seq_file: more atomicity in traverse()
[linux-2.6/openmoko-kernel.git] / kernel / fork.c
blob344d693fdc787c153ca702a3d3481031164a964a
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
53 #include <asm/pgtable.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/cacheflush.h>
58 #include <asm/tlbflush.h>
61 * Protected counters by write_lock_irq(&tasklist_lock)
63 unsigned long total_forks; /* Handle normal Linux uptimes. */
64 int nr_threads; /* The idle threads do not count.. */
66 int max_threads; /* tunable limit on nr_threads */
68 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
70 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
72 int nr_processes(void)
74 int cpu;
75 int total = 0;
77 for_each_online_cpu(cpu)
78 total += per_cpu(process_counts, cpu);
80 return total;
83 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
84 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
85 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
86 static struct kmem_cache *task_struct_cachep;
87 #endif
89 /* SLAB cache for signal_struct structures (tsk->signal) */
90 static struct kmem_cache *signal_cachep;
92 /* SLAB cache for sighand_struct structures (tsk->sighand) */
93 struct kmem_cache *sighand_cachep;
95 /* SLAB cache for files_struct structures (tsk->files) */
96 struct kmem_cache *files_cachep;
98 /* SLAB cache for fs_struct structures (tsk->fs) */
99 struct kmem_cache *fs_cachep;
101 /* SLAB cache for vm_area_struct structures */
102 struct kmem_cache *vm_area_cachep;
104 /* SLAB cache for mm_struct structures (tsk->mm) */
105 static struct kmem_cache *mm_cachep;
107 void free_task(struct task_struct *tsk)
109 free_thread_info(tsk->stack);
110 rt_mutex_debug_task_free(tsk);
111 free_task_struct(tsk);
113 EXPORT_SYMBOL(free_task);
115 void __put_task_struct(struct task_struct *tsk)
117 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
118 WARN_ON(atomic_read(&tsk->usage));
119 WARN_ON(tsk == current);
121 security_task_free(tsk);
122 free_uid(tsk->user);
123 put_group_info(tsk->group_info);
124 delayacct_tsk_free(tsk);
126 if (!profile_handoff_task(tsk))
127 free_task(tsk);
130 void __init fork_init(unsigned long mempages)
132 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
133 #ifndef ARCH_MIN_TASKALIGN
134 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
135 #endif
136 /* create a slab on which task_structs can be allocated */
137 task_struct_cachep =
138 kmem_cache_create("task_struct", sizeof(struct task_struct),
139 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
140 #endif
143 * The default maximum number of threads is set to a safe
144 * value: the thread structures can take up at most half
145 * of memory.
147 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
150 * we need to allow at least 20 threads to boot a system
152 if(max_threads < 20)
153 max_threads = 20;
155 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
156 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
157 init_task.signal->rlim[RLIMIT_SIGPENDING] =
158 init_task.signal->rlim[RLIMIT_NPROC];
161 static struct task_struct *dup_task_struct(struct task_struct *orig)
163 struct task_struct *tsk;
164 struct thread_info *ti;
166 prepare_to_copy(orig);
168 tsk = alloc_task_struct();
169 if (!tsk)
170 return NULL;
172 ti = alloc_thread_info(tsk);
173 if (!ti) {
174 free_task_struct(tsk);
175 return NULL;
178 *tsk = *orig;
179 tsk->stack = ti;
180 setup_thread_stack(tsk, orig);
182 #ifdef CONFIG_CC_STACKPROTECTOR
183 tsk->stack_canary = get_random_int();
184 #endif
186 /* One for us, one for whoever does the "release_task()" (usually parent) */
187 atomic_set(&tsk->usage,2);
188 atomic_set(&tsk->fs_excl, 0);
189 #ifdef CONFIG_BLK_DEV_IO_TRACE
190 tsk->btrace_seq = 0;
191 #endif
192 tsk->splice_pipe = NULL;
193 return tsk;
196 #ifdef CONFIG_MMU
197 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
199 struct vm_area_struct *mpnt, *tmp, **pprev;
200 struct rb_node **rb_link, *rb_parent;
201 int retval;
202 unsigned long charge;
203 struct mempolicy *pol;
205 down_write(&oldmm->mmap_sem);
206 flush_cache_dup_mm(oldmm);
208 * Not linked in yet - no deadlock potential:
210 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
212 mm->locked_vm = 0;
213 mm->mmap = NULL;
214 mm->mmap_cache = NULL;
215 mm->free_area_cache = oldmm->mmap_base;
216 mm->cached_hole_size = ~0UL;
217 mm->map_count = 0;
218 cpus_clear(mm->cpu_vm_mask);
219 mm->mm_rb = RB_ROOT;
220 rb_link = &mm->mm_rb.rb_node;
221 rb_parent = NULL;
222 pprev = &mm->mmap;
224 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
225 struct file *file;
227 if (mpnt->vm_flags & VM_DONTCOPY) {
228 long pages = vma_pages(mpnt);
229 mm->total_vm -= pages;
230 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
231 -pages);
232 continue;
234 charge = 0;
235 if (mpnt->vm_flags & VM_ACCOUNT) {
236 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
237 if (security_vm_enough_memory(len))
238 goto fail_nomem;
239 charge = len;
241 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
242 if (!tmp)
243 goto fail_nomem;
244 *tmp = *mpnt;
245 pol = mpol_copy(vma_policy(mpnt));
246 retval = PTR_ERR(pol);
247 if (IS_ERR(pol))
248 goto fail_nomem_policy;
249 vma_set_policy(tmp, pol);
250 tmp->vm_flags &= ~VM_LOCKED;
251 tmp->vm_mm = mm;
252 tmp->vm_next = NULL;
253 anon_vma_link(tmp);
254 file = tmp->vm_file;
255 if (file) {
256 struct inode *inode = file->f_path.dentry->d_inode;
257 get_file(file);
258 if (tmp->vm_flags & VM_DENYWRITE)
259 atomic_dec(&inode->i_writecount);
261 /* insert tmp into the share list, just after mpnt */
262 spin_lock(&file->f_mapping->i_mmap_lock);
263 tmp->vm_truncate_count = mpnt->vm_truncate_count;
264 flush_dcache_mmap_lock(file->f_mapping);
265 vma_prio_tree_add(tmp, mpnt);
266 flush_dcache_mmap_unlock(file->f_mapping);
267 spin_unlock(&file->f_mapping->i_mmap_lock);
271 * Link in the new vma and copy the page table entries.
273 *pprev = tmp;
274 pprev = &tmp->vm_next;
276 __vma_link_rb(mm, tmp, rb_link, rb_parent);
277 rb_link = &tmp->vm_rb.rb_right;
278 rb_parent = &tmp->vm_rb;
280 mm->map_count++;
281 retval = copy_page_range(mm, oldmm, mpnt);
283 if (tmp->vm_ops && tmp->vm_ops->open)
284 tmp->vm_ops->open(tmp);
286 if (retval)
287 goto out;
289 /* a new mm has just been created */
290 arch_dup_mmap(oldmm, mm);
291 retval = 0;
292 out:
293 up_write(&mm->mmap_sem);
294 flush_tlb_mm(oldmm);
295 up_write(&oldmm->mmap_sem);
296 return retval;
297 fail_nomem_policy:
298 kmem_cache_free(vm_area_cachep, tmp);
299 fail_nomem:
300 retval = -ENOMEM;
301 vm_unacct_memory(charge);
302 goto out;
305 static inline int mm_alloc_pgd(struct mm_struct * mm)
307 mm->pgd = pgd_alloc(mm);
308 if (unlikely(!mm->pgd))
309 return -ENOMEM;
310 return 0;
313 static inline void mm_free_pgd(struct mm_struct * mm)
315 pgd_free(mm->pgd);
317 #else
318 #define dup_mmap(mm, oldmm) (0)
319 #define mm_alloc_pgd(mm) (0)
320 #define mm_free_pgd(mm)
321 #endif /* CONFIG_MMU */
323 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
325 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
326 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
328 #include <linux/init_task.h>
330 static struct mm_struct * mm_init(struct mm_struct * mm)
332 atomic_set(&mm->mm_users, 1);
333 atomic_set(&mm->mm_count, 1);
334 init_rwsem(&mm->mmap_sem);
335 INIT_LIST_HEAD(&mm->mmlist);
336 mm->core_waiters = 0;
337 mm->nr_ptes = 0;
338 set_mm_counter(mm, file_rss, 0);
339 set_mm_counter(mm, anon_rss, 0);
340 spin_lock_init(&mm->page_table_lock);
341 rwlock_init(&mm->ioctx_list_lock);
342 mm->ioctx_list = NULL;
343 mm->free_area_cache = TASK_UNMAPPED_BASE;
344 mm->cached_hole_size = ~0UL;
346 if (likely(!mm_alloc_pgd(mm))) {
347 mm->def_flags = 0;
348 return mm;
350 free_mm(mm);
351 return NULL;
355 * Allocate and initialize an mm_struct.
357 struct mm_struct * mm_alloc(void)
359 struct mm_struct * mm;
361 mm = allocate_mm();
362 if (mm) {
363 memset(mm, 0, sizeof(*mm));
364 mm = mm_init(mm);
366 return mm;
370 * Called when the last reference to the mm
371 * is dropped: either by a lazy thread or by
372 * mmput. Free the page directory and the mm.
374 void fastcall __mmdrop(struct mm_struct *mm)
376 BUG_ON(mm == &init_mm);
377 mm_free_pgd(mm);
378 destroy_context(mm);
379 free_mm(mm);
383 * Decrement the use count and release all resources for an mm.
385 void mmput(struct mm_struct *mm)
387 might_sleep();
389 if (atomic_dec_and_test(&mm->mm_users)) {
390 exit_aio(mm);
391 exit_mmap(mm);
392 if (!list_empty(&mm->mmlist)) {
393 spin_lock(&mmlist_lock);
394 list_del(&mm->mmlist);
395 spin_unlock(&mmlist_lock);
397 put_swap_token(mm);
398 mmdrop(mm);
401 EXPORT_SYMBOL_GPL(mmput);
404 * get_task_mm - acquire a reference to the task's mm
406 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
407 * this kernel workthread has transiently adopted a user mm with use_mm,
408 * to do its AIO) is not set and if so returns a reference to it, after
409 * bumping up the use count. User must release the mm via mmput()
410 * after use. Typically used by /proc and ptrace.
412 struct mm_struct *get_task_mm(struct task_struct *task)
414 struct mm_struct *mm;
416 task_lock(task);
417 mm = task->mm;
418 if (mm) {
419 if (task->flags & PF_BORROWED_MM)
420 mm = NULL;
421 else
422 atomic_inc(&mm->mm_users);
424 task_unlock(task);
425 return mm;
427 EXPORT_SYMBOL_GPL(get_task_mm);
429 /* Please note the differences between mmput and mm_release.
430 * mmput is called whenever we stop holding onto a mm_struct,
431 * error success whatever.
433 * mm_release is called after a mm_struct has been removed
434 * from the current process.
436 * This difference is important for error handling, when we
437 * only half set up a mm_struct for a new process and need to restore
438 * the old one. Because we mmput the new mm_struct before
439 * restoring the old one. . .
440 * Eric Biederman 10 January 1998
442 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
444 struct completion *vfork_done = tsk->vfork_done;
446 /* Get rid of any cached register state */
447 deactivate_mm(tsk, mm);
449 /* notify parent sleeping on vfork() */
450 if (vfork_done) {
451 tsk->vfork_done = NULL;
452 complete(vfork_done);
456 * If we're exiting normally, clear a user-space tid field if
457 * requested. We leave this alone when dying by signal, to leave
458 * the value intact in a core dump, and to save the unnecessary
459 * trouble otherwise. Userland only wants this done for a sys_exit.
461 if (tsk->clear_child_tid
462 && !(tsk->flags & PF_SIGNALED)
463 && atomic_read(&mm->mm_users) > 1) {
464 u32 __user * tidptr = tsk->clear_child_tid;
465 tsk->clear_child_tid = NULL;
468 * We don't check the error code - if userspace has
469 * not set up a proper pointer then tough luck.
471 put_user(0, tidptr);
472 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
477 * Allocate a new mm structure and copy contents from the
478 * mm structure of the passed in task structure.
480 static struct mm_struct *dup_mm(struct task_struct *tsk)
482 struct mm_struct *mm, *oldmm = current->mm;
483 int err;
485 if (!oldmm)
486 return NULL;
488 mm = allocate_mm();
489 if (!mm)
490 goto fail_nomem;
492 memcpy(mm, oldmm, sizeof(*mm));
494 /* Initializing for Swap token stuff */
495 mm->token_priority = 0;
496 mm->last_interval = 0;
498 if (!mm_init(mm))
499 goto fail_nomem;
501 if (init_new_context(tsk, mm))
502 goto fail_nocontext;
504 err = dup_mmap(mm, oldmm);
505 if (err)
506 goto free_pt;
508 mm->hiwater_rss = get_mm_rss(mm);
509 mm->hiwater_vm = mm->total_vm;
511 return mm;
513 free_pt:
514 mmput(mm);
516 fail_nomem:
517 return NULL;
519 fail_nocontext:
521 * If init_new_context() failed, we cannot use mmput() to free the mm
522 * because it calls destroy_context()
524 mm_free_pgd(mm);
525 free_mm(mm);
526 return NULL;
529 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
531 struct mm_struct * mm, *oldmm;
532 int retval;
534 tsk->min_flt = tsk->maj_flt = 0;
535 tsk->nvcsw = tsk->nivcsw = 0;
537 tsk->mm = NULL;
538 tsk->active_mm = NULL;
541 * Are we cloning a kernel thread?
543 * We need to steal a active VM for that..
545 oldmm = current->mm;
546 if (!oldmm)
547 return 0;
549 if (clone_flags & CLONE_VM) {
550 atomic_inc(&oldmm->mm_users);
551 mm = oldmm;
552 goto good_mm;
555 retval = -ENOMEM;
556 mm = dup_mm(tsk);
557 if (!mm)
558 goto fail_nomem;
560 good_mm:
561 /* Initializing for Swap token stuff */
562 mm->token_priority = 0;
563 mm->last_interval = 0;
565 tsk->mm = mm;
566 tsk->active_mm = mm;
567 return 0;
569 fail_nomem:
570 return retval;
573 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
575 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
576 /* We don't need to lock fs - think why ;-) */
577 if (fs) {
578 atomic_set(&fs->count, 1);
579 rwlock_init(&fs->lock);
580 fs->umask = old->umask;
581 read_lock(&old->lock);
582 fs->rootmnt = mntget(old->rootmnt);
583 fs->root = dget(old->root);
584 fs->pwdmnt = mntget(old->pwdmnt);
585 fs->pwd = dget(old->pwd);
586 if (old->altroot) {
587 fs->altrootmnt = mntget(old->altrootmnt);
588 fs->altroot = dget(old->altroot);
589 } else {
590 fs->altrootmnt = NULL;
591 fs->altroot = NULL;
593 read_unlock(&old->lock);
595 return fs;
598 struct fs_struct *copy_fs_struct(struct fs_struct *old)
600 return __copy_fs_struct(old);
603 EXPORT_SYMBOL_GPL(copy_fs_struct);
605 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
607 if (clone_flags & CLONE_FS) {
608 atomic_inc(&current->fs->count);
609 return 0;
611 tsk->fs = __copy_fs_struct(current->fs);
612 if (!tsk->fs)
613 return -ENOMEM;
614 return 0;
617 static int count_open_files(struct fdtable *fdt)
619 int size = fdt->max_fds;
620 int i;
622 /* Find the last open fd */
623 for (i = size/(8*sizeof(long)); i > 0; ) {
624 if (fdt->open_fds->fds_bits[--i])
625 break;
627 i = (i+1) * 8 * sizeof(long);
628 return i;
631 static struct files_struct *alloc_files(void)
633 struct files_struct *newf;
634 struct fdtable *fdt;
636 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
637 if (!newf)
638 goto out;
640 atomic_set(&newf->count, 1);
642 spin_lock_init(&newf->file_lock);
643 newf->next_fd = 0;
644 fdt = &newf->fdtab;
645 fdt->max_fds = NR_OPEN_DEFAULT;
646 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
647 fdt->open_fds = (fd_set *)&newf->open_fds_init;
648 fdt->fd = &newf->fd_array[0];
649 INIT_RCU_HEAD(&fdt->rcu);
650 fdt->next = NULL;
651 rcu_assign_pointer(newf->fdt, fdt);
652 out:
653 return newf;
657 * Allocate a new files structure and copy contents from the
658 * passed in files structure.
659 * errorp will be valid only when the returned files_struct is NULL.
661 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
663 struct files_struct *newf;
664 struct file **old_fds, **new_fds;
665 int open_files, size, i;
666 struct fdtable *old_fdt, *new_fdt;
668 *errorp = -ENOMEM;
669 newf = alloc_files();
670 if (!newf)
671 goto out;
673 spin_lock(&oldf->file_lock);
674 old_fdt = files_fdtable(oldf);
675 new_fdt = files_fdtable(newf);
676 open_files = count_open_files(old_fdt);
679 * Check whether we need to allocate a larger fd array and fd set.
680 * Note: we're not a clone task, so the open count won't change.
682 if (open_files > new_fdt->max_fds) {
683 new_fdt->max_fds = 0;
684 spin_unlock(&oldf->file_lock);
685 spin_lock(&newf->file_lock);
686 *errorp = expand_files(newf, open_files-1);
687 spin_unlock(&newf->file_lock);
688 if (*errorp < 0)
689 goto out_release;
690 new_fdt = files_fdtable(newf);
692 * Reacquire the oldf lock and a pointer to its fd table
693 * who knows it may have a new bigger fd table. We need
694 * the latest pointer.
696 spin_lock(&oldf->file_lock);
697 old_fdt = files_fdtable(oldf);
700 old_fds = old_fdt->fd;
701 new_fds = new_fdt->fd;
703 memcpy(new_fdt->open_fds->fds_bits,
704 old_fdt->open_fds->fds_bits, open_files/8);
705 memcpy(new_fdt->close_on_exec->fds_bits,
706 old_fdt->close_on_exec->fds_bits, open_files/8);
708 for (i = open_files; i != 0; i--) {
709 struct file *f = *old_fds++;
710 if (f) {
711 get_file(f);
712 } else {
714 * The fd may be claimed in the fd bitmap but not yet
715 * instantiated in the files array if a sibling thread
716 * is partway through open(). So make sure that this
717 * fd is available to the new process.
719 FD_CLR(open_files - i, new_fdt->open_fds);
721 rcu_assign_pointer(*new_fds++, f);
723 spin_unlock(&oldf->file_lock);
725 /* compute the remainder to be cleared */
726 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
728 /* This is long word aligned thus could use a optimized version */
729 memset(new_fds, 0, size);
731 if (new_fdt->max_fds > open_files) {
732 int left = (new_fdt->max_fds-open_files)/8;
733 int start = open_files / (8 * sizeof(unsigned long));
735 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
736 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
739 return newf;
741 out_release:
742 kmem_cache_free(files_cachep, newf);
743 out:
744 return NULL;
747 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
749 struct files_struct *oldf, *newf;
750 int error = 0;
753 * A background process may not have any files ...
755 oldf = current->files;
756 if (!oldf)
757 goto out;
759 if (clone_flags & CLONE_FILES) {
760 atomic_inc(&oldf->count);
761 goto out;
765 * Note: we may be using current for both targets (See exec.c)
766 * This works because we cache current->files (old) as oldf. Don't
767 * break this.
769 tsk->files = NULL;
770 newf = dup_fd(oldf, &error);
771 if (!newf)
772 goto out;
774 tsk->files = newf;
775 error = 0;
776 out:
777 return error;
781 * Helper to unshare the files of the current task.
782 * We don't want to expose copy_files internals to
783 * the exec layer of the kernel.
786 int unshare_files(void)
788 struct files_struct *files = current->files;
789 int rc;
791 BUG_ON(!files);
793 /* This can race but the race causes us to copy when we don't
794 need to and drop the copy */
795 if(atomic_read(&files->count) == 1)
797 atomic_inc(&files->count);
798 return 0;
800 rc = copy_files(0, current);
801 if(rc)
802 current->files = files;
803 return rc;
806 EXPORT_SYMBOL(unshare_files);
808 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
810 struct sighand_struct *sig;
812 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
813 atomic_inc(&current->sighand->count);
814 return 0;
816 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
817 rcu_assign_pointer(tsk->sighand, sig);
818 if (!sig)
819 return -ENOMEM;
820 atomic_set(&sig->count, 1);
821 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
822 return 0;
825 void __cleanup_sighand(struct sighand_struct *sighand)
827 if (atomic_dec_and_test(&sighand->count))
828 kmem_cache_free(sighand_cachep, sighand);
831 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
833 struct signal_struct *sig;
834 int ret;
836 if (clone_flags & CLONE_THREAD) {
837 atomic_inc(&current->signal->count);
838 atomic_inc(&current->signal->live);
839 return 0;
841 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
842 tsk->signal = sig;
843 if (!sig)
844 return -ENOMEM;
846 ret = copy_thread_group_keys(tsk);
847 if (ret < 0) {
848 kmem_cache_free(signal_cachep, sig);
849 return ret;
852 atomic_set(&sig->count, 1);
853 atomic_set(&sig->live, 1);
854 init_waitqueue_head(&sig->wait_chldexit);
855 sig->flags = 0;
856 sig->group_exit_code = 0;
857 sig->group_exit_task = NULL;
858 sig->group_stop_count = 0;
859 sig->curr_target = NULL;
860 init_sigpending(&sig->shared_pending);
861 INIT_LIST_HEAD(&sig->posix_timers);
863 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
864 sig->it_real_incr.tv64 = 0;
865 sig->real_timer.function = it_real_fn;
866 sig->tsk = tsk;
868 sig->it_virt_expires = cputime_zero;
869 sig->it_virt_incr = cputime_zero;
870 sig->it_prof_expires = cputime_zero;
871 sig->it_prof_incr = cputime_zero;
873 sig->leader = 0; /* session leadership doesn't inherit */
874 sig->tty_old_pgrp = NULL;
876 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
877 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
878 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
879 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
880 sig->sum_sched_runtime = 0;
881 INIT_LIST_HEAD(&sig->cpu_timers[0]);
882 INIT_LIST_HEAD(&sig->cpu_timers[1]);
883 INIT_LIST_HEAD(&sig->cpu_timers[2]);
884 taskstats_tgid_init(sig);
886 task_lock(current->group_leader);
887 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
888 task_unlock(current->group_leader);
890 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
892 * New sole thread in the process gets an expiry time
893 * of the whole CPU time limit.
895 tsk->it_prof_expires =
896 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
898 acct_init_pacct(&sig->pacct);
900 return 0;
903 void __cleanup_signal(struct signal_struct *sig)
905 exit_thread_group_keys(sig);
906 kmem_cache_free(signal_cachep, sig);
909 static inline void cleanup_signal(struct task_struct *tsk)
911 struct signal_struct *sig = tsk->signal;
913 atomic_dec(&sig->live);
915 if (atomic_dec_and_test(&sig->count))
916 __cleanup_signal(sig);
919 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
921 unsigned long new_flags = p->flags;
923 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
924 new_flags |= PF_FORKNOEXEC;
925 if (!(clone_flags & CLONE_PTRACE))
926 p->ptrace = 0;
927 p->flags = new_flags;
930 asmlinkage long sys_set_tid_address(int __user *tidptr)
932 current->clear_child_tid = tidptr;
934 return current->pid;
937 static inline void rt_mutex_init_task(struct task_struct *p)
939 spin_lock_init(&p->pi_lock);
940 #ifdef CONFIG_RT_MUTEXES
941 plist_head_init(&p->pi_waiters, &p->pi_lock);
942 p->pi_blocked_on = NULL;
943 #endif
947 * This creates a new process as a copy of the old one,
948 * but does not actually start it yet.
950 * It copies the registers, and all the appropriate
951 * parts of the process environment (as per the clone
952 * flags). The actual kick-off is left to the caller.
954 static struct task_struct *copy_process(unsigned long clone_flags,
955 unsigned long stack_start,
956 struct pt_regs *regs,
957 unsigned long stack_size,
958 int __user *parent_tidptr,
959 int __user *child_tidptr,
960 struct pid *pid)
962 int retval;
963 struct task_struct *p = NULL;
965 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
966 return ERR_PTR(-EINVAL);
969 * Thread groups must share signals as well, and detached threads
970 * can only be started up within the thread group.
972 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
973 return ERR_PTR(-EINVAL);
976 * Shared signal handlers imply shared VM. By way of the above,
977 * thread groups also imply shared VM. Blocking this case allows
978 * for various simplifications in other code.
980 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
981 return ERR_PTR(-EINVAL);
983 retval = security_task_create(clone_flags);
984 if (retval)
985 goto fork_out;
987 retval = -ENOMEM;
988 p = dup_task_struct(current);
989 if (!p)
990 goto fork_out;
992 rt_mutex_init_task(p);
994 #ifdef CONFIG_TRACE_IRQFLAGS
995 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
996 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
997 #endif
998 retval = -EAGAIN;
999 if (atomic_read(&p->user->processes) >=
1000 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1001 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1002 p->user != &root_user)
1003 goto bad_fork_free;
1006 atomic_inc(&p->user->__count);
1007 atomic_inc(&p->user->processes);
1008 get_group_info(p->group_info);
1011 * If multiple threads are within copy_process(), then this check
1012 * triggers too late. This doesn't hurt, the check is only there
1013 * to stop root fork bombs.
1015 if (nr_threads >= max_threads)
1016 goto bad_fork_cleanup_count;
1018 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1019 goto bad_fork_cleanup_count;
1021 if (p->binfmt && !try_module_get(p->binfmt->module))
1022 goto bad_fork_cleanup_put_domain;
1024 p->did_exec = 0;
1025 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1026 copy_flags(clone_flags, p);
1027 p->pid = pid_nr(pid);
1028 retval = -EFAULT;
1029 if (clone_flags & CLONE_PARENT_SETTID)
1030 if (put_user(p->pid, parent_tidptr))
1031 goto bad_fork_cleanup_delays_binfmt;
1033 INIT_LIST_HEAD(&p->children);
1034 INIT_LIST_HEAD(&p->sibling);
1035 p->vfork_done = NULL;
1036 spin_lock_init(&p->alloc_lock);
1038 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1039 init_sigpending(&p->pending);
1041 p->utime = cputime_zero;
1042 p->stime = cputime_zero;
1044 #ifdef CONFIG_TASK_XACCT
1045 p->rchar = 0; /* I/O counter: bytes read */
1046 p->wchar = 0; /* I/O counter: bytes written */
1047 p->syscr = 0; /* I/O counter: read syscalls */
1048 p->syscw = 0; /* I/O counter: write syscalls */
1049 #endif
1050 task_io_accounting_init(p);
1051 acct_clear_integrals(p);
1053 p->it_virt_expires = cputime_zero;
1054 p->it_prof_expires = cputime_zero;
1055 p->it_sched_expires = 0;
1056 INIT_LIST_HEAD(&p->cpu_timers[0]);
1057 INIT_LIST_HEAD(&p->cpu_timers[1]);
1058 INIT_LIST_HEAD(&p->cpu_timers[2]);
1060 p->lock_depth = -1; /* -1 = no lock */
1061 do_posix_clock_monotonic_gettime(&p->start_time);
1062 p->real_start_time = p->start_time;
1063 monotonic_to_bootbased(&p->real_start_time);
1064 p->security = NULL;
1065 p->io_context = NULL;
1066 p->io_wait = NULL;
1067 p->audit_context = NULL;
1068 cpuset_fork(p);
1069 #ifdef CONFIG_NUMA
1070 p->mempolicy = mpol_copy(p->mempolicy);
1071 if (IS_ERR(p->mempolicy)) {
1072 retval = PTR_ERR(p->mempolicy);
1073 p->mempolicy = NULL;
1074 goto bad_fork_cleanup_cpuset;
1076 mpol_fix_fork_child_flag(p);
1077 #endif
1078 #ifdef CONFIG_TRACE_IRQFLAGS
1079 p->irq_events = 0;
1080 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1081 p->hardirqs_enabled = 1;
1082 #else
1083 p->hardirqs_enabled = 0;
1084 #endif
1085 p->hardirq_enable_ip = 0;
1086 p->hardirq_enable_event = 0;
1087 p->hardirq_disable_ip = _THIS_IP_;
1088 p->hardirq_disable_event = 0;
1089 p->softirqs_enabled = 1;
1090 p->softirq_enable_ip = _THIS_IP_;
1091 p->softirq_enable_event = 0;
1092 p->softirq_disable_ip = 0;
1093 p->softirq_disable_event = 0;
1094 p->hardirq_context = 0;
1095 p->softirq_context = 0;
1096 #endif
1097 #ifdef CONFIG_LOCKDEP
1098 p->lockdep_depth = 0; /* no locks held yet */
1099 p->curr_chain_key = 0;
1100 p->lockdep_recursion = 0;
1101 #endif
1103 #ifdef CONFIG_DEBUG_MUTEXES
1104 p->blocked_on = NULL; /* not blocked yet */
1105 #endif
1107 p->tgid = p->pid;
1108 if (clone_flags & CLONE_THREAD)
1109 p->tgid = current->tgid;
1111 if ((retval = security_task_alloc(p)))
1112 goto bad_fork_cleanup_policy;
1113 if ((retval = audit_alloc(p)))
1114 goto bad_fork_cleanup_security;
1115 /* copy all the process information */
1116 if ((retval = copy_semundo(clone_flags, p)))
1117 goto bad_fork_cleanup_audit;
1118 if ((retval = copy_files(clone_flags, p)))
1119 goto bad_fork_cleanup_semundo;
1120 if ((retval = copy_fs(clone_flags, p)))
1121 goto bad_fork_cleanup_files;
1122 if ((retval = copy_sighand(clone_flags, p)))
1123 goto bad_fork_cleanup_fs;
1124 if ((retval = copy_signal(clone_flags, p)))
1125 goto bad_fork_cleanup_sighand;
1126 if ((retval = copy_mm(clone_flags, p)))
1127 goto bad_fork_cleanup_signal;
1128 if ((retval = copy_keys(clone_flags, p)))
1129 goto bad_fork_cleanup_mm;
1130 if ((retval = copy_namespaces(clone_flags, p)))
1131 goto bad_fork_cleanup_keys;
1132 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1133 if (retval)
1134 goto bad_fork_cleanup_namespaces;
1136 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1138 * Clear TID on mm_release()?
1140 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1141 p->robust_list = NULL;
1142 #ifdef CONFIG_COMPAT
1143 p->compat_robust_list = NULL;
1144 #endif
1145 INIT_LIST_HEAD(&p->pi_state_list);
1146 p->pi_state_cache = NULL;
1149 * sigaltstack should be cleared when sharing the same VM
1151 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1152 p->sas_ss_sp = p->sas_ss_size = 0;
1155 * Syscall tracing should be turned off in the child regardless
1156 * of CLONE_PTRACE.
1158 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1159 #ifdef TIF_SYSCALL_EMU
1160 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1161 #endif
1163 /* Our parent execution domain becomes current domain
1164 These must match for thread signalling to apply */
1165 p->parent_exec_id = p->self_exec_id;
1167 /* ok, now we should be set up.. */
1168 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1169 p->pdeath_signal = 0;
1170 p->exit_state = 0;
1173 * Ok, make it visible to the rest of the system.
1174 * We dont wake it up yet.
1176 p->group_leader = p;
1177 INIT_LIST_HEAD(&p->thread_group);
1178 INIT_LIST_HEAD(&p->ptrace_children);
1179 INIT_LIST_HEAD(&p->ptrace_list);
1181 /* Perform scheduler related setup. Assign this task to a CPU. */
1182 sched_fork(p, clone_flags);
1184 /* Need tasklist lock for parent etc handling! */
1185 write_lock_irq(&tasklist_lock);
1187 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1188 p->ioprio = current->ioprio;
1191 * The task hasn't been attached yet, so its cpus_allowed mask will
1192 * not be changed, nor will its assigned CPU.
1194 * The cpus_allowed mask of the parent may have changed after it was
1195 * copied first time - so re-copy it here, then check the child's CPU
1196 * to ensure it is on a valid CPU (and if not, just force it back to
1197 * parent's CPU). This avoids alot of nasty races.
1199 p->cpus_allowed = current->cpus_allowed;
1200 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1201 !cpu_online(task_cpu(p))))
1202 set_task_cpu(p, smp_processor_id());
1204 /* CLONE_PARENT re-uses the old parent */
1205 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1206 p->real_parent = current->real_parent;
1207 else
1208 p->real_parent = current;
1209 p->parent = p->real_parent;
1211 spin_lock(&current->sighand->siglock);
1214 * Process group and session signals need to be delivered to just the
1215 * parent before the fork or both the parent and the child after the
1216 * fork. Restart if a signal comes in before we add the new process to
1217 * it's process group.
1218 * A fatal signal pending means that current will exit, so the new
1219 * thread can't slip out of an OOM kill (or normal SIGKILL).
1221 recalc_sigpending();
1222 if (signal_pending(current)) {
1223 spin_unlock(&current->sighand->siglock);
1224 write_unlock_irq(&tasklist_lock);
1225 retval = -ERESTARTNOINTR;
1226 goto bad_fork_cleanup_namespaces;
1229 if (clone_flags & CLONE_THREAD) {
1230 p->group_leader = current->group_leader;
1231 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1233 if (!cputime_eq(current->signal->it_virt_expires,
1234 cputime_zero) ||
1235 !cputime_eq(current->signal->it_prof_expires,
1236 cputime_zero) ||
1237 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1238 !list_empty(&current->signal->cpu_timers[0]) ||
1239 !list_empty(&current->signal->cpu_timers[1]) ||
1240 !list_empty(&current->signal->cpu_timers[2])) {
1242 * Have child wake up on its first tick to check
1243 * for process CPU timers.
1245 p->it_prof_expires = jiffies_to_cputime(1);
1249 if (likely(p->pid)) {
1250 add_parent(p);
1251 if (unlikely(p->ptrace & PT_PTRACED))
1252 __ptrace_link(p, current->parent);
1254 if (thread_group_leader(p)) {
1255 p->signal->tty = current->signal->tty;
1256 p->signal->pgrp = process_group(current);
1257 set_signal_session(p->signal, process_session(current));
1258 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1259 attach_pid(p, PIDTYPE_SID, task_session(current));
1261 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1262 __get_cpu_var(process_counts)++;
1264 attach_pid(p, PIDTYPE_PID, pid);
1265 nr_threads++;
1268 total_forks++;
1269 spin_unlock(&current->sighand->siglock);
1270 write_unlock_irq(&tasklist_lock);
1271 proc_fork_connector(p);
1272 return p;
1274 bad_fork_cleanup_namespaces:
1275 exit_task_namespaces(p);
1276 bad_fork_cleanup_keys:
1277 exit_keys(p);
1278 bad_fork_cleanup_mm:
1279 if (p->mm)
1280 mmput(p->mm);
1281 bad_fork_cleanup_signal:
1282 cleanup_signal(p);
1283 bad_fork_cleanup_sighand:
1284 __cleanup_sighand(p->sighand);
1285 bad_fork_cleanup_fs:
1286 exit_fs(p); /* blocking */
1287 bad_fork_cleanup_files:
1288 exit_files(p); /* blocking */
1289 bad_fork_cleanup_semundo:
1290 exit_sem(p);
1291 bad_fork_cleanup_audit:
1292 audit_free(p);
1293 bad_fork_cleanup_security:
1294 security_task_free(p);
1295 bad_fork_cleanup_policy:
1296 #ifdef CONFIG_NUMA
1297 mpol_free(p->mempolicy);
1298 bad_fork_cleanup_cpuset:
1299 #endif
1300 cpuset_exit(p);
1301 bad_fork_cleanup_delays_binfmt:
1302 delayacct_tsk_free(p);
1303 if (p->binfmt)
1304 module_put(p->binfmt->module);
1305 bad_fork_cleanup_put_domain:
1306 module_put(task_thread_info(p)->exec_domain->module);
1307 bad_fork_cleanup_count:
1308 put_group_info(p->group_info);
1309 atomic_dec(&p->user->processes);
1310 free_uid(p->user);
1311 bad_fork_free:
1312 free_task(p);
1313 fork_out:
1314 return ERR_PTR(retval);
1317 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1319 memset(regs, 0, sizeof(struct pt_regs));
1320 return regs;
1323 struct task_struct * __cpuinit fork_idle(int cpu)
1325 struct task_struct *task;
1326 struct pt_regs regs;
1328 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
1329 &init_struct_pid);
1330 if (!IS_ERR(task))
1331 init_idle(task, cpu);
1333 return task;
1336 static inline int fork_traceflag (unsigned clone_flags)
1338 if (clone_flags & CLONE_UNTRACED)
1339 return 0;
1340 else if (clone_flags & CLONE_VFORK) {
1341 if (current->ptrace & PT_TRACE_VFORK)
1342 return PTRACE_EVENT_VFORK;
1343 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1344 if (current->ptrace & PT_TRACE_CLONE)
1345 return PTRACE_EVENT_CLONE;
1346 } else if (current->ptrace & PT_TRACE_FORK)
1347 return PTRACE_EVENT_FORK;
1349 return 0;
1353 * Ok, this is the main fork-routine.
1355 * It copies the process, and if successful kick-starts
1356 * it and waits for it to finish using the VM if required.
1358 long do_fork(unsigned long clone_flags,
1359 unsigned long stack_start,
1360 struct pt_regs *regs,
1361 unsigned long stack_size,
1362 int __user *parent_tidptr,
1363 int __user *child_tidptr)
1365 struct task_struct *p;
1366 int trace = 0;
1367 struct pid *pid = alloc_pid();
1368 long nr;
1370 if (!pid)
1371 return -EAGAIN;
1372 nr = pid->nr;
1373 if (unlikely(current->ptrace)) {
1374 trace = fork_traceflag (clone_flags);
1375 if (trace)
1376 clone_flags |= CLONE_PTRACE;
1379 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1381 * Do this prior waking up the new thread - the thread pointer
1382 * might get invalid after that point, if the thread exits quickly.
1384 if (!IS_ERR(p)) {
1385 struct completion vfork;
1387 if (clone_flags & CLONE_VFORK) {
1388 p->vfork_done = &vfork;
1389 init_completion(&vfork);
1392 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1394 * We'll start up with an immediate SIGSTOP.
1396 sigaddset(&p->pending.signal, SIGSTOP);
1397 set_tsk_thread_flag(p, TIF_SIGPENDING);
1400 if (!(clone_flags & CLONE_STOPPED))
1401 wake_up_new_task(p, clone_flags);
1402 else
1403 p->state = TASK_STOPPED;
1405 if (unlikely (trace)) {
1406 current->ptrace_message = nr;
1407 ptrace_notify ((trace << 8) | SIGTRAP);
1410 if (clone_flags & CLONE_VFORK) {
1411 freezer_do_not_count();
1412 wait_for_completion(&vfork);
1413 freezer_count();
1414 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1415 current->ptrace_message = nr;
1416 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1419 } else {
1420 free_pid(pid);
1421 nr = PTR_ERR(p);
1423 return nr;
1426 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1427 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1428 #endif
1430 static void sighand_ctor(void *data, struct kmem_cache *cachep,
1431 unsigned long flags)
1433 struct sighand_struct *sighand = data;
1435 spin_lock_init(&sighand->siglock);
1436 INIT_LIST_HEAD(&sighand->signalfd_list);
1439 void __init proc_caches_init(void)
1441 sighand_cachep = kmem_cache_create("sighand_cache",
1442 sizeof(struct sighand_struct), 0,
1443 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1444 sighand_ctor, NULL);
1445 signal_cachep = kmem_cache_create("signal_cache",
1446 sizeof(struct signal_struct), 0,
1447 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1448 files_cachep = kmem_cache_create("files_cache",
1449 sizeof(struct files_struct), 0,
1450 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1451 fs_cachep = kmem_cache_create("fs_cache",
1452 sizeof(struct fs_struct), 0,
1453 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1454 vm_area_cachep = kmem_cache_create("vm_area_struct",
1455 sizeof(struct vm_area_struct), 0,
1456 SLAB_PANIC, NULL, NULL);
1457 mm_cachep = kmem_cache_create("mm_struct",
1458 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1459 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1463 * Check constraints on flags passed to the unshare system call and
1464 * force unsharing of additional process context as appropriate.
1466 static inline void check_unshare_flags(unsigned long *flags_ptr)
1469 * If unsharing a thread from a thread group, must also
1470 * unshare vm.
1472 if (*flags_ptr & CLONE_THREAD)
1473 *flags_ptr |= CLONE_VM;
1476 * If unsharing vm, must also unshare signal handlers.
1478 if (*flags_ptr & CLONE_VM)
1479 *flags_ptr |= CLONE_SIGHAND;
1482 * If unsharing signal handlers and the task was created
1483 * using CLONE_THREAD, then must unshare the thread
1485 if ((*flags_ptr & CLONE_SIGHAND) &&
1486 (atomic_read(&current->signal->count) > 1))
1487 *flags_ptr |= CLONE_THREAD;
1490 * If unsharing namespace, must also unshare filesystem information.
1492 if (*flags_ptr & CLONE_NEWNS)
1493 *flags_ptr |= CLONE_FS;
1497 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1499 static int unshare_thread(unsigned long unshare_flags)
1501 if (unshare_flags & CLONE_THREAD)
1502 return -EINVAL;
1504 return 0;
1508 * Unshare the filesystem structure if it is being shared
1510 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1512 struct fs_struct *fs = current->fs;
1514 if ((unshare_flags & CLONE_FS) &&
1515 (fs && atomic_read(&fs->count) > 1)) {
1516 *new_fsp = __copy_fs_struct(current->fs);
1517 if (!*new_fsp)
1518 return -ENOMEM;
1521 return 0;
1525 * Unsharing of sighand is not supported yet
1527 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1529 struct sighand_struct *sigh = current->sighand;
1531 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1532 return -EINVAL;
1533 else
1534 return 0;
1538 * Unshare vm if it is being shared
1540 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1542 struct mm_struct *mm = current->mm;
1544 if ((unshare_flags & CLONE_VM) &&
1545 (mm && atomic_read(&mm->mm_users) > 1)) {
1546 return -EINVAL;
1549 return 0;
1553 * Unshare file descriptor table if it is being shared
1555 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1557 struct files_struct *fd = current->files;
1558 int error = 0;
1560 if ((unshare_flags & CLONE_FILES) &&
1561 (fd && atomic_read(&fd->count) > 1)) {
1562 *new_fdp = dup_fd(fd, &error);
1563 if (!*new_fdp)
1564 return error;
1567 return 0;
1571 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1572 * supported yet
1574 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1576 if (unshare_flags & CLONE_SYSVSEM)
1577 return -EINVAL;
1579 return 0;
1583 * unshare allows a process to 'unshare' part of the process
1584 * context which was originally shared using clone. copy_*
1585 * functions used by do_fork() cannot be used here directly
1586 * because they modify an inactive task_struct that is being
1587 * constructed. Here we are modifying the current, active,
1588 * task_struct.
1590 asmlinkage long sys_unshare(unsigned long unshare_flags)
1592 int err = 0;
1593 struct fs_struct *fs, *new_fs = NULL;
1594 struct sighand_struct *new_sigh = NULL;
1595 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1596 struct files_struct *fd, *new_fd = NULL;
1597 struct sem_undo_list *new_ulist = NULL;
1598 struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1600 check_unshare_flags(&unshare_flags);
1602 /* Return -EINVAL for all unsupported flags */
1603 err = -EINVAL;
1604 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1605 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1606 CLONE_NEWUTS|CLONE_NEWIPC))
1607 goto bad_unshare_out;
1609 if ((err = unshare_thread(unshare_flags)))
1610 goto bad_unshare_out;
1611 if ((err = unshare_fs(unshare_flags, &new_fs)))
1612 goto bad_unshare_cleanup_thread;
1613 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1614 goto bad_unshare_cleanup_fs;
1615 if ((err = unshare_vm(unshare_flags, &new_mm)))
1616 goto bad_unshare_cleanup_sigh;
1617 if ((err = unshare_fd(unshare_flags, &new_fd)))
1618 goto bad_unshare_cleanup_vm;
1619 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1620 goto bad_unshare_cleanup_fd;
1621 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1622 new_fs)))
1623 goto bad_unshare_cleanup_semundo;
1625 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
1627 task_lock(current);
1629 if (new_nsproxy) {
1630 old_nsproxy = current->nsproxy;
1631 current->nsproxy = new_nsproxy;
1632 new_nsproxy = old_nsproxy;
1635 if (new_fs) {
1636 fs = current->fs;
1637 current->fs = new_fs;
1638 new_fs = fs;
1641 if (new_mm) {
1642 mm = current->mm;
1643 active_mm = current->active_mm;
1644 current->mm = new_mm;
1645 current->active_mm = new_mm;
1646 activate_mm(active_mm, new_mm);
1647 new_mm = mm;
1650 if (new_fd) {
1651 fd = current->files;
1652 current->files = new_fd;
1653 new_fd = fd;
1656 task_unlock(current);
1659 if (new_nsproxy)
1660 put_nsproxy(new_nsproxy);
1662 bad_unshare_cleanup_semundo:
1663 bad_unshare_cleanup_fd:
1664 if (new_fd)
1665 put_files_struct(new_fd);
1667 bad_unshare_cleanup_vm:
1668 if (new_mm)
1669 mmput(new_mm);
1671 bad_unshare_cleanup_sigh:
1672 if (new_sigh)
1673 if (atomic_dec_and_test(&new_sigh->count))
1674 kmem_cache_free(sighand_cachep, new_sigh);
1676 bad_unshare_cleanup_fs:
1677 if (new_fs)
1678 put_fs_struct(new_fs);
1680 bad_unshare_cleanup_thread:
1681 bad_unshare_out:
1682 return err;