2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
7 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
8 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
10 * Released under the GPL
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/ptrace.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/interrupt.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/dma-mapping.h>
33 #include <asm/8xx_immap.h>
34 #include <asm/pgtable.h>
35 #include <asm/mpc8xx.h>
37 #include <asm/uaccess.h>
38 #include <asm/commproc.h>
42 /*************************************************/
44 #define FEC_MAX_MULTICAST_ADDRS 64
46 /*************************************************/
48 static char version
[] __devinitdata
=
49 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")" "\n";
51 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
52 MODULE_DESCRIPTION("Motorola 8xx FEC ethernet driver");
53 MODULE_LICENSE("GPL");
55 int fec_8xx_debug
= -1; /* -1 == use FEC_8XX_DEF_MSG_ENABLE as value */
56 module_param(fec_8xx_debug
, int, 0);
57 MODULE_PARM_DESC(fec_8xx_debug
,
58 "FEC 8xx bitmapped debugging message enable value");
61 /*************************************************/
64 * Delay to wait for FEC reset command to complete (in us)
66 #define FEC_RESET_DELAY 50
68 /*****************************************************************************************/
70 static void fec_whack_reset(fec_t
* fecp
)
75 * Whack a reset. We should wait for this.
77 FW(fecp
, ecntrl
, FEC_ECNTRL_PINMUX
| FEC_ECNTRL_RESET
);
79 (FR(fecp
, ecntrl
) & FEC_ECNTRL_RESET
) != 0 && i
< FEC_RESET_DELAY
;
83 if (i
== FEC_RESET_DELAY
)
84 printk(KERN_WARNING
"FEC Reset timeout!\n");
88 /****************************************************************************/
91 * Transmitter timeout.
93 #define TX_TIMEOUT (2*HZ)
95 /****************************************************************************/
98 * Returns the CRC needed when filling in the hash table for
99 * multicast group filtering
100 * pAddr must point to a MAC address (6 bytes)
102 static __u32
fec_mulicast_calc_crc(char *pAddr
)
107 __u32 crc
= 0xffffffff;
110 for (byte_count
= 0; byte_count
< 6; byte_count
++) {
111 byte
= pAddr
[byte_count
];
112 for (bit_count
= 0; bit_count
< 8; bit_count
++) {
115 if (msb
^ (byte
& 0x1)) {
125 * Set or clear the multicast filter for this adaptor.
126 * Skeleton taken from sunlance driver.
127 * The CPM Ethernet implementation allows Multicast as well as individual
128 * MAC address filtering. Some of the drivers check to make sure it is
129 * a group multicast address, and discard those that are not. I guess I
130 * will do the same for now, but just remove the test if you want
131 * individual filtering as well (do the upper net layers want or support
132 * this kind of feature?).
134 static void fec_set_multicast_list(struct net_device
*dev
)
136 struct fec_enet_private
*fep
= netdev_priv(dev
);
137 fec_t
*fecp
= fep
->fecp
;
138 struct dev_mc_list
*pmc
;
147 if ((dev
->flags
& IFF_PROMISC
) != 0) {
149 spin_lock_irqsave(&fep
->lock
, flags
);
150 FS(fecp
, r_cntrl
, FEC_RCNTRL_PROM
);
151 spin_unlock_irqrestore(&fep
->lock
, flags
);
156 printk(KERN_WARNING DRV_MODULE_NAME
157 ": %s: Promiscuous mode enabled.\n", dev
->name
);
162 if ((dev
->flags
& IFF_ALLMULTI
) != 0 ||
163 dev
->mc_count
> FEC_MAX_MULTICAST_ADDRS
) {
165 * Catch all multicast addresses, set the filter to all 1's.
174 * Now populate the hash table
176 for (pmc
= dev
->mc_list
; pmc
!= NULL
; pmc
= pmc
->next
) {
177 crc
= fec_mulicast_calc_crc(pmc
->dmi_addr
);
178 temp
= (crc
& 0x3f) >> 1;
179 hash_index
= ((temp
& 0x01) << 4) |
180 ((temp
& 0x02) << 2) |
182 ((temp
& 0x08) >> 2) |
183 ((temp
& 0x10) >> 4);
184 csrVal
= (1 << hash_index
);
192 spin_lock_irqsave(&fep
->lock
, flags
);
193 FC(fecp
, r_cntrl
, FEC_RCNTRL_PROM
);
194 FW(fecp
, hash_table_high
, hthi
);
195 FW(fecp
, hash_table_low
, htlo
);
196 spin_unlock_irqrestore(&fep
->lock
, flags
);
199 static int fec_set_mac_address(struct net_device
*dev
, void *addr
)
201 struct sockaddr
*mac
= addr
;
202 struct fec_enet_private
*fep
= netdev_priv(dev
);
203 struct fec
*fecp
= fep
->fecp
;
205 __u32 addrhi
, addrlo
;
208 /* Get pointer to SCC area in parameter RAM. */
209 for (i
= 0; i
< 6; i
++)
210 dev
->dev_addr
[i
] = mac
->sa_data
[i
];
213 * Set station address.
215 addrhi
= ((__u32
) dev
->dev_addr
[0] << 24) |
216 ((__u32
) dev
->dev_addr
[1] << 16) |
217 ((__u32
) dev
->dev_addr
[2] << 8) |
218 (__u32
) dev
->dev_addr
[3];
219 addrlo
= ((__u32
) dev
->dev_addr
[4] << 24) |
220 ((__u32
) dev
->dev_addr
[5] << 16);
222 spin_lock_irqsave(&fep
->lock
, flags
);
223 FW(fecp
, addr_low
, addrhi
);
224 FW(fecp
, addr_high
, addrlo
);
225 spin_unlock_irqrestore(&fep
->lock
, flags
);
231 * This function is called to start or restart the FEC during a link
232 * change. This only happens when switching between half and full
235 void fec_restart(struct net_device
*dev
, int duplex
, int speed
)
238 immap_t
*immap
= (immap_t
*) IMAP_ADDR
;
241 struct fec_enet_private
*fep
= netdev_priv(dev
);
242 struct fec
*fecp
= fep
->fecp
;
243 const struct fec_platform_info
*fpi
= fep
->fpi
;
247 __u32 addrhi
, addrlo
;
249 fec_whack_reset(fep
->fecp
);
252 * Set station address.
254 addrhi
= ((__u32
) dev
->dev_addr
[0] << 24) |
255 ((__u32
) dev
->dev_addr
[1] << 16) |
256 ((__u32
) dev
->dev_addr
[2] << 8) |
257 (__u32
) dev
->dev_addr
[3];
258 addrlo
= ((__u32
) dev
->dev_addr
[4] << 24) |
259 ((__u32
) dev
->dev_addr
[5] << 16);
260 FW(fecp
, addr_low
, addrhi
);
261 FW(fecp
, addr_high
, addrlo
);
264 * Reset all multicast.
266 FW(fecp
, hash_table_high
, 0);
267 FW(fecp
, hash_table_low
, 0);
270 * Set maximum receive buffer size.
272 FW(fecp
, r_buff_size
, PKT_MAXBLR_SIZE
);
273 FW(fecp
, r_hash
, PKT_MAXBUF_SIZE
);
276 * Set receive and transmit descriptor base.
278 FW(fecp
, r_des_start
, iopa((__u32
) (fep
->rx_bd_base
)));
279 FW(fecp
, x_des_start
, iopa((__u32
) (fep
->tx_bd_base
)));
281 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
282 fep
->tx_free
= fep
->tx_ring
;
283 fep
->cur_rx
= fep
->rx_bd_base
;
286 * Reset SKB receive buffers
288 for (i
= 0; i
< fep
->rx_ring
; i
++) {
289 if ((skb
= fep
->rx_skbuff
[i
]) == NULL
)
291 fep
->rx_skbuff
[i
] = NULL
;
296 * Initialize the receive buffer descriptors.
298 for (i
= 0, bdp
= fep
->rx_bd_base
; i
< fep
->rx_ring
; i
++, bdp
++) {
299 skb
= dev_alloc_skb(ENET_RX_FRSIZE
);
301 printk(KERN_WARNING DRV_MODULE_NAME
302 ": %s Memory squeeze, unable to allocate skb\n",
304 fep
->stats
.rx_dropped
++;
307 fep
->rx_skbuff
[i
] = skb
;
309 CBDW_BUFADDR(bdp
, dma_map_single(NULL
, skb
->data
,
310 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE
),
312 CBDW_DATLEN(bdp
, 0); /* zero */
313 CBDW_SC(bdp
, BD_ENET_RX_EMPTY
|
314 ((i
< fep
->rx_ring
- 1) ? 0 : BD_SC_WRAP
));
317 * if we failed, fillup remainder
319 for (; i
< fep
->rx_ring
; i
++, bdp
++) {
320 fep
->rx_skbuff
[i
] = NULL
;
321 CBDW_SC(bdp
, (i
< fep
->rx_ring
- 1) ? 0 : BD_SC_WRAP
);
325 * Reset SKB transmit buffers.
327 for (i
= 0; i
< fep
->tx_ring
; i
++) {
328 if ((skb
= fep
->tx_skbuff
[i
]) == NULL
)
330 fep
->tx_skbuff
[i
] = NULL
;
335 * ...and the same for transmit.
337 for (i
= 0, bdp
= fep
->tx_bd_base
; i
< fep
->tx_ring
; i
++, bdp
++) {
338 fep
->tx_skbuff
[i
] = NULL
;
339 CBDW_BUFADDR(bdp
, virt_to_bus(NULL
));
341 CBDW_SC(bdp
, (i
< fep
->tx_ring
- 1) ? 0 : BD_SC_WRAP
);
345 * Enable big endian and don't care about SDMA FC.
347 FW(fecp
, fun_code
, 0x78000000);
352 FW(fecp
, mii_speed
, fep
->fec_phy_speed
);
355 * Clear any outstanding interrupt.
357 FW(fecp
, ievent
, 0xffc0);
358 FW(fecp
, ivec
, (fpi
->fec_irq
/ 2) << 29);
361 * adjust to speed (only for DUET & RMII)
364 cptr
= in_be32(&immap
->im_cpm
.cp_cptr
);
365 switch (fpi
->fec_no
) {
368 * check if in RMII mode
370 if ((cptr
& 0x100) == 0)
375 else if (speed
== 100)
380 * check if in RMII mode
382 if ((cptr
& 0x80) == 0)
387 else if (speed
== 100)
393 out_be32(&immap
->im_cpm
.cp_cptr
, cptr
);
396 FW(fecp
, r_cntrl
, FEC_RCNTRL_MII_MODE
); /* MII enable */
398 * adjust to duplex mode
401 FC(fecp
, r_cntrl
, FEC_RCNTRL_DRT
);
402 FS(fecp
, x_cntrl
, FEC_TCNTRL_FDEN
); /* FD enable */
404 FS(fecp
, r_cntrl
, FEC_RCNTRL_DRT
);
405 FC(fecp
, x_cntrl
, FEC_TCNTRL_FDEN
); /* FD disable */
409 * Enable interrupts we wish to service.
411 FW(fecp
, imask
, FEC_ENET_TXF
| FEC_ENET_TXB
|
412 FEC_ENET_RXF
| FEC_ENET_RXB
);
415 * And last, enable the transmit and receive processing.
417 FW(fecp
, ecntrl
, FEC_ECNTRL_PINMUX
| FEC_ECNTRL_ETHER_EN
);
418 FW(fecp
, r_des_active
, 0x01000000);
421 void fec_stop(struct net_device
*dev
)
423 struct fec_enet_private
*fep
= netdev_priv(dev
);
424 fec_t
*fecp
= fep
->fecp
;
428 if ((FR(fecp
, ecntrl
) & FEC_ECNTRL_ETHER_EN
) == 0)
429 return; /* already down */
431 FW(fecp
, x_cntrl
, 0x01); /* Graceful transmit stop */
432 for (i
= 0; ((FR(fecp
, ievent
) & 0x10000000) == 0) &&
433 i
< FEC_RESET_DELAY
; i
++)
436 if (i
== FEC_RESET_DELAY
)
437 printk(KERN_WARNING DRV_MODULE_NAME
438 ": %s FEC timeout on graceful transmit stop\n",
441 * Disable FEC. Let only MII interrupts.
444 FW(fecp
, ecntrl
, ~FEC_ECNTRL_ETHER_EN
);
447 * Reset SKB transmit buffers.
449 for (i
= 0; i
< fep
->tx_ring
; i
++) {
450 if ((skb
= fep
->tx_skbuff
[i
]) == NULL
)
452 fep
->tx_skbuff
[i
] = NULL
;
457 * Reset SKB receive buffers
459 for (i
= 0; i
< fep
->rx_ring
; i
++) {
460 if ((skb
= fep
->rx_skbuff
[i
]) == NULL
)
462 fep
->rx_skbuff
[i
] = NULL
;
467 /* common receive function */
468 static int fec_enet_rx_common(struct fec_enet_private
*ep
,
469 struct net_device
*dev
, int budget
)
471 fec_t
*fecp
= fep
->fecp
;
472 const struct fec_platform_info
*fpi
= fep
->fpi
;
474 struct sk_buff
*skb
, *skbn
, *skbt
;
480 if (!netif_running(dev
))
485 * First, grab all of the stats for the incoming packet.
486 * These get messed up if we get called due to a busy condition.
490 /* clear RX status bits for napi*/
492 FW(fecp
, ievent
, FEC_ENET_RXF
| FEC_ENET_RXB
);
494 while (((sc
= CBDR_SC(bdp
)) & BD_ENET_RX_EMPTY
) == 0) {
496 curidx
= bdp
- fep
->rx_bd_base
;
499 * Since we have allocated space to hold a complete frame,
500 * the last indicator should be set.
502 if ((sc
& BD_ENET_RX_LAST
) == 0)
503 printk(KERN_WARNING DRV_MODULE_NAME
504 ": %s rcv is not +last\n",
510 if (sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_CL
|
511 BD_ENET_RX_NO
| BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
512 fep
->stats
.rx_errors
++;
513 /* Frame too long or too short. */
514 if (sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
))
515 fep
->stats
.rx_length_errors
++;
516 /* Frame alignment */
517 if (sc
& (BD_ENET_RX_NO
| BD_ENET_RX_CL
))
518 fep
->stats
.rx_frame_errors
++;
520 if (sc
& BD_ENET_RX_CR
)
521 fep
->stats
.rx_crc_errors
++;
523 if (sc
& BD_ENET_RX_OV
)
524 fep
->stats
.rx_crc_errors
++;
526 skbn
= fep
->rx_skbuff
[curidx
];
527 BUG_ON(skbn
== NULL
);
530 skb
= fep
->rx_skbuff
[curidx
];
534 * Process the incoming frame.
536 fep
->stats
.rx_packets
++;
537 pkt_len
= CBDR_DATLEN(bdp
) - 4; /* remove CRC */
538 fep
->stats
.rx_bytes
+= pkt_len
+ 4;
540 if (pkt_len
<= fpi
->rx_copybreak
) {
541 /* +2 to make IP header L1 cache aligned */
542 skbn
= dev_alloc_skb(pkt_len
+ 2);
544 skb_reserve(skbn
, 2); /* align IP header */
545 skb_copy_from_linear_data(skb
,
554 skbn
= dev_alloc_skb(ENET_RX_FRSIZE
);
557 skb_put(skb
, pkt_len
); /* Make room */
558 skb
->protocol
= eth_type_trans(skb
, dev
);
563 netif_receive_skb(skb
);
565 printk(KERN_WARNING DRV_MODULE_NAME
566 ": %s Memory squeeze, dropping packet.\n",
568 fep
->stats
.rx_dropped
++;
573 fep
->rx_skbuff
[curidx
] = skbn
;
574 CBDW_BUFADDR(bdp
, dma_map_single(NULL
, skbn
->data
,
575 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE
),
578 CBDW_SC(bdp
, (sc
& ~BD_ENET_RX_STATS
) | BD_ENET_RX_EMPTY
);
581 * Update BD pointer to next entry.
583 if ((sc
& BD_ENET_RX_WRAP
) == 0)
586 bdp
= fep
->rx_bd_base
;
589 * Doing this here will keep the FEC running while we process
590 * incoming frames. On a heavily loaded network, we should be
591 * able to keep up at the expense of system resources.
593 FW(fecp
, r_des_active
, 0x01000000);
595 if (received
>= budget
)
603 if (received
< budget
) {
604 netif_rx_complete(dev
, &fep
->napi
);
606 /* enable RX interrupt bits */
607 FS(fecp
, imask
, FEC_ENET_RXF
| FEC_ENET_RXB
);
614 static void fec_enet_tx(struct net_device
*dev
)
616 struct fec_enet_private
*fep
= netdev_priv(dev
);
619 int dirtyidx
, do_wake
;
622 spin_lock(&fep
->lock
);
626 while (((sc
= CBDR_SC(bdp
)) & BD_ENET_TX_READY
) == 0) {
628 dirtyidx
= bdp
- fep
->tx_bd_base
;
630 if (fep
->tx_free
== fep
->tx_ring
)
633 skb
= fep
->tx_skbuff
[dirtyidx
];
638 if (sc
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
639 BD_ENET_TX_RL
| BD_ENET_TX_UN
| BD_ENET_TX_CSL
)) {
640 fep
->stats
.tx_errors
++;
641 if (sc
& BD_ENET_TX_HB
) /* No heartbeat */
642 fep
->stats
.tx_heartbeat_errors
++;
643 if (sc
& BD_ENET_TX_LC
) /* Late collision */
644 fep
->stats
.tx_window_errors
++;
645 if (sc
& BD_ENET_TX_RL
) /* Retrans limit */
646 fep
->stats
.tx_aborted_errors
++;
647 if (sc
& BD_ENET_TX_UN
) /* Underrun */
648 fep
->stats
.tx_fifo_errors
++;
649 if (sc
& BD_ENET_TX_CSL
) /* Carrier lost */
650 fep
->stats
.tx_carrier_errors
++;
652 fep
->stats
.tx_packets
++;
654 if (sc
& BD_ENET_TX_READY
)
655 printk(KERN_WARNING DRV_MODULE_NAME
656 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
660 * Deferred means some collisions occurred during transmit,
661 * but we eventually sent the packet OK.
663 if (sc
& BD_ENET_TX_DEF
)
664 fep
->stats
.collisions
++;
667 * Free the sk buffer associated with this last transmit.
669 dev_kfree_skb_irq(skb
);
670 fep
->tx_skbuff
[dirtyidx
] = NULL
;
673 * Update pointer to next buffer descriptor to be transmitted.
675 if ((sc
& BD_ENET_TX_WRAP
) == 0)
678 bdp
= fep
->tx_bd_base
;
681 * Since we have freed up a buffer, the ring is no longer
690 spin_unlock(&fep
->lock
);
692 if (do_wake
&& netif_queue_stopped(dev
))
693 netif_wake_queue(dev
);
697 * The interrupt handler.
698 * This is called from the MPC core interrupt.
701 fec_enet_interrupt(int irq
, void *dev_id
)
703 struct net_device
*dev
= dev_id
;
704 struct fec_enet_private
*fep
;
705 const struct fec_platform_info
*fpi
;
708 __u32 int_events_napi
;
710 if (unlikely(dev
== NULL
))
713 fep
= netdev_priv(dev
);
718 * Get the interrupt events that caused us to be here.
720 while ((int_events
= FR(fecp
, ievent
) & FR(fecp
, imask
)) != 0) {
723 FW(fecp
, ievent
, int_events
);
725 int_events_napi
= int_events
& ~(FEC_ENET_RXF
| FEC_ENET_RXB
);
726 FW(fecp
, ievent
, int_events_napi
);
729 if ((int_events
& (FEC_ENET_HBERR
| FEC_ENET_BABR
|
730 FEC_ENET_BABT
| FEC_ENET_EBERR
)) != 0)
731 printk(KERN_WARNING DRV_MODULE_NAME
732 ": %s FEC ERROR(s) 0x%x\n",
733 dev
->name
, int_events
);
735 if ((int_events
& FEC_ENET_RXF
) != 0) {
737 fec_enet_rx_common(fep
, dev
, ~0);
739 if (netif_rx_schedule_prep(dev
, &fep
->napi
)) {
740 /* disable rx interrupts */
741 FC(fecp
, imask
, FEC_ENET_RXF
| FEC_ENET_RXB
);
742 __netif_rx_schedule(dev
, &fep
->napi
);
744 printk(KERN_ERR DRV_MODULE_NAME
745 ": %s driver bug! interrupt while in poll!\n",
747 FC(fecp
, imask
, FEC_ENET_RXF
| FEC_ENET_RXB
);
752 if ((int_events
& FEC_ENET_TXF
) != 0)
759 /* This interrupt occurs when the PHY detects a link change. */
761 fec_mii_link_interrupt(int irq
, void *dev_id
)
763 struct net_device
*dev
= dev_id
;
764 struct fec_enet_private
*fep
;
765 const struct fec_platform_info
*fpi
;
767 if (unlikely(dev
== NULL
))
770 fep
= netdev_priv(dev
);
777 * Acknowledge the interrupt if possible. If we have not
778 * found the PHY yet we can't process or acknowledge the
779 * interrupt now. Instead we ignore this interrupt for now,
780 * which we can do since it is edge triggered. It will be
781 * acknowledged later by fec_enet_open().
786 fec_mii_ack_int(dev
);
787 fec_mii_link_status_change_check(dev
, 0);
793 /**********************************************************************************/
795 static int fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
797 struct fec_enet_private
*fep
= netdev_priv(dev
);
798 fec_t
*fecp
= fep
->fecp
;
803 spin_lock_irqsave(&fep
->tx_lock
, flags
);
806 * Fill in a Tx ring entry
810 if (!fep
->tx_free
|| (CBDR_SC(bdp
) & BD_ENET_TX_READY
)) {
811 netif_stop_queue(dev
);
812 spin_unlock_irqrestore(&fep
->tx_lock
, flags
);
815 * Ooops. All transmit buffers are full. Bail out.
816 * This should not happen, since the tx queue should be stopped.
818 printk(KERN_WARNING DRV_MODULE_NAME
819 ": %s tx queue full!.\n", dev
->name
);
823 curidx
= bdp
- fep
->tx_bd_base
;
825 * Clear all of the status flags.
827 CBDC_SC(bdp
, BD_ENET_TX_STATS
);
832 fep
->tx_skbuff
[curidx
] = skb
;
834 fep
->stats
.tx_bytes
+= skb
->len
;
837 * Push the data cache so the CPM does not get stale memory data.
839 CBDW_BUFADDR(bdp
, dma_map_single(NULL
, skb
->data
,
840 skb
->len
, DMA_TO_DEVICE
));
841 CBDW_DATLEN(bdp
, skb
->len
);
843 dev
->trans_start
= jiffies
;
846 * If this was the last BD in the ring, start at the beginning again.
848 if ((CBDR_SC(bdp
) & BD_ENET_TX_WRAP
) == 0)
851 fep
->cur_tx
= fep
->tx_bd_base
;
854 netif_stop_queue(dev
);
857 * Trigger transmission start
859 CBDS_SC(bdp
, BD_ENET_TX_READY
| BD_ENET_TX_INTR
|
860 BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
861 FW(fecp
, x_des_active
, 0x01000000);
863 spin_unlock_irqrestore(&fep
->tx_lock
, flags
);
868 static void fec_timeout(struct net_device
*dev
)
870 struct fec_enet_private
*fep
= netdev_priv(dev
);
872 fep
->stats
.tx_errors
++;
875 netif_wake_queue(dev
);
877 /* check link status again */
878 fec_mii_link_status_change_check(dev
, 0);
881 static int fec_enet_open(struct net_device
*dev
)
883 struct fec_enet_private
*fep
= netdev_priv(dev
);
884 const struct fec_platform_info
*fpi
= fep
->fpi
;
887 napi_enable(&fep
->napi
);
889 /* Install our interrupt handler. */
890 if (request_irq(fpi
->fec_irq
, fec_enet_interrupt
, 0, "fec", dev
) != 0) {
891 printk(KERN_ERR DRV_MODULE_NAME
892 ": %s Could not allocate FEC IRQ!", dev
->name
);
893 napi_disable(&fep
->napi
);
897 /* Install our phy interrupt handler */
898 if (fpi
->phy_irq
!= -1 &&
899 request_irq(fpi
->phy_irq
, fec_mii_link_interrupt
, 0, "fec-phy",
901 printk(KERN_ERR DRV_MODULE_NAME
902 ": %s Could not allocate PHY IRQ!", dev
->name
);
903 free_irq(fpi
->fec_irq
, dev
);
904 napi_disable(&fep
->napi
);
909 fec_mii_startup(dev
);
910 netif_carrier_off(dev
);
911 fec_mii_link_status_change_check(dev
, 1);
913 spin_lock_irqsave(&fep
->lock
, flags
);
914 fec_restart(dev
, 1, 100); /* XXX this sucks */
915 spin_unlock_irqrestore(&fep
->lock
, flags
);
917 netif_carrier_on(dev
);
918 netif_start_queue(dev
);
923 static int fec_enet_close(struct net_device
*dev
)
925 struct fec_enet_private
*fep
= netdev_priv(dev
);
926 const struct fec_platform_info
*fpi
= fep
->fpi
;
929 netif_stop_queue(dev
);
930 napi_disable(&fep
->napi
);
931 netif_carrier_off(dev
);
934 fec_mii_shutdown(dev
);
936 spin_lock_irqsave(&fep
->lock
, flags
);
938 spin_unlock_irqrestore(&fep
->lock
, flags
);
940 /* release any irqs */
941 if (fpi
->phy_irq
!= -1)
942 free_irq(fpi
->phy_irq
, dev
);
943 free_irq(fpi
->fec_irq
, dev
);
948 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
)
950 struct fec_enet_private
*fep
= netdev_priv(dev
);
954 static int fec_enet_poll(struct napi_struct
*napi
, int budget
)
956 struct fec_enet_private
*fep
= container_of(napi
, struct fec_enet_private
, napi
);
957 struct net_device
*dev
= fep
->dev
;
959 return fec_enet_rx_common(fep
, dev
, budget
);
962 /*************************************************************************/
964 static void fec_get_drvinfo(struct net_device
*dev
,
965 struct ethtool_drvinfo
*info
)
967 strcpy(info
->driver
, DRV_MODULE_NAME
);
968 strcpy(info
->version
, DRV_MODULE_VERSION
);
971 static int fec_get_regs_len(struct net_device
*dev
)
973 return sizeof(fec_t
);
976 static void fec_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
979 struct fec_enet_private
*fep
= netdev_priv(dev
);
982 if (regs
->len
< sizeof(fec_t
))
986 spin_lock_irqsave(&fep
->lock
, flags
);
987 memcpy_fromio(p
, fep
->fecp
, sizeof(fec_t
));
988 spin_unlock_irqrestore(&fep
->lock
, flags
);
991 static int fec_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
993 struct fec_enet_private
*fep
= netdev_priv(dev
);
997 spin_lock_irqsave(&fep
->lock
, flags
);
998 rc
= mii_ethtool_gset(&fep
->mii_if
, cmd
);
999 spin_unlock_irqrestore(&fep
->lock
, flags
);
1004 static int fec_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1006 struct fec_enet_private
*fep
= netdev_priv(dev
);
1007 unsigned long flags
;
1010 spin_lock_irqsave(&fep
->lock
, flags
);
1011 rc
= mii_ethtool_sset(&fep
->mii_if
, cmd
);
1012 spin_unlock_irqrestore(&fep
->lock
, flags
);
1017 static int fec_nway_reset(struct net_device
*dev
)
1019 struct fec_enet_private
*fep
= netdev_priv(dev
);
1020 return mii_nway_restart(&fep
->mii_if
);
1023 static __u32
fec_get_msglevel(struct net_device
*dev
)
1025 struct fec_enet_private
*fep
= netdev_priv(dev
);
1026 return fep
->msg_enable
;
1029 static void fec_set_msglevel(struct net_device
*dev
, __u32 value
)
1031 struct fec_enet_private
*fep
= netdev_priv(dev
);
1032 fep
->msg_enable
= value
;
1035 static const struct ethtool_ops fec_ethtool_ops
= {
1036 .get_drvinfo
= fec_get_drvinfo
,
1037 .get_regs_len
= fec_get_regs_len
,
1038 .get_settings
= fec_get_settings
,
1039 .set_settings
= fec_set_settings
,
1040 .nway_reset
= fec_nway_reset
,
1041 .get_link
= ethtool_op_get_link
,
1042 .get_msglevel
= fec_get_msglevel
,
1043 .set_msglevel
= fec_set_msglevel
,
1044 .set_tx_csum
= ethtool_op_set_tx_csum
, /* local! */
1045 .set_sg
= ethtool_op_set_sg
,
1046 .get_regs
= fec_get_regs
,
1049 static int fec_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1051 struct fec_enet_private
*fep
= netdev_priv(dev
);
1052 struct mii_ioctl_data
*mii
= (struct mii_ioctl_data
*)&rq
->ifr_data
;
1053 unsigned long flags
;
1056 if (!netif_running(dev
))
1059 spin_lock_irqsave(&fep
->lock
, flags
);
1060 rc
= generic_mii_ioctl(&fep
->mii_if
, mii
, cmd
, NULL
);
1061 spin_unlock_irqrestore(&fep
->lock
, flags
);
1065 int fec_8xx_init_one(const struct fec_platform_info
*fpi
,
1066 struct net_device
**devp
)
1068 immap_t
*immap
= (immap_t
*) IMAP_ADDR
;
1069 static int fec_8xx_version_printed
= 0;
1070 struct net_device
*dev
= NULL
;
1071 struct fec_enet_private
*fep
= NULL
;
1080 switch (fpi
->fec_no
) {
1082 fecp
= &((immap_t
*) IMAP_ADDR
)->im_cpm
.cp_fec
;
1086 fecp
= &((immap_t
*) IMAP_ADDR
)->im_cpm
.cp_fec2
;
1093 if (fec_8xx_version_printed
++ == 0)
1094 printk(KERN_INFO
"%s", version
);
1096 i
= sizeof(*fep
) + (sizeof(struct sk_buff
**) *
1097 (fpi
->rx_ring
+ fpi
->tx_ring
));
1099 dev
= alloc_etherdev(i
);
1105 fep
= netdev_priv(dev
);
1108 /* partial reset of FEC */
1109 fec_whack_reset(fecp
);
1111 /* point rx_skbuff, tx_skbuff */
1112 fep
->rx_skbuff
= (struct sk_buff
**)&fep
[1];
1113 fep
->tx_skbuff
= fep
->rx_skbuff
+ fpi
->rx_ring
;
1119 spin_lock_init(&fep
->lock
);
1120 spin_lock_init(&fep
->tx_lock
);
1123 * Set the Ethernet address.
1125 for (i
= 0; i
< 6; i
++)
1126 dev
->dev_addr
[i
] = fpi
->macaddr
[i
];
1128 fep
->ring_base
= dma_alloc_coherent(NULL
,
1129 (fpi
->tx_ring
+ fpi
->rx_ring
) *
1130 sizeof(cbd_t
), &fep
->ring_mem_addr
,
1132 if (fep
->ring_base
== NULL
) {
1133 printk(KERN_ERR DRV_MODULE_NAME
1134 ": %s dma alloc failed.\n", dev
->name
);
1140 * Set receive and transmit descriptor base.
1142 fep
->rx_bd_base
= fep
->ring_base
;
1143 fep
->tx_bd_base
= fep
->rx_bd_base
+ fpi
->rx_ring
;
1145 /* initialize ring size variables */
1146 fep
->tx_ring
= fpi
->tx_ring
;
1147 fep
->rx_ring
= fpi
->rx_ring
;
1150 if (fpi
->phy_irq
!= -1 &&
1151 (fpi
->phy_irq
>= SIU_IRQ0
&& fpi
->phy_irq
< SIU_LEVEL7
)) {
1153 siel
= in_be32(&immap
->im_siu_conf
.sc_siel
);
1154 if ((fpi
->phy_irq
& 1) == 0)
1155 siel
|= (0x80000000 >> fpi
->phy_irq
);
1157 siel
&= ~(0x80000000 >> (fpi
->phy_irq
& ~1));
1158 out_be32(&immap
->im_siu_conf
.sc_siel
, siel
);
1162 * The FEC Ethernet specific entries in the device structure.
1164 dev
->open
= fec_enet_open
;
1165 dev
->hard_start_xmit
= fec_enet_start_xmit
;
1166 dev
->tx_timeout
= fec_timeout
;
1167 dev
->watchdog_timeo
= TX_TIMEOUT
;
1168 dev
->stop
= fec_enet_close
;
1169 dev
->get_stats
= fec_enet_get_stats
;
1170 dev
->set_multicast_list
= fec_set_multicast_list
;
1171 dev
->set_mac_address
= fec_set_mac_address
;
1172 netif_napi_add(dev
, &fec
->napi
,
1173 fec_enet_poll
, fpi
->napi_weight
);
1175 dev
->ethtool_ops
= &fec_ethtool_ops
;
1176 dev
->do_ioctl
= fec_ioctl
;
1178 fep
->fec_phy_speed
=
1179 ((((fpi
->sys_clk
+ 4999999) / 2500000) / 2) & 0x3F) << 1;
1181 init_timer(&fep
->phy_timer_list
);
1183 /* partial reset of FEC so that only MII works */
1184 FW(fecp
, mii_speed
, fep
->fec_phy_speed
);
1185 FW(fecp
, ievent
, 0xffc0);
1186 FW(fecp
, ivec
, (fpi
->fec_irq
/ 2) << 29);
1188 FW(fecp
, r_cntrl
, FEC_RCNTRL_MII_MODE
); /* MII enable */
1189 FW(fecp
, ecntrl
, FEC_ECNTRL_PINMUX
| FEC_ECNTRL_ETHER_EN
);
1191 netif_carrier_off(dev
);
1193 err
= register_netdev(dev
);
1198 if (fpi
->use_mdio
) {
1199 fep
->mii_if
.dev
= dev
;
1200 fep
->mii_if
.mdio_read
= fec_mii_read
;
1201 fep
->mii_if
.mdio_write
= fec_mii_write
;
1202 fep
->mii_if
.phy_id_mask
= 0x1f;
1203 fep
->mii_if
.reg_num_mask
= 0x1f;
1204 fep
->mii_if
.phy_id
= fec_mii_phy_id_detect(dev
);
1214 fec_whack_reset(fecp
);
1217 unregister_netdev(dev
);
1221 dma_free_coherent(NULL
,
1224 sizeof(cbd_t
), fep
->ring_base
,
1225 fep
->ring_mem_addr
);
1232 int fec_8xx_cleanup_one(struct net_device
*dev
)
1234 struct fec_enet_private
*fep
= netdev_priv(dev
);
1235 fec_t
*fecp
= fep
->fecp
;
1236 const struct fec_platform_info
*fpi
= fep
->fpi
;
1238 fec_whack_reset(fecp
);
1240 unregister_netdev(dev
);
1242 dma_free_coherent(NULL
, (fpi
->tx_ring
+ fpi
->rx_ring
) * sizeof(cbd_t
),
1243 fep
->ring_base
, fep
->ring_mem_addr
);
1250 /**************************************************************************************/
1251 /**************************************************************************************/
1252 /**************************************************************************************/
1254 static int __init
fec_8xx_init(void)
1256 return fec_8xx_platform_init();
1259 static void __exit
fec_8xx_cleanup(void)
1261 fec_8xx_platform_cleanup();
1264 /**************************************************************************************/
1265 /**************************************************************************************/
1266 /**************************************************************************************/
1268 module_init(fec_8xx_init
);
1269 module_exit(fec_8xx_cleanup
);