reduces the number of partial slabs
1795 * and increases the number of allocations possible without having to
1796 * take the list_lock.
1798 static int slub_min_order;
1799 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1800 static int slub_min_objects;
1803 * Merge control. If this is set then no merging of slab caches will occur.
1804 * (Could be removed. This was introduced to pacify the merge skeptics.)
1806 static int slub_nomerge;
1809 * Calculate the order of allocation given an slab object size.
1811 * The order of allocation has significant impact on performance and other
1812 * system components. Generally order 0 allocations should be preferred since
1813 * order 0 does not cause fragmentation in the page allocator. Larger objects
1814 * be problematic to put into order 0 slabs because there may be too much
1815 * unused space left. We go to a higher order if more than 1/16th of the slab
1816 * would be wasted.
1818 * In order to reach satisfactory performance we must ensure that a minimum
1819 * number of objects is in one slab. Otherwise we may generate too much
1820 * activity on the partial lists which requires taking the list_lock. This is
1821 * less a concern for large slabs though which are rarely used.
1823 * slub_max_order specifies the order where we begin to stop considering the
1824 * number of objects in a slab as critical. If we reach slub_max_order then
1825 * we try to keep the page order as low as possible. So we accept more waste
1826 * of space in favor of a small page order.
1828 * Higher order allocations also allow the placement of more objects in a
1829 * slab and thereby reduce object handling overhead. If the user has
1830 * requested a higher mininum order then we start with that one instead of
1831 * the smallest order which will fit the object.
1833 static inline int slab_order(int size, int min_objects,
1834 int max_order, int fract_leftover)
1836 int order;
1837 int rem;
1838 int min_order = slub_min_order;
1840 if ((PAGE_SIZE << min_order) / size > 65535)
1841 return get_order(size * 65535) - 1;
1843 for (order = max(min_order,
1844 fls(min_objects * size - 1) - PAGE_SHIFT);
1845 order <= max_order; order++) {
1847 unsigned long slab_size = PAGE_SIZE << order;
1849 if (slab_size < min_objects * size)
1850 continue;
1852 rem = slab_size % size;
1854 if (rem <= slab_size / fract_leftover)
1855 break;
1859 return order;
1862 static inline int calculate_order(int size)
1864 int order;
1865 int min_objects;
1866 int fraction;
1869 * Attempt to find best configuration for a slab. This
1870 * works by first attempting to generate a layout with
1871 * the best configuration and backing off gradually.
1873 * First we reduce the acceptable waste in a slab. Then
1874 * we reduce the minimum objects required in a slab.
1876 min_objects = slub_min_objects;
1877 if (!min_objects)
1878 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1879 while (min_objects > 1) {
1880 fraction = 16;
1881 while (fraction >= 4) {
1882 order = slab_order(size, min_objects,
1883 slub_max_order, fraction);
1884 if (order <= slub_max_order)
1885 return order;
1886 fraction /= 2;
1888 min_objects /= 2;
1892 * We were unable to place multiple objects in a slab. Now
1893 * lets see if we can place a single object there.
1895 order = slab_order(size, 1, slub_max_order, 1);
1896 if (order <= slub_max_order)
1897 return order;
1900 * Doh this slab cannot be placed using slub_max_order.
1902 order = slab_order(size, 1, MAX_ORDER, 1);
1903 if (order <= MAX_ORDER)
1904 return order;
1905 return -ENOSYS;
1909 * Figure out what the alignment of the objects will be.
1911 static unsigned long calculate_alignment(unsigned long flags,
1912 unsigned long align, unsigned long size)
1915 * If the user wants hardware cache aligned objects then follow that
1916 * suggestion if the object is sufficiently large.
1918 * The hardware cache alignment cannot override the specified
1919 * alignment though. If that is greater then use it.
1921 if (flags & SLAB_HWCACHE_ALIGN) {
1922 unsigned long ralign = cache_line_size();
1923 while (size <= ralign / 2)
1924 ralign /= 2;
1925 align = max(align, ralign);
1928 if (align < ARCH_SLAB_MINALIGN)
1929 align = ARCH_SLAB_MINALIGN;
1931 return ALIGN(align, sizeof(void *));
1934 static void init_kmem_cache_cpu(struct kmem_cache *s,
1935 struct kmem_cache_cpu *c)
1937 c->page = NULL;
1938 c->freelist = NULL;
1939 c->node = 0;
1940 c->offset = s->offset / sizeof(void *);
1941 c->objsize = s->objsize;
1942 #ifdef CONFIG_SLUB_STATS
1943 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1944 #endif
1947 static void init_kmem_cache_node(struct kmem_cache_node *n)
1949 n->nr_partial = 0;
1950 spin_lock_init(&n->list_lock);
1951 INIT_LIST_HEAD(&n->partial);
1952 #ifdef CONFIG_SLUB_DEBUG
1953 atomic_long_set(&n->nr_slabs, 0);
1954 INIT_LIST_HEAD(&n->full);
1955 #endif
1958 #ifdef CONFIG_SMP
1960 * Per cpu array for per cpu structures.
1962 * The per cpu array places all kmem_cache_cpu structures from one processor
1963 * close together meaning that it becomes possible that multiple per cpu
1964 * structures are contained in one cacheline. This may be particularly
1965 * beneficial for the kmalloc caches.
1967 * A desktop system typically has around 60-80 slabs. With 100 here we are
1968 * likely able to get per cpu structures for all caches from the array defined
1969 * here. We must be able to cover all kmalloc caches during bootstrap.
1971 * If the per cpu array is exhausted then fall back to kmalloc
1972 * of individual cachelines. No sharing is possible then.
1974 #define NR_KMEM_CACHE_CPU 100
1976 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1977 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1979 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1980 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1982 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1983 int cpu, gfp_t flags)
1985 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1987 if (c)
1988 per_cpu(kmem_cache_cpu_free, cpu) =
1989 (void *)c->freelist;
1990 else {
1991 /* Table overflow: So allocate ourselves */
1992 c = kmalloc_node(
1993 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1994 flags, cpu_to_node(cpu));
1995 if (!c)
1996 return NULL;
1999 init_kmem_cache_cpu(s, c);
2000 return c;
2003 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2005 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2006 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2007 kfree(c);
2008 return;
2010 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2011 per_cpu(kmem_cache_cpu_free, cpu) = c;
2014 static void free_kmem_cache_cpus(struct kmem_cache *s)
2016 int cpu;
2018 for_each_online_cpu(cpu) {
2019 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2021 if (c) {
2022 s->cpu_slab[cpu] = NULL;
2023 free_kmem_cache_cpu(c, cpu);
2028 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2030 int cpu;
2032 for_each_online_cpu(cpu) {
2033 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2035 if (c)
2036 continue;
2038 c = alloc_kmem_cache_cpu(s, cpu, flags);
2039 if (!c) {
2040 free_kmem_cache_cpus(s);
2041 return 0;
2043 s->cpu_slab[cpu] = c;
2045 return 1;
2049 * Initialize the per cpu array.
2051 static void init_alloc_cpu_cpu(int cpu)
2053 int i;
2055 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2056 return;
2058 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2059 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2061 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2064 static void __init init_alloc_cpu(void)
2066 int cpu;
2068 for_each_online_cpu(cpu)
2069 init_alloc_cpu_cpu(cpu);
2072 #else
2073 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2074 static inline void init_alloc_cpu(void) {}
2076 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2078 init_kmem_cache_cpu(s, &s->cpu_slab);
2079 return 1;
2081 #endif
2083 #ifdef CONFIG_NUMA
2085 * No kmalloc_node yet so do it by hand. We know that this is the first
2086 * slab on the node for this slabcache. There are no concurrent accesses
2087 * possible.
2089 * Note that this function only works on the kmalloc_node_cache
2090 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2091 * memory on a fresh node that has no slab structures yet.
2093 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2094 int node)
2096 struct page *page;
2097 struct kmem_cache_node *n;
2098 unsigned long flags;
2100 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2102 page = new_slab(kmalloc_caches, gfpflags, node);
2104 BUG_ON(!page);
2105 if (page_to_nid(page) != node) {
2106 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2107 "node %d\n", node);
2108 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2109 "in order to be able to continue\n");
2112 n = page->freelist;
2113 BUG_ON(!n);
2114 page->freelist = get_freepointer(kmalloc_caches, n);
2115 page->inuse++;
2116 kmalloc_caches->node[node] = n;
2117 #ifdef CONFIG_SLUB_DEBUG
2118 init_object(kmalloc_caches, n, 1);
2119 init_tracking(kmalloc_caches, n);
2120 #endif
2121 init_kmem_cache_node(n);
2122 inc_slabs_node(kmalloc_caches, node, page->objects);
2125 * lockdep requires consistent irq usage for each lock
2126 * so even though there cannot be a race this early in
2127 * the boot sequence, we still disable irqs.
2129 local_irq_save(flags);
2130 add_partial(n, page, 0);
2131 local_irq_restore(flags);
2132 return n;
2135 static void free_kmem_cache_nodes(struct kmem_cache *s)
2137 int node;
2139 for_each_node_state(node, N_NORMAL_MEMORY) {
2140 struct kmem_cache_node *n = s->node[node];
2141 if (n && n != &s->local_node)
2142 kmem_cache_free(kmalloc_caches, n);
2143 s->node[node] = NULL;
2147 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2149 int node;
2150 int local_node;
2152 if (slab_state >= UP)
2153 local_node = page_to_nid(virt_to_page(s));
2154 else
2155 local_node = 0;
2157 for_each_node_state(node, N_NORMAL_MEMORY) {
2158 struct kmem_cache_node *n;
2160 if (local_node == node)
2161 n = &s->local_node;
2162 else {
2163 if (slab_state == DOWN) {
2164 n = early_kmem_cache_node_alloc(gfpflags,
2165 node);
2166 continue;
2168 n = kmem_cache_alloc_node(kmalloc_caches,
2169 gfpflags, node);
2171 if (!n) {
2172 free_kmem_cache_nodes(s);
2173 return 0;
2177 s->node[node] = n;
2178 init_kmem_cache_node(n);
2180 return 1;
2182 #else
2183 static void free_kmem_cache_nodes(struct kmem_cache *s)
2187 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2189 init_kmem_cache_node(&s->local_node);
2190 return 1;
2192 #endif
2195 * calculate_sizes() determines the order and the distribution of data within
2196 * a slab object.
2198 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2200 unsigned long flags = s->flags;
2201 unsigned long size = s->objsize;
2202 unsigned long align = s->align;
2203 int order;
2206 * Round up object size to the next word boundary. We can only
2207 * place the free pointer at word boundaries and this determines
2208 * the possible location of the free pointer.
2210 size = ALIGN(size, sizeof(void *));
2212 #ifdef CONFIG_SLUB_DEBUG
2214 * Determine if we can poison the object itself. If the user of
2215 * the slab may touch the object after free or before allocation
2216 * then we should never poison the object itself.
2218 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2219 !s->ctor)
2220 s->flags |= __OBJECT_POISON;
2221 else
2222 s->flags &= ~__OBJECT_POISON;
2226 * If we are Redzoning then check if there is some space between the
2227 * end of the object and the free pointer. If not then add an
2228 * additional word to have some bytes to store Redzone information.
2230 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2231 size += sizeof(void *);
2232 #endif
2235 * With that we have determined the number of bytes in actual use
2236 * by the object. This is the potential offset to the free pointer.
2238 s->inuse = size;
2240 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2241 s->ctor)) {
2243 * Relocate free pointer after the object if it is not
2244 * permitted to overwrite the first word of the object on
2245 * kmem_cache_free.
2247 * This is the case if we do RCU, have a constructor or
2248 * destructor or are poisoning the objects.
2250 s->offset = size;
2251 size += sizeof(void *);
2254 #ifdef CONFIG_SLUB_DEBUG
2255 if (flags & SLAB_STORE_USER)
2257 * Need to store information about allocs and frees after
2258 * the object.
2260 size += 2 * sizeof(struct track);
2262 if (flags & SLAB_RED_ZONE)
2264 * Add some empty padding so that we can catch
2265 * overwrites from earlier objects rather than let
2266 * tracking information or the free pointer be
2267 * corrupted if an user writes before the start
2268 * of the object.
2270 size += sizeof(void *);
2271 #endif
2274 * Determine the alignment based on various parameters that the
2275 * user specified and the dynamic determination of cache line size
2276 * on bootup.
2278 align = calculate_alignment(flags, align, s->objsize);
2281 * SLUB stores one object immediately after another beginning from
2282 * offset 0. In order to align the objects we have to simply size
2283 * each object to conform to the alignment.
2285 size = ALIGN(size, align);
2286 s->size = size;
2287 if (forced_order >= 0)
2288 order = forced_order;
2289 else
2290 order = calculate_order(size);
2292 if (order < 0)
2293 return 0;
2295 s->allocflags = 0;
2296 if (order)
2297 s->allocflags |= __GFP_COMP;
2299 if (s->flags & SLAB_CACHE_DMA)
2300 s->allocflags |= SLUB_DMA;
2302 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2303 s->allocflags |= __GFP_RECLAIMABLE;
2306 * Determine the number of objects per slab
2308 s->oo = oo_make(order, size);
2309 s->min = oo_make(get_order(size), size);
2310 if (oo_objects(s->oo) > oo_objects(s->max))
2311 s->max = s->oo;
2313 return !!oo_objects(s->oo);
2317 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2318 const char *name, size_t size,
2319 size_t align, unsigned long flags,
2320 void (*ctor)(struct kmem_cache *, void *))
2322 memset(s, 0, kmem_size);
2323 s->name = name;
2324 s->ctor = ctor;
2325 s->objsize = size;
2326 s->align = align;
2327 s->flags = kmem_cache_flags(size, flags, name, ctor);
2329 if (!calculate_sizes(s, -1))
2330 goto error;
2332 s->refcount = 1;
2333 #ifdef CONFIG_NUMA
2334 s->remote_node_defrag_ratio = 100;
2335 #endif
2336 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2337 goto error;
2339 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2340 return 1;
2341 free_kmem_cache_nodes(s);
2342 error:
2343 if (flags & SLAB_PANIC)
2344 panic("Cannot create slab %s size=%lu realsize=%u "
2345 "order=%u offset=%u flags=%lx\n",
2346 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2347 s->offset, flags);
2348 return 0;
2352 * Check if a given pointer is valid
2354 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2356 struct page *page;
2358 page = get_object_page(object);
2360 if (!page || s != page->slab)
2361 /* No slab or wrong slab */
2362 return 0;
2364 if (!check_valid_pointer(s, page, object))
2365 return 0;
2368 * We could also check if the object is on the slabs freelist.
2369 * But this would be too expensive and it seems that the main
2370 * purpose of kmem_ptr_valid() is to check if the object belongs
2371 * to a certain slab.
2373 return 1;
2375 EXPORT_SYMBOL(kmem_ptr_validate);
2378 * Determine the size of a slab object
2380 unsigned int kmem_cache_size(struct kmem_cache *s)
2382 return s->objsize;
2384 EXPORT_SYMBOL(kmem_cache_size);
2386 const char *kmem_cache_name(struct kmem_cache *s)
2388 return s->name;
2390 EXPORT_SYMBOL(kmem_cache_name);
2392 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2393 const char *text)
2395 #ifdef CONFIG_SLUB_DEBUG
2396 void *addr = page_address(page);
2397 void *p;
2398 DECLARE_BITMAP(map, page->objects);
2400 bitmap_zero(map, page->objects);
2401 slab_err(s, page, "%s", text);
2402 slab_lock(page);
2403 for_each_free_object(p, s, page->freelist)
2404 set_bit(slab_index(p, s, addr), map);
2406 for_each_object(p, s, addr, page->objects) {
2408 if (!test_bit(slab_index(p, s, addr), map)) {
2409 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2410 p, p - addr);
2411 print_tracking(s, p);
2414 slab_unlock(page);
2415 #endif
2419 * Attempt to free all partial slabs on a node.
2421 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2423 unsigned long flags;
2424 struct page *page, *h;
2426 spin_lock_irqsave(&n->list_lock, flags);
2427 list_for_each_entry_safe(page, h, &n->partial, lru) {
2428 if (!page->inuse) {
2429 list_del(&page->lru);
2430 discard_slab(s, page);
2431 n->nr_partial--;
2432 } else {
2433 list_slab_objects(s, page,
2434 "Objects remaining on kmem_cache_close()");
2437 spin_unlock_irqrestore(&n->list_lock, flags);
2441 * Release all resources used by a slab cache.
2443 static inline int kmem_cache_close(struct kmem_cache *s)
2445 int node;
2447 flush_all(s);
2449 /* Attempt to free all objects */
2450 free_kmem_cache_cpus(s);
2451 for_each_node_state(node, N_NORMAL_MEMORY) {
2452 struct kmem_cache_node *n = get_node(s, node);
2454 free_partial(s, n);
2455 if (n->nr_partial || slabs_node(s, node))
2456 return 1;
2458 free_kmem_cache_nodes(s);
2459 return 0;
2463 * Close a cache and release the kmem_cache structure
2464 * (must be used for caches created using kmem_cache_create)
2466 void kmem_cache_destroy(struct kmem_cache *s)
2468 down_write(&slub_lock);
2469 s->refcount--;
2470 if (!s->refcount) {
2471 list_del(&s->list);
2472 up_write(&slub_lock);
2473 if (kmem_cache_close(s)) {
2474 printk(KERN_ERR "SLUB %s: %s called for cache that "
2475 "still has objects.\n", s->name, __func__);
2476 dump_stack();
2478 sysfs_slab_remove(s);
2479 } else
2480 up_write(&slub_lock);
2482 EXPORT_SYMBOL(kmem_cache_destroy);
2484 /********************************************************************
2485 * Kmalloc subsystem
2486 *******************************************************************/
2488 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2489 EXPORT_SYMBOL(kmalloc_caches);
2491 static int __init setup_slub_min_order(char *str)
2493 get_option(&str, &slub_min_order);
2495 return 1;
2498 __setup("slub_min_order=", setup_slub_min_order);
2500 static int __init setup_slub_max_order(char *str)
2502 get_option(&str, &slub_max_order);
2504 return 1;
2507 __setup("slub_max_order=", setup_slub_max_order);
2509 static int __init setup_slub_min_objects(char *str)
2511 get_option(&str, &slub_min_objects);
2513 return 1;
2516 __setup("slub_min_objects=", setup_slub_min_objects);
2518 static int __init setup_slub_nomerge(char *str)
2520 slub_nomerge = 1;
2521 return 1;
2524 __setup("slub_nomerge", setup_slub_nomerge);
2526 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2527 const char *name, int size, gfp_t gfp_flags)
2529 unsigned int flags = 0;
2531 if (gfp_flags & SLUB_DMA)
2532 flags = SLAB_CACHE_DMA;
2534 down_write(&slub_lock);
2535 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2536 flags, NULL))
2537 goto panic;
2539 list_add(&s->list, &slab_caches);
2540 up_write(&slub_lock);
2541 if (sysfs_slab_add(s))
2542 goto panic;
2543 return s;
2545 panic:
2546 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2549 #ifdef CONFIG_ZONE_DMA
2550 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2552 static void sysfs_add_func(struct work_struct *w)
2554 struct kmem_cache *s;
2556 down_write(&slub_lock);
2557 list_for_each_entry(s, &slab_caches, list) {
2558 if (s->flags & __SYSFS_ADD_DEFERRED) {
2559 s->flags &= ~__SYSFS_ADD_DEFERRED;
2560 sysfs_slab_add(s);
2563 up_write(&slub_lock);
2566 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2568 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2570 struct kmem_cache *s;
2571 char *text;
2572 size_t realsize;
2574 s = kmalloc_caches_dma[index];
2575 if (s)
2576 return s;
2578 /* Dynamically create dma cache */
2579 if (flags & __GFP_WAIT)
2580 down_write(&slub_lock);
2581 else {
2582 if (!down_write_trylock(&slub_lock))
2583 goto out;
2586 if (kmalloc_caches_dma[index])
2587 goto unlock_out;
2589 realsize = kmalloc_caches[index].objsize;
2590 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2591 (unsigned int)realsize);
2592 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2594 if (!s || !text || !kmem_cache_open(s, flags, text,
2595 realsize, ARCH_KMALLOC_MINALIGN,
2596 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2597 kfree(s);
2598 kfree(text);
2599 goto unlock_out;
2602 list_add(&s->list, &slab_caches);
2603 kmalloc_caches_dma[index] = s;
2605 schedule_work(&sysfs_add_work);
2607 unlock_out:
2608 up_write(&slub_lock);
2609 out:
2610 return kmalloc_caches_dma[index];
2612 #endif
2615 * Conversion table for small slabs sizes / 8 to the index in the
2616 * kmalloc array. This is necessary for slabs < 192 since we have non power
2617 * of two cache sizes there. The size of larger slabs can be determined using
2618 * fls.
2620 static s8 size_index[24] = {
2621 3, /* 8 */
2622 4, /* 16 */
2623 5, /* 24 */
2624 5, /* 32 */
2625 6, /* 40 */
2626 6, /* 48 */
2627 6, /* 56 */
2628 6, /* 64 */
2629 1, /* 72 */
2630 1, /* 80 */
2631 1, /* 88 */
2632 1, /* 96 */
2633 7, /* 104 */
2634 7, /* 112 */
2635 7, /* 120 */
2636 7, /* 128 */
2637 2, /* 136 */
2638 2, /* 144 */
2639 2, /* 152 */
2640 2, /* 160 */
2641 2, /* 168 */
2642 2, /* 176 */
2643 2, /* 184 */
2644 2 /* 192 */
2647 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2649 int index;
2651 if (size <= 192) {
2652 if (!size)
2653 return ZERO_SIZE_PTR;
2655 index = size_index[(size - 1) / 8];
2656 } else
2657 index = fls(size - 1);
2659 #ifdef CONFIG_ZONE_DMA
2660 if (unlikely((flags & SLUB_DMA)))
2661 return dma_kmalloc_cache(index, flags);
2663 #endif
2664 return &kmalloc_caches[index];
2667 void *__kmalloc(size_t size, gfp_t flags)
2669 struct kmem_cache *s;
2671 if (unlikely(size > PAGE_SIZE))
2672 return kmalloc_large(size, flags);
2674 s = get_slab(size, flags);
2676 if (unlikely(ZERO_OR_NULL_PTR(s)))
2677 return s;
2679 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2681 EXPORT_SYMBOL(__kmalloc);
2683 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2685 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2686 get_order(size));
2688 if (page)
2689 return page_address(page);
2690 else
2691 return NULL;
2694 #ifdef CONFIG_NUMA
2695 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2697 struct kmem_cache *s;
2699 if (unlikely(size > PAGE_SIZE))
2700 return kmalloc_large_node(size, flags, node);
2702 s = get_slab(size, flags);
2704 if (unlikely(ZERO_OR_NULL_PTR(s)))
2705 return s;
2707 return slab_alloc(s, flags, node, __builtin_return_address(0));
2709 EXPORT_SYMBOL(__kmalloc_node);
2710 #endif
2712 size_t ksize(const void *object)
2714 struct page *page;
2715 struct kmem_cache *s;
2717 if (unlikely(object == ZERO_SIZE_PTR))
2718 return 0;
2720 page = virt_to_head_page(object);
2722 if (unlikely(!PageSlab(page))) {
2723 WARN_ON(!PageCompound(page));
2724 return PAGE_SIZE << compound_order(page);
2726 s = page->slab;
2728 #ifdef CONFIG_SLUB_DEBUG
2730 * Debugging requires use of the padding between object
2731 * and whatever may come after it.
2733 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2734 return s->objsize;
2736 #endif
2738 * If we have the need to store the freelist pointer
2739 * back there or track user information then we can
2740 * only use the space before that information.
2742 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2743 return s->inuse;
2745 * Else we can use all the padding etc for the allocation
2747 return s->size;
2749 EXPORT_SYMBOL(ksize);
2751 void kfree(const void *x)
2753 struct page *page;
2754 void *object = (void *)x;
2756 if (unlikely(ZERO_OR_NULL_PTR(x)))
2757 return;
2759 page = virt_to_head_page(x);
2760 if (unlikely(!PageSlab(page))) {
2761 BUG_ON(!PageCompound(page));
2762 put_page(page);
2763 return;
2765 slab_free(page->slab, page, object, __builtin_return_address(0));
2767 EXPORT_SYMBOL(kfree);
2770 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2771 * the remaining slabs by the number of items in use. The slabs with the
2772 * most items in use come first. New allocations will then fill those up
2773 * and thus they can be removed from the partial lists.
2775 * The slabs with the least items are placed last. This results in them
2776 * being allocated from last increasing the chance that the last objects
2777 * are freed in them.
2779 int kmem_cache_shrink(struct kmem_cache *s)
2781 int node;
2782 int i;
2783 struct kmem_cache_node *n;
2784 struct page *page;
2785 struct page *t;
2786 int objects = oo_objects(s->max);
2787 struct list_head *slabs_by_inuse =
2788 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2789 unsigned long flags;
2791 if (!slabs_by_inuse)
2792 return -ENOMEM;
2794 flush_all(s);
2795 for_each_node_state(node, N_NORMAL_MEMORY) {
2796 n = get_node(s, node);
2798 if (!n->nr_partial)
2799 continue;
2801 for (i = 0; i < objects; i++)
2802 INIT_LIST_HEAD(slabs_by_inuse + i);
2804 spin_lock_irqsave(&n->list_lock, flags);
2807 * Build lists indexed by the items in use in each slab.
2809 * Note that concurrent frees may occur while we hold the
2810 * list_lock. page->inuse here is the upper limit.
2812 list_for_each_entry_safe(page, t, &n->partial, lru) {
2813 if (!page->inuse && slab_trylock(page)) {
2815 * Must hold slab lock here because slab_free
2816 * may have freed the last object and be
2817 * waiting to release the slab.
2819 list_del(&page->lru);
2820 n->nr_partial--;
2821 slab_unlock(page);
2822 discard_slab(s, page);
2823 } else {
2824 list_move(&page->lru,
2825 slabs_by_inuse + page->inuse);
2830 * Rebuild the partial list with the slabs filled up most
2831 * first and the least used slabs at the end.
2833 for (i = objects - 1; i >= 0; i--)
2834 list_splice(slabs_by_inuse + i, n->partial.prev);
2836 spin_unlock_irqrestore(&n->list_lock, flags);
2839 kfree(slabs_by_inuse);
2840 return 0;
2842 EXPORT_SYMBOL(kmem_cache_shrink);
2844 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2845 static int slab_mem_going_offline_callback(void *arg)
2847 struct kmem_cache *s;
2849 down_read(&slub_lock);
2850 list_for_each_entry(s, &slab_caches, list)
2851 kmem_cache_shrink(s);
2852 up_read(&slub_lock);
2854 return 0;
2857 static void slab_mem_offline_callback(void *arg)
2859 struct kmem_cache_node *n;
2860 struct kmem_cache *s;
2861 struct memory_notify *marg = arg;
2862 int offline_node;
2864 offline_node = marg->status_change_nid;
2867 * If the node still has available memory. we need kmem_cache_node
2868 * for it yet.
2870 if (offline_node < 0)
2871 return;
2873 down_read(&slub_lock);
2874 list_for_each_entry(s, &slab_caches, list) {
2875 n = get_node(s, offline_node);
2876 if (n) {
2878 * if n->nr_slabs > 0, slabs still exist on the node
2879 * that is going down. We were unable to free them,
2880 * and offline_pages() function shoudn't call this
2881 * callback. So, we must fail.
2883 BUG_ON(slabs_node(s, offline_node));
2885 s->node[offline_node] = NULL;
2886 kmem_cache_free(kmalloc_caches, n);
2889 up_read(&slub_lock);
2892 static int slab_mem_going_online_callback(void *arg)
2894 struct kmem_cache_node *n;
2895 struct kmem_cache *s;
2896 struct memory_notify *marg = arg;
2897 int nid = marg->status_change_nid;
2898 int ret = 0;
2901 * If the node's memory is already available, then kmem_cache_node is
2902 * already created. Nothing to do.
2904 if (nid < 0)
2905 return 0;
2908 * We are bringing a node online. No memory is available yet. We must
2909 * allocate a kmem_cache_node structure in order to bring the node
2910 * online.
2912 down_read(&slub_lock);
2913 list_for_each_entry(s, &slab_caches, list) {
2915 * XXX: kmem_cache_alloc_node will fallback to other nodes
2916 * since memory is not yet available from the node that
2917 * is brought up.
2919 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2920 if (!n) {
2921 ret = -ENOMEM;
2922 goto out;
2924 init_kmem_cache_node(n);
2925 s->node[nid] = n;
2927 out:
2928 up_read(&slub_lock);
2929 return ret;
2932 static int slab_memory_callback(struct notifier_block *self,
2933 unsigned long action, void *arg)
2935 int ret = 0;
2937 switch (action) {
2938 case MEM_GOING_ONLINE:
2939 ret = slab_mem_going_online_callback(arg);
2940 break;
2941 case MEM_GOING_OFFLINE:
2942 ret = slab_mem_going_offline_callback(arg);
2943 break;
2944 case MEM_OFFLINE:
2945 case MEM_CANCEL_ONLINE:
2946 slab_mem_offline_callback(arg);
2947 break;
2948 case MEM_ONLINE:
2949 case MEM_CANCEL_OFFLINE:
2950 break;
2953 ret = notifier_from_errno(ret);
2954 return ret;
2957 #endif /* CONFIG_MEMORY_HOTPLUG */
2959 /********************************************************************
2960 * Basic setup of slabs
2961 *******************************************************************/
2963 void __init kmem_cache_init(void)
2965 int i;
2966 int caches = 0;
2968 init_alloc_cpu();
2970 #ifdef CONFIG_NUMA
2972 * Must first have the slab cache available for the allocations of the
2973 * struct kmem_cache_node's. There is special bootstrap code in
2974 * kmem_cache_open for slab_state == DOWN.
2976 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2977 sizeof(struct kmem_cache_node), GFP_KERNEL);
2978 kmalloc_caches[0].refcount = -1;
2979 caches++;
2981 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2982 #endif
2984 /* Able to allocate the per node structures */
2985 slab_state = PARTIAL;
2987 /* Caches that are not of the two-to-the-power-of size */
2988 if (KMALLOC_MIN_SIZE <= 64) {
2989 create_kmalloc_cache(&kmalloc_caches[1],
2990 "kmalloc-96", 96, GFP_KERNEL);
2991 caches++;
2992 create_kmalloc_cache(&kmalloc_caches[2],
2993 "kmalloc-192", 192, GFP_KERNEL);
2994 caches++;
2997 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2998 create_kmalloc_cache(&kmalloc_caches[i],
2999 "kmalloc", 1 << i, GFP_KERNEL);
3000 caches++;
3005 * Patch up the size_index table if we have strange large alignment
3006 * requirements for the kmalloc array. This is only the case for
3007 * MIPS it seems. The standard arches will not generate any code here.
3009 * Largest permitted alignment is 256 bytes due to the way we
3010 * handle the index determination for the smaller caches.
3012 * Make sure that nothing crazy happens if someone starts tinkering
3013 * around with ARCH_KMALLOC_MINALIGN
3015 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3016 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3018 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3019 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3021 if (KMALLOC_MIN_SIZE == 128) {
3023 * The 192 byte sized cache is not used if the alignment
3024 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3025 * instead.
3027 for (i = 128 + 8; i <= 192; i += 8)
3028 size_index[(i - 1) / 8] = 8;
3031 slab_state = UP;
3033 /* Provide the correct kmalloc names now that the caches are up */
3034 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3035 kmalloc_caches[i]. name =
3036 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3038 #ifdef CONFIG_SMP
3039 register_cpu_notifier(&slab_notifier);
3040 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3041 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3042 #else
3043 kmem_size = sizeof(struct kmem_cache);
3044 #endif
3046 printk(KERN_INFO
3047 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3048 " CPUs=%d, Nodes=%d\n",
3049 caches, cache_line_size(),
3050 slub_min_order, slub_max_order, slub_min_objects,
3051 nr_cpu_ids, nr_node_ids);
3055 * Find a mergeable slab cache
3057 static int slab_unmergeable(struct kmem_cache *s)
3059 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3060 return 1;
3062 if (s->ctor)
3063 return 1;
3066 * We may have set a slab to be unmergeable during bootstrap.
3068 if (s->refcount < 0)
3069 return 1;
3071 return 0;
3074 static struct kmem_cache *find_mergeable(size_t size,
3075 size_t align, unsigned long flags, const char *name,
3076 void (*ctor)(struct kmem_cache *, void *))
3078 struct kmem_cache *s;
3080 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3081 return NULL;
3083 if (ctor)
3084 return NULL;
3086 size = ALIGN(size, sizeof(void *));
3087 align = calculate_alignment(flags, align, size);
3088 size = ALIGN(size, align);
3089 flags = kmem_cache_flags(size, flags, name, NULL);
3091 list_for_each_entry(s, &slab_caches, list) {
3092 if (slab_unmergeable(s))
3093 continue;
3095 if (size > s->size)
3096 continue;
3098 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3099 continue;
3101 * Check if alignment is compatible.
3102 * Courtesy of Adrian Drzewiecki
3104 if ((s->size & ~(align - 1)) != s->size)
3105 continue;
3107 if (s->size - size >= sizeof(void *))
3108 continue;
3110 return s;
3112 return NULL;
3115 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3116 size_t align, unsigned long flags,
3117 void (*ctor)(struct kmem_cache *, void *))
3119 struct kmem_cache *s;
3121 down_write(&slub_lock);
3122 s = find_mergeable(size, align, flags, name, ctor);
3123 if (s) {
3124 int cpu;
3126 s->refcount++;
3128 * Adjust the object sizes so that we clear
3129 * the complete object on kzalloc.
3131 s->objsize = max(s->objsize, (int)size);
3134 * And then we need to update the object size in the
3135 * per cpu structures
3137 for_each_online_cpu(cpu)
3138 get_cpu_slab(s, cpu)->objsize = s->objsize;
3140 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3141 up_write(&slub_lock);
3143 if (sysfs_slab_alias(s, name))
3144 goto err;
3145 return s;
3148 s = kmalloc(kmem_size, GFP_KERNEL);
3149 if (s) {
3150 if (kmem_cache_open(s, GFP_KERNEL, name,
3151 size, align, flags, ctor)) {
3152 list_add(&s->list, &slab_caches);
3153 up_write(&slub_lock);
3154 if (sysfs_slab_add(s))
3155 goto err;
3156 return s;
3158 kfree(s);
3160 up_write(&slub_lock);
3162 err:
3163 if (flags & SLAB_PANIC)
3164 panic("Cannot create slabcache %s\n", name);
3165 else
3166 s = NULL;
3167 return s;
3169 EXPORT_SYMBOL(kmem_cache_create);
3171 #ifdef CONFIG_SMP
3173 * Use the cpu notifier to insure that the cpu slabs are flushed when
3174 * necessary.
3176 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3177 unsigned long action, void *hcpu)
3179 long cpu = (long)hcpu;
3180 struct kmem_cache *s;
3181 unsigned long flags;
3183 switch (action) {
3184 case CPU_UP_PREPARE:
3185 case CPU_UP_PREPARE_FROZEN:
3186 init_alloc_cpu_cpu(cpu);
3187 down_read(&slub_lock);
3188 list_for_each_entry(s, &slab_caches, list)
3189 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3190 GFP_KERNEL);
3191 up_read(&slub_lock);
3192 break;
3194 case CPU_UP_CANCELED:
3195 case CPU_UP_CANCELED_FROZEN:
3196 case CPU_DEAD:
3197 case CPU_DEAD_FROZEN:
3198 down_read(&slub_lock);
3199 list_for_each_entry(s, &slab_caches, list) {
3200 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3202 local_irq_save(flags);
3203 __flush_cpu_slab(s, cpu);
3204 local_irq_restore(flags);
3205 free_kmem_cache_cpu(c, cpu);
3206 s->cpu_slab[cpu] = NULL;
3208 up_read(&slub_lock);
3209 break;
3210 default:
3211 break;
3213 return NOTIFY_OK;
3216 static struct notifier_block __cpuinitdata slab_notifier = {
3217 .notifier_call = slab_cpuup_callback
3220 #endif
3222 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3224 struct kmem_cache *s;
3226 if (unlikely(size > PAGE_SIZE))
3227 return kmalloc_large(size, gfpflags);
3229 s = get_slab(size, gfpflags);
3231 if (unlikely(ZERO_OR_NULL_PTR(s)))
3232 return s;
3234 return slab_alloc(s, gfpflags, -1, caller);
3237 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3238 int node, void *caller)
3240 struct kmem_cache *s;
3242 if (unlikely(size > PAGE_SIZE))
3243 return kmalloc_large_node(size, gfpflags, node);
3245 s = get_slab(size, gfpflags);
3247 if (unlikely(ZERO_OR_NULL_PTR(s)))
3248 return s;
3250 return slab_alloc(s, gfpflags, node, caller);
3253 #ifdef CONFIG_SLUB_DEBUG
3254 static unsigned long count_partial(struct kmem_cache_node *n,
3255 int (*get_count)(struct page *))
3257 unsigned long flags;
3258 unsigned long x = 0;
3259 struct page *page;
3261 spin_lock_irqsave(&n->list_lock, flags);
3262 list_for_each_entry(page, &n->partial, lru)
3263 x += get_count(page);
3264 spin_unlock_irqrestore(&n->list_lock, flags);
3265 return x;
3268 static int count_inuse(struct page *page)
3270 return page->inuse;
3273 static int count_total(struct page *page)
3275 return page->objects;
3278 static int count_free(struct page *page)
3280 return page->objects - page->inuse;
3283 static int validate_slab(struct kmem_cache *s, struct page *page,
3284 unsigned long *map)
3286 void *p;
3287 void *addr = page_address(page);
3289 if (!check_slab(s, page) ||
3290 !on_freelist(s, page, NULL))
3291 return 0;
3293 /* Now we know that a valid freelist exists */
3294 bitmap_zero(map, page->objects);
3296 for_each_free_object(p, s, page->freelist) {
3297 set_bit(slab_index(p, s, addr), map);
3298 if (!check_object(s, page, p, 0))
3299 return 0;
3302 for_each_object(p, s, addr, page->objects)
3303 if (!test_bit(slab_index(p, s, addr), map))
3304 if (!check_object(s, page, p, 1))
3305 return 0;
3306 return 1;
3309 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3310 unsigned long *map)
3312 if (slab_trylock(page)) {
3313 validate_slab(s, page, map);
3314 slab_unlock(page);
3315 } else
3316 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3317 s->name, page);
3319 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3320 if (!SlabDebug(page))
3321 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3322 "on slab 0x%p\n", s->name, page);
3323 } else {
3324 if (SlabDebug(page))
3325 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3326 "slab 0x%p\n", s->name, page);
3330 static int validate_slab_node(struct kmem_cache *s,
3331 struct kmem_cache_node *n, unsigned long *map)
3333 unsigned long count = 0;
3334 struct page *page;
3335 unsigned long flags;
3337 spin_lock_irqsave(&n->list_lock, flags);
3339 list_for_each_entry(page, &n->partial, lru) {
3340 validate_slab_slab(s, page, map);
3341 count++;
3343 if (count != n->nr_partial)
3344 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3345 "counter=%ld\n", s->name, count, n->nr_partial);
3347 if (!(s->flags & SLAB_STORE_USER))
3348 goto out;
3350 list_for_each_entry(page, &n->full, lru) {
3351 validate_slab_slab(s, page, map);
3352 count++;
3354 if (count != atomic_long_read(&n->nr_slabs))
3355 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3356 "counter=%ld\n", s->name, count,
3357 atomic_long_read(&n->nr_slabs));
3359 out:
3360 spin_unlock_irqrestore(&n->list_lock, flags);
3361 return count;
3364 static long validate_slab_cache(struct kmem_cache *s)
3366 int node;
3367 unsigned long count = 0;
3368 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3369 sizeof(unsigned long), GFP_KERNEL);
3371 if (!map)
3372 return -ENOMEM;
3374 flush_all(s);
3375 for_each_node_state(node, N_NORMAL_MEMORY) {
3376 struct kmem_cache_node *n = get_node(s, node);
3378 count += validate_slab_node(s, n, map);
3380 kfree(map);
3381 return count;
3384 #ifdef SLUB_RESILIENCY_TEST
3385 static void resiliency_test(void)
3387 u8 *p;
3389 printk(KERN_ERR "SLUB resiliency testing\n");
3390 printk(KERN_ERR "-----------------------\n");
3391 printk(KERN_ERR "A. Corruption after allocation\n");
3393 p = kzalloc(16, GFP_KERNEL);
3394 p[16] = 0x12;
3395 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3396 " 0x12->0x%p\n\n", p + 16);
3398 validate_slab_cache(kmalloc_caches + 4);
3400 /* Hmmm... The next two are dangerous */
3401 p = kzalloc(32, GFP_KERNEL);
3402 p[32 + sizeof(void *)] = 0x34;
3403 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3404 " 0x34 -> -0x%p\n", p);
3405 printk(KERN_ERR
3406 "If allocated object is overwritten then not detectable\n\n");
3408 validate_slab_cache(kmalloc_caches + 5);
3409 p = kzalloc(64, GFP_KERNEL);
3410 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3411 *p = 0x56;
3412 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3414 printk(KERN_ERR
3415 "If allocated object is overwritten then not detectable\n\n");
3416 validate_slab_cache(kmalloc_caches + 6);
3418 printk(KERN_ERR "\nB. Corruption after free\n");
3419 p = kzalloc(128, GFP_KERNEL);
3420 kfree(p);
3421 *p = 0x78;
3422 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3423 validate_slab_cache(kmalloc_caches + 7);
3425 p = kzalloc(256, GFP_KERNEL);
3426 kfree(p);
3427 p[50] = 0x9a;
3428 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3430 validate_slab_cache(kmalloc_caches + 8);
3432 p = kzalloc(512, GFP_KERNEL);
3433 kfree(p);
3434 p[512] = 0xab;
3435 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3436 validate_slab_cache(kmalloc_caches + 9);
3438 #else
3439 static void resiliency_test(void) {};
3440 #endif
3443 * Generate lists of code addresses where slabcache objects are allocated
3444 * and freed.
3447 struct location {
3448 unsigned long count;
3449 void *addr;
3450 long long sum_time;
3451 long min_time;
3452 long max_time;
3453 long min_pid;
3454 long max_pid;
3455 cpumask_t cpus;
3456 nodemask_t nodes;
3459 struct loc_track {
3460 unsigned long max;
3461 unsigned long count;
3462 struct location *loc;
3465 static void free_loc_track(struct loc_track *t)
3467 if (t->max)
3468 free_pages((unsigned long)t->loc,
3469 get_order(sizeof(struct location) * t->max));
3472 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3474 struct location *l;
3475 int order;
3477 order = get_order(sizeof(struct location) * max);
3479 l = (void *)__get_free_pages(flags, order);
3480 if (!l)
3481 return 0;
3483 if (t->count) {
3484 memcpy(l, t->loc, sizeof(struct location) * t->count);
3485 free_loc_track(t);
3487 t->max = max;
3488 t->loc = l;
3489 return 1;
3492 static int add_location(struct loc_track *t, struct kmem_cache *s,
3493 const struct track *track)
3495 long start, end, pos;
3496 struct location *l;
3497 void *caddr;
3498 unsigned long age = jiffies - track->when;
3500 start = -1;
3501 end = t->count;
3503 for ( ; ; ) {
3504 pos = start + (end - start + 1) / 2;
3507 * There is nothing at "end". If we end up there
3508 * we need to add something to before end.
3510 if (pos == end)
3511 break;
3513 caddr = t->loc[pos].addr;
3514 if (track->addr == caddr) {
3516 l = &t->loc[pos];
3517 l->count++;
3518 if (track->when) {
3519 l->sum_time += age;
3520 if (age < l->min_time)
3521 l->min_time = age;
3522 if (age > l->max_time)
3523 l->max_time = age;
3525 if (track->pid < l->min_pid)
3526 l->min_pid = track->pid;
3527 if (track->pid > l->max_pid)
3528 l->max_pid = track->pid;
3530 cpu_set(track->cpu, l->cpus);
3532 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3533 return 1;
3536 if (track->addr < caddr)
3537 end = pos;
3538 else
3539 start = pos;
3543 * Not found. Insert new tracking element.
3545 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3546 return 0;
3548 l = t->loc + pos;
3549 if (pos < t->count)
3550 memmove(l + 1, l,
3551 (t->count - pos) * sizeof(struct location));
3552 t->count++;
3553 l->count = 1;
3554 l->addr = track->addr;
3555 l->sum_time = age;
3556 l->min_time = age;
3557 l->max_time = age;
3558 l->min_pid = track->pid;
3559 l->max_pid = track->pid;
3560 cpus_clear(l->cpus);
3561 cpu_set(track->cpu, l->cpus);
3562 nodes_clear(l->nodes);
3563 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3564 return 1;
3567 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3568 struct page *page, enum track_item alloc)
3570 void *addr = page_address(page);
3571 DECLARE_BITMAP(map, page->objects);
3572 void *p;
3574 bitmap_zero(map, page->objects);
3575 for_each_free_object(p, s, page->freelist)
3576 set_bit(slab_index(p, s, addr), map);
3578 for_each_object(p, s, addr, page->objects)
3579 if (!test_bit(slab_index(p, s, addr), map))
3580 add_location(t, s, get_track(s, p, alloc));
3583 static int list_locations(struct kmem_cache *s, char *buf,
3584 enum track_item alloc)
3586 int len = 0;
3587 unsigned long i;
3588 struct loc_track t = { 0, 0, NULL };
3589 int node;
3591 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3592 GFP_TEMPORARY))
3593 return sprintf(buf, "Out of memory\n");
3595 /* Push back cpu slabs */
3596 flush_all(s);
3598 for_each_node_state(node, N_NORMAL_MEMORY) {
3599 struct kmem_cache_node *n = get_node(s, node);
3600 unsigned long flags;
3601 struct page *page;
3603 if (!atomic_long_read(&n->nr_slabs))
3604 continue;
3606 spin_lock_irqsave(&n->list_lock, flags);
3607 list_for_each_entry(page, &n->partial, lru)
3608 process_slab(&t, s, page, alloc);
3609 list_for_each_entry(page, &n->full, lru)
3610 process_slab(&t, s, page, alloc);
3611 spin_unlock_irqrestore(&n->list_lock, flags);
3614 for (i = 0; i < t.count; i++) {
3615 struct location *l = &t.loc[i];
3617 if (len > PAGE_SIZE - 100)
3618 break;
3619 len += sprintf(buf + len, "%7ld ", l->count);
3621 if (l->addr)
3622 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3623 else
3624 len += sprintf(buf + len, "<not-available>");
3626 if (l->sum_time != l->min_time) {
3627 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3628 l->min_time,
3629 (long)div_u64(l->sum_time, l->count),
3630 l->max_time);
3631 } else
3632 len += sprintf(buf + len, " age=%ld",
3633 l->min_time);
3635 if (l->min_pid != l->max_pid)
3636 len += sprintf(buf + len, " pid=%ld-%ld",
3637 l->min_pid, l->max_pid);
3638 else
3639 len += sprintf(buf + len, " pid=%ld",
3640 l->min_pid);
3642 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3643 len < PAGE_SIZE - 60) {
3644 len += sprintf(buf + len, " cpus=");
3645 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3646 l->cpus);
3649 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3650 len < PAGE_SIZE - 60) {
3651 len += sprintf(buf + len, " nodes=");
3652 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3653 l->nodes);
3656 len += sprintf(buf + len, "\n");
3659 free_loc_track(&t);
3660 if (!t.count)
3661 len += sprintf(buf, "No data\n");
3662 return len;
3665 enum slab_stat_type {
3666 SL_ALL, /* All slabs */
3667 SL_PARTIAL, /* Only partially allocated slabs */
3668 SL_CPU, /* Only slabs used for cpu caches */
3669 SL_OBJECTS, /* Determine allocated objects not slabs */
3670 SL_TOTAL /* Determine object capacity not slabs */
3673 #define SO_ALL (1 << SL_ALL)
3674 #define SO_PARTIAL (1 << SL_PARTIAL)
3675 #define SO_CPU (1 << SL_CPU)
3676 #define SO_OBJECTS (1 << SL_OBJECTS)
3677 #define SO_TOTAL (1 << SL_TOTAL)
3679 static ssize_t show_slab_objects(struct kmem_cache *s,
3680 char *buf, unsigned long flags)
3682 unsigned long total = 0;
3683 int node;
3684 int x;
3685 unsigned long *nodes;
3686 unsigned long *per_cpu;
3688 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3689 if (!nodes)
3690 return -ENOMEM;
3691 per_cpu = nodes + nr_node_ids;
3693 if (flags & SO_CPU) {
3694 int cpu;
3696 for_each_possible_cpu(cpu) {
3697 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3699 if (!c || c->node < 0)
3700 continue;
3702 if (c->page) {
3703 if (flags & SO_TOTAL)
3704 x = c->page->objects;
3705 else if (flags & SO_OBJECTS)
3706 x = c->page->inuse;
3707 else
3708 x = 1;
3710 total += x;
3711 nodes[c->node] += x;
3713 per_cpu[c->node]++;
3717 if (flags & SO_ALL) {
3718 for_each_node_state(node, N_NORMAL_MEMORY) {
3719 struct kmem_cache_node *n = get_node(s, node);
3721 if (flags & SO_TOTAL)
3722 x = atomic_long_read(&n->total_objects);
3723 else if (flags & SO_OBJECTS)
3724 x = atomic_long_read(&n->total_objects) -
3725 count_partial(n, count_free);
3727 else
3728 x = atomic_long_read(&n->nr_slabs);
3729 total += x;
3730 nodes[node] += x;
3733 } else if (flags & SO_PARTIAL) {
3734 for_each_node_state(node, N_NORMAL_MEMORY) {
3735 struct kmem_cache_node *n = get_node(s, node);
3737 if (flags & SO_TOTAL)
3738 x = count_partial(n, count_total);
3739 else if (flags & SO_OBJECTS)
3740 x = count_partial(n, count_inuse);
3741 else
3742 x = n->nr_partial;
3743 total += x;
3744 nodes[node] += x;
3747 x = sprintf(buf, "%lu", total);
3748 #ifdef CONFIG_NUMA
3749 for_each_node_state(node, N_NORMAL_MEMORY)
3750 if (nodes[node])
3751 x += sprintf(buf + x, " N%d=%lu",
3752 node, nodes[node]);
3753 #endif
3754 kfree(nodes);
3755 return x + sprintf(buf + x, "\n");
3758 static int any_slab_objects(struct kmem_cache *s)
3760 int node;
3762 for_each_online_node(node) {
3763 struct kmem_cache_node *n = get_node(s, node);
3765 if (!n)
3766 continue;
3768 if (atomic_long_read(&n->total_objects))
3769 return 1;
3771 return 0;
3774 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3775 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3777 struct slab_attribute {
3778 struct attribute attr;
3779 ssize_t (*show)(struct kmem_cache *s, char *buf);
3780 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3783 #define SLAB_ATTR_RO(_name) \
3784 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3786 #define SLAB_ATTR(_name) \
3787 static struct slab_attribute _name##_attr = \
3788 __ATTR(_name, 0644, _name##_show, _name##_store)
3790 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3792 return sprintf(buf, "%d\n", s->size);
3794 SLAB_ATTR_RO(slab_size);
3796 static ssize_t align_show(struct kmem_cache *s, char *buf)
3798 return sprintf(buf, "%d\n", s->align);
3800 SLAB_ATTR_RO(align);
3802 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3804 return sprintf(buf, "%d\n", s->objsize);
3806 SLAB_ATTR_RO(object_size);
3808 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3810 return sprintf(buf, "%d\n", oo_objects(s->oo));
3812 SLAB_ATTR_RO(objs_per_slab);
3814 static ssize_t order_store(struct kmem_cache *s,
3815 const char *buf, size_t length)
3817 unsigned long order;
3818 int err;
3820 err = strict_strtoul(buf, 10, &order);
3821 if (err)
3822 return err;
3824 if (order > slub_max_order || order < slub_min_order)
3825 return -EINVAL;
3827 calculate_sizes(s, order);
3828 return length;
3831 static ssize_t order_show(struct kmem_cache *s, char *buf)
3833 return sprintf(buf, "%d\n", oo_order(s->oo));
3835 SLAB_ATTR(order);
3837 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3839 if (s->ctor) {
3840 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3842 return n + sprintf(buf + n, "\n");
3844 return 0;
3846 SLAB_ATTR_RO(ctor);
3848 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3850 return sprintf(buf, "%d\n", s->refcount - 1);
3852 SLAB_ATTR_RO(aliases);
3854 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3856 return show_slab_objects(s, buf, SO_ALL);
3858 SLAB_ATTR_RO(slabs);
3860 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3862 return show_slab_objects(s, buf, SO_PARTIAL);
3864 SLAB_ATTR_RO(partial);
3866 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3868 return show_slab_objects(s, buf, SO_CPU);
3870 SLAB_ATTR_RO(cpu_slabs);
3872 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3874 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3876 SLAB_ATTR_RO(objects);
3878 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3880 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3882 SLAB_ATTR_RO(objects_partial);
3884 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3886 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3888 SLAB_ATTR_RO(total_objects);
3890 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3892 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3895 static ssize_t sanity_checks_store(struct kmem_cache *s,
3896 const char *buf, size_t length)
3898 s->flags &= ~SLAB_DEBUG_FREE;
3899 if (buf[0] == '1')
3900 s->flags |= SLAB_DEBUG_FREE;
3901 return length;
3903 SLAB_ATTR(sanity_checks);
3905 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3907 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3910 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3911 size_t length)
3913 s->flags &= ~SLAB_TRACE;
3914 if (buf[0] == '1')
3915 s->flags |= SLAB_TRACE;
3916 return length;
3918 SLAB_ATTR(trace);
3920 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3922 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3925 static ssize_t reclaim_account_store(struct kmem_cache *s,
3926 const char *buf, size_t length)
3928 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3929 if (buf[0] == '1')
3930 s->flags |= SLAB_RECLAIM_ACCOUNT;
3931 return length;
3933 SLAB_ATTR(reclaim_account);
3935 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3937 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3939 SLAB_ATTR_RO(hwcache_align);
3941 #ifdef CONFIG_ZONE_DMA
3942 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3944 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3946 SLAB_ATTR_RO(cache_dma);
3947 #endif
3949 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3951 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3953 SLAB_ATTR_RO(destroy_by_rcu);
3955 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3957 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3960 static ssize_t red_zone_store(struct kmem_cache *s,
3961 const char *buf, size_t length)
3963 if (any_slab_objects(s))
3964 return -EBUSY;
3966 s->flags &= ~SLAB_RED_ZONE;
3967 if (buf[0] == '1')
3968 s->flags |= SLAB_RED_ZONE;
3969 calculate_sizes(s, -1);
3970 return length;
3972 SLAB_ATTR(red_zone);
3974 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3976 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3979 static ssize_t poison_store(struct kmem_cache *s,
3980 const char *buf, size_t length)
3982 if (any_slab_objects(s))
3983 return -EBUSY;
3985 s->flags &= ~SLAB_POISON;
3986 if (buf[0] == '1')
3987 s->flags |= SLAB_POISON;
3988 calculate_sizes(s, -1);
3989 return length;
3991 SLAB_ATTR(poison);
3993 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3995 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3998 static ssize_t store_user_store(struct kmem_cache *s,
3999 const char *buf, size_t length)
4001 if (any_slab_objects(s))
4002 return -EBUSY;
4004 s->flags &= ~SLAB_STORE_USER;
4005 if (buf[0] == '1')
4006 s->flags |= SLAB_STORE_USER;
4007 calculate_sizes(s, -1);
4008 return length;
4010 SLAB_ATTR(store_user);
4012 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4014 return 0;
4017 static ssize_t validate_store(struct kmem_cache *s,
4018 const char *buf, size_t length)
4020 int ret = -EINVAL;
4022 if (buf[0] == '1') {
4023 ret = validate_slab_cache(s);
4024 if (ret >= 0)
4025 ret = length;
4027 return ret;
4029 SLAB_ATTR(validate);
4031 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4033 return 0;
4036 static ssize_t shrink_store(struct kmem_cache *s,
4037 const char *buf, size_t length)
4039 if (buf[0] == '1') {
4040 int rc = kmem_cache_shrink(s);
4042 if (rc)
4043 return rc;
4044 } else
4045 return -EINVAL;
4046 return length;
4048 SLAB_ATTR(shrink);
4050 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4052 if (!(s->flags & SLAB_STORE_USER))
4053 return -ENOSYS;
4054 return list_locations(s, buf, TRACK_ALLOC);
4056 SLAB_ATTR_RO(alloc_calls);
4058 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4060 if (!(s->flags & SLAB_STORE_USER))
4061 return -ENOSYS;
4062 return list_locations(s, buf, TRACK_FREE);
4064 SLAB_ATTR_RO(free_calls);
4066 #ifdef CONFIG_NUMA
4067 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4069 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4072 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4073 const char *buf, size_t length)
4075 unsigned long ratio;
4076 int err;
4078 err = strict_strtoul(buf, 10, &ratio);
4079 if (err)
4080 return err;
4082 if (ratio < 100)
4083 s->remote_node_defrag_ratio = ratio * 10;
4085 return length;
4087 SLAB_ATTR(remote_node_defrag_ratio);
4088 #endif
4090 #ifdef CONFIG_SLUB_STATS
4091 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4093 unsigned long sum = 0;
4094 int cpu;
4095 int len;
4096 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4098 if (!data)
4099 return -ENOMEM;
4101 for_each_online_cpu(cpu) {
4102 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4104 data[cpu] = x;
4105 sum += x;
4108 len = sprintf(buf, "%lu", sum);
4110 #ifdef CONFIG_SMP
4111 for_each_online_cpu(cpu) {
4112 if (data[cpu] && len < PAGE_SIZE - 20)
4113 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4115 #endif
4116 kfree(data);
4117 return len + sprintf(buf + len, "\n");
4120 #define STAT_ATTR(si, text) \
4121 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4123 return show_stat(s, buf, si); \
4125 SLAB_ATTR_RO(text); \
4127 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4128 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4129 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4130 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4131 STAT_ATTR(FREE_FROZEN, free_frozen);
4132 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4133 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4134 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4135 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4136 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4137 STAT_ATTR(FREE_SLAB, free_slab);
4138 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4139 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4140 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4141 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4142 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4143 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4144 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4145 #endif
4147 static struct attribute *slab_attrs[] = {
4148 &slab_size_attr.attr,
4149 &object_size_attr.attr,
4150 &objs_per_slab_attr.attr,
4151 &order_attr.attr,
4152 &objects_attr.attr,
4153 &objects_partial_attr.attr,
4154 &total_objects_attr.attr,
4155 &slabs_attr.attr,
4156 &partial_attr.attr,
4157 &cpu_slabs_attr.attr,
4158 &ctor_attr.attr,
4159 &aliases_attr.attr,
4160 &align_attr.attr,
4161 &sanity_checks_attr.attr,
4162 &trace_attr.attr,
4163 &hwcache_align_attr.attr,
4164 &reclaim_account_attr.attr,
4165 &destroy_by_rcu_attr.attr,
4166 &red_zone_attr.attr,
4167 &poison_attr.attr,
4168 &store_user_attr.attr,
4169 &validate_attr.attr,
4170 &shrink_attr.attr,
4171 &alloc_calls_attr.attr,
4172 &free_calls_attr.attr,
4173 #ifdef CONFIG_ZONE_DMA
4174 &cache_dma_attr.attr,
4175 #endif
4176 #ifdef CONFIG_NUMA
4177 &remote_node_defrag_ratio_attr.attr,
4178 #endif
4179 #ifdef CONFIG_SLUB_STATS
4180 &alloc_fastpath_attr.attr,
4181 &alloc_slowpath_attr.attr,
4182 &free_fastpath_attr.attr,
4183 &free_slowpath_attr.attr,
4184 &free_frozen_attr.attr,
4185 &free_add_partial_attr.attr,
4186 &free_remove_partial_attr.attr,
4187 &alloc_from_partial_attr.attr,
4188 &alloc_slab_attr.attr,
4189 &alloc_refill_attr.attr,
4190 &free_slab_attr.attr,
4191 &cpuslab_flush_attr.attr,
4192 &deactivate_full_attr.attr,
4193 &deactivate_empty_attr.attr,
4194 &deactivate_to_head_attr.attr,
4195 &deactivate_to_tail_attr.attr,
4196 &deactivate_remote_frees_attr.attr,
4197 &order_fallback_attr.attr,
4198 #endif
4199 NULL
4202 static struct attribute_group slab_attr_group = {
4203 .attrs = slab_attrs,
4206 static ssize_t slab_attr_show(struct kobject *kobj,
4207 struct attribute *attr,
4208 char *buf)
4210 struct slab_attribute *attribute;
4211 struct kmem_cache *s;
4212 int err;
4214 attribute = to_slab_attr(attr);
4215 s = to_slab(kobj);
4217 if (!attribute->show)
4218 return -EIO;
4220 err = attribute->show(s, buf);
4222 return err;
4225 static ssize_t slab_attr_store(struct kobject *kobj,
4226 struct attribute *attr,
4227 const char *buf, size_t len)
4229 struct slab_attribute *attribute;
4230 struct kmem_cache *s;
4231 int err;
4233 attribute = to_slab_attr(attr);
4234 s = to_slab(kobj);
4236 if (!attribute->store)
4237 return -EIO;
4239 err = attribute->store(s, buf, len);
4241 return err;
4244 static void kmem_cache_release(struct kobject *kobj)
4246 struct kmem_cache *s = to_slab(kobj);
4248 kfree(s);
4251 static struct sysfs_ops slab_sysfs_ops = {
4252 .show = slab_attr_show,
4253 .store = slab_attr_store,
4256 static struct kobj_type slab_ktype = {
4257 .sysfs_ops = &slab_sysfs_ops,
4258 .release = kmem_cache_release
4261 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4263 struct kobj_type *ktype = get_ktype(kobj);
4265 if (ktype == &slab_ktype)
4266 return 1;
4267 return 0;
4270 static struct kset_uevent_ops slab_uevent_ops = {
4271 .filter = uevent_filter,
4274 static struct kset *slab_kset;
4276 #define ID_STR_LENGTH 64
4278 /* Create a unique string id for a slab cache:
4280 * Format :[flags-]size
4282 static char *create_unique_id(struct kmem_cache *s)
4284 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4285 char *p = name;
4287 BUG_ON(!name);
4289 *p++ = ':';
4291 * First flags affecting slabcache operations. We will only
4292 * get here for aliasable slabs so we do not need to support
4293 * too many flags. The flags here must cover all flags that
4294 * are matched during merging to guarantee that the id is
4295 * unique.
4297 if (s->flags & SLAB_CACHE_DMA)
4298 *p++ = 'd';
4299 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4300 *p++ = 'a';
4301 if (s->flags & SLAB_DEBUG_FREE)
4302 *p++ = 'F';
4303 if (p != name + 1)
4304 *p++ = '-';
4305 p += sprintf(p, "%07d", s->size);
4306 BUG_ON(p > name + ID_STR_LENGTH - 1);
4307 return name;
4310 static int sysfs_slab_add(struct kmem_cache *s)
4312 int err;
4313 const char *name;
4314 int unmergeable;
4316 if (slab_state < SYSFS)
4317 /* Defer until later */
4318 return 0;
4320 unmergeable = slab_unmergeable(s);
4321 if (unmergeable) {
4323 * Slabcache can never be merged so we can use the name proper.
4324 * This is typically the case for debug situations. In that
4325 * case we can catch duplicate names easily.
4327 sysfs_remove_link(&slab_kset->kobj, s->name);
4328 name = s->name;
4329 } else {
4331 * Create a unique name for the slab as a target
4332 * for the symlinks.
4334 name = create_unique_id(s);
4337 s->kobj.kset = slab_kset;
4338 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4339 if (err) {
4340 kobject_put(&s->kobj);
4341 return err;
4344 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4345 if (err)
4346 return err;
4347 kobject_uevent(&s->kobj, KOBJ_ADD);
4348 if (!unmergeable) {
4349 /* Setup first alias */
4350 sysfs_slab_alias(s, s->name);
4351 kfree(name);
4353 return 0;
4356 static void sysfs_slab_remove(struct kmem_cache *s)
4358 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4359 kobject_del(&s->kobj);
4360 kobject_put(&s->kobj);
4364 * Need to buffer aliases during bootup until sysfs becomes
4365 * available lest we loose that information.
4367 struct saved_alias {
4368 struct kmem_cache *s;
4369 const char *name;
4370 struct saved_alias *next;
4373 static struct saved_alias *alias_list;
4375 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4377 struct saved_alias *al;
4379 if (slab_state == SYSFS) {
4381 * If we have a leftover link then remove it.
4383 sysfs_remove_link(&slab_kset->kobj, name);
4384 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4387 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4388 if (!al)
4389 return -ENOMEM;
4391 al->s = s;
4392 al->name = name;
4393 al->next = alias_list;
4394 alias_list = al;
4395 return 0;
4398 static int __init slab_sysfs_init(void)
4400 struct kmem_cache *s;
4401 int err;
4403 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4404 if (!slab_kset) {
4405 printk(KERN_ERR "Cannot register slab subsystem.\n");
4406 return -ENOSYS;
4409 slab_state = SYSFS;
4411 list_for_each_entry(s, &slab_caches, list) {
4412 err = sysfs_slab_add(s);
4413 if (err)
4414 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4415 " to sysfs\n", s->name);
4418 while (alias_list) {
4419 struct saved_alias *al = alias_list;
4421 alias_list = alias_list->next;
4422 err = sysfs_slab_alias(al->s, al->name);
4423 if (err)
4424 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4425 " %s to sysfs\n", s->name);
4426 kfree(al);
4429 resiliency_test();
4430 return 0;
4433 __initcall(slab_sysfs_init);
4434 #endif
4437 * The /proc/slabinfo ABI
4439 #ifdef CONFIG_SLABINFO
4441 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4442 size_t count, loff_t *ppos)
4444 return -EINVAL;
4448 static void print_slabinfo_header(struct seq_file *m)
4450 seq_puts(m, "slabinfo - version: 2.1\n");
4451 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4452 "<objperslab> <pagesperslab>");
4453 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4454 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4455 seq_putc(m, '\n');
4458 static void *s_start(struct seq_file *m, loff_t *pos)
4460 loff_t n = *pos;
4462 down_read(&slub_lock);
4463 if (!n)
4464 print_slabinfo_header(m);
4466 return seq_list_start(&slab_caches, *pos);
4469 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4471 return seq_list_next(p, &slab_caches, pos);
4474 static void s_stop(struct seq_file *m, void *p)
4476 up_read(&slub_lock);
4479 static int s_show(struct seq_file *m, void *p)
4481 unsigned long nr_partials = 0;
4482 unsigned long nr_slabs = 0;
4483 unsigned long nr_inuse = 0;
4484 unsigned long nr_objs = 0;
4485 unsigned long nr_free = 0;
4486 struct kmem_cache *s;
4487 int node;
4489 s = list_entry(p, struct kmem_cache, list);
4491 for_each_online_node(node) {
4492 struct kmem_cache_node *n = get_node(s, node);
4494 if (!n)
4495 continue;
4497 nr_partials += n->nr_partial;
4498 nr_slabs += atomic_long_read(&n->nr_slabs);
4499 nr_objs += atomic_long_read(&n->total_objects);
4500 nr_free += count_partial(n, count_free);
4503 nr_inuse = nr_objs - nr_free;
4505 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4506 nr_objs, s->size, oo_objects(s->oo),
4507 (1 << oo_order(s->oo)));
4508 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4509 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4510 0UL);
4511 seq_putc(m, '\n');
4512 return 0;
4515 const struct seq_operations slabinfo_op = {
4516 .start = s_start,
4517 .next = s_next,
4518 .stop = s_stop,
4519 .show = s_show,
4522 #endif /* CONFIG_SLABINFO */